
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 21 (2016), no. 57, 1–50.
ISSN: 1083-6489 DOI: 10.1214/16-EJP2

The Cusp-Airy process*

Erik Duse† Kurt Johansson‡ Anthony Metcalfe§

Abstract

At a typical cusp point of the disordered region in a random tiling model we expect
to see a determinantal process called the Pearcey process in the appropriate scaling
limit. However, in certain situations another limiting point process appears that we
call the Cusp-Airy process, which is a kind of two sided extension of the Airy kernel
point process. We will study this problem in a class of random lozenge tiling models
coming from interlacing particle systems. The situation was briefly studied previously
by Okounkov and Reshetikhin under the name cuspidal turning point but their formula
is not completely correct.
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1 Introduction and results

1.1 The Cusp-Airy kernel

In this paper we will study random discrete interlacing particle systems which can
also be interpreted as certain random lozenge tiling models. The particles, or lozenges,
form a random point process which is determinantal. We are particularly interested in
the limiting point process around the type of cusp point we see in the arctic curve in
figure 1, see figure 1 in [16] or [17] for a simulation. Figure 1 illustrates the liquid region
L and its boundary E , the arctic curve. Inside the liquid region one expects to see the
extended sine-kernel point process in the limit. At the tangency points of the polygon
and the boundary E one expects to see the GUE-corner process. At all other points of
the curve E , except the cusp, one expects either the Airy kernel or Id-Airy kernel point
processes in the appropriate scaling limit.

To clarify the situation around the cusp point consider figure 2. All possible tiling
configurations of the polygon can be encoded by the red rhombi. This is illustrated in
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The Cusp-Airy process

figure 3, where we see that the positions of the red rhombi form two interlacing regions
that meet at the dashed line. The rhombi at the common line have been coloured in
purple. The purple rhombi form a discrete orthogonal polynomial ensemble, DOPE, see
Remark 1.5. The dashed line is also a symmetry line (coloured blue in figure 2). The fact
that we have two symmetric interlacing systems meeting at common line, will imply that
the frozen boundary has a reflection symmetry in the symmetry line. It will also imply
that the particle system consisting of red rhombi will have no horizontal oscillations,
see figure 3. Therefore, when considering a scaling limit at the cusp on the symmetry
line of this determinantal point process, the correct scaling is discrete in the horizontal
direction and continuous of size n1{3 in the vertical direction, where n is the size of the
hexagon. Going back to figure 2, we see that directly above the tip of the cusp the blue
and yellow rhombi form a corner. This implies that the height function in [17] will have
a jump above the tip of the cusp. This should be contrasted to the situation where one
expects to find a Pearcey process in the scaling limit around a cusp point of the arctic
curve. Then one has only one type of rhombi in the frozen configuration inside the cusp.
This also implies that the height function is flat inside the cusp.

L

E

Figure 1: The liquid region L is coloured in blue. Its boundary is E .

Figure 2
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The Cusp-Airy process

ξ, continuous scaling

r, discrete scaling

Figure 3
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Figure 4: Integration contours for the Cusp-Airy kernel.

At the cusp, in an appropriate scaling limit, we will see that the correlation kernel for
the determinantal point process given by the red rhombi converges to a process with a
kernel that we call the Cusp-Airy kernel. We will show this for the model corresponding
to figure 1 up to certain natural technical conditions for a particular DOPE. In a simpler
model of the type studied by Petrov in [20] we will give the full proof. This type of
cusp situation in a random lozenge tiling model was discovered and discussed briefly by
Okounkov and Reshetikhin in [18] who called it a Cuspidal turning point. However, the
integration contours in their formula are not correct. Thus, the interpretation of their
formula is not completely clear, see remark 1.1 below. Also, no proof is given in [18].

Let us give the expression for the Cusp-Airy kernel.

Definition 1.1. For r, s P Z and ξ, τ P R we define the Cusp-Airy kernel by

KCAppξ, rq, pτ, sqq “ ´1τěξ1sąr
pτ ´ ξqs´r´1

ps´ r ´ 1q!

`
1

p2πiq2

ˆ
LL`Cout

dz

ˆ
LR`Cin

dw
1

w ´ z

wr

zs
e

1
3w

3
´ 1

3 z
3
´ξw`τz, (1.1)

where the contours are defined in figure 4, and 1aăb is the indicator function for a ă b.
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The Cusp-Airy process

In section 3.2 we give a different formula for the kernel in terms of r-Airy integrals
and some polynomials. When r “ s “ 0 we see that we get the Airy kernel. Hence, we
expect the last red particle on the line r “ 0 to have Tracy-Widom fluctuations. We do
not prove this in this paper as we would need to work with test function without compact
support in (1.47), and this would require more refined estimates. In the case r “ s ‰ 0

we interestingly get the r-Airy kernel, which has appeared in previous work, see [1] and
[3].

Remark 1.1. In [18], Okounkov and Reshetikhin give a formula, without proof, for
the correlation kernel in the appropriate scaling limit around the type of cusp point
studied in the present paper, but in a different model. The definition of the kernel in
[18] is somewhat formal due to the fact that the factor 1

w´z
wr

zs in formula (1.1) above is
interpreted via a “time-ordered expansion”, see (13) in [18]. However, for the contours
used in their formula (18) these expansions are not convergent. Similarly, in our formula
(1.1) above we can not expand 1

w´z in a power series when z P LL and w P LR. In this

case it seems more natural to rewrite 1
w´z in a different way, see (3.9) in section 3.2 and

compare with the formulas derived there, see Proposition 3.2.

1.2 Random lozenge tiling model

Consider three different types of lozenges (rhombi with angles π
3 and 2π

3 ) with sides
of length 1. We label these as types Y, B, and R as shown in figure 5.

Y B R

Figure 5: Three types of lozenges with sides of length 1.

Consider a ‘half-hexagon’ as shown in figure 6.

m

n

m` n

n

Figure 6: A ‘half-hexagon’ of height n and width n`m.

Suppose that we place n lozenge tiles of type Y on the top line of the ‘half-hexagon’
according to figure 7.

Figure 7: n tiles of type Y on the top line of the half-hexagon

Fix this configuration of n tiles of type Y on the top line, at say positions βpnq1 , β
pnq
2 , ...,

β
pnq
n , and consider all possible tessellations of the ‘half-hexagon’ with uniform probability

distribution. A possible such tessellation is shown in figure 8.
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The Cusp-Airy process

9

88

Figure 8: An example of a tiling and its equivalent interlaced particle configuration when
n “ 8 and m “ 9. The unfilled circles represent the deterministic lozenges/particles.

By considering the positions of the yellow tiles, such a tessellation can be encoded
as an interlaced particle system. More precisely, let yprqi denote the position of the i:th
particle on the r:th row. Then the particles on row r ` 1 will interlace with the particles
on row r according to

y
pr`1q
1 ą y

prq
1 ą y

pr`1q
2 ą y

prq
2 ... ą yprqr ą y

pr`1q
r`1 ,

for every r “ 1, ..., n´ 1, where ypnqi “ β
pnq
i . It will be convenient to make a coordinate

transformation according to figure 9. For more details see section 1.4 in [8] and section
2.1 in [20].

Figure 9: Coordinate transformation of lozenge tiles.

After the coordinate transformation, figure 8 becomes figure 10. Furthermore the
interlacing condition between row r ` 1 and row r has changed into

y
pr`1q
1 ě y

prq
1 ą y

pr`1q
2 ě y

prq
2 ... ě yprqr ą y

pr`1q
r`1 .

Figure 10: An example tiling and its equivalent interlaced particle configuration af-
ter the coordinate transformation. The unfilled circles represent the deterministic
lozenges/particles.

1.3 Interlacing model

We begin by briefly recalling the underlying probabilistic model described in [8]. A
discrete Gelfand-Tsetlin pattern of depth n is an n-tuple, denoted pyp1q, yp2q, . . . , ypnqq P
ZˆZ2 ˆ ¨ ¨ ¨ ˆZn, which satisfies the interlacing constraint

y
pr`1q
1 ě y

prq
1 ą y

pr`1q
2 ě y

prq
2 ą ¨ ¨ ¨ ě yprqr ą y

pr`1q
r`1 ,
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The Cusp-Airy process

denoted ypr`1q ą yprq, for all r P t1, . . . , n ´ 1u. For each n ě 1, fix βpnq P Zn with

β
pnq
1 ą β

pnq
2 ą ¨ ¨ ¨ ą β

pnq
n , and consider the following probability measure on the set of

patterns of depth n:

qnpy
p1q, . . . , ypnqq :“

1

Zn
¨

"

1 ; when βpnq “ ypnq ą ypn´1q ą ¨ ¨ ¨ ą yp1q,

0 ; otherwise,

where Zn ą 0 is a normalisation constant. This can equivalently be considered as a
measure on configurations of interlaced particles in Zˆ t1, . . . , nu by placing a particle
at position px, rq P Z ˆ t1, . . . , nu whenever x is an element of yprq. The measure qn is
then the uniform probability measure on the set of all such interlaced configurations
with the particles on the top row in the deterministic positions defined by βpnq. This
measure also arises naturally from tiling models as was indicated above. In [8] and
[20] it was shown that this process is determinantal. Note that the fixed top row
and the interlacing constraint implies that it is sufficient to restrict to those positions,
px1, y1q, px2, y2q P Zˆ t1, . . . , n´ 1u, with x1 ě β

pnq
n ` n´ y1 and x2 ě β

pnq
n ` n´ y2. For

all such px1, y1q and px2, y2q, we give an integral representation of the correlation kernel
Knppx1, y1q, px2, y2qq in section 4.1.

In terms of tiling models, Knppx1, y1qpx2, y2qq is equal to a correlation kernel for the

yellow particles KpnqY ppx1, y1q, px2, y2qq. However at the cusp one should not consider the
correlation kernel of the yellow particles, but the correlation kernel of the red particles
instead. The correlation kernels of the different particle species are related according to
Lemma 4.1 below, which we will prove in sec. 4.2. This leads to the following result for
the correlation kernel for the red particles which is proved at the end of section 4.2.

Proposition 1.1. The red tiles (particles) form a determinantal point process with
correlation kernel

K
pnq
R ppx1, y1q, px2, y2qq

“ ´1x1ăx2

1

p2πiq2

˛
Zn

dz

˛
Wn

dw

śx2´1
k“x2`y2´n

pz ´ kq
śx1

k“x1`y1´n
pw ´ kq

1

w ´ z

n
ź

i“1

ˆ

w ´ β
pnq
i

z ´ β
pnq
i

˙

` 1x1ěx2

1

p2πiq2

˛
Z 1
n

dz

˛
Wn

dw

śx2´1
k“x2`y2´n

pz ´ kq
śx1

k“x1`y1´n
pw ´ kq

1

w ´ z

n
ź

i“1

ˆ

w ´ β
pnq
i

z ´ β
pnq
i

˙

, (1.2)

where Zn is a counterclockwise oriented contour containing tβpnqj : β
pnq
j ě x2u but

not the set tβpnqj ď x2 ´ 1u, and Z 1
n is a counterclockwise oriented contour containing

tβ
pnq
j : β

pnq
j ă x2u but not the set tβpnqj ě x2 ` 1u. In addition, Wn contains the set

An Bn

Z 1
n

x2

Zn

Wn

Figure 11: Integration contours

EJP 21 (2016), paper 57.
Page 6/50

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP2
http://www.imstat.org/ejp/
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tx1` y1´n, ..., x1u and Zn or Z 1
n. The integration contours are shown in figure 11. Here

An “ minjtβ
pnq
j : j “ 1, ..., nu and Bn “ maxjtβ

pnq
j : j “ 1, ..., nu.

1.4 Asymptotic geometry of discrete interlaced patterns

It is natural to consider the asymptotic behaviour of the determinantal process
introduced in the previous section as nÑ8, under the assumption that the (rescaled)
empirical distribution of the fixed particles on the top row converges weakly to a measure
with compact support. More exactly:

Assumption 1. Assume that

µn :“
1

n

n
ÿ

i“1

δ
β
pnq
i {n

á µ

as n Ñ 8, in the sense of weak convergence of measures, where µ is a positive Borel
measure on R.

We see that µ ď λ where λ is Lebesgue measure (recall βpnq P Zn), }µ} “ 1, µ
has compact support, and b ´ a ą 1 where ra, bs is the convex hull of supppµq. We
write µ P Mλ

c,1pRq. Additionally we note that µ admits a density w.r.t. λ, which is
uniquely defined up to a set of zero Lebesgue measure. Denoting the density by ϕ, it
satisfies ϕ P L8pRq, ϕpxq “ 0 for all x P Rzra, bs, and 0 ď ϕpxq ď 1 for all x P ra, bs.
We write ϕ P ρλc,1pRq. Note that Rzsupppµq is the largest open set on which ϕ “ 0

almost everywhere, and Rzsupppλ ´ µq is the largest open set on which ϕ “ 1 almost
everywhere.

Note that, rescaling the vertical and horizontal positions of the particles of the
Gelfand-Tsetlin patterns by 1

n , the above assumption and the interlacing constraint imply
that the rescaled particles lie asymptotically in the the following set:

P “ tpχ, ηq P R2 : a ď χ` η ´ 1 ď χ ď b, 0 ď η ď 1u. (1.3)

Fixing pχ, ηq P P, the local asymptotic behaviour of particles near pχ, ηq can be examined

by considering the asymptotic behaviour of Knppx
pnq
1 , y

pnq
1 q, px

pnq
2 , y

pnq
2 qq as nÑ8, where

tpx
pnq
1 , y

pnq
1 quně1 Ă Z

2 and tpxpnq2 , y
pnq
2 quně1 Ă Z

2 satisfy 1
n px

pnq
j , y

pnq
j q Ñ pχ, ηq as n Ñ 8,

j “ 1, 2. Assume this asymptotic behaviour (a more precise scaling will be given later
in Definition 1.3), substitute pxpnq1 , y

pnq
1 q and pxpnq2 , y

pnq
2 q into the expression (1.2) for the

correlation kernel, and rescale the contours by 1
n to get,

K
pnq
R ppx

pnq
1 , y

pnq
1 q, px

pnq
2 , y

pnq
2 qq “ ´1x1ăx2

1

p2πiq2

˛
1
nZn

dz

˛
1
nWn

dw
exppnfnpwq ´ nf̃npzqq

w ´ z

` 1x1ěx2

1

p2πiq2

˛
1
nZ 1

n

dz

˛
1
nWn

dw
exppnfnpwq ´ nf̃npzqq

w ´ z
,

(1.4)

for all n P N. Here,

fnpwq :“
1

n

n
ÿ

i“1

log

ˆ

w ´
β
pnq
i

n

˙

´
1

n

x
pnq
1
ÿ

j“x
pnq
1 `y

pnq
1 ´n

log

ˆ

w ´
j

n

˙

,

f̃npzq :“
1

n

n
ÿ

i“1

log

ˆ

z ´
β
pnq
i

n

˙

´
1

n

x
pnq
2 ´1
ÿ

j“x
pnq
2 `y

pnq
2 ´n`1

log

ˆ

z ´
j

n

˙

.
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These expressions and assumption 1 leads us to define

fpw;χ, ηq :“

ˆ
R

logpw ´ tqdµptq ´

ˆ χ

χ`η´1

logpw ´ tqdt, (1.5)

for all w P CzR. Steepest descent analysis and equation (1.4) suggest that, as n Ñ 8,

the asymptotic behaviour of KpnqR ppx
pnq
1 , y

pnq
1 q, px

pnq
2 , y

pnq
2 qq depends on the behaviour of

the roots of

f 1pw;χ, ηq :“
df

dw
“

ˆ
R

dµptq

w ´ t
´

ˆ χ

χ`η´1

dt

w ´ t
, (1.6)

for w P CzR. In [8], we define the liquid region, L, as the set of all pχ, ηq P P for which
f 1
pχ,ηq has a unique root in the upper-half plane H :“ tw P C : Impwq ą 0u. Whenever
pχ, ηq P L, one expects universal bulk asymptotic behaviour, i.e., that the local asymptotic
behaviour of the particles near pχ, ηq are governed by the extended discrete sine kernel
as nÑ `8. Also, one expects that the particles are not asymptotically densely packed.
Moreover, when considering the corresponding tiling model and its associated height
function, one would expect to see the Gaussian Free Field asymptotically. For a special
case see [21].

