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Abstract

We study the intersection of two independent renewal processes, ρ = τ ∩ σ. Assuming
that P(τ1 = n) = ϕ(n)n−(1+α) and P(σ1 = n) = ϕ̃(n)n−(1+α̃) for some α, α̃ > 0

and some slowly varying ϕ, ϕ̃, we give the asymptotic behavior first of P(ρ1 > n)

(which is straightforward except in the case of min(α, α̃) = 1) and then of P(ρ1 = n).
The result may be viewed as a kind of reverse renewal theorem, as we determine
probabilities P(ρ1 = n) while knowing asymptotically the renewal mass function
P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ). Our results can be used to bound coupling-related
quantities, specifically the increments |P(n ∈ τ)−P(n− 1 ∈ τ)| of the renewal mass
function.
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1 Intersection of two independent renewals

We consider two independent (discrete) renewal processes τ and σ, whose law are
denoted respectively Pτ and Pσ, and the renewal process of intersections, ρ = τ ∩ σ. We
denote P = Pτ ⊗Pσ.

The process ρ appears in various contexts. In pinning models, for example, it may
appear directly in the definition of the model (as in [1], where σ represents sites with
nonzero disorder values, and τ corresponds to the polymer being pinned) or it appears
in the computation of the variance of the partition function via a replica method (see for
example [24]), and is central in deciding whether disorder is relevant or irrelevant in
these models, cf. [3].

When τ and σ have the same inter-arrival distribution, ρ1 is related to the coupling
time of τ and σ, if we allow τ and σ to start at different points. In particular, in the case
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Intersection of two independent renewals

µ := E[τ1] < +∞, the coupling time ρ1 has been used to study the rate of convergence in
the renewal theorem, see [19, 21], using that

|P(n ∈ τ)−P(n ∈ σ)| 6 E
[
|1{n∈τ} − 1{n∈σ}|1{ρ1>n}

]
6 P(ρ1 > n) .

Hence, if τ is delayed by a random X having the size-biased waiting time distribution
ν of the renewal process (and denoting Pν the delayed law of τ ), we have that Pν(n ∈
τ) = 1/µ for all n, and so Pτ ⊗Pν(ρ1 > n) bounds the rate of convergence in the renewal
theorem. This question has also been studied via a more analytic method in [22, 16].
Denoting by un := P(n ∈ τ) the renewal mass function ot τ , Rogozin [22] proved that
un − µ−1 ∼ µ−2

∑+∞
k=nP(τ1 > k) as n→∞.

In this paper, we consider only the non-delayed case, with a brief exception to study
|un − un−1|, see Theorem 1.7.

1.1 Setting of the paper

We assume that there exist α, α̃ > 0 and slowly varying functions ϕ, ϕ̃ such that

P(τ1 = n) = ϕ(n)n−(1+α) , P(σ1 = n) = ϕ̃(n)n−(1+α̃) . (1.1)

(As mentioned above, τ and σ are non-delayed, if not specified otherwise.) With no loss
of generality, we assume that α 6 α̃. We define

µn := E[τ1 ∧ n], µ̃n := E[σ1 ∧ n],

µ = E[τ1] = lim
n→∞

µn 6∞, µ̃ := E[σ1] = lim
n→∞

µ̃n 6∞.

The assumption (1.1) is very natural, and is widely used in the literature (for example,
once again in pinning models). It covers in particular the case of the return times
τ = {n , S2n = 0}, where (Sn)n > 0 is the simple symmetric nearest-neighbor random
walk on Zd (see e.g. [10, Ch. III] for d = 1, [17, Thm. 4] for d = 2 and [8, Thm. 4] for
d = 3), or the case τ = {n , Sn = 0} where (Sn)n > 0 an aperiodic random walk in the
domain of attraction of a symmetric stable law, see [18, Thm. 8].

In Section 2, we recall the strong renewal theorems for τ and σ under assumption
(1.1) (from [6, 9, 20] in the recurrent case, [14, App. A.5] in the transient case), as well
as newer reverse renewal theorems (from [2]). We collect the results when τ is recurrent
in the following table, denoting rn := P(τ1 > n), and we refer to (2.1) for the transient
case.

α > 1 α ∈ (0, 1) α = 0

P(n ∈ τ)
n→∞∼

(
µn
)−1 α sin(πα)

π n−(1−α)ϕ(n)−1 ϕ(n)
n r2n

Table 1: Asymptotics of the renewal mass function if τ is recurrent, and has inter-arrival
distribution P(τ1 = n) = ϕ(n)n−(1+α) with α > 0.