Let WL : L Ñ H map pχ, ηq P L to the corresponding unique root of f 1
pχ,ηq in H. In

[8], we show that WL is a homeomorphism with inverse W´1
L pwq “ pχLpwq, ηLpwqq for all

w P H, where

χLpwq :“ w `
pw ´ w̄qpeCpw̄q ´ 1q

eCpwq ´ eCpw̄q
, (1.7)

ηLpwq :“ 1`
pw ´ w̄qpeCpwq ´ 1qpeCpw̄q ´ 1q

eCpwq ´ eCpw̄q
, (1.8)

and C : Czsupppµq Ñ C is the Cauchy transform of µ:

Cpwq :“

ˆ
R

dµptq

w ´ t
. (1.9)

Thus L is a non-empty, open (w.r.t to R2), simply connected subset of P.
In [8] a subset of BL called the edge E was determined and its geometry classified.

More precisely, the boundary behavior of W´1
L for the open subset R Ă BH “ R was

studied, where

R :“ pRzsupppµqq Y pRzsupppλ´ µqq YR1 YR2 “ Rµ YRλ´µ YR0 YR1 YR2, (1.10)

where

• Rµ :“ tt P Rzsupppµq : Cptq ‰ 0u.

• Rλ´µ :“ Rzsupppλ´ µq.

• R0 :“ tt P Rzsupppµq : Cptq “ 0u.

• R1 is the set of all t P BpRzsupppµqq X BpRzsupppλ ´ µqq for which there exists an
ε ą 0 such that pt, t` εq Ă Rzsupppµq and pt´ ε, tq Ă Rzsupppλ´ µq.

• R2 is the set of all t P BpRzsupppµqq X BpRzsupppλ ´ µqq for which there exists an
ε ą 0 such that pt, t` εq Ă Rzsupppλ´ µq and pt´ ε, tq Ă Rzsupppµq.

Note that R1 X R2 “ H. R1 Y R2 :“ BpRzsupppµqq X BpRzsupppλ ´ µqq, the set of all
common boundary points of the disjoint open sets Rzsupppµq and Rzsupppλ´ µq. Also
R1YR2 is a discrete subset of ra, bs. In words, RµYR0 is the interior of the set where the
density ϕpxq “ 0 almost everywhere, and Rλ´µ is the interior of the set where ϕpxq “ 1

almost everywhere. We see that R1 are the jumps from 1 to 0 and R2 are the jumps from
0 to 1.
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Definition 1.2. Let t˚ P R2. We set

t1 :“ suptt P R : pt˚, tq Ă Rλ´µu (1.11)

and

t2 :“ inftt P R : pt, t˚q Ă Rµ YR0u. (1.12)

Then in particular ϕptq “ 0 for all t P pt2, t˚q and ϕptq “ 1 for all t P pt˚, t1q. If t “ t˚ P R1

we interchange Rλ´µ and Rµ YR0 in (1.11) and (1.12)

It was shown in [8] that by considering a sequence twnun P H such that limnÑ`8 wn “

t P R “ BH one gets a parametrization of the edge E ,

lim
nÑ8

χpwnq “ t`
1´ e´Cptq

C 1ptq
:“ χEptq (1.13)

lim
nÑ8

ηpwnq “ 1`
eCptq ` e´Cptq ´ 2

C 1ptq
:“ ηEptq (1.14)

for t P Rµ and

lim
nÑ8

χpwnq “ t`
1´ p t´t1t´t2

qe´CIptq

C 1Iptq `
1

t´t2
´ 1

t´t1

:“ χEptq (1.15)

lim
nÑ8

ηpwnq “ 1`
p t´t2t´t1

qeCIptq ` p t´t1t´t2
qe´CIptq

C 1Iptq `
1

t´t2
´ 1

t´t1

:“ ηEptq (1.16)

for t P Rλ´µ, where

CIptq “

ˆ
RzI

dµpxq

t´ x
,

and I is any open interval such that µ
ˇ

ˇ

I
“ λ and t P I. Moreover the collection of these

smooth parametrized curves has analytic extensions across the set R1YR2. In particular,

pχEptq, ηEptqq “ pt, 1´ pt´ t2qe
CIptqq (1.17)

for t P R1 with I “ pt2, tq, and

pχEptq, ηEptqq “ pt` pt1 ´ tqe
´CIptq, 1´ pt1 ´ tqe

´CIptqq (1.18)

for t P R2, with I “ pt, t1q. Finally, it is proven in [8] that this gives a bijection WE : E Ñ R,
with inverse W´1

E ptq “ pχEptq, ηEptqq, where χEptq and ηEptq are real analytic functions.

The importance of the edge E is that one expects universal edge fluctuations at E . In
particular one expects that the local asymptotics in a neighborhood of a generic point
of E is either given by the Airy kernel or the Id ´ Airy kernel. For a special case see
[20], and more generally [9]. In this paper we will consider certain singular points on
the curve E . At these points the curve will have a cusp. Typically one would expect that
the local fluctuations at these points in the limit nÑ8 is a Pearcey process. However,
for the situations considered in this paper this will not be the case. In fact we will show
that at these points one gets the Cusp-Airy process given by the kernel (1.1).
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1.5 Conditions for cusps

One can rewrite the derivative given by (1.6) as

f 1pw;χ, ηq “

ˆ χ`η´1

a

dµpxq

w ´ x
´

ˆ χ

χ`η´1

dpλ´ µqpxq

w ´ x
`

ˆ b

χ

dµpxq

w ´ x
. (1.19)

This implies that the function f 1pw;χ, ηq has an analytic extension to the set
Czpsupppµq

ˇ

ˇ

ra,χ`η´1,χs

Ť

supppλ ´ µq
ˇ

ˇ

rχ`η´1,χs

Ť

supppµq
ˇ

ˇ

rχ,bs
q. It is shown in Lemma

2.6 in [8] that the edge, E , is the disjoint union E :“ Eµ Y Eλ´µ Y E0 Y E1 Y E2, where

• Eµ is the set of all pχ, ηq P P for which f 1 has a repeated root in Rzrχ` η ´ 1, χs.

• Eλ´µ is the set of all pχ, ηq for which f 1 has a repeated root in pχ` η ´ 1, χq.

• E0 is the set of all pχ, ηq for which η “ 1 and f 1 has a root at χ p“ χ ` η ´ 1q. In
particular, E is tangent to the line η “ 1.

• E1 is the set of all pχ, ηq for which η ă 1 and f 1 has a root at χ. In particular, E is
tangent to the line χ “ t P R1.

• E2 is the set of all pχ, ηq for which η ă 1 and f 1 has a root at χ` η ´ 1. In particular,
E is tangent to the line χ` η ´ 1 “ t P R2.

Moreover it is shown in Lemma 2.6 in [8] that one has following equivalent charac-
terization of the behavior of the roots of f 1t :“ f 1pw;χEptq, ηEptqq

ˇ

ˇ

w“t
whenever pχ, ηq P E :

(a) pχEptq, ηEptqq P Eµ if and only if t P Rµ. Moreover, in this case, t is a root of f 1t of
multiplicity either 2 or 3.

(b) pχEptq, ηEptqq P Eλ´µ if and only t P Rλ´µ. Moreover, in this case, t is a root of f 1t of
multiplicity either 2 or 3.

(c) pχEptq, ηEptqq P E0 if and only if t P R0. Moreover, in this case, f 1t “ C and t is a root
of f 1t of multiplicity 1.

(d) pχEptq, ηEptqq P E1 if and only t P R1. Moreover, in this case, t is a root of f 1t of
multiplicity either 1 or 2.

(e) pχEptq, ηEptqq P E2 if and only t P R2. Moreover, in this case, t is a root of f 1t of
multiplicity either 1 or 2.

If case (a) holds and t is a root of multiplicity 2 of f 1t one expects to see the extended Airy
kernel process. If on the other hand t is a root of multiplicity 3 of f 1t one expects to see
the Pearcey process. If case (b) holds and t is a root of multiplicity 2 of f 1t one expects to
see the Id-extended Airy kernel process. What we mean by this is that we have to make
a particle/hole transformation, i.e. change the type of tiles we are considering. If on
the other hand t is a root of multiplicity 3 of f 1t one again expects to see the Id-Pearcey
process. If case (c) holds one expects to see the GUE corner process, and similarly if
case (d) and (e) holds and t is a root of multiplicity 1 of f 1t. In the remaining cases (d)
and (e) when t is a root of multiplicity 2 of f 1t one will see the Cusp-Airy process, which
will be shown in this paper.

In this article we will assume that t “ tc P R1 Y R2 and that tc is a root of f 1t of
multiplicity 2. If these conditions hold, then it is shown in Lemma 2.9 in [8] that the
edge at pχEptq, ηEptqq is locally an algebraic cusp of first order, that is the curve locally
looks like the algebraic curve y3 “ x2 in a neighborhood of the origin. Moreover, if
tc P R2, then by Theorem 3.1 in [8] χc ą t1. Then (1.18) together with the fact that
χc ` ηc ´ 1 “ tc, where χc :“ χEptcq and ηc :“ ηEptcq, gives

f 1ptc;χc, ηcq “ CIptcq ´

ˆ χc

t1

dx

tc ´ x
“ CIptcq ` log |tc ´ χc| ´ log |tc ´ t1|

EJP 21 (2016), paper 57.
Page 10/50

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP2
http://www.imstat.org/ejp/


The Cusp-Airy process

“ CIptcq ` log |ptc ´ t1qe
´CIptcq| ´ log |tc ´ t1| “ 0.

A similar computation gives f 1ptc;χc, ηcq “ 0 whenever tc P R1. Therefore, f 1ptc;χc, ηcq ”
0 whenever tc P R1 YR2. This implies that that pχc, ηcq is a cusp of E for tc P R1 YR2, if
and only if f2ptc;χc, ηcq “ 0. However, a direct computation shows that if tc P R2, then

f2ptc;χc, ηcq “ C 1Iptcq `
eCIptcq ´ 1

tc ´ t1

and if tc P R1, then

f2ptc;χc, ηcq “ C 1Iptcq `
1´ e´CIptcq

tc ´ t2
.

Therefore, E has a cups at pχc, ηcq, if and only if

C 1Iptcq “
eCIptcq ´ 1

t1 ´ tc
(1.20)

if tc P R2, and

C 1Iptcq “
1´ e´CIptcq

t2 ´ tc
. (1.21)

if tc P R1. From now on we will consider only the case tc P R2. The case when tc P R1

can be treated analogously.

Assumption 2. Let tc P R2 and let pχc, ηcq :“ pχEptcq, ηEptcqq. Assume that f 1ptc;χc, ηcq “
f2ptc;χc, ηcq “ 0 so that pχc, ηcq is the asymptotic cusp point.

Lemma 1.1. If tc P R2 and f2ptc;χc, ηcq “ 0, then f3ptc;χc, ηcq ą 0.

Proof. By Lemma 2.9 in [8], the signed extrinsic curvature kEptq is negative for all
smooth points of the curve E . From this it follows that all cusps point into the liquid
region L. Together with Lemma 2.9 case (9) and Lemma 2.8 formula (g) in [8] it follows
that f3ptc;χc, ηcq ą 0.

In order to prove convergence to the Cusp-Airy kernel in our discrete model we will
have to assume that µn will jump from empty to full not just asymptotically in terms of ϕ,
but already at the discrete level. This is the content of the next assumption.

Assumption 3. Assume that for every ε ą 0 and n large enough we have for tc P R2,

µn
ˇ

ˇ

rt2`ε,t1´εs
“

1

n

ÿ

tntcuďkďnpt1´εq

δk{n. (1.22)

where txu “ maxtm P Z : m ď xu.

Remark 1.2. Assuming only weak convergence of the empirical measures tµnun to a
limiting measure µ will not be sufficient when considering fluctuation of the edge E . We
will need better control of the convergence of sequence of empirical measures. More
precisely, it is necessary to assume that their supports converge in an appropriate sense,
see [9]. This will not be needed here since the other assumptions that we make are
enough. Furthermore, Assumption 3 may appear restrictive. However, it is a natural
assumption in the situations studied in [20] and [8]. Indeed, if the assumption does
not hold, then Theorem 1.1 need not hold, as one would no longer have the same type
of cancellations in the integrand of the integral representation (1.39). See also the
discussion of Assumption 5 in section 1.9.
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1.6 Rescaled variables

Introduce the following notation

an :“ n´1 mintt P supppµnqu “ n´1βpnqn

and

bn :“ n´1 maxtt P supppµnqu “ n´1β
pnq
1 .

Furthermore, we write

tpnqc :“ n´1 mintβ
pnq
i : β

pnq
i ě tntcuu “ n´1 mintt P supppµnq : t ě tntcuu, (1.23)

t
pnq
1 ` n´1 “ n´1 mintt P supppλn ´ µnq : t ą ntpnqc u, (1.24)

and

t
pnq
2 “ n´1 maxtt P supppµnq : t ă ntpnqc u. (1.25)

In words, ntpnq1 ` 1 is the position of the first hole after ntpnqc , i.e., ntpnq1 is the position of

the last particle in a densely packed block after ntpnqc , and ntpnq2 is the position of the last

particle before ntpnqc . In particular pntpnq2 , nt
pnq
c q is an empty block and rntpnqc , nt

pnq
1 s is a

densely packed block. Finally, we define

xpnqc :“ n´1tnχcu and ypnqc :“ 1` tpnqc ´ xpnqc . (1.26)

We note that by Assumption 3, it follows that limnÑ8 an “ a, limnÑ8 bn “ b,
limnÑ8 t

pnq
2 “ t2, limnÑ8 t

pnq
1 “ t1 and limnÑ8 t

pnq
c “ tc. Let σ be a signed Borel measure

on R and let

Uσpxq “

ˆ
R

log |x´ t|dσptq (1.27)

denote the logarithmic potential of σ.

Remark 1.3. Note that sometimes the logarithmic potential is defined with opposite sign.
We will however follow the convention in [22].

Consider the signed measure

dνpxq “ pχra,t2spxq ` χrχc,bspxqqϕpxqdx´ p1´ ϕpxqqχrt1,χcspxqdx. (1.28)

Then at the cusp χc ` ηc ´ 1 “ tc, and

fpw;χc, ηcq “fpw;χcq

“

ˆ t2

a

logpw ´ xqdµpxq ´

ˆ χc

t1

logpw ´ xqdpλ´ µqpxq `

ˆ b

χc

logpw ´ xqdµpxq

“

ˆ
R

logpw ´ xqdνpxq “ Uνpwq ` i

ˆ
R

argpw ´ tqdνptq, (1.29)

where log denotes the principal branch of the complex logarithm function.
In particular we note that f is independent of ηc. By assumption on µ we have a

complete cancelation of the measures µ and λ on rtc, t1s, that is λ´ µ
ˇ

ˇ

rtc,t1s
“ 0. For the

exact kernel however, the cancelation of factors is not necessarily complete. Moreover
due to the rigidity of the interlacing system, as shown in figure 3, their will be no
fluctuations around the frozen boundary at the cusp in the orthogonal direction to the
tangential direction of the cusp. It is therefore natural to assume a discrete variation in
the orthogonal direction. We therefore assume the following scaling:
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Definition 1.3. Introduce the fixed limiting variables r, s P Z, and ξ, τ P R. Let

c0 “
2pχc ´ tcq

d0
, (1.30)

where

d0 “

ˆ

2

f3ptcq

˙1{3

. (1.31)

Define the rescaled variables ξn, τn P R, by
$

’

’

’

&

’

’

’

%

x1 “ nx
pnq
c ` 1

2

`

r ´ c0n
1{3ξn

˘

y1 “ ny
pnq
c ` 1

2

`

r ` c0n
1{3ξn

˘

x2 “ nx
pnq
c ` 1

2

`

s´ c0n
1{3τn

˘

y2 “ ny
pnq
c ` 1

2

`

s` c0n
1{3τn

˘

. (1.32)

We assume that

lim
nÑ8

ξn “ ξ, lim
nÑ8

τn “ τ. (1.33)

When taking limits of the correlation kernel we will always use the scaling (1.32).
Note that by (1.26), the rescaled variables satisfy

$

’

’

’

&

’

’

’

%

y1 ` x1 “ n` nt
pnq
c ` r

y1 ´ x1 “ ny
pnq
c ´ nx

pnq
c ` c0n

1{3ξn

y2 ` x2 “ n` nt
pnq
c ` s

y2 ´ x2 “ ny
pnq
c ´ nx

pnq
c ` c0n

1{3τn

. (1.34)

It will be convenient to introduce the notation

∆x
pnq
1 “

1

2
pr ´ c0n

1{3ξnq, ∆x
pnq
2 “

1

2
ps´ c0n

1{3τnq. (1.35)

The rescaled coordinate system is depicted in figure 12.

r

ξ

pnx
pnq
c , ny

pnq
c q

nx
pnq
c ` ny

pnq
c “ nt

pnq
c ` n

Figure 12: Rescaled coordinate system at the cusp.