From Table 1 and (2.1), the renewal mass function of ρ satisfies

P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ) = ψ∗(n)n−θ
∗

(1.2)

for some θ∗ > 0 and slowly varying function ψ∗(n). For example, if both τ and σ are
recurrent we have

θ∗ = 2− α ∧ 1− α̃ ∧ 1; (1.3)

if also α, α̃ ∈ (0, 1), then ψ∗ is a constant multiple of 1/ϕϕ̃. If instead both τ and σ are
transient then θ∗ = 2 + α + α̃. We recall that ρ is transient if and only if

∑
n > 0 P(n ∈
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Intersection of two independent renewals

ρ) < +∞, so that ρ is transient for θ∗ > 1 and recurrent for θ∗ < 1. Recalling that α 6 α̃,
if we define

α∗ =


α if ρ is recurrent and α > 1,

1− θ∗ if ρ is recurrent and α < 1,

θ∗ − 1 if ρ is transient,

(1.4)

then in the transient case based on Theorem 2.1 , and in the recurrent case based on
Table 1 if α < 1 and Proposition 4.1 if α > 1, we expect P(ρ1 = n) to be expressed as
n−(1+α

∗) multiplied by a slowly varying function.

Observe that the renewal function of ρ, defined as

U∗n :=

n∑
k=0

P(n ∈ ρ),

is always regularly varying, with exponent α∗ = 1− θ∗ in the recurrent case and 0 in the
transient case.

Our goal is to derive from (1.1) the local asymptotics of the inter-arrival distribution,
that is, the asymptotics of P(ρ1 = n). For general renewal processes ρ these asymptotics
should not be uniquely determined by the asymptotic behavior of the renewal mass
function (1.2) (which is known is our case), but the extra structure given by ρ = τ ∩ σ
under (1.1) makes such determination possible.

Remark 1.1. For ρ to be recurrent, it is necessary that both τ and σ are recurrent,
so (1.3) holds. It follows from Table 1 that ρ is recurrent if and only both τ and σ are
recurrent and one of the following also holds:

(i) α+ α̃ > 1,

(ii) α, α̃ ∈ (0, 1), α+ α̃ = 1 and
∑
n > 1

1
nϕ(n)ϕ̃(n) = +∞,

(iii) α = 0, α̃ = 1 and
∑
n > 1

ϕ(n)
n r2nµ̃n

= +∞.

1.2 Main results

Case of transient ρ

Since P(n ∈ ρ) is summable (with sum E(|ρ|)), we must have θ∗ > 1. Here the following
is immediate from ([2], Theorem 1.4), given below as Theorem 2.1.

Theorem 1.2. Assume (1.1), and suppose that ρ is transient. Then

P(ρ1 = n)
n→∞∼ 1

E(|ρ|)2
P(n ∈ τ)P(n ∈ σ) .

Case of recurrent ρ

Here τ and σ must be recurrent, so (1.3) holds with θ∗ ∈ [0, 1], and α∗ = 1− θ∗ if α 6 1,
α∗ = α if α > 1.

Theorem 1.3. Assume (1.1), and suppose that ρ is recurrent. Then for α∗ from (1.4)
(with θ∗ defined as in (1.3) and ψ∗ as in (1.2)), the following hold.

(i) If α∗ ∈ (0, 1) then

P(ρ1 > n)
n→∞∼ sin(πα∗)

π
ψ∗(n)−1 n−α

∗
. (1.5)
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(ii) If α∗ = 0 then

P(ρ1 > n)
n→∞∼

 n∑
j=1

ψ∗(j)

j

−1 , (1.6)

which is slowly varying.

(iii) If α∗ > 1 then

P(ρ1 > n)
n→∞∼ µ̃nP(τ1 > n) + µnP(σ1 > n). (1.7)

In Theorem 1.3(iii), µ̃n, µn are slowly varying since α̃ > α > 1 (recall (1.4)), and they
may be replaced by µ̃ or µ if that mean is finite.

We will prove Theorem 1.3 in Sections 3–4. The cases (i) and (ii) are essentially
immediate from known relations of form P(ρ1 > n) ∼ c/U∗n and are given in Section 3.
Item (iii) seems to be a new result, and is treated in Section 4 via a probabilistic method.
Note that in all cases, P(ρ1 > n) is regularly varying with exponent −α∗.

Remark 1.4. Theorem 1.3 actually holds with weaker assumptions than (1.1). Indeed,
from the proof of item (iii) in Section 4, it is enough to have P(τ1 > n),P(σ1 > n)

regularly varying with respective indices −α,−α̃ with α̃ > α > 1 (see for example
Proposition 4.1). On the other hand, to obtain (i) and (ii), one only needs that U∗n is
regularly varying with index α∗ < 1: to obtain this, one does not need the full strength of
(1.1), but only to have the asymptotic behavior of P(n ∈ τ),P(n ∈ σ) given in Table 1. In
particular, a sufficient condition to obtain the behavior of P(n ∈ τ) in Table 1 is to have
P(τ1 > n)

n→∞∼ α−1ϕ(n)n−α with α ∈ (1/2, 1], see [13] and [9]. An optimal condition to
obtain the asymptotics of P(n ∈ τ) in Table 1 is given in [5, 7] in the case α ∈ (0, 1/2].