1.7 Integrand

In order to write the integrand in (1.2) in a convenient way we introduce some
notation. Let
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qnpw; rq “

śx1

k“nt
pnq
c
pw ´ kq

śx1

k“x1`y1´n
pw ´ kq

(1.36)

“ 1rą0

ntpnqc `r´1
ź

k“nt
pnq
c

pw ´ kq ` 1r“0 ` 1ră0

ntpnqc ´1
ź

k“nt
pnq
c `r

pw ´ kq´1,

and

Qnpw; ∆x
pnq
1 q“

śnxpnqc

k“nt
pnq
c

pw ´ kq
śx1

k“nt
pnq
c
pw ´ kq

(1.37)

“ 1
∆x

pnq
1 ą0

nxpnqc `∆x
pnq
1

ź

k“nx
pnq
c `1

pw ´ kq´1 ` 1
∆x

pnq
1 “0

` 1
∆x

pnq
1 ă0

nxpnqc
ź

k“nx
pnq
c `∆x

pnq
1 `1

pw ´ kq.

We see that qnpw; rq only depends on the parameters through r. Also, since x1 “

nx
pnq
c `∆x

pnq
1 , Qnpw; ∆x

pnq
1 q only depends on the parameters through ∆x

pnq
1 .

Furthermore, let

Enpwq “

ś

β
pnq
i ďnt

pnq
2
pw ´ β

pnq
i q

ś

nt
pnq
1 ăβ

pnq
i
pw ´ β

pnq
i q

śnx
pnq
c

k“nt
pnq
1 `1

pw ´ kq
. (1.38)

Lemma 1.2. We have that

K
pnq
R ppx1, y1q, px2, y2qq

“ ´1x1ăx2

1

p2πiq2

˛
Γn

dz

˛
γn

dw
1

pw ´ zqpz ´ n´1x2q

qnpnw; rqQnpnw,∆x
pnq
1 qEnpnwq

qnpnz; sqQnpnz; ∆x
pnq
2 qEnpnzq

` 1x1ěx2

1

p2πiq2

˛
Γ̃n

dz

˛
γ̃n

dw
1

pw ´ zqpz ´ n´1x2q

qnpnw; rqQnpnw,∆x
pnq
1 qEnpnwq

qnpnz; sqQnpnz; ∆x
pnq
2 qEnpnzq

,

(1.39)

where Γn is a counterclockwise oriented contour that contains the set tn´1β
pnq
i ě t

pnq
1 u

but not the set tβpnqi ď t
pnq
c `su, and Γ̃n is a counterclockwise oriented contour containing

the set tn´1β
pnq
i ď t

pnq
c ` su but not the set tn´1β

pnq
i ě t

pnq
1 u. In addition, γn is the

counterclockwise oriented contour that contains the set n´1tx1`y1´n, ..., x1u and Γn and
γ̃n is the counterclockwise oriented contour that contains the set n´1tx1 ` y1 ´ n, ..., x1u

and Γ̃n. See figure 13 and 14.

γn

Γn

an t
pnq
2 t

pnq
c t

pnq
1 x

pnq
c bn

Figure 13: Integration contours for the correlation kernel. Blue dots indicate the posi-
tions of poles and red dots indicate the position of zeroes of the function qnpnw; rqEnpnwq.
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γ̃n

Γ̃n

an t
pnq
2 t

pnq
c t

pnq
1 x

pnq
c bn

Figure 14: Integration contours for the correlation kernel. Blue dots indicate the posi-
tions of poles and red dots indicate the position of zeroes of the function qnpnw; rqEnpnwq.

The lemma will be proven in section 2.1.
Let νn and νn,j , j “ 1, 2, be the signed measures

νnptq “
1

n

ÿ

β
pnq
i ďnt

pnq
2

δ
β
pnq
i {n

´
1

n

ˆ nxpnqc
ÿ

k“nt
pnq
1 `1

δk{n ´
ÿ

nt
pnq
1 ăβ

pnq
i ďnx

pnq
c

δ
β
pnq
i {n

˙

`
1

n

ÿ

nx
pnq
c ăβ

pnq
i

δ
β
pnq
i {n

, (1.40)

νn,jptq “
1

n

ÿ

β
pnq
i ďnt

pnq
2

δ
β
pnq
i {n

´
1

n

ˆ x
pnq
j
ÿ

k“nt
pnq
1 `1

δk{n ´
ÿ

nt
pnq
1 ăβ

pnq
i ďx

pnq
j

δ
β
pnq
i {n

˙

`
1

n

ÿ

x
pnq
c ăβ

pnq
i

δ
β
pnq
i {n

. (1.41)

Furtheremore, define fn, gn,j and hn,j by

fnpwq “
1

n
logEnpnwq “

ˆ
R

logpw ´ tqdνnptq, (1.42)

gn,jpwq “
1

n
logQnpnw; ∆x

pnq
j q ` fnpwq :“

1

n
hn,jpwq ` fnpwq. (1.43)

In particular, Rergn,jpwqs “
´
R

log |w ´ t|dνn,jptq “ Uνn,j pwq. Here, we let log be the
principal branch of the logaritm for fnpwq. For hn,jpwq, we let the branch cut of log

lie along the the positive real axis. With these choices of branch cuts, it follows that
fn is analytic on Czp´8, bns, and hn,j is analytic in Czrtpnq1 ,`8q. In particular we note
that fnpwq has a jump discontinuity over the real line at tc. However Re[fn] is real

analytic on Czpran, t
pnq
2 s Y rt

pnq
1 , bnsq, and f 1n is homolorphic on Czpran, t

pnq
2 s Y rt

pnq
1 , bnsq.

Moreover, lim
tc˘iεÑtc

fptc ˘ iεq :“ f˘n ptcq “ Rerfnptcqs ˘ iπk{n, where k is an integer.

Therefore exppnpf`n ptcq ´ f´n ptcqqq “ expp2πikq “ 1. Thus the jump discontinuity in the
imaginary part of fn does not matter when we perform a steepest descent analysis in a
neighborhood of tc. From now on it will be understood that when we Taylor expand fn at
w “ tc, we look at the branch

f`n ptcq `
8
ÿ

n“1

f pnqptcq

n!
pw ´ tcq

n.

It follows from our assumptions that fn and gn,j converge uniformly to f on compact
subsets of Czpra, t2s Y rt1, bsq, see Lemma 2.1.
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We need one more assumption which will enable us to replace the non-asymptotic
function fnpzq by the asymptotic function fpzq in a neighbourhood of the critical point tc.

Assumption 4. There is a neighbourhood U of tc such that

lim
nÑ8

n2{3pf 1npzq ´ f
1pzqq “ 0 (1.44)

uniformly in U .

Assumption 4 has to be verified in each individual tiling model. Sometimes, this is
trivial. However, it can also be quite nontrivial, in particular when the empirical measure
is a random measure. See also the discussion of Assumption 5 in section 1.9.

1.8 Main theorem

We can now give the main theorem about convergence to the Cusp-Airy kernel for
our system of red particles in the interlacing model.

Theorem 1.1. Assume that the sequence of empirical measures tµnun satisfies Assump-
tions 1-4, and assume the scaling in Definition 1.3. Then

lim
nÑ8

pnpx2, y2q

pnpx1, y1q

c0
2
n1{3K

pnq
R ppx1, y1q, px2, y2qq “ KCAppξ, rq, pτ, sqq (1.45)

uniformly for ξ and τ in some fixed compact subset of R, where

pnpx1, y1q “

ˆ

d0n
2
3

˙x1`y1´n´nt
pnq
c

Qnpntc;x1 ´ nx
pnq
c q. (1.46)

Let pξrj , rq be the rescaled coordinates for particles on line r. Fix r1, . . . , rM P Z and let
φ : Rˆ tr1, . . . , rMu Ñ r0, 1s be a bounded measurable function with compact support.
Let Eβpnq denote the expectation with respect to the determinantal point process with

kernel KpnqR . Then,

lim
nÑ8

Eβpnq

„

ź

rPtr1,...,rmu

ź

j

p1´ φpξrj , rqq



“ detpI ´ φKCAqL2pRˆtr1,...,rMuq. (1.47)

Example 1.1. Let the limiting measure dµptq “ χr´1´a,´1sptqdt` χr0,asptqdt` χr2a,1sptqdt

where a “ ´3`
?

17
4 « 0.28. In particular }µ} “ 1 and tc “ 0 P R2. Let t1 “ a. Then, with

I “ p0, aq,

CIptq “ log

ˇ

ˇ

ˇ

ˇ

t` 1` a

t` 1

ˇ

ˇ

ˇ

ˇ

` log

ˇ

ˇ

ˇ

ˇ

t´ 2a

t´ 1

ˇ

ˇ

ˇ

ˇ

.

From equation (1.18) we then get pχEp0q, ηEp0qq “

ˆ

1
2p1`aq , 1 ´

1
2p1`aq

˙

. Using that

a ă 1
2p1`aq ă 2a and (1.19), we obtain

f2p0;χEp0q, ηEp0qq “

ˆ ´1

´1´a

ds

s2
´

ˆ χEp0q

a

ds

s2
`

ˆ 1

2a

ds

s2
“

1´ a´ 8a2 ´ 4a3

2ap1` aq
“ 0,

since a is a root of the polynomial 1´ x´ 8x2 ´ 4x3. Thus Assumption 2 is satisfied. We
will now construct a sequence of empirical measures tµnun that satisfies Assumptions
1,3 and 4. Let

µn “
1

n

´n`dn
ÿ

k“t´np1´aqu

δk{n `
1

n

tnau
ÿ

k“0

δk{n `
1

n

n
ÿ

k“t2nau

δk{n
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where dn is chosen so that ´n ` dn ´ t´np1 ´ aqu ` tnau ` n ´ t2nau ` 3 “ n. Clealy,
µn á µ, so Assumption 1 is satisfied. Now,

supppµnq “
1

n
tt´np1´ aqu, ...,´n` dnu

ď 1

n
t0, ..., tnauu

ď 1

n
tt2nau, ..., nu,

so by construction tµnun satisfies Assumption 3. Now,

νn “
1

n

´n`dn
ÿ

k“t´np1´aqu

δk{n ´
1

n

X

n
2p1`aq

\

ÿ

k“tnau`1

δk{n `
1

n

n
ÿ

k“t2nau

δk{n,

and thus

f 1npwq “

ˆ
R

dνnptq

w ´ t
“

1

n

´n`dn
ÿ

k“t´np1´aqu

1

w ´ k{n
´

1

n

X

n
2p1`aq

\

ÿ

k“tnau`1

1

w ´ k{n
`

1

n

n
ÿ

k“t2nau

1

w ´ k{n
,

(1.48)

and

f2npwq “ ´

ˆ
R

dνnptq

pw ´ tq2

“ ´
1

n

´n`dn
ÿ

k“t´np1´aqu

1

w ´ k{n
`

1

n

X

n
2p1`aq

\

ÿ

k“tnau`1

1

pw ´ k{nq2
´

1

n

n
ÿ

k“t2nau

1

pw ´ k{nq2
. (1.49)

Choose r ă a. Then for n large enough, 1
w´t and ´ 1

pw´tq2 are continuously differen-

tiable in Bp0, rq. Hence (1.48) and (1.49) are Riemann sums of smooth functions with
equidistant partitions. Thus, there exists a constant C ą 0, such that

|f 1npzq ´ f
1pzq| ď

C

n
,

holds uniformly in Bp0, rq for n large enough. In particular Assumption 4 is satisfied.
This example shows that we indeed can get the Cusp-Airy limit in a natural model of the
type considered in [20].

Remark 1.4. The regularity assumption on the sequence of empirical measures made in
Assumption 3 are necessary for Theorem 1 to hold, and cannot be substantially relaxed.
If one in particular try to perform the cancellation of factors as in Lemma 1.2 without

Assumption 3, one immediately sees that qnpw; rq ‰ 1rą0

śntpnqc `r

k“nt
pnq
c `1

pw ´ kq´1 ` 1r“0 `

1ră0

śntpnqc

k“nt
pnq
c `r`1

pw´kq, in general, and that qnpw; rq would also depend on the sequence

tβ
pnq
i un. In particular the limit in Theorem 1.1 need not exist.

1.9 Random top line measure

Up to now we have assumed that the top line configuration of yellow particles is fixed.
However, for many models it is natural not to assume that the top line configuration is
fixed, but instead is a random particle process.

Let Σ Ă R be finite union of closed, bounded intervals and write Σn “ ZX nΣ. Let
X pnq denote the set

X pnq “ tβpnq P Σnn ; β
pnq
1 ă ¨ ¨ ¨ ă βpnqn u.

We will call X pnq the set of all admissible top line configurations. Note that X pnq is a
finite set. We will now assume that we have a probability distribution ppnqpβpnq1 , ..., β

pnq
n q
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on X pnq. Extended to Σnn, we assume that ppnqpβpnq1 , ..., β
pnq
n q is a symmetric function

which vanishes if βpnqi “ β
pnq
j for some i ‰ j. Let Pn denote the probability and En the

corresponding expectation given by ppnq. Also, let Eβpnq denote the expectation with
respect to the red particles in the uniform interlacing with fixed top line βpnq that we
studied above.

Let µ with suppµ Ď Σ be given and let f be defined by (1.5) as previously. We assume
that Assumption 2 holds with this f . In order to transfer the Main theorem to the case
with a random top line we will use the following assumption.

Assumption 5. For each n ě 1 there is a set X pnqreg Ď X pnq of regular top line configura-
tions such that the following holds:

(i) PnrX pnqreg s Ñ 1 as nÑ8,

(ii) If βpnq P X pnqreg , n ě 1 is any sequence of regular top line configurations, we define
µn and fn as previously. Then µn and fn satisfy Assumptions 1, 3 and 4 above.

We now can now give a version of Theorem 1.1 when we have a random top line
measure.

Theorem 1.2. Consider uniform interlacing with a random top line given by ppnq as
above, and consider the red particle point process. Let pξrj , rq be the rescaled coordinates
for particles on line r. Fix r1, . . . , rM P Z and let φ : Rˆtr1, . . . , rMu Ñ r0, 1s be a bounded
measurable function with compact support. Assume that Assumption 5 holds. Then

lim
nÑ8

En

„

Eβpnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



“ detpI ´ φKCAqL2pRˆtr1,...,rMuq. (1.50)

Proof. We can write

En

„

Eβpnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



“ En

„

1X pnqreg
Eβpnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



`En

„

1X pnqzX pnqreg
Eβpnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



. (1.51)

By Assumption 5 the second term in the right hand side of (1.51) goes to 0 as n Ñ 8.
There is a β̃pnq such that

max
βpnqPX pnqreg

Eβpnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



is assumed at βpnq “ β̃pnq, since the maximum is over a finite set. By Assumption 5 we
can apply the Main theorem to the sequence β̃pnq and thus

lim sup
nÑ8

En

„

1X pnqreg
Eβpnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



ď lim sup
nÑ8

Eβ̃pnq

„

ź

rPtr1,...,rMu

ź

j

p1´ φpξrj , rqq



“ detpI ´ φKCAqL2pRˆtr1,...,rMuq.

We can do the analogous argument for the lower lines, and in this way we obtain the
desired result.
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Remark 1.5. Interlacing particle systems with a random top line occur in certain types
of lozenge tiling models. More precisely, we are interested in those tiling models that
can be decomposed into two regions, such that after possibly adding virtual particles,
these regions become interlacing regions of the type described in section 1.2, glued
together along a common line as depicted in figure 15.

Interlacing direction

T1

T2

Figure 15: Decomposition of a polygon into two interlacing regions T1 and T2 glued
together along the thick black line. The blue dots indicate the positions of virtual
particles/tiles and the black dots indicate the positions of ordinary particles/tiles.