To obtain the asymptotics of P(ρ1 = n) from Theorem 1.3 (in the case α∗ > 0), or
using the weak reverse renewal Theorem 2.2 (in the case α∗ = 0), we only need to show
that P(ρ1 = k) is approximately constant on an interval [(1− ε)n, n] with ε small. To that
end we have the following lemma, which we will prove in Section 5.

Lemma 1.5. Assume (1.1), and suppose that ρ is recurrent. Let vn := P(ρ1 > n)2P(n ∈
ρ). Then for every δ > 0, there exists some ε > 0 such that, if n is large enough we have
for all k ∈ (0, εn)

(1− δ)P(ρ1 = n− k)− δvn 6 P(ρ1 = n) 6 (1 + δ)P(ρ1 = n+ k) + δvn. (1.8)

We will see later that vn = O(P(ρ1 = n)), so Lemma 1.5 is actually true without the
δvn terms, but we will not need this improved result.

In Lemma 1.5, in contrast to Theorem 1.3, the local assumption (1.1) plays an
important role, because of the stretching argument in Section 6. But (1.1) is not the
optimal condition to obtain Lemma 1.5; for instance, from the proof in Section 6, one
could readily replace (1.1) with the condition Pτ (τ1 = m)/Pτ (τ1 = n) → 1 whenever
m,n→∞ with m/n→ 1, together with the requirement that the conclusions of Theorem
1.3 hold.

We can now state our main theorem, which we will prove in Section 6.

Theorem 1.6. Assume (1.1) with α̃ > α, and suppose that ρ is recurrent. Let α∗ be as
in (1.4).

(i) If α∗ ∈ (0, 1) then

P(ρ1 = n)
n→∞∼ α∗ sin(πα∗)

π
ψ∗(n)−1n−(1+α

∗) .
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(ii) If α∗ = 0 then

P(ρ1 = n)
n→∞∼

(
n∑
k=1

ψ∗(k)

k

)−2
ψ∗(n)

n
.

(iii) If α∗ > 1 then

P(ρ1 = n)
n→∞∼ µ̃nP(τ1 = n) + µnP(σ1 = n)

n→∞∼ µ̃nϕ(n) + µnϕ̃(n)n−(α̃−α)

n1+α∗ .

As in Theorem 1.3, in (iii), µ̃n, µn may be replaced by µ or µ̃ if that mean is finite.
We now illustrate this theorem with some subcases, using Table 1.

1. If τ, σ are recurrent with α, α̃ ∈ (0, 1) and α + α̃ > 1, then ρ is recurrent with
α∗ = α+ α̃− 1 ∈ (0, 1) and

P(ρ1 = n)
n→∞∼ cα,α̃ ϕ(n)ϕ̃(n)n−(α+α̃) with cα,α̃ =

πα∗ sin(πα∗)

αα̃ sin(πα) sin(πα̃)
. (1.9)

2. If τ, σ are recurrent with α, α̃ ∈ (0, 1), α+ α̃ = 1 and
∑∞
n=1 1/nϕ(n)ϕ̃(n) =∞, then

ρ is recurrent, α∗ = 0, ψ∗(n) ∼ c′α,α̃ϕ(n)−1ϕ̃(n)−1 with c′α,α̃ = αα̃ sin(πα) sin(πα̃)
π2 . Therefore,

P(ρ1 = n)
n→∞∼ 1

c′α,α̃

(
n∑
k=1

1

kϕ(k)ϕ̃(k)

)−2
1

nϕ(n)ϕ̃(n)
. (1.10)

As a special case, suppose τ = {n, S2n = 0}, σ = {n, S′2n = 0} are the return times of
independent symmetric simple random walks (SSRW) on Z. Then α = α̃ = 1/2 and
ϕ(n) = ϕ̃(n)→ 1

2
√
π

so

P(ρ1 = n)
n→∞∼ π

n(log n)2
. (1.11)

Rotating the lattice by π/4 shows that this is the same as the return time distribution for
(Sn)n > 0 the SSRW on Z2 (the even return times: ρ = {n,S2n = 0}). Hence (1.11) is a
classical result of Jain and Pruitt [17].

3. If τ is recurrent with α ∈ (0, 1), and α̃ > 1 (so µ̃n is slowly varying; this includes
the case when µ̃ < +∞), then α∗ = α and

P(ρ1 = n)
n→∞∼ µ̃n ϕ(n)n−(1+α)

n→∞∼ µ̃nP(τ1 = n) . (1.12)

1.3 Application to a coupling-related quantity

We now provide an application of Theorem 1.3.

Theorem 1.7. Let τ be a recurrent renewal process satisfying (1.1), and let un := P(n ∈
τ) be its renewal mass function. Let ρ = τ ∩ σ where σ is a renewal independent of τ
with the same law. There exist constants ci > 0 such that

|un − un−1| 6 c1 unP(ρ1 > n) 6

c2 n−1/2ϕ(n)
(∑n

j=1
1

jϕ(j)2

)−1
if α = 1/2

c2 n
−αϕ(n) if α > 1/2.

(1.13)

Note that the right side of (1.13) is of order P(τ1 > n) when α > 1/2. It is
summable precisely when µ = E[τ1] < +∞, and then, by Theorem 1.3(iii), (1.13) says
|un − un−1| 6 c3 P(τ1 > n). This gives additional information compared to the known
asymptotics

un −
1

µ
∼ 1

µ2

∑
k>n

P(τ1 > k)
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from [22]. We can sum (1.13) to obtain |un − 1/µ| 6 c3
∑
k>nP(τ1 > k), which is of the

right order, but we cannot obtain the proper constant 1/µ2.
We also mention the works of Topchii [25, 26], treating the case when τ1 is a con-

tinuous random variable with E[τ1] =∞ and density f(t)
t→∞∼ ϕ(t)t−(1+α), studying the

density u(t) =
∑∞
k=0 f

∗k(t) of the renewal function, and also u′(t). Under some additional
regularity conditions on f ′(t), letting m(t) := E[τ1 ∧ t], it is proven that

u′(t)
t→∞∼

{
α(α−1) sin(πα)

π ϕ(t)−1 t−(2−α) if 0 < α < 1,
1

m(t)2 ϕ(t) t−1 if α = 1 and E[τ1] =∞.

This is a better estimate than its analog in the infinite-mean case in Theorem 1.7, but
the techniques of [25, 26] do not appear adaptable to the discrete setting, and do not
treat the finite mean case.

Proof of Theorem 1.7. The second inequality in (1.13) is a direct consequence of Theo-
rem 1.3(iii) and Table 1, so we prove the first one. Take σ a renewal process independent
from τ , with the same inter-arrival distribution, but starting from σ0 = 1. We can couple
τ and σ so that τ = σ on [ρ1,∞). Then denoting the corresponding joint distribution by
P0,1 we have

|un − un−1| =
∣∣E0,1[1{n∈τ} − 1{n∈σ}]

∣∣ 6 P0,1(n ∈ τ, ρ1 > n) + P0,1(n ∈ σ, ρ1 > n).

By Lemma A.1 there is a constant C0 such that

P0,1(n ∈ τ, ρ1 > n) 6 P0,1(n ∈ τ)P0,1(ρ1 > n/4 | n ∈ τ) 6 C0 unP0,1(ρ1 > n/4),

and similarly for P0,1(n ∈ σ, ρ1 > n), since un−1 ∼ un. Now, fix k0 such that P(τ1 =

k0 + 1)P(τ1 = k0) > 0, and observe that for any x > 0

P(ρ1 > x+ k0) > P(σ1 = k0 + 1)P(τ1 = k0)P0,1(ρ1 > x).

Since P(ρ1 > n) is regularly varying (cf. Theorem 1.3), it follows that there is a constant
c4 > 0 such that P0,1(ρ1 > n/4) 6 c4P(ρ1 > n), and hence Theorem 1.7 follows.

1.4 Organization of the rest of the paper and idea of the proof

First of all, we recall renewal and reverse renewal theorems in Section 2, which are
used throughout the paper.

Sections 3–4 are devoted to the proof of Theorem 1.3. Items (i)-(ii) are dealt with
using Theorem 8.7.3 in [4], and our main contribution is the proof of item (iii). The
underlying idea is that, in order to have {ρ1 > n} either one of τ or σ typically makes a
jump of order at least n. We decompose P(ρ1 > n) according to the number k of steps
before τ (resp. σ) escapes beyond n by a jump larger than (1 − ε)n: we find that the
expected number of steps is approximately µ̃n (resp. µn), giving Theorem 1.3(iii).

Sections 5–6 contain the proof of Theorem 1.6. In Section 5, we prove Lemma 1.5
in two steps. First, we show that when ρ1 = n, having only gaps of length 6 δn

is very unlikely ; then, given that there is, say in τ , a gap larger than δn, we can
stretch it (together with associated σ intervals) by k � δn at little cost: this proves that
P(ρ1 = n) ≈ P(ρ1 = n + k). In Section 6, we conclude the proof of Theorem 1.6 by
combining Lemma 1.5 with Theorem 1.3.

2 Background on renewal and reverse renewal theorems

We consider a renewal τ = {τ0, τ1, . . . }, with τ0 = 0. The corresponding renewal mass
function is P(n ∈ τ), n > 0.
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2.1 On renewal theorems

In what follows we assume that the inter-arrival distribution of τ satisfies (1.1).

Transient case

If τ is transient, then (see [14, App. A.5])

P(n ∈ τ)
n→∞∼ 1

(pτ∞)2
P(τ1 = n) , (2.1)

where pτ∞ := P(τ1 = +∞) ∈ (0, 1).