Recall that the number of interlacing configurations with a given top line configuration
py1, y2, ..., yN q P Z

N is given by Weyl’s dimension formula in [24] for the irreducible
characters of the unitary group Upnq,

N 7py1, ..., yN q “

ś

1ďiăjďN |yi ´ yj |
ś

1ďiăjďN |i´ j|
:“

1

2CN

ź

1ďi,jďN
i‰j

|yi ´ yj |. (1.52)

Let py1, y2, ..., yN q be the positions of the particles/tiles on the intersecting thick black
line as in figure 15. Let V be the index set for the virtual or frozen particles and let F
be the index set for the free particles, so that |V| ` |F | “ N , and yi is a virtual particle
if i P V and free otherwise. Assume that |F | “ n, and let g : t1, ..., nu Ñ F be a set
bijection such that xi :“ ygpiq, and x1 ă x2 ă ... ă xn. Furthermore, the virtual particles
are densely packed, which implies that they will form wedge shaped frozen regions.
However, the fact that the two interlacing regions T1 and T2 need not be symmetrical
implies that we need not have frozen regions on both sides of the intersecting black line.
Let VL Ď V be the index set of those virtual particles such that they form a frozen region
to the left, and let VR Ď V be the index set of those virtual particles such that they form

EJP 21 (2016), paper 57.
Page 19/50

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP2
http://www.imstat.org/ejp/


The Cusp-Airy process

a frozen region to the right. Then by (1.52), the number of interlacing configuration with
a given fixed configuration of free particles at positions px1, ..., xnq is given by

N 7px1, ..., xnq “
1

2CN

ź

1ďiăjďN

|yi ´ yj |

“
1

2CN

ź

i,jPF
i‰j

|yi ´ yj |
2
ź

iPF
jPVL

|yi ´ yj |
ź

iPF
jPVR

|yi ´ yj |
ź

i,jPVL
i‰j

|yi ´ yj |
ź

i,jPVR
i‰j

|yi ´ yj |

“
1

2CN

ź

1ďk,lďn
k‰l

|xk ´ xl|
2

n
ź

k“1

ź

jPVL

|xk ´ yj |
n
ź

k“1

ź

jPVR

|xk ´ yj |
ź

i,jPVL
i‰j

|yi ´ yj |
ź

i,jPVR
i‰j

|yi ´ yj |.

Now, consider the set of all possible lozenge tessellations of the the original polygon.
One easily sees that each such tessellation is in a bijective correspondence with two
interlacing configurations on T1 and T2 with the same configuration of free particles
xpnq “ px1, x2, ..., xnq on their common top line. In particular, xi P Σn for each i “ 1, ..., n,
where Σ is a finite union of intervals. The set Xn then denotes the set of all configurations
of free particles. Consider the set of all lozenge tessellations of the polygon with uniform
distribution. Then this induces a probability distribution on Xn, given by

ppnqpx1, ..., xnq “ Prparticles at positions x1, x2, ..., xns “
N 7px1, ..., xnq

ÿ

px1,...,xnqPXn

N 7px1, ..., xnq
.

Let

wnpxq :“
ź

jPVL

|x´ yj |
ź

jPVR

|x´ yj |.

Then

ppnqpx1, ..., xnq “
1

Zn

ź

1ďiăjďn

pxi ´ xjq
2
n
ź

i“1

wnpxiq “
1

Zn
∆npxq

2
n
ź

i“0

wnpxiq, (1.53)

where Zn is a normalization constant, and ∆npxq is the Vandermonde determinnat.
Associated with a particular weight function wnpxq is a class of discrete orthogonal
polynomials tpn,kpxquk satisfying

ÿ

xPΣn

pn,kpxqpn,lpxqwnpxq “ δkl. (1.54)

Such particle processes are called discrete orthogonal polynomial ensembles, DOPE,
and have been studied e.g. in [4]. In particular if one considers the random empirical
measure µn “

1
n

řn
i“1 δxi , then µn á µλV , where the measure µλV PMλ

1 pΣq is the unique
solution of the constrained variational problem

min
νPMλ

1 pΣq
tIV rνsu “ min

νPMλ
1 pΣq

"ˆ
ΣˆΣ

log |x´ y|´1dνpxqdνpyq `

ˆ
Σ

V pxqdνpxq

*

, (1.55)

where V pxq “ limnÑ8´n
´1 logpwnpxqq. In the case of those problems originating from a

random tiling model as above, the potential will be of the form

V pxq “ UχIr pxq ` UχIl pxq, (1.56)

where Ir and I l are finite unions of closed intervals of R, such that pIr Y I lq˝ X Σ˝ “ ∅.
In particular limnÑ8´n

´1 logpwnpxqq “ V pxq uniformly on compact subsets of Σ not
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containing the subset BΣ X BpIr Y I lq. It follows from Theorem 2.1 in [7] that the
minimizer µλV of the variational problem (1.55) has a unique the characterization in
terms of the following variational inequalities.

There exists a constant FλV such that

2Uµ
λ
V pxq ` V pxq ě FλV for all x P ΣzsupppµλV q :“ IV (1.57)

2Uµ
λ
V pxq ` V pxq “ FλV for all x PsupppµλV qXsupppλ´ µλV q :“ IB (1.58)

2Uµ
λ
V pxq ` V pxq ď FλV for all x P Σz(supppµλV qXsupppλ´ µλV qq :“ IS . (1.59)

It follows from general large deviation estimates for DOPE that we can define X pnqreg so
that Assumption 3 is satisfied for large classes of potentials, see [11]. In particular, in
the class of potentials of the form (1.56) and associated weights wn coming from certain
tiling models, this is proved in the upcoming review article [10].

It is shown in [10] that if R1 YR2 ‰ ∅, with µ “ µλV , then for tc P R1 YR2, we must
have tc P BΣ. Thus, if in particular tc P R2, then there exists an interval rt2, tcs, such
that rt2, tcs X supppµnq “ ∅. This implies that the sequence of empirical measures tµnun
automatically satisfies the left-sided part of regularity assumption in Assumption 3. Let

Rpnqm px1, ..., xmq “ Prthere are particles at each of the nodes x1, ..., xms (1.60)

be the m:th correlation kernel with 1 ď m ď n. If the potential V pxq is analytic in a
complex convex neighbourhood of Σ, then it is proven in Theorem 3.3 and Theorem 3.5
in [4] that for all subsets V P IV and S P IS such that dHpV, IBq ą 0 and dHpS, IBq ą 0

(here, dH denotes the Hausdorff distance between sets) there exists constants KV “

KV pdHpV, IBqq ą 0 and LS “ LSpdHpS, IBqq ą 0, such that

max
x1,...,xmPV

|Rpnqm px1, ..., xmq| ď CV
e´mnKV

nm
(1.61)

and

max
x1,...,xmPS

|1´Rpnqm px1, ..., xmq| ď CS
e´mnLS

nm
(1.62)

for some positive constants CV and CS . In particular this implies that we can define X pnqreg

so that Assumption 3 holds. Unfortunately, the class of potentials given by (1.56) need
not be analytic in a neighborhood of Σ due to the fact that we may have BΣXBpIrYI lq ‰ 0.
However, we believe that by additional local arguments around such points, one may
generalize the methods used in the book [4] to prove that Theorem 3.3 and Theorem
3.5 in [4] also hold in this case. In particular, the effect of non-analyticity should
only matter on a very small neighborhood around the points of BΣ X BpIr Y I lq. Since
tc R BΣX BpI

r Y I lq, and therefore is a macroscopic distance away from BΣX BpIr Y I lq,
the effects of non-analyticity should not matter.

Finally, let A Ă R be an interval and let K be a compact subset of tz P C : dHpz,AX

supppµnqq ą 0u. Then, for a “generic” potential V , and a sequence of weight functions
twnpxqun, such that limnÑ8´n

´1 logpwnpxqq “ V pxq uniformly on compact subsets of Σ,
we should have for every ε ą 0 and every z P K that

lim
nÑ8

P

„
ˇ

ˇ

ˇ

ˇ

ˆ
R

χAptqdpµn ´ µqptq

z ´ t

ˇ

ˇ

ˇ

ˇ

ą
1

n1´ε



“ 0, (1.63)

where χA is the indicator function of the interval A. In particular, this implies that
we can define X pnqreg so that Assumption 4 holds. This result should also follow from
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Riemann-Hilbert methods adapted to the class of potentials derived from tiling models,
with the caveat that some of the local arguments need to be modified due to the possible
non-analyticity of V pxq at some of the points of BΣ. These questions has also been
studied in [5] for very similar models by means of discrete loop equations, though the
assumptions in [5] are not satisfied in our models, and can therefore not be applied
directly. However, in the special case when Σ is an interval, the results in [5] do apply.
In particular they apply to the model in Example 1.2.

Remark 1.6. Let zprq “ pyprq1 , ..., y
prq
r , xn ` n ´ r ´ 1, xn ` n ´ r ´ 2, ..., xnq. Then, using

(1.53) the total probability distribution is given by

νtotrpy
1, ..., ypn´1q, xpnqqs “

1

Zn,tot
∆npxq

2
n
ź

i“0

wnpxiq
n´1
ź

r“0

det
´

1
z
pr`1q
j ěz

prq
i

¯

.

Hence, by the Eynard-Mehta theorem, the total process is also a determinantal process.
One could therefore try to derive the correlation kernel for the total process instead
of the conditional process. However, the Eynard-Mehta formula for the kernel of this
process seems very difficult to analyze. In particular, we can not expect to get such a
simple formula for the kernel as (1.2), as it would necessarily need to contain all the
information about the DOPE, which is highly non-trivial.

Example 1.2. Consider now the example discussed briefly in section 1.1 see fig 2. This
can be approached via the tiling model illustrated in figure 16. Elementary geometry
gives δ “ 2?

3
´ 2κ, where κ P p0, 1{

?
3q. In the figure we have added densely packed

virtual particles in the intervals r0, κs and r2κ ` 2δ, 3κ ` 2δs. Moreover, the particles
contained in the interval rκ`δ, 2κ`2δs are distributed according to a discrete orthogonal
polynomial ensemble, DOPE, as is shown above. The fraction of particles contained in
this interval as nÑ8 equals 1´

?
3κ. We will now make the symmetric parameter choice

κ “ δ “ 2
3
?

3
. Associated to the DOPE, there is an equilibrium measure with respect

to an external field as above. See also Proposition 2.2 in [5]. Solving the minimization
problem gives the density of the measure µ,

ρptq “ χr0, 2
3
?

3
sptq ` χr 8

3
?

3
, 10
3
?

3
sptq ` φp3tqχr 4

3
?

3
, 8
3
?

3
sptq, (1.64)

where

φpxq “ ´

a

pb´ xqpx´ aq

2π

ˆ 2{
?

3

0

dt
a

pt´ aqpt´ bqpt´ xq

´

a

pb´ xqpx´ aq

π

ˆ a

4{
?

3

dt
a

pt´ aqpt´ bqpt´ xq

`

a

pb´ xqpx´ aq

2π

ˆ 10{
?

3

8{
?

3

dt
a

pt´ aqpt´ bq
. (1.65)

Here pa, bq is the unique solution of

´
1

2

ˆ 2{
?

3

0

dt
a

pt´ aqpt´ bq
´

ˆ a

4{
?

3

dt
a

pt´ aqpt´ bq
`

1

2

ˆ 10{
?

3

8{
?

3

dt
a

pt´ aqpt´ bq
“ 0

(1.66)

and

´
1

2

ˆ 2{
?

3

0

tdt
a

pt´ aqpt´ bq
´

ˆ a

4{
?

3

tdt
a

pt´ aqpt´ bq
`

1

2

ˆ 10{
?

3

8{
?

3

tdt
a

pt´ aqpt´ bq
“ 1

(1.67)
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satisfying 4?
3
ă a ă b ă 8?

3
. In particular it follows that ρ

ˇ

ˇ

r 4
3
?

3
,as
” 1. A direct verification

that the Cauchy transform of ρ satisfies Assumption 2 for tc “
4

3
?

3
is very difficult using

(1.65)-(1.67) even in the case when the original polygon has an apparent symmetry.
This is due to the artificial decomposition of the polygon into two interlacing regions
which are glued together along a common boundary. After this decomposition has been
done, the original symmetry is no longer apparent in the parametrization of the edge
E . We will therefore prove that the asymptotic cusp condition holds by an indirect
symmetry argument. Instead of considering figure 16, we consider figure 17. We see the
yellow dashed line corresponds to the decomposition in figure 16 into two interlacing
regions glued together along the yellow dashed line. However, we may equally well
decompose our hexagon into two interlacing regions in blue particles glued together
along the dashed blue line instead. Moreover there is bijective correspondence between
each configuration of blue and yellow particles given by a reflection in the dashed
black symmetry line. This imply in particular that the edge E must posses a reflection
symmetry in the dashed black line. Now, the parametrization of the edge E , given
by the density (1.65) and (1.13)-(1.16) is smooth by Remark 2.1 in [8], in fact real
analytic. Since the density ρ of the limit measure µ satisfies ρ

ˇ

ˇ

r 4
3
?

3
,as
“ 1, it follows

from Lemma 2.7 in [8], that E , is tangent to the line χ ` η ´ 1 “ 4
3
?

3
. However, by

Theorem 2.3 in [8], the parametrization is injective. This together with the fact that
the only singularities of the edge E are cusps implies the edge E has a cusp at the
tangent point with the line χ` η ´ 1 “ 4

3
?

3
. Lemma 2.8 and Lemma 2.9 in [8], implies

that f2p 4
3
?

3
;χEp

4
3
?

3
q, ηEp

4
3
?

3
qq “ 0. Hence, modulo the technical issues discussed above

about how to construct X pnqreg , we get a cusp-point where the scaling limit is given by the
Cusp-Airy process.

2π
3

1 (n lines)

π
3

κ

δ

δ ` κ

Figure 16

1.10 Outline of the paper

We now give a brief outline of the paper. In section 2.1 we prove Lemma 1.2. Due to
the fact that f3ptc, χc, ηcq ą 0, it will be necessary to change the integration contours of
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Figure 17

the correlation kernel given in Proposition 1.2 to be able to deform the contours to the
local steepest ascent/descent contours. This is done section 2.1. In section 2.3 we prove
the existence of global ascent/descent contours and finally in sections 2.4 and 2.5 we
perform the local asymptotic analysis to arrive at the final result

In section 3.1 we prove a certain reflection symmetry of the Cusp-Airy kernel in
the axis r “ 0. In section 3.2 we proceed to prove an alternative representation of the
Cusp-Airy kernel in terms of r-Airy integrals and certain polynomials. In section 4 we
derive the integral representation of the kernel for the interlacing particle system, or
the yellow particles and prove Proposition 1.1.

2 Proof of main result

2.1 Discrete cancellation in the correlation kernel

In this section we will perform the discrete cancellation of factors in the correlation
kernel (1.2). In the continuum limit, this corresponds to the cancellation between the
measures µ and λ on the interval rtc, t1s, where µ

ˇ

ˇ

rtc,t1s
“ λ. The difference is that on the

discrete level, the cancellation need no longer be exact.
We now prove Lemma 1.2

Proof. Using Assumption 3 and the definition of tpnqc , t
pnq
1 and tpnq2 we have

śn
i“1pw ´ β

pnq
i q

śx1

k“x1`y1´n
pw ´ kq

“

ś

β
pnq
i ďnt

pnq
2
pw ´ β

pnq
i q

śnt
pnq
1

k“nt
pnq
c

pw ´ kq
ś

nt
pnq
1 ăβ

pnq
i
pw ´ β

pnq
i q

śx1

k“x1`y1´n
pw ´ kq

“

śnxpnqc

k“nt
pnq
c

pw ´ kq
śx1

k“x1`y1´n
pw ´ kq

ś

β
pnq
i ďnt

pnq
2
pw ´ β

pnq
i q

ś

nt
pnq
1 ăβ

pnq
i
pw ´ β

pnq
i q

śnx
pnq
c

k“nt
pnq
1 `1

pw ´ kq

“

śx1

k“nt
pnq
c
pw ´ kq

śx1

k“x1`y1´n
pw ´ kq

śnxpnqc

k“nt
pnq
c

pw ´ kq
śx1

k“ntpnqc

pw ´ kq

ś

β
pnq
i ďnt

pnq
2
pw ´ β

pnq
i q

ś

nt
pnq
1 ăβ

pnq
i
pw ´ β

pnq
i q

śnx
pnq
c

k“nt
pnq
1 `1

pw ´ kq

“ qnpw; rqQnpw; ∆x
pnq
1 qEnpwq,

where we have used the definitions of qn, Qn and En. Similarly, we get

śn
i“1pz ´ β

pnq
i q

śx2´1
k“x2`y2´n

pz ´ kq
“ pz ´ x2qqnpz; rqQnpz; ∆x

pnq
1 qEnpzq.
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Finally we rescale the integration variables according to w Ñ 1
nw and z Ñ 1

nz. Set

Γn “
1
nZn, Γ̃n “

1
nZ̃n, and γn “ γ̃n “

1
nWn. Since we have cancelled out poles we

may deform Γn to be a contour that contains the set tn´1β
pnq
i ě t

pnq
1 u but not the set

tn´1β
pnq
i ď t

pnq
c ` su. Similarly, we may deform Γ1n to contain the set tn´1β

pnq
i ď t

pnq
c ` su

but not the set tn´1β
pnq
i ě n´1t

pnq
1 u.