Recurrent case

Here there are multiple subcases, as follows.

• If E[τ1] < +∞, then the classical Renewal Theorem says

lim
n→∞

P(n ∈ τ) =
1

E[τ1]
. (2.2)

• If α = 1, E[τ1] = +∞, then from [9, eq. (2.4)],

P(n ∈ τ)
n→∞∼ (µn)−1 , (2.3)

where µn := E(τ1 ∧ n) is slowly varying.

• If α ∈ (0, 1) then by [6, Thm. B],

P(n ∈ τ)
n→∞∼ α sin(πα)

π
n−(1−α)ϕ(n)−1 . (2.4)

(Note that there is a typo in [6, Eq. (1.8)].)

• If α = 0, then from [2, Thm. 1.2],

P(n ∈ τ)
n→∞∼ P(τ1 = n)

P(τ1 > n)2
. (2.5)

We recall that the results in the case of a recurrent τ are collected in Table 1.

2.2 On reverse renewal theorems

In the opposite direction, if in place of (1.1), one assumes that P(n ∈ τ) is regularly
varying with exponent 1− α, then for 0 6 α < 1 the asymptotics of P(τ1 > n) follow from
[4, Thm. 8.7.3]. It is not possible in general to deduce the asymptotics of P(τ1 = n),
which need not even be regularly varying. However, in certain cases, one can recover
at least some behavior of P(τ1 = n) from that of P(n ∈ τ) when the latter is regularly
varying; we call such a result a reverse renewal theorem. Specifically, if the renewal
function

Un :=

n∑
k=0

P(k ∈ τ), n 6∞,

is slowly varying (as happens in the case of transient τ or α = 0), the following theorems
apply.
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Transient case

We write |τ | for |{τ0, τ1, . . . }|, which is geometrically distributed in the transient case,
with E(|τ |) = 1/pτ∞.

Theorem 2.1 (Theorem 1.4 in [2]). If P(n ∈ τ) is regularly varying and τ is transient,
then

P(τ1 = n)
n→∞∼ 1

E(|τ |)2
P(n ∈ τ) .

Recurrent case

If Un is growing to infinity as a slowly varying function, then we have only a weaker
reverse renewal theorem corresponding to (2.5).

Theorem 2.2 (Theorem 1.3 in [2]). If P(n ∈ τ) is regularly varying, and if Un is slowly
varying, then there exists some εn

n→∞→ 0 such that

1

εnn

n∑
k=(1−εn)n

P(τ1 = k)
n→∞∼ (Un)−2P(n ∈ τ) .

One can therefore obtain the local asymptotics of P(τ1 = n) from this last theorem
when one can show P(τ1 = n) is approximately constant over an interval of length o(n),
as done in Lemma 1.5.

3 Proof of Theorem 1.3(i), (ii)

In case (i) we have U∗n ∼ 1
α∗ψ

∗(n)nα
∗
, and in case (ii) U∗n =

∑n
j=1

ψ∗(j)
j which is slowly

varying. Hence by [4, Thm. 8.7.3], in case (i),

P(ρ1 > n)
n→∞∼ 1

Γ(1− α∗)Γ(1 + α∗)

1

U∗n

n→∞∼ sin(πα∗)

π
ψ∗(n)−1 n−α

∗
,

and in case (ii),

P(ρ1 > n)
n→∞∼ 1

U∗n
=

 n∑
j=1

ψ∗(j)

j

−1 . (3.1)

4 Proof of Theorem 1.3(iii)

For α∗ > 1 (i.e. α > 1), we cannot extract the behavior of P(ρ1 > n) directly from
that of U∗n as in Section 3, and we need a preliminary result: we prove that P(ρ1 > n) is
regularly varying and hence for any ε > 0 we have

P(ρ1 > εn) = O(P(ρ1 > n)) as n→∞. (4.1)

In Section 4.1, we prove (4.1), with the help of [12]. In Section 4.3, we prove an
upper bound for P(ρ1 > n). Finally, in Section 4.4, we prove the corresponding lower
bound.

4.1 Proof of (4.1)

A sequence {un} is said to be in the de Haan class Π if there exists a slowly varying
sequence `n such that for all λ > 0,

ubλnc − un
`n

→ log λ as n→∞.
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We write RVS−α for the set of regularly varying sequences of index −α. We can state
the results of Frenk [12] as follows.

Proposition 4.1 ([12], main theorem and Lemma 4). Let ν be a renewal process, and
denote un = P(n ∈ ν). Then, we have

P(ν1 > n) ∈ RVS−1 ⇔ un ∈ Π . (4.2)

Moreover, for any α > 1, denoting m = E[ν1] < +∞, we have

P(ν1 > n) ∈ RVS−α ⇔ un −
1

m
∈ RVS1−α , (4.3)

and each implies that

un −
1

m

n→∞∼ 1

m2(α− 1)
nP(ν1 > n) . (4.4)

Using Proposition 4.1, we prove that P(ρ1 > n) is regularly varying with exponent
−α, as follows, yielding (4.1).

If α = α̃ = 1, then Proposition 4.1 tells that the slowly varying sequences un = P(n ∈
τ), ũn = P(n ∈ σ) are both in Π, with some corresponding slowly varying sequences
`n, ˜̀n. (One expects `n ∼ ϕ(n) but we do not have or need proof of this.) Therefore,
letting Ln := ˜̀

nun + `nũn, the product sequence P(n ∈ ρ) = unũn satisfies

ubλncũbλnc − unũn
Ln

=
ubλnc

un

ũbλnc − ũn˜̀
n

˜̀
nun
Ln

+
ubλnc − un

`n

`nũn
Ln

n→∞→ log λ (4.5)

for all λ > 0, so the product sequence is in Π. Applying Proposition 4.1 again, we see
that P(ρ1 > n) is regularly varying with index −1.

If α = 1, α̃ > 1, then {un} is in Π (with some corresponding slowly varying sequence
`n), and ũn − 1

µ̃ is regularly varying with index 1− α̃. Hence,

ubλncũbλnc − unũn
µ−1`n

=
ũbλnc

µ−1
ubλnc − un

`n
+ un

ũbλnc − ũn
µ−1`n

n→∞→ log λ,

where we used that ũbλnc − ũn is in RVS1−α̃ so that the second term in the sum goes to
0 (since un/`n is regularly varying with index 0). Hence P(n ∈ ρ) = unũn is in Π, and
applying Proposition 4.1, we get that P(ρ1 > n) is regularly varying with index −1.

If 1 < α 6 α̃, then using Proposition 4.1, we get that

unũn −
1

µµ̃
=
( 1

µ
+

1 + o(1)

µ2(α− 1)
nP(τ1 > n)

)( 1

µ̃
+

1 + o(1)

µ̃2(α̃− 1)
nP(σ1 > n)

)
− 1

µµ̃

=
1 + o(1)

µ̃µ2(α− 1)
nP(τ1 > n) +

1 + o(1)

µµ̃2(α̃− 1)
nP(σ1 > n), (4.6)

and therefore unũn− 1
µµ̃ ∈ RVS1−α. Applying Proposition 4.1 again, we get that P(ρ1 > n)

is regularly varying with index −α , and so (4.1) is proven. Proposition 4.1 and (4.6)
further give that

P(ρ1 > n) = (1 + o(1))
1

n
(µµ̃)2(α− 1)

(
unũn −

1

µµ̃

)
= (1 + o(1))µ̃P(τ1 > n) + (1 + o(1))µ

α− 1

α̃− 1
P(σ1 > n) (4.7)

The second term is negligible compared to the first if α̃ > α > 1, so this proves
Theorem 1.3(iii) when 1 < α 6 α̃.
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Intersection of two independent renewals

We will present the rest of our proof of Theorem 1.3 in the whole range 1 6 α 6 α̃

even though it is now needed only for α = 1; this adds no complexity. The advantage is
that it is a more probabilistic approach, in that we use Proposition 4.1 only to get the
regular variation of P(ρ1 > n), and avoid using the un-probabilistic (4.4) (with ν = ρ) to
estimate P(ρ1 > n) as in (4.7). The method also provides an interpretation of the terms
µn, µ̃n appearing in Theorem 1.3(iii).

4.2 Some useful preliminary lemmas

Before we prove Theorem 1.3(iii), we need two technical lemmas.

Lemma 4.2. Let τ, σ be independent renewal processes, suppose ρ = τ ∩ σ is recurrent
with E(τ1) <∞, and let K := min{k > 1 : τk ∈ σ}. Then E(K) = E(σ1).

Proof. Since P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ), the renewal theorem gives

E(ρ1) = E(σ1)E(τ1) 6∞. (4.8)

Let K1,K2, . . . be i.i.d. copies of K and let Sm := K1 + · · · + Km. Then τSm has the
distribution of ρm, so using (4.8),

τSm
m
→ E[ρ1] = E[τ1]E[σ1] a.s., and

τSm
m

=
τSm
Sm

Sm
m
→ E[τ1]E[K] a.s.,

and the lemma follows.

Write Px,y(·) for P(· | τ0 = x, σ0 = y), and write Ex,y the corresponding expectation.

Lemma 4.3. Assume (1.1), and suppose ρ is recurrent and α∗ > 0 (equivalently, α+ α̃ >

1.) Given η > 0, provided δ is sufficiently small we have for large n and all 0 6 x 6 δn:

P−x,0(ρ ∩ [0, n] = ∅) < η . (4.9)

If also α > 1, then the same is true for arbitrary δ > 0. The analogous results with τ, σ
interchanged hold as well.