2.2 Change of integration contours

In order to perform a steepest descent analysis in a later section, it will be necessary
to change the integration contours so that they may be suitably deformed around the
critical point.

Proposition 2.1. The correlation kernel can be rewritten as

K
pnq
R ppξn, rqpµn, sqq “ ´1x1ěx2

Bnppx1, y1q, px2, y2qq ` K̃
pnq
R ppx1, y1q, px2, y2qq, (2.1)

where

K̃
pnq
R ppx1, y1q, px2, y2qq

“
1

p2πiq2

˛
Γ1
n`Γ2

n

dz

˛
γ1
n`γ

2
n

dw
1

z ´ n´1x2

qpnw; rq

qpnz; sq

enpfnpwq´fnpzqq`nphn,1pwq´hn,2pzqq

w ´ z

(2.2)

and

Bnppx1, y1q, px2, y2qq “
1

2πi

˛
Γ2
n

dz
1

z ´ n´1x2

qpnz; rq

qpnz; sq
enphn,1pzq´hn,2pzqq. (2.3)

Here the contours are as in figure 18; more precisely:

• Γ1
n is a counter-clockwise oriented contour that contains the interval rtpnqc ´

maxt|r|, |s|u, bns and nothing else of the support of νn. Furthermore, Γ1
n contains

the contours Γ2
n, γ2

n and γ3
n

• Γ2
n is a clockwise oriented contour that contains γ2

n and the interval rtpnqc ´

maxt|r|, |s|u, t
pnq
c `maxt|r|, |s|us and nothing else of the support of νn.

• γ1
n is a clockwise oriented contour that contains the interval rtpnq1 , bns and nothing

else of the support of νn.

• γ2
n is a clockwise oriented contour that contains the interval rtpnqc ´maxt|r|, |s|u, t

pnq
c `

maxt|r|, |s|us and nothing else of the support of νn.

Proof. The starting point is lemma 1.2. The proof will consist of a series of deformations
of the contours. It will be convenient to introduce the notation

J
pnq
Γ,γ :“

1

p2πiq2

˛
Γ

dz

˛
γ

dw
1

z ´ n´1x2

qnpnw; rq

qnpnz; sq

Qnpnw; ∆x
pnq
1 q

Qnpnz; ∆x
pnq
2 q

EnpnwqEnpnzq
´1

w ´ z

for some contours Γ, γ. First assume that x1 ă x2 and consider the deformation of γn in
figure 13 into two contours γ2

n and γ0
n as shown in figure 19. Next consider adding the

contour γ1
n. This is shown in figure 20. Consider the contour γ0

n` γ
1
n. Then the integrand

of KpnqR in (1.39) has one residue inside the domain bounded by γ1
n and γ0

n. Computing
this residue gives

1

p2πiq2

˛
Γn

dz

˛
γ0
nYγ

1
n

dw
1

z ´ n´1x2

qnpnw; rq

qnpnz; sq

Qnpnw; ∆x
pnq
1 q

Qnpnz; ∆x
pnq
2 q

EnpnwqEnpnzq
´1

w ´ z
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Γ1
n

γ1
n

γ2
n

Γ2
n

an t
pnq
2 t

pnq
c

t
pnq
1 x

pnq
c bn

Figure 18: Integration contours

γ0
n

Γn
´γ2

n
an t

pnq
2 t

pnq
c

t
pnq
1 x

pnq
c bn

Figure 19: Integration contours

γ0
n

Γn

γ1
n

t
pnq
1 x

pnq
c bn

Figure 20: Integration contours

“
1

2πi

˛
Γn

śx2´1
k“x2`y2´n

pnz ´ kq
śx1

k“x1`y1´n
pnz ´ kq

dz “
1

2πi

˛
Γn

śx2´1

k“nt
pnq
c `s

pnz ´ kq
śx1

k“ntpnqc `r
pnz ´ kq

dz

“
1

2πi

˛
Γn

qnpnz; rq

qnpnz; sq

x2´1
ź

k“x1`1

pnz ´ kqdz “ 0,

since Γn contains no poles. Hence

J
pnq
Γnγ0

n
“ ´J

pnq
Γnγ1

n
. (2.4)

Next, we deform the contour Γn into the contours Γ1
n and Γ2

n according to Figure 21.
This gives us

J
pnq
Γnγn

“ J
pnq
Γnγ0

n
` J

pnq
Γnγ2

n
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Γ1
n

γ1
n

γ2
n

Γ2
n

an t
pnq
2 t

pnq
c

t
pnq
1 x

pnq
c bn

Figure 21: Integration contours

γ̃n

Γ̃1
n

Γ̃2
nan t

pnq
2 t

pnq
c

t
pnq
1 χ

pnq
c bn

Figure 22: Integration contours

γ̃1
n

Γ̃1
n

γ̃0
n

Γ̃2
n

γ̃2
n

an t
pnq
2 t

pnq
c

t
pnq
1 x

pnq
c bn

Figure 23: Integration contours

“ ´J
pnq
Γnγ1

n
` J

pnq
Γnγ2

n
by (2.4)

“ ´pJ
pnq
Γ1
nγ

1
n
` J

pnq
Γ2
nγ

1
n
q ` pJ

pnq
Γ1
n,´γ

2
n
` J

pnq
Γ2
n,´γ

2
n
q.

We now instead assume that x1 ě x2. We then deform deform the contour Γ̃n into the
contours Γ̃1

n and Γ̃2
n according to figure 22. Finally, we deform the contour γ̃n into the

contours γ̃0
n, γ̃2

n and γ̃1
n, according to figure 23. However, using that the only residue

contained in γ̃0
n is the pole pw ´ zq´1, we get

J
pnq

Γ̃1
nγ̃

0
n

“
1

2πi

˛
Γ̃1
n

qnpnz; rq

qnpnz; sq

x2´1
ź

k“x1`1

pnz ´ kqdz “ 0,

since the contour Γ̃1
n contains no poles in z. Similarly, we get that

J
pnq

Γ̃2
nγ̃

0
n

“ 0

EJP 21 (2016), paper 57.
Page 27/50

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP2
http://www.imstat.org/ejp/


The Cusp-Airy process

γ̃1
nΓ̃1

n

Γ̃2
n

γ̃2
n

an t
pnq
2 t

pnq
c

t
pnq
1 x

pnq
c bn

Figure 24: Integration contours

`

Γ̃3
n

CR

t
pnq
2 t

pnq
c bnan

Figure 25: Integration contours

since γ̃0
n contains no poles in w. This gives

J
pnq

Γ̃nγ̃n
“ J

pnq

Γ̃1
nγ̃

2
n

` J
pnq

Γ̃1
nγ̃

1
n

` J
pnq

Γ̃2
nγ̃

2
n

` J
pnq

Γ̃2
nγ̃

1
n

,

where the contours are shown in figure 24. We now deform the contour Γ̃1
n into Γ̃3

n`CR ac-
cording to figure 25. Clearly the contribution along ` vanish and to prove that the contri-
bution from CR vanishes as RÑ8 we observe that that gn,2pzq “ νn,2pRq log |z|`Op|z|´1q

and limnÑ8 νn,2pRq “ νpRq ą 0. From this it is not difficult to see that limRÑ8 |J
pnq
CRγ̃in

| “

0.
We now have the contours as shown in figure 26. Using that Γ̃3

n “ ´Γ1
n, γ̃1

n “ ´γ
1
n

and Γ̃2
n “ ´Γ2

n where the minus sign means orientation reversion, we get

J
pnq

Γ̃nγ̃n
“ J

pnq

Γ̃3
nγ̃

1
n

` J
pnq

Γ̃3
nγ̃

2
n

` J
pnq

Γ̃2
nγ̃

1
n

` J
pnq

Γ̃2
nγ̃

2
n

“ J
pnq
Γ1
nγ

1
n
´ J

pnq
Γ1
nγ̃

2
n
` J

pnq
Γ2
nγ

1
n
´ J

pnq
Γ2
nγ̃

2
n
.

We see that γ2
n is inside Γ2

n which is inside γ̃2
n. Using the residue theorem we find

J
pnq
Γ2
nγ̃

2
n
´ J

pnq
Γ2
n,´γ

2
n
“

1

p2πiq2

˛
Γ2
n

dz
1

z ´ n´1x2

qnpnz; rq

qnpnz; sq

Qnpnz; ∆xn1 q

Qnpnz; ∆x
pnq
2 q

“
1

p2πiq2

˛
Γ2
n

dz
1

z ´ n´1x2

qnpnz; rq

qnpnz; sq
enphn,1pwq´hn,2pzqq
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Γ̃3
n

γ̃1
n

Γ̃2
n

γ̃2
n

an t
pnq
2 t

pnq
c

t
pnq
1 x

pnq
c bn

Figure 26: Integration contours

:“ Bnppx1, y1q, px2, y2qq.

Furthermore, J pnqΓ1
nγ̃

2
n
“ J

pnq
Γ1
n,´γ

2
n
. Together, this gives

J
pnq

Γ̃nγ̃n
“ J

pnq
Γ1
nγ

1
n
´ J

pnq
Γ1
n,´γ

2
n
` J

pnq
Γ2
nγ

1
n
´ J

pnq
Γ2
n,´γ

2
n
´Bn.

Hence, by lemma 1.2, we get

K
pnq
R “ ´1x1ăx2

J
pnq
Γnγn

` 1x1ěx2
J
pnq

Γ̃nγ̃n

“ ´1x1ăx2
p´J

pnq
Γ1
nγ

1
n
´ J

pnq
Γ2
nγ

1
n
` J

pnq
Γ1
n,´γ

2
n
` J

pnq
Γ2
n,´γ

2
n
q

` 1x1ěx2
pJ
pnq
Γ1
nγ

1
n
´ J

pnq
Γ1
n,´γ

2
n
` J

pnq
Γ2
nγ

1
n
´ J

pnq
Γ2
n,´γ

2
n
´Bnq

“ ´1x1ěx2Bn ` J
pnq
Γ1
nγ

1
n
` J

pnq
Γ2
nγ

1
n
´ J

pnq
Γ1
n,´γ

2
n
´ J

pnq
Γ2
n,´γ

2
n

“ ´1x1ěx2
Bn ` J

pnq
Γ1
nγ

1
n
` J

pnq
Γ2
nγ

1
n
` J

pnq
Γ1
nγ

2
n
` J

pnq
Γ2
nγ

2
n

This gives us finally,

K
pnq
R ppx1, y1q, px2, y2qq “ ´1x1ěx2

Bnppx1, y1q, px2, y2qq ` J
pnq
pΓ1
n`Γ2

nqpγ
1
n`γ

2
nq

“ ´1x1ěx2

1

2πi

˛
Γ2
n

dz
1

z ´ n´1x2

qnpnz; rq

qnpnz; sq
enphn,1pwq´hn,2pzqq

`
1

p2πiq2

˛
Γ1
n`Γ2

n

dz

˛
γ1
n`γ

2
n

dw
1

z ´ n´1x2

qnpnw; rq

qnpnz; sq

enpfnpwq´nfnpzqq`nphn,1pwq´hn,2pzqq

w ´ z

by the definitions of fn, hn,1 and hn,2.

2.3 Global choice of contours

Recall the asymptotic function fpw;χcq given by (1.29),

fpw;χcq “

ˆ
R

logpw ´ tqdνptq “ Uνpwq ` i

ˆ
R

argpw ´ tqdνptq.

For every δ ą 0 we let Ωδ :“ tw P C : dpw, supppνqq ą δu.
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Lemma 2.1. The functions fnpwq, gn,1pwq and gn,2pwq converge uniformly to fpw;χcq on
Ωδ

Ş

Bp0, Rq, for any δ ą 0 and any R ą 0.

Proof. This is a standard consequence of the weak convergence of µn and Vitali’s
theorem, (see [23] page 157).

Lemma 2.2. Consider the function νprx,`8qq, where the measure ν is as defined in
(1.28). Then νprx,`8qq is monotonically decreasing on p´8, t2q, constant in pt2, t1q,
monotonically increasing on pt1, χcq, and monotonically decreasing on pχc,`8q. More
precisely,

νprx,`8qq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ηc if x ď a

µprx,`8qq ´ pχc ´ tcq a ă x ă t2
µprtc,`8qq ´ pχc ´ tcq t2 ă x ă t1
µprχc,`8qq ´

´ χc
x
p1´ ϕptqqdt t1 ď x ď χc

µprx,`8qq χc ă x ă b

0 x P pb,`8q

. (2.5)

Proof. By definition of ν we have

νprx,`8qq “

ˆ 8
x

pχra,t2sptq ` χrt1,χcsptq ` χrχc,bsptqqϕptqdt´

ˆ 8
x

χrt1,χcsdt

“

ˆ 8
x

pχra,t2sptq ` χrtc,χcsptq ` χrχc,bsptqqϕptqdt´

ˆ 8
x

χrtc,χcsdt

“ µprx,`8qq ´

ˆ 8
x

χrtc,χcsptqdt,

from which (2.5) follows. The monotonicity properties are immediate from these formulas.

Since fpw;χcq “ fpw;χcq it is sufficient to prove the existence of the contours in the
upper-half plane H.

Lemma 2.3. The asymptotic function fpw;χcq has global steepest ascent/descent con-
tours in the upper half plane as shown in figure 27.

a t2 tc t1 χc te b

D

A

Figure 27: Steepest ascent and descent paths for the asymptotic function fpw;χcq. The
support of ν` is indicated by a red line and the support of ν´ by a blue line.

Proof. Since fpw;χcq “ fpw;χcq it is sufficient to prove the existence of the contours
in the upper-half plane H. We note that Uν is real analytic in Czsupppνq and that
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´
R

argpw ´ tqdνptq is real analytic in Czp´8, bs. Moreover, the boundary values on the
real axis are given by

lim
wÑxPR
wPH

Uνpwq “ Uνpxq

and

lim
wÑxPR
wPH

ˆ
R

argpx´ tqdνptq “ πνprx,`8qq.

In particular, Uνpwq has a continuous extension to all of C.
Since f3ptc;χc, ηcq ą 0 the local steepest ascent/descent structure around tc is as in

figure 28.

a

da

d

da

π
3

Figure 28: Local steepest ascent/descent contours of the asymptotic function Refpω, χcq,
where a denotes ascent contour and d denotes descent contour.

Recall that the contours of steepest ascent/descent are those for which Im fpwq “

Im fptcq “ πµprtc, bsq. Note that Uνpwq “ νpRq log |w| ` Op|w|´1q as |w| Ñ 8. Therefore
limwÑ8

wPH
Uνpwq “ `8. This implies that the descent contour have to be contained in some

ball Bp0, Rq, R sufficiently large. On the other hand since the function Im fpwq is real
analytic, the curve Im fpwq “ Im fptcq has to be either a closed curve in Bp0, Rqzsupppνq
or end somewhere in supppνq. Assume the first case. Then, clearly there has to be a
point tp ‰ tc on the curve such that f 1ptpq “ 0. By Theorem 3.1 in [8], we must for such a
tp have tp P Rzsupppνq and f2ptpq ‰ 0. At such a point we have descent contour exiting
at angle ˘π{2 and ascent contours exiting at 0 and π. This gives a contradiction. We may
therefore assume the second case holds

It follows from Lemma 2.2 that if πνprtc,8qq ă 0 then the equation πνprx,8qq “

πµprtc,`8qq has no solution and the steepest descent contour from tc has to go to
infinity, which is impossible. If πνprtc,8qq “ 0, then we have to be in the first case above
which is impossible. Thus, πνprtc,8qq ą 0 and Lemma 2.2 implies that the equation
πνprx,8qq “ πµprtc,`8qq has at least one solution te for x P pχc, bq and no solution for
x P p´8, t2qYpt1, χcqYrb,8q. In figure 29 we give a plot of what the function πνprx,`8qq
may look like. If νprx,8qq is strictly monotonically decreasing at te, then te is the unique
solution to the equation above. Otherwise, by the monotonicity of νprx,8qq, there exists
an interval rt´e , t

`
e s such that πνprx,8qq “ πµprtc,`8qq for all x P rt´e , t

`
e s. In particular,

pt´e , t
`
e q X supppµq “ ∅.

By Lemma 2.2 and the discussion above, the only possible end points are t2, t1 and
te or t2, t1, t´e and t`e . Assume that it ends at t1. Then we get a closed contour in H
containing the interval rtc, t1s, and such that the boundary value of Imrfpwqs equals
Imrfptcqs “ πµprtc, bsq everywhere on the curve. However, since Imrfpwqs is harmonic
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a t2 tc t1 χc te b

πνprx,`8qq

Figure 29: An example of a plot of the function
´

argpx´ tqdνptq for some possible ν.

inside the domain bounded by the curve, this implies that Imrfpwqs is constant, a
contradiction. Similarly, the descent contour cannot end in t2. Thus it has to end either
at te or one of t´e and t`e .

This proves the existence of the global steepest descent path of fpw,χcq. We now
consider the ascent path. Recall that the ascent and descent paths cannot intersect
because f 1 “ 0 has no nonreal solutions. This follows from the characterization of the
boundary of the liquid region in [8]. By considering the local ascent and descent contours
we know it cannot end at t1. Suppose that it ends a t2. However, by a similar argument as
before, this is not possible. Moreover, by the continuity of Uνpwq it cannot end at te. Thus,
the ascent contour will become an asymptote of the line tteiθ : t P r0,`8q, θ “ πµprtc, bsqu

since
´
R

argpw ´ tqdνptq “ νpRq argpwq ` Op|w|´1q as |w| Ñ 8. Now assume that the
decent path ends at t´e and that the ascent path ends at t`e . Again by forming a closed
contour containing the interval rt´e , t

`
e s and exploiting the harmonicity of Imrfpwqs, we

get a contradiction. Thus as before, contour will become an asymptote of the line
tteiθ : t P r0,`8q, θ “ πµprtc, bsqu.

2.4 Estimates and localization

We start with some preliminary results that we will need. By lemma 2.1 and Assump-
tion 4, if we take δ0 small enough, then |gn,ipwq| ď C for |w ´ tc| ď δ0, where C is a
constant. We have the Taylor expansion

gn,ipzq “ gn,iptcq ` g
1
n,iptcqpz ´ tcq `

1

2
g2n,iptcq

2pz ´ tcq
2

`
1

6
g3n,iptcq

3pz ´ tcq
3 ` rn,ipzqpz ´ tcq

4, (2.6)

where

rn,ipzq “
1

2πi

ˆ
|w´tc|“δ3

gn,ipwq

pw ´ tcq5p1´
z´tc
w´tc

q
dw. (2.7)

From (2.7) we see that, if we take δ1 ď δ0{2, then there is a constant Cpδ0q so that

|rn,ipzq| ď Cpδ0q, (2.8)

for all z P Bptc, δ1q. Consider a curve

zptq “ tc ` ζptq, (2.9)

t P I, such that |ζptq| ď Ct ď δ1 for all t P I, I an interval. From (2.6) we obtain

Rergn,ipzptqq ´ gn,iptcqs “ g1n,iptcqRerζptqs `
1

2
g2n,iptcqRerζptq2s `

1

6
g3n,iptcqRerζptq3s

(2.10)

` Rerrn,ipzptqqζptq
4s.
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Note that, by the assumption on ζptq,

|Rerζptqs| ď Ct, |Rerζptq2s| ď Ct2, |Rerrn,ipzptqqζptq
4s| ď Ct4, (2.11)

for all t P I, where the constant C is independent of δ1.
By the definition (1.43), we have that

hn,ipzq “
´1
ÿ

k“∆x
pnq
i

log

ˆ

z ´

ˆ

x
pnq
c

n
`
k

n

˙˙

if ∆x
pnq
i ă 0, hn,ipzq “ 0 if ∆x

pnq
i “ 0 and

hn,ipzq “ ´

∆x
pnq
i

ÿ

k“1

log

ˆ

z ´

ˆ

x
pnq
c

n
`
k

n

˙˙

,

if ∆x
pnq
i ą 0. Write κi “ sgnp∆xpnqi q p“ 0 if ∆x

pnq
i “ 0q. Then,

h1n,ipzq “ ´κi

|∆x
pnq
i |

ÿ

k“1

1

z ´
`

x
pnq
c

n ` κi
k
n

˘

. (2.12)

From this, and (1.35), it follows that, if |z ´ tc| ď δ1, with δ1 small enough, then

|h1n,ipzq| “ Cn1{3, |h2n,ipzq| ď Cn1{3. (2.13)

Similarly to (2.6), we get

hn,ipzptqq “ hn,iptcq ` h
1
n,iptcqζptq ` sn,ipzptqqζptq

2, (2.14)

where

|sn,ipzptqq| ď Cn1{3, (2.15)

and zptq is given by (2.9).
We will now discuss the localization of the asymptotic analysis of the kernel to a

neighbourhood of tc. Let δ1 ą 0 and let B2 “ Bptc, δ1q be a (small) ball around tc. The
descent contour D from Lemma 2.3 intersects BB2 XH at the point D2, see figure 30

tc
B2

D
D2

Figure 30: The global descent path D close to tc

We now formulate a lemma that will allow us to neglect the contribution from D
outside B2.

Lemma 2.4. If we choose δ1 sufficiently small, there is a constant b0pδ1q ą 0 such that
for n large enough

Re rgn,ipD2q ´ gn,iptcqs ď ´b0pδ1q. (2.16)
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The Cusp-Airy process

Proof. We take ζptq “ teiθpδ1q, 0 ď t ď δ1, where θpδ1q is chosen so that ζpδ1q “ D2. It
follows from Lemma 2.1, f 1ptcq “ f2ptcq “ 0, and f3ptcq ą 0 that, given ε1 ą 0, we have

|g1n,iptcq| ď ε1, |g2n,iptcq| ď ε1 (2.17)

for large n, and there is a c1 ą 0 so that

g3n,iptcq ě c1 (2.18)

for all sufficiently large n. Also, since f 1ptcq “ f2ptcq “ 0 and f3ptcq ą 0, a local Taylor
expansion of f shows that θpδ1q Ñ π{3 as δ1 Ñ 0. Consequently,

Re ζptq3 “ t3 cos 3θpδ1q ď ´
1

2
t3 (2.19)

for 0 ď t ď δ1 if δ1 is sufficiently small. From (2.10), (2.11), (2.17), and (2.18) we see that

Re rgn,ipD2q ´ gn,iptcqs ě ´
1

12
c1δ

3
1 ` Cε1pδ1 ` δ

2
1q ` Cδ

4
1

“ c1δ
3
1

„

´
1

12
´ C 1ε1pδ

´2
1 ` δ´1

1 q ` C 1δ1



. (2.20)

We can now choose δ1 so that C 1δ1 ď 1{48 and then ε1 so that C 1ε1pδ
´2
1 ` δ´1

1 q ď 1{48. We
then get (2.16) with b0pδ1q “ c1δ

3
1{24 and the lemma is proved.

Let B3 “ Bpte, δ2q be a small ball around te. The descent contour D intersects BB3XH

at the point D3. Let C be as in figure 31 and D1 be the part of D outside B2 and B3, so
that D1 lies strictly in H. Hence, from Lemma 2.1, it follows that gn,ipzq Ñ fpzq uniformly
on D1 as nÑ8.

te

D

C
B3

D3

Figure 31: The global descent path D and C close to te

The next lemma gives the estimate we need on C.

Lemma 2.5. There is a constant b1pδ2q such that b1pδ2q Ñ 0 as δ2 Ñ 0 and

Re rgn,ipzq ´ gn,ipD3qs ď b1pδ2q (2.21)

for all z P C if n is sufficiently large.

Proof. Let D3 “ x0 ` iy0 and set

zptq “ x0 ` ipy0 ´ tq, 0 ď t ď y0 ď δ2.
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The Cusp-Airy process

We have chosen δ2 so small that x0 ą χc. From (1.42) we see that

d

dt
Rerfnpzptqqs “

d

dt

ˆ

1

n

ÿ

β
pnq
i ďt

pnq
2

log |zptq ´ n´1β
pnq
i | `

1

n

ÿ

β
pnq
i ąt

pnq
1

log |zptq ´ n´1β
pnq
i |

˙

´
d

dt

1

n

xpnqc
ÿ

k“t
pnq
1 `1

log |zptq ´ n´1k| “ u
pnq
1 ptq ` u

pnq
2 ptq.

Note that upnq1 ptq ď 0 and

u
pnq
2 ptq “ ´

d

dt

1

2n

xpnqc
ÿ

k“t
pnq
1 `1

log

ˆˆ

x0 ´
k

n

˙2

´ py0 ´ tq
2

˙

“
1

n

xpnqc
ÿ

k“t
pnq
1 `1

y0 ´ t
`

x0 ´
k
n

˘2
` py0 ´ tq2

ď
δ2
n

xpnqc
ÿ

k“t
pnq
1 `1

1
`

x0 ´
k
n

˘2 ď Cδ2,

since xpnqc {nÑ χc ă x0 as nÑ8. Thus,

Re rfnpzq ´ fnpD3qs ď Cδ2

for all z P C if n is sufficiently large. It remains to estimate 1
nRerhn,ipzptqqs. Consider hn,1

and assume ∆x
pnq
1 ą 0, the other cases are similar. From (1.43) and (1.37) we obtain

1

n

ˇ

ˇ

ˇ

ˇ

Re rhn,1pzptqqs

ˇ

ˇ

ˇ

ˇ

ď
log n

n
∆x

pnq
1 `

1

2n

nxpnqc `∆x
pnq
1

ÿ

k“nx
pnq
c `1

log

ˇ

ˇ

ˇ

ˇ

ˆ

x0 ´
k

n

˙2

` py0 ´ tq
2

ˇ

ˇ

ˇ

ˇ

ď
C log n

n2{3
ď δ2

if n is sufficiently large. Here we used again the fact that xpnqc {nÑ χc ă x0. This proves
the lemma.

From Proposition 2.1 and (1.46) we see that

pnpx2, y2q

pnpx1, y1q

c0n
1{3

2
K̃
pnq
R ppx1, y1q, px2, y2qq

“
1

p2πiq2

˛
Γ1
n`Γ2

n

dz

˛
γ1
n`γ

2
n

dw
c0n

1{3

z ´ n´1x2

ˆ
pd0n

2{3qrqpnw; rq

pd0n2{3qsqpnz; sq

enpgn,1pwq´gn,1ptcqq´npgn,2pzq´gn,2ptcqq

w ´ z
. (2.22)

Note also that

pd0n
2{3qrqnpnw; rq “

r´1
ź

k“0

ˆ

n1{3pw ´ tcq ´ k{n
1{3

d0

˙

(2.23)

if r ą 0; there is an analogous formula if r ă 0 and if r “ 0 the expression is “ 1.
By uniform convergence we have that |gn,ipzq ´ fpzq| ď 1

4b0pδ1q for all z P D1 if n is
large enough. Thus, if z P D1 we have

Rergn,ipzq ´ gn,ipD2qs ď Rergn,ipzq ´ fpzqs

` RerfpD2q ´ gn,ipD2qs ` Rerfpzq ´ fpD2qs
loooooooooomoooooooooon

ď0

ď
1

2
b0pδ1q,
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The Cusp-Airy process

where we have used that D1 is a descent curve. Combining this with Lemma 2.4, we
obtain

Rergn,ipzq ´ gn,iptcqs ď ´
1

2
b0pδ1q. (2.24)

for all z P D1. Given δ1 we choose δ2 so small that b1pδ2q ď b0pδ1q{4. Since D3 P D1 we
find, using Lemma 2.5 and (2.24) that

Rergn,ipzq ´ gn,iptcqs ď ´
1

4
b0pδ1q. (2.25)

for all z P C if n is sufficiently large.
Note that

Re gn,2pzq “ νn,2pRq log |z| `Op|z|´1q (2.26)

as |z| Ñ 8, and νn,2pRq Ñ νpRq ą 0 as nÑ 8. In (2.22) we can let Γ2
n and γ2

n be small
circles around tc inside B2 and deform γ1

n to the descent contour D1`C (and its reflection
image in the lower half plane). Using (2.26) we see that we can deform Γ1

n to the ascent
contour A. We can now use the estimates (2.24), (2.25) and (2.26) to see that in the
integral (2.22) we can ignore D1 ` C and the part of A outside B2 in the limit. More
precisely, we also have to combine this estimate with the estimates and computations
inside B2 that we will do in the next section. We leave out the details.

2.5 Local analysis

Let tMnuně1 be a sequence satisfying

Mn Ñ8,
Mn

n1{12
Ñ 0, n2{3Mn|f

1
nptcq| Ñ 0 (2.27)

as nÑ8, which exists by Assumption 4. Consider the ball B1 “ Bptc,Mnn
´1{3q. Again

we will only discuss the descent contour; the ascent case is analogous. As above, we
take ζptq “ teiθpδ1q in (2.9) with Mn{n

1{3 ď t ď δ1, so that zpδ1q “ tc ` ζpδ1q “ D2, see
figure 32.

tc

B2

B1

zpδ1q “ D2

Figure 32: Local contours in the region B2zB1

It follows from (2.10),(2.11) and (2.18) that there is a constant C so that

Rergn,ipzptqq ´ gn,iptcqs ď ´t
3

„

1

12
c1 ´

C|g1n,iptcq|

t2
´
C|g2n,iptcq|

t
´ Ct



. (2.28)

It follows from Assumption 4 that n2{3f 1nptcq Ñ 0 and n2{3f2nptcq Ñ 0 as nÑ8. Combining
this with (2.13) we see that, for t P rMn{n

1{3, δ1s,

|g1n,iptcq|

t2
ď C

n2{3

M2
n

p|f 1nptcq| ` Cn
´2{3q (2.29)
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The Cusp-Airy process

and

|g2n,iptcq|

t
ď C

n2{3

Mn
p|f2nptcq| ` Cn

´2{3q. (2.30)

Using (2.27) we see that the right hand sides of (2.29) and (2.30) are ď c1{72 if n is large
enough. Also, we can assume that δ1 has been chosen so small that Ct in (2.28) satisfies
Ct ď Cδ1 ď c1{72. It then follows from (2.28) that

Re rgn,ipzptqq ´ gn,iptcqs ď ´
1

24
c1t

3 (2.31)

for t P rMn{n
1{3, δ1s. If we let

zptq “ tc ` d0n
´1{3teiθpδ1q,

t P rMn, δ1n
1{3s, then (2.31) gives the estimate

nRe rgn,iptc ` d0n
´1{3teiθpδ1qq ´ gn,iptcqs ď ´

d3
0c1
24

t3. (2.32)

This estimate can be used together with the corresponding estimate for the ascent
contour to control, in the limit, the contribution from the parts of the descent and ascent
contours that lie in B2zB1. We find that we can neglect the contributions from B2zB1.

We now define the local contours that will be used in B1. Let D1 “ tc`Mnn
´1{3eiθpδ1q.

Fix x ą 0 and y ă 0. We define γ1
n in the upper half plane by

zptq “ tc ` d0n
´1{3unptq :“ tc ` d0n

´1{3px` teiθnpδ1qq, (2.33)

where 0 ď t ďM 1
n. Here θnpδ1q and M 1

n are such that zpM 1
nq “ D1. Note that M 1

n{Mn Ñ

1 as n Ñ 8. I the lower half plane we just take the mirror image. We define Γ
1

n

analogously corresponding to the ascent contour, see figure 33. Also, we define Γ
2

n by
zptq “ tc ` d0n

´1{3r1e
it, 0 ď t ď 2π and γ2

n by zptq “ tc ` d0n
´1{3r2e

´it, 0 ď t ď 2π, where
0 ă r2 ă r1 ă minpx,´yq, see figure 33.

Write

L̃
pnq
R ppx1, y1q, px2, y2qq

“
1

p2πiq2

˛
´Γ

1
n´Γ

2
n

dz

˛
γ1
n`γ

2
n

dw
c0n

1{3

z ´ n´1x2

ˆ
pd0n

2{3qrqpnw; rq

pd0n2{3qsqpnz; sq

enpgn,1pwq´gn,1ptcqq´npgn,2pzq´gn,2ptcqq

w ´ z
. (2.34)

From (2.22) and the discussion above it follows that

lim
nÑ8

pnpx2, x1q

pnpx1, y1q

c0n
1{3

2
L̃
pnq
R ppx1, y1q, px2, y2qq “ lim

nÑ8
K̃
pnq
R ppx1, y1q, px2, y2qq.