Proof. Fix x 6 δn and let N := |ρ ∩ [0, n]|. Then P−x,0(ρ ∩ [0, n] = ∅) = P−x,0(N = 0) and
E−x,0(N | N > 1) 6 U∗n, so

P−x,0(N = 0) =
E−x,0(N | N > 1)−E−x,0(N)

E−x,0(N | N > 1)
6
U∗n −E−x,0(N)

U∗n
(4.10)

while

U∗n −E−x,0(N) =

n∑
j=0

P(j ∈ σ)
[
P(j ∈ τ)−P(j + x ∈ τ)

]
. (4.11)

Since P(j ∈ τ) is regularly varying, given η > 0, there exists A (large) such that for δ > 0,
for n large we have for all x 6 δn and Aδn 6 j 6 n that

P(j ∈ τ)−P(j + x ∈ τ) 6
η

2
P(j ∈ τ) . (4.12)

Since U∗k is regularly varying, with positive index since α∗ > 0, if δ, and therefore Aδ, is
sufficiently small then for large n we have U∗Aδn 6 η

2U
∗
n. With (4.11) this gives that for

large n,

U∗n −E−x,0(N) 6 U∗Aδn +
η

2
U∗n 6 ηU∗n. (4.13)

With (4.10), this proves (4.9) for large n.

Now consider α > 1, meaning P(k ∈ τ) is slowly varying. Given η > 0, for any δ > 0

we can choose A (small this time) so that U∗Aδn 6 η
2U
∗
n for large n. Inequality (4.12) holds

for all j > Aδn and x 6 δn, for n large, so (4.13) is valid and (4.9) follows.
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4.3 Upper bound for P(ρ1 > n)

Let us fix ε > 0. Let us call a gap τk − τk−1 or σk − σk−1 long if it exceeds (1− 2ε)n;
the starting and ending points of such a gap are τk−1, τk or σk−1, σk. Let S be the first
starting point of a long gap in τ or σ, and let T be the ending point of the gap that starts
at S. (To make things well-defined, if both τ and σ have long gaps starting at S, then we
take T to be the first endpoint among these two gaps.) Then

P(ρ1 > n) 6 P(ρ1 > n, σ ∩ [εn, (1− ε)n] 6= ∅, τ ∩ [εn, (1− ε)n] 6= ∅)
+ P(ρ1 > T ). (4.14)

For fixed n, we let τ̄1 have the distribution of τ1 given τ1 6 (1− 2ε)n, and similarly for
σ̄1. Let τ̄ and σ̄ be renewal processes with gaps distributed as τ̄1 and σ̄1, respectively,
and let K := min{k > 1 : τk ∈ σ} and K̄ := min{k > 1 : τ̄k ∈ σ̄}. Then, we have

P(ρ1 > T, S ∈ τ)

=
∑
k > 0

P

(
K > k, τi − τi−1 6 (1− 2ε)n for all i 6 k, τk+1 − τk > (1− 2ε)n,

σi − σi−1 6 (1− 2ε)n for all i with σi−1 < τk

)
6
∑
k > 0

P(K̄ > k)P(τ1 > (1− 2ε)n)

= E[K̄]P(τ1 > (1− 2ε)n). (4.15)

From Lemma 4.2 we have E[K̄] = E(σ1 | σ1 6 (1− 2ε)n) 6 µ̃n. Thus for large n we have

P(ρ1 > T, S ∈ τ) 6 (1− 3ε)−αµ̃nP(τ1 > n).

A similar computation holds for P(ρ1 > T, S ∈ σ) so we have for large n:

P(ρ1 > T ) 6 (1− 3ε)−α̃ {µ̃nP(τ1 > n) + µnP(σ1 > n)} . (4.16)

We now need a much smaller bound for the first term on the right side of (4.14).
Define U := min τ ∩ (εn,∞) and V := minσ ∩ (εn,∞). Then

P
(
ρ1 > n, σ ∩ (εn, (1− ε)n) 6= ∅, τ ∩ (εn, (1− ε)n) 6= ∅, U < V

)
6

∑
u<v,u,v∈(εn,(1−ε)n)

P(ρ1 > εn,U = u, V = v)Pu−v,0(ρ1 > εn). (4.17)

We may now apply Lemma 4.3 for the last probability. Fix η > 0. Then, since α̃ > α > 1

for n large enough,

P−x,0(ρ1 > εn) < η for all 0 6 x 6 n. (4.18)

Therefore, summing over u, v, the right side of (4.17) is bounded by ηP(ρ1 > εn,U < V ),
and a similar bound holds when U > V . Hence, combining this with with (4.14) and
(4.16), we get that

P(ρ1 > n) 6 (1− 3ε)−α̃ {µ̃nP(τ1 > n) + µnP(σ1 > n)}+ ηP(ρ1 > εn) . (4.19)

Now we may use (4.1) to control the last term: we finally get that, provided η is small
enough, for large n,