Consider the contribution from γ1
n. Write

npgn,1pwq ´ gn,1ptcqq “ npfnpwq ´ fnptcqq ` hn,1pwq ´ hn,1ptcq.

In analogy with (2.6) we have, with zptq given by (2.33),

npfnpzptqq ´ fptcqq “ n2{3f 1nptcqd0unptq `
1

2
n1{3f2nptcqd

2
0unptq

2

`
1

6
f3n ptcqd

3
0unptq

3 ` n´1{3r̃npzptqqd
4
0unptq

4, (2.35)
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The Cusp-Airy process

r
pnq
2 r

pnq
1 xd0n

´1{3yd0n
´1{3 Mnn

´1{3tc

γ2
n

Γ
2
n

γ1
nΓ

1
n

θn

D1

Figure 33: Local contours in B1. Here rpnqi “ n´1{3ri for i “ 1, 2.

where |r̃npzptqq| ď C for 0 ď t ďM 1
n. Since |unptq| ď CMn,

|n´1{3r̃npzptqqd
4
0unptq

4| ď Cn´1{3M4
n Ñ 0, (2.36)

as nÑ8 for 0 ď t ďMn, by (2.27). Also,

|n2{3f 1nptcqd0unptq| ď CMnn
2{3|f 1nptcq| (2.37)

|n1{3f2nptcqd
2
0unptq

2| ď CM2
nn

1{3|f2nptcq|.

By (2.27) and Assumption 4 it follows that the right hand sides of (2.37) go to 0 as
n Ñ 8. Furthermore it follows from Assumption 4 that n2{3|f3n ptcq ´ f3ptcq| Ñ 0 as
nÑ8. Hence, we have shown that

npfnptcq ´ fptcqq “
d3

0

6
f3ptcqunptq

3 ` op1q “
1

3
unptq

3 ` op1q (2.38)

uniformly for t P r0,M 1
ns as nÑ8, by our choice (1.31). From the definition of θnpδ1q it

follows that n1{3|θnpδ1q ´ θpδ1q| is bounded, and thus M3
n|θnpδ1q ´ θpδ1q| Ñ 0 as nÑ8 by

(2.27). From this we see that

npfnpzptqq ´ fptcqq “
1

3
px` teiθpδ1qq3 ` op1q, (2.39)

uniformly for t P r0,M 1
ns as nÑ8. From (2.14) we obtain

hn,1pzptqq ´ hn,1ptcq “ h1n,1ptcqd0n
´1{3unptq ` sn,1pzptqqd

2
0n
´2{3unptq

2, (2.40)

and by (2.15),

|n´2{3d2
0sn,1pzptqqunptq

2| ď Cn´1{3M2
n Ñ 0, (2.41)
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uniformly for 0 ď t ďM 1
n as nÑ8 by (2.27). Recall (2.12) and consider the case when

∆x
pnq
1 ą 0. From (2.12) we see that

ˇ

ˇ

ˇ

ˇ

ˇ

n´1{3h1n,1ptcq `
∆x

pnq
1

ptc ´ χcqn1{3

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

n1{3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆x
pnq
1

ÿ

k“1

´
1

tc ´
x
pnq
c

n ´ k
n

`
1

tc ´ χc

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

n1{3

∆x
pnq
1

ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
n `

xpnqc

n ´ χc

tc ´
tc´x

pnq
c

n ´ k
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

n2{3

since |∆xpnq1 | ď |r{2´ c0n
1{3ξn| ď Cn1{3, |xpnqc {n´χc| ď 1{n, ξn Ñ ξ as nÑ8 and χc ą tc.

It follows that

n´1{3h1n,1ptcq ´
c0ξ

2ptc ´ χcq
Ñ 0 (2.42)

as nÑ8. Using this and the control on θnpδ1q, it follows from (2.40), (2.41) and (2.42)
that

hn,1pzptqq ´ hn,1ptcq “ ´
c0d0ξ

2ptc ´ χcq
px` teiθpδ1qq ` op1q, (2.43)

uniformly for 0 ď t ďMn as nÑ8. We have chosen c0, (1.30), so that

c0d0

2ptc ´ χcq
“ ´1. (2.44)

Thus

hn,1pzptqq ´ hn,1ptcq “ ´ξpx` te
iθpδ1qq ` op1q, (2.45)

uniformly for 0 ď t ďMn as nÑ8. Now, by (2.23), for r ą 0,

pd0n
2{3qrqnpnzptq; rq

“

r´1
ź

k“0

n1{3pd0n
´1{3px` teiθnpδ1qq ` n1{3ptc ´ t

pnq
c q ´ k{n2{3

d0
“

´

x` teiθpδ1q
¯r

eop1q

uniformly for 0 ď t ďMn as nÑ8.

We can do the same type of computations for Γ
1

n, Γ
2

n and γ2
n. This gives us

lim
nÑ8

c0d0

2ptc ´ χcqp2πiq2
L̃
pnq
R ppx1, y1q, px2, y2qq

“
c0d0

2ptc ´ χcqp2πiq2

ˆ
´LL´Cout

dz

ˆ
LR`Cin

dw
1

w ´ z

wr

zs
e

1
3w

3
´ 1

3 z
3
´ξw`τz

“
1

p2πiq2

ˆ
LL`Cout

dz

ˆ
LR`Cin

dw
1

w ´ z

wr

zs
e

1
3w

3
´ 1

3 z
3
´ξw`τz. (2.46)

It remains to consider the asymptotics of Bn in (2.2).

lim
nÑ8

pnpx2, y2q

pnpx1, y1q

c0n
1{3

2
Bnppx1, y1q, px2, y2qq

“ lim
nÑ8

1x1ěx2

1

2πi

ˆ
´Γ

2
n

dz
c0n

1{3

z ´ x2{n

pd0n
2{3qrqnpnz; rq

pd0n2{3qsqnpnz; sq
ehn,1pzq´hn,1ptcq´phn,2pzq´hn,2ptcq

(2.47)
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since Γ
2

n has the opposite orientation to Γ2
n. Using the same asymptotics for qn and hn as

above we get

´ 1´ξě´τ
1

2πi

ˆ
´Cout

zr´sepτ´ξqz dz “ 1τěξ1sąr
pτ ´ ξqs´r´1

ps´ r ´ 1q!
.

This gives us finally the complete Cusp-Airy kernel

KCAppξ, rq, pτ, sqq

“ ´1τěξ1sąr
pτ ´ ξqs´r´1

ps´ r ´ 1q!
`

1

p2πiq2

ˆ
LL`Cout

dz

ˆ
LR`Cin

dw
1

w ´ z

wr

zs
e

1
3w

3
´ 1

3 z
3
´ξw`τz.

(2.48)

It is not difficult to check that the asymptotics above is uniform for ξ, τ in compact
subsets of R. A standard argument using the Hadamard inequality then proves (1.47).
This completes the proof of the Main Theorem.

3 Representations and properties of the Cusp-Airy kernel

3.1 Symmetry property of the Cusp-Airy kernel

From the geometry of the problem we expect that the Cusp-Airy process should be
symmetric around the line r “ 0. This is indeed seen in the kernel as the next proposition
shows.

Proposition 3.1. The Cusp-Airy kernel satisfies

KCAppξ,´rq, pτ,´sqq “ p´1qs´rKCAppτ, sq, pξ, rqq. (3.1)

In particular, this implies that the correlation functions satisfies the reflection symmetry

ρnppξ1,´r1q, pξ2,´r2q, ..., pξn,´rnqq “ ρnppξ1, r1q, pξ2, r2q, ..., pξn, rnqq (3.2)

for all n.

Proof. First note that under the change of variables z Ñ ´z and w Ñ ´w the contours
transform according to: LL Ñ ´LR, LR Ñ ´LL, Cin Ñ Cin, and Cout Ñ Cout. Thus we
see that

KCAppξ,´rq, pτ,´sqq

“ ´1τěξ1´są´r
pτ ´ ξq´s`r´1

p´s` r ´ 1q!

`
1

p2πiq2

ˆ
LLYCout

dz

ˆ
LRYCin

dw
1

w ´ z

w´r

z´s
e

1
3w

3
´ 1

3 z
3
´ξw`τz “ tz Ñ ´z, w Ñ ´wu

“ 1τěξ1rąsp´1qr´s
pξ ´ τqr´s´1

pr ´ s´ 1q!

`
p´1qs´r

p2πiq2

ˆ
´LRYCout

dz

ˆ
´LLYCin

dw
1

z ´ w

zs

wr
e

1
3 z

3
´ 1

3w
3
´τz`ξw “ tz Ø wu

“ 1τěξ1rąsp´1qr´s
pξ ´ τqr´s´1

pr ´ s´ 1q!

`
p´1qs´r

p2πiq2

ˆ
´LLYCin

dz

ˆ
´LRYCout

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz.
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Let C be a negatively oriented circular contour around the origin which is contained
inside Cin. The residue theorem implies that

1

p2πiq2

ˆ
´LLYCin

dz

ˆ
´LRYCout

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz

“
1

2πi

ˆ
Cin

dzzs´repξ´τqz `
1

p2πiq2

ˆ
´LL`Cin

dz

ˆ
´LR´C

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz

“ ´1rąs
pξ ´ τqr´s´1

pr ´ s´ 1q!
`

1

p2πiq2

ˆ
´LL`Cin

dz

ˆ
´LR´C

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz.

This gives

KCAppξ,´rq, pτ,´sqq “ 1τěξ1rąsp´1qs´r
pξ ´ τqr´s´1

pr ´ s´ 1q!
´ p´1qs´r1rąs

pξ ´ τqr´s´1

pr ´ s´ 1q!

`
p´1qr´s

p2πiq2

ˆ
´LL`Cin

dz

ˆ
´LR´Cin

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz,

We can now change C Ñ Cout and Cin Ñ ´Cout. This finally gives

KCAppξ,´rq, pτ,´sqq

“ p´1qs´r1rąs
pξ ´ τqr´s´1

pr ´ s´ 1q!

“

1τěξ ´ 1
‰

`
p´1qs´r

p2πiq2

ˆ
LLYCout

dz

ˆ
LRYCin

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz

“ ´p´1qs´r1ξąτ1rąs
pξ ´ τqr´s´1

pr ´ s´ 1q!

`
p´1qs´r

p2πiq2

ˆ
LLYCout

dz

ˆ
LRYCin

dw
1

w ´ z

ws

zr
e

1
3w

3
´ 1

3 z
3
´τw`ξz

“ p´1qs´rKCAppτ, sqpξ, rqq.

3.2 Representation of the Cusp-Airy kernel

In this section we will derive an alternative representation of the Cusp-Airy kernel
involving the so called r-Airy integrals and certain polynomials. Define the r-Airy
integrals,

A˘r puq “
1

2π

ˆ
`

e
1
3 ia

3
`iuap¯iaq˘r da,

where r ě 0 and ` is a contour from 8e5πi{6 to 8eπi{6 such that 0 lies above the contour,
see [1]; compare also with the functions spmq and tpmq in [3]. Note that A˘0 puq “ Ai puq,
the standard Airy function. Let L ˚

L be the contour LL shifted to the right so that 0 lies
to the left of it, see figure 35; define L ˚

R analogously by shifting LR to the left so that 0

is to the right of it. It is straightforward to check that

1

2πi

ˆ
L˚
R

e
1
3w

3
´uwwr dw “

p´1qr

2πi

ˆ
L˚
L

e´
1
3 z

3
`uzzr dz “ A`r puq, (3.3)

and
p´1qr

2πi

ˆ
L˚
R

e
1
3w

3
´uw 1

wr
dw “

1

2πi

ˆ
L˚
L

e´
1
3 z

3
`uz 1

zr
dz “ A´r puq, (3.4)

for r ě 0.
Define the polynomials Pnpw, ξq and pnpξq through

Pnpw, ξq :“ e´
1
3w

3
`uw dn

dwn
e

1
3w

3
´uw (3.5)
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The Cusp-Airy process

and

pnpuq :“ Pnp0, uq. (3.6)

By Cauchy’s integral formula, we have for r ě 0,

1

2πi

ˆ
Cout

e
1
3w

3
´uwwr dw “

p´1qr´1

2πi

ˆ
Cout

e´
1
3 z

3
`uzzr dz “ pr´1puq. (3.7)

Note that LL ` Cout “ L ˚
L , see figure 34. Thus,

p´1qr

2πi

ˆ
LR

e
1
3w

3
´uw 1

wr
dw “

1

2πi

ˆ
LL

e´
1
3 z

3
`uz 1

zr
dz “ A´r puq ` p´1qrpr´1puq. (3.8)

LL LR

Cout

0
xy

π
3

π
3

Figure 34: Deformation of the contours LL and Cout so that LL can be moved to the
right of 0.

0

L ˚
L LR

z w

Figure 35: Integration contours moved to the right of 0.

We can now give a different formula for the Cusp-Airy kernel in terms of the r-Airy
integrals.
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The Cusp-Airy process

Proposition 3.2. The Cusp-Airy kernel can be written as

KCAppξ, rq, pτ, sqq “ ´1τěξ1sąr
pτ ´ ξqs´r´1

ps´ r ´ 1q!
` K̃CAppξ, rq, pτ, sqq,

where K̃CA is given

(i) for r, s ě 0, by

K̃CAppξ, rq, pτ, sqq “
ˆ 8

0

A´s pτ ` λqA
`
r pξ ` λq dλ,

(ii) for r ě 0, s ă 0, by

K̃CAppξ, rq, pτ, sqq “ p´1qs
ˆ 8

0

A`´spτ ` λqA
`
r pξ ` λq dλ,

(iii) for r ă 0, s ě 0, by

K̃CAppξ, rq, pτ, sqq “ p´1qr
ˆ 8

0

A´s pτ ` λqA
´
´rpξ ` λq dλ

` p´1qs´r
ˆ 8

0

ps´1pτ ` λqA
´
´rpξ ` λq dλ

` p´1qs´r
s´1
ÿ

k“0

pkpτqA´r`s´kpξq `
s´r´1
ÿ

k“0

p´1qkpkpτqps´r´1´kpξq,

(iv) and for r, s ă 0, by

K̃CAppξ, rq, pτ, sqq “ p´1qs´r
ˆ 8

0

A`´spτ ` λqA
´
´rpξ ` λq dλ.

Proof. From Definition 1.1 we have that

K̃CAppξ, rq, pτ, sqq “
1

p2πiq2

ˆ
LL`Cout

dz

ˆ
LR`Cin

dw
1

w ´ z

wr

zs
e

1
3w

3
´ 1

3 z
3
´ξw`τz.

Consider the case (i). If r, s ě 0, then Cin does not contribute, and using LL ` Cout “
L ˚
L , see figure 34, and the formula

ˆ 8
0

e´λpw´zq dλ “
1

w ´ z
(3.9)

valid if Re pw ´ zq ą 0, we find

K̃CAppξ, rq, pτ, sqq “
ˆ 8

0

˜

1

2πi

ˆ
L˚
L

e´
1
3 z

3
`pτ`λqz 1

zs
dz

¸˜

1

2πi

ˆ
L˚
R

e
1
3w

3
´pξ`λqwwr dw

¸

dλ

“

ˆ 8
0

A´s pτ ` λqA
`
r pξ ` λq dλ,

by (3.3) and (3.4). Here, we also used the fact that since r ě 0, we can move LR to L ˚
R .

In the case (ii) we have r ě 0 and s ă 0, and thus neither Cin nor Cout contribute.
Using (3.9) and then moving LL to L ˚

L and LR to L ˚
R , we obtain

K̃CAppξ, rq, pτ, sqq “
ˆ 8

0

˜

1

2πi

ˆ
L˚
L

e´
1
3 z

3
`pτ`λqzz´s dz

¸˜

1

2πi

ˆ
L˚
R

e
1
3w

3
´pξ`λqwwr dw

¸

dλ

“ p´1qs
ˆ 8

0

A`´spτ ` λqA
`
r pξ ` λq dλ.
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Next, consider the case (iii). If r ă 0, s ě 0, we can writeˆ
LL`Cout

dz

ˆ
LR`Cin

dw “

ˆ
LL

dz

ˆ
LR`Cin

dw `

ˆ
Cout

dz

ˆ
LR`Cin

dw

“

ˆ
LL

dz

ˆ
LR

dw `

ˆ
Cout

dz

ˆ
LR

dw `

ˆ
Cout

dz

ˆ
Cin

dw :“ I1 ` I2 ` I3.

Consider first I1. By (3.4) and (3.8) we get

I1 “

ˆ 8
0

ˆ

1

2πi

ˆ
LL

e´
1
3 z

3
`pτ`λqz 1

zs
dz

˙

˜

1

2πi

ˆ
L˚
R

e
1
3w

3
´pξ`λqw 1

w´r
dw

¸

dλ

“ p´1qs
ˆ 8

0

A`´spτ ` λqA
`
r pξ ` λq dλ. (3.10)

Since |w| ą |z| if z P Cout and w P LR, we can use the identity

1

w ´ z
“

8
ÿ

k“0

zk

wk`1

to see that

I2 “
s´1
ÿ

k“0

ˆ

1

2πi

ˆ
Cout

e´
1
3 z

3
`τz 1

zs´k
dz

˙ˆ

1

2πi

ˆ
LR

e
1
3w

3
´ξw 1

w´r`k`1
dw

˙

“

s´1
ÿ

k“0

ps´k´1pτq

ˆ

p´1q´r`k`1A´
´r`k`1pξq ` p´r`kpξq

˙

“ p´1qs´r
s´1
ÿ

k“0

pkpτqA
´
´r`s´kpξq `

s´1
ÿ

k“0

p´1qkpkpτqp´r`s´1´kpξq. (3.11)

If z P Cout and w P Cin, then

1

w ´ z
“ ´

8
ÿ

k“0

wk

zk`1

and we see that, by (3.7), and the fact that Cin is negatively oriented, we have

I3 “ ´
´r´1
ÿ

k“0

ˆ

1

2πi

ˆ
Cout

e´
1
3 z

3
`τz 1

zs`k`1
dz

˙ˆ

1

2πi

ˆ
Cin

e
1
3w

3
´ξw 1

w´r´k
dw

˙

“

´r´1
ÿ

k“0

ps`kpτqp´r´k´1pξq “
s´r´1
ÿ

k“s

pkpτqp´r`s´1´kpξq. (3.12)

Adding up (3.10)–(3.12) we have proved (iii). The case (iv) follows from (i) by using
Proposition 3.1.

Note that if we take r “ s ě 0, then by (i),

KCAppξ, rq, pτ, sqq “
ˆ 8

0

A´r pτ ` λqA
`
r pξ ` λq dλ :“ Kprqpτ, ξq,

which is called the r-Airy kernel. Note that when r “ 0 we get the standard Airy kernel.
The r-Airy kernel has appeared previously in the work [3] on largest eigenvalues of
sample covariance matrices and in [1] on Dyson’s Brownian motion with outliers. See
also [2].

Though we do not show it in this paper using the results above and some further
estimates it should be possible to prove that the scaling limit of the position of the last
(red) particle on line r, close to the cusp point, has the distribution function Frpxq “

detpI´KprqqL2px,8q. In particular, when r “ 0 we should get the Tracy-Widom distribution.
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The Cusp-Airy process

Remark 3.1. It is instructive to compare the Cusp-Airy kernel to the GUE-corner kernel.
Recall that the GUE-corner kernel is given by

Kpn, x;n1, x1q “ ´1nąn11xąx12
n´n1 px´ x

1qn´n
1
´1

pn´ n1 ´ 1q!

`
2

p2πiq2

ˆ
Γ0

dz

ˆ
L

dw

w ´ z

wn
1

zn
ew

2
´z2`2zx´2wx1 , (3.13)

where x, x1 P R and n, n1 P Z and n, n1 ě 0, and where the contours are shown in
figure 36.

Γ0

L

Figure 36: Contours for the GUE-corner kernel.

In a sense, one can regard the Cusp-Airy kernel as a double sided version of the GUE-
corner kernel. If one changes the assumption that f 1tc has a simple root at tc P R1

Ť

R2,
then a similar computation as in the Cusp-Airy case will yield the GUE-corner kernel for
an appropriate scaling limit of Knppx

pnq
1 , y

pnq
1 q, px

pnq
2 , y

pnq
2 qq.

4 Derivation of the correlation kernel

4.1 Integral representation of the correlation kernel for the yellow particles

In section A.1 in [8] it was shown that the correlation kernel for the interlacing
particle system is given by

Knppx1, y1q, px2, y2qq “ K̃nppx1, y1q, px2, y2qq ´ φ
pnq
py1,y2q

px1, x2q, (4.1)

where

K̃nppx1, y1q, px2, y2qq

“
pn´ y1q!

pn´ y2 ´ 1q!

n
ÿ

k“1

1
β
pnq
k ěx2

x1
ÿ

l“x1`y1´n

śx2´1
j“x2`y2´n`1pβ

pnq
k ´ jq

śx1
j“x1`y1´n

j‰l

pl ´ jq

ź

i‰k

l ´ β
pnq
i

β
pnq
k ´ β

pnq
i

(4.2)

and

φ
pnq
py1,y2q

px1, x2q

“ 1x1ěx2

pn´ y1q!

pn´ y2 ´ 1q!

n
ÿ

k“1

x1
ÿ

l“x1`y1´n

śx2´1
j“x2`y2´n`1pβ

pnq
k ´ jq

śx1
j“x1`y1´n

j‰l

pl ´ jq

ź

i‰k

l ´ β
pnq
i

β
pnq
k ´ β

pnq
i

. (4.3)

To arrive at an integral representation for the correlation kernel we now make use of
the following corollary of the residue theorem:
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Corollary 4.1. Let Ω P C be an open simply connected bounded domain with positively
oriented boundary Jordan curve γ, then for an analytic function fpzq in Ω, we have for
tz1, ..., znu P Ω and zi ‰ zj if i ‰ j

n
ÿ

i“1

fpziq
n
ź

k“1
i‰k

1

zi ´ zk
“

1

2πi

˛
γ

fpzq
n
ź

i“1

1

z ´ zi
dz.

Proposition 4.1. The correlation kernel for the yellow tiles have the following integral
representation

K
pnq
Y ppx1, y1q, px2, y2qq

“ 1x1ăx2

pn´ y1q!

pn´ y2 ´ 1q!

1

p2πiq2

˛
Zn

dz

˛
Wn

dw

śx2´1
k“x2`y2´n`1pz ´ kq

śx1

k“x1`y1´n
pw ´ kq

1

w ´ z

n
ź

i“1

ˆ

w ´ β
pnq
i

z ´ β
pnq
i

˙

´ 1x1ěx2

pn´ y1q!

pn´ y2 ´ 1q!

1

p2πiq2

˛
Z 1
n

dz

˛
Wn

dw

śx2´1
k“x2`y2´n`1pz ´ kq

śx1

k“x1`y1´n
pw ´ kq

1

w ´ z

n
ź

i“1

ˆ

w ´ β
pnq
i

z ´ β
pnq
i

˙

,

(4.4)

where Zn is a counterclockwise oriented contour containing tβpnqj : β
pnq
j ě x2u but

not the set tβpnqj ď x2 ´ 1u and Z 1
n is a counterclockwise oriented contour containing

tβ
pnq
j : β

pnq
j ă x2u but not the set tβpnqj ě x2`1u, and Wn contains the set tx1`y1´n, ..., x1u

and Zn and Z 1
n.

Proof. The correlation kernel for the yellow tiles is the same as that for the interlacing
particles, i.e. it is given by (4.1). From (4.1) to (4.3) we see that

pn´ y2 ´ 1q!

n´ y1q
K
pnq
Y ppx1, y1q, px2, y2qq

“ 1x1ăx2

n
ÿ

k“1

1
β
pnq
k ěx2

x1
ÿ

l“x1`y1´n

śx2´1
j“x2`y2´n`1pβ

pnq
k ´ jq

śx1
j“x1`y1´n

j‰l

pl ´ jq

ź

i‰k

l ´ β
pnq
i

β
pnq
k ´ β

pnq
i

´ 1x1ěx2

n
ÿ

k“1

1
β
pnq
k ăx2

x1
ÿ

l“x1`y1´n

śx2´1
j“x2`y2´n`1pβ

pnq
k ´ jq

śx1
j“x1`y1´n

j‰l

pl ´ jq

ź

i‰k

l ´ β
pnq
i

β
pnq
k ´ β

pnq
i

. (4.5)

Consider the first expression in the right hand side of (4.5). Using Corollary 4.1 we can
rewrite the l-summation and we find

1x1ăx2

n
ÿ

k“1

1
β
pnq
k ěx2

1

2πi

˛
Wn

dw

śx2´1
j“x2`y2´n`1pβ

pnq
k ´ jq

śx1

j“x1`y1´n
pw ´ jq

ź

i‰k

w ´ β
pnq
i

β
pnq
k ´ β

pnq
i

“ 1x1ăx2

n
ÿ

k“1

1
β
pnq
k ěx2

1

2πi

˛
Wn

dw

śx2´1
j“x2`y2´n`1pβ

pnq
k ´ jq

śx1

j“x1`y1´n
pw ´ jq

1

w ´ β
pnq
k

śn
i“1pw ´ β

pnq
i q

ś

i‰kpβ
pnq
k ´ β

pnq
i q

.

Since the w-contour is outside Zn the sum over the βpnqk ě x2 can be rewritten using
Corlollary 4.1 and we find

1x1ăx2

1

p2πiq2

˛
Wn

dw

˛
Zn

dz

śx2´1
j“x2`y2´n`1pz ´ jq

śx1

j“x1`y1´n
pw ´ jq

1

w ´ z

śn
i“1pw ´ β

pnq
i q

śn
i“1pz ´ β

pnq
i q

.

The second expression in the right hand side of (4.5) can be rewritten in exactly the
same way and we have proved the proposition.
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4.2 Particle transformation

From knowledge of a correlation kernel for the yellow particles we now want to
derive an expression for a correlation kernel for the red (and blue) particles.

Lemma 4.1. Correlation kernels for the red and blue tiles (particles) are given by

K
pnq
R ppx1, y1q, px2, y2qq “ ´K

pnq
Y ppx1, y1q, px2, y2 ´ 1qq

K
pnq
B ppx1, y1q, px2, y2qq “ K

pnq
Y ppx1, y1q, px2 ` 1, y2 ´ 1qq.

Proof. Let KP be the Kasteleyn matrix of the adjacency matrix of the honeycomb graph
GP of the polygon P. It is defined according to

KPppx, nq; py,mqq “

$

’

’

&

’

’

%

1 if py,mq “ px, nq
1 if py,mq “ px, n´ 1q

1 if py,mq “ px` 1, n´ 1q

0 otherwise

(4.6)

Recall that if py,mq “ px, nq we have a yellow particle (rhombi of shape) at position px, nq
in our lattice. Similarly, if py,mq “ px, n´ 1q we have a red particle at position px, nq and
if py,mq “ px` 1, n´ 1q we have a blue particle at position px, nq.

It was shown in [20] Theorem 6.1 that inverse Kasteleyn matrix K´1
P is related to the

correlation kernel of the yellow particles KY according to

K´1
P ppy,mq; px, nqq “ p´1qy´x`m´nK

pnq
Y px, n; y,mq. (4.7)

From Corollary 3 in [15] one has that the probability of finding a set of edges tb1w1, ...,

bkwku is given by

Predges at tw1b1, ..., wkbkus “

ˆ k
ź

i

KPpwi, biq

˙

detpK´1
P pbi, wjqq

k
i,j

Now finding k red particles at positions tpxi, niquki“1 is equivalent to finding the edges
tppxi, niq, pxi, ni ´ 1qquki“1 Hence, the probability of finding k red particles at positions
tpxi, niqu

k
i“1 equals

Prred particles at positions tpxi, niqu
k
i“1s

“ Predges at positions tppxi, niq, pxi, ni ´ 1qquki“1s

“ detpK´1
P ppxi, ni ´ 1q, pxj , njqq

k
i,j

“ detpp´1qxi´xj`ni´nj`1K
pnq
Y pxj , nj ;xi, ni ´ 1qqki,j

“ detp´K
pnq
Y pxi, ni;xj , nj ´ 1qqki,j

However, by definition

ρRppx1, n1q, px2, n2q, ..., pxk, nkqq “ Prred particles at positions tpxi, niqu
k
i“1s

“ detpK
pnq
R pxi, ni; yj , njqq1ďi,jďk

Hence, we find that as a correlation kernel for the red particles we can take

K
pnq
R pxi, ni; yj , njq “ ´K

pnq
Y pxi, ni;xj , nj ´ 1q.

Similarly, for the blue particles we can take

K
pnq
B pxi, ni; yj , njq “ K

pnq
Y pxi, ni;xj ` 1, nj ´ 1q.

This concludes the proof.
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We can now prove Proposition 1.1. Combining Lemma 4.1 with (4.4) we see that a
correlation kernel for the red particles is given by

´ 1x1ăx2

pn´ y1q!

pn´ y2q!

1

p2πiq2

˛
Zn

dz

˛
Wn

dw

śx2´1
k“x2`y2´n

pz ´ kq
śx1

k“x1`y1´n
pw ´ kq

1

w ´ z

n
ź

i“1

ˆ

w ´ β
pnq
i

z ´ β
pnq
i

˙

` 1x1ěx2

pn´ y1q!

pn´ y2q!

1

p2πiq2

˛
Z 1
n

dz

˛
Wn

dw

śx2´1
k“x2`y2´n

pz ´ kq
śx1

k“x1`y1´n
pw ´ kq

1

w ´ z

n
ź

i“1

ˆ

w ´ β
pnq
i

z ´ β
pnq
i

˙

(4.8)

We can remove the prefactor pn´y1q!
pn´y2q!

since it cancels in the determinantal expression for
the correlation functions. This proves Proposition 1.1.

5 Appendix. Determinantal point processes

In this appendix we give a brief introduction to determinantal random point processes
that suffices for our purposes. See e.g. [13], for a more complete treatment.

Let Λ be a Polish space. Fix N P N Y t8u and Y Ă ΛN , a space of configurations
of N -particles of Λ. Denote each y P Y as y “ py1, . . . , yN q. Assume, for all y P Y
and compact Borel sets B Ă Λ, that the number of particles from y contained in B is
finite, i.e., #tyi P Bu ă 8. Let F be the sigma-algebra generated by sets of the form
ty P Y : #tyi P Bu “ mu for all m ď N and Borel sets B Ă Λ. A probability space of the
form pY,F ,Pq is referred to as a random point process.

Given such a process, m ď N , and B Ă Λm, define Nm
B : Y Ñ N by,

Nm
B pyq :“ #tpyi1 , . . . , yimq P B : i1 ‰ ¨ ¨ ¨ ‰ imu,

for all y P Y . In words, Nm
B pyq is the number of distinct m-tuples of particles from y that

are contained in B. Then define a measure on Λm by B ÞÑ ErNm
B s for all Borel subsets

B Ă Λm. Assume that this is well-defined and finite whenever B is bounded. Then,
given a reference measure λ on Λ, the density of the above measure with respect to λm,
whenever it exists, is referred to as the mth correlation function, ρm. That is,

ˆ
B

ρmpx1, . . . , xmqdλrx1s . . . dλrxms “ ErN
m
B s,

for all Borel subset B Ă Λm.
A random point process is called determinantal if all correlation functions exist and

there exists a function K : Λ2 Ñ C for which

ρmpx1, . . . , xmq “ detrKpxi, xjqs
m
i,j“1,

for all x1, . . . , xm P Λ and m ď N . K is called the correlation kernel of the process. Note,
correlation kernels are not unique. For example, when Λ “ R, a new kernel J : R2 Ñ C

can be defined by Jpu, vq :“ wpuq
wpvqKpu, vq for all u, v P R, where w is any non-zero complex

function. Also, kernels can be viewed as integral operators on L2pΛq by the relation,

Kfpuq :“

ˆ
Kpu, vqfpvqdλrvs,

whenever the right hand side is well-defined.
Finally consider a measurable function φ : Λ Ñ C with bounded support, B, for which

8
ÿ

n“0

}φ}n8
n!

ˆ
Bn

detrKpxi, xjqs
n
i,j“1dλrx1s . . . dλrxns ă 8.
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Proposition 2.2 of [13], then gives,

Er
ź

j

p1´ φpxjqqs “
8
ÿ

n“0

p´1qn

n!

ˆ
Bn

n
ź

j“1

φpxjqdetrKpxi, xjqs
n
i,j“1dλrx1s . . . dλrxns.

This quantity is referred to as the Fredholm determinant, denoted detrI ´ φKsL2pBq.
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