P(ρ1 > n) 6 (1 + 4α̃ε) {µ̃nP(τ1 > n) + µnP(σ1 > n)} . (4.20)
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4.4 Lower bound for P(ρ1 > n)

We use a modification of our earlier truncation. Fix n and, analogously to τ̄ , σ̄, let τ̂
and σ̂ be renewal processes with gaps τ̂i − τ̂i−1 = (τi − τi−1) ∧ (n + 1) and σ̂i − σ̂i−1 =

(σi − σi−1) ∧ (n + 1), respectively, and let ρ̂ = τ̂ ∩ σ̂ and K̂ := min{k > 1 : τ̂k ∈ σ̂}. We
call a gap in τ̂ or σ̂ large if its length is n+ 1. Let [Sτ̂ , Tτ̂ ] and [Sσ̂, Tσ̂] be the first large
gaps in τ̂ and σ̂ respectively, and let Jτ̂ and Jσ̂ be the number of large gaps in τ̂ and σ̂
respectively before time ρ̂1.

Observe that

P(ρ1 > n) = P(ρ̂1 > n) > P(Jτ̂ > 1) + P(Jσ̂ > 1)−P(Jτ̂ > 1, Jσ̂ > 1). (4.21)

We claim that

P(Jτ̂ > 1) > (1− o(1))E[Jτ̂ ] as n→∞ (4.22)

and

P(Jτ̂ > 1, Jσ̂ > 1) = o (P(Jτ̂ > 1) + P(Jσ̂ > 1)) as n→∞. (4.23)

Assuming (4.22) and (4.23), we have

P(ρ1 > n) > (1− o(1))

(
E[Jτ̂ ] + E[Jσ̂]

)
. (4.24)

Then using Lemma 4.2 to get E[K̂] = E[σ̂1] = µ̃n+1 we obtain

E[Jτ̂ ] =
∑
k > 0

P
(
τk+1 − τk > n, K̂ > k

)
= E[K̂]P(τ1 > n) = µ̃n+1P(τ1 > n), (4.25)

and similarly for E[Jσ̂]. With (4.24) this shows that

P(ρ1 > n) > (1− o(1)) {µ̃nP(τ1 > n) + µnP(σ1 > n)} . (4.26)

This and (4.20) prove Theorem 1.3(iii).

It remains to prove (4.22) and (4.23). We begin with (4.23). We write

P(Jτ̂ > 1, Jσ̂ > 1) = P(Jτ̂ > 1, Jσ̂ > 1, Sτ̂ < Sσ̂)

+ P(Jτ̂ > 1, Jσ̂ > 1, Sτ̂ > Sσ̂), (4.27)

and we control both terms separately. On the event {Sτ̂ < Sσ̂}, we decompose over the
first σ̂ renewal in the interval (Sτ̂ , Tτ̂ ), which necessarily exists since Sτ̂ < Sσ̂, to obtain
that

P(Jτ̂ > 1, Jσ̂ > 1, Sτ̂ < Sσ̂) 6 P(Jτ̂ > 1)× sup
x∈(0,n]

P0,−x (Jσ̂ > 1) . (4.28)

From Lemma 4.3 we have that for any η > 0, for n large enough, for all 1 6 x 6 n/2,

P0,−x (Jσ̂ > 1) 6 P0,−x (ρ1 > n/2) 6 η . (4.29)

If x ∈ (n/2, n], then we decompose over the first σ renewal in the interval [−x/2, 0) if it
exists, to get

P0,−x (Jσ̂ > 1) 6 P0,−x(σ ∩ [−x/2, 0) = ∅) + sup
y∈[1,x/2]

P0,−y (Jσ̂ > 1) . (4.30)
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The last sup in bounded as in (4.29). For the first probability on the right, using the
renewal theorem when α > 1 and [9] when α = 1, we get that there is a constant c5 such
that

P0,−x(σ ∩ [−x/2, 0) = ∅) 6
x/2∑
k=1

P(k ∈ σ)P(σ1 > x/2) 6 c5
x

µx
ϕ(x)x−α → 0 as x→∞.

The convergence to 0 is straightforward when α > 1, and uses that ϕ(x)/µx → 0 as
x→∞ when α = 1 (see for example Theorem 1 in [11, Ch. VIII, Sec. 9]). It follows that
the sup in (4.28) approaches 0 as n → ∞. The second probability on the right side of
(4.27) is handled similarly, and this proves (4.23).

We now turn to (4.22). We show that for any η > 0, we can take n large enough so
that for any j > 1,

P(Jτ̂ > j + 1) 6 ηP (Jτ̂ > j) . (4.31)

This easily gives that E [Jτ̂ ] =
∑
j > 1 P(Jτ̂ > j) 6 1

1−ηP(Jτ̂ > 1), which is (4.22). To

prove (4.31), we denote T (j)
τ̂ the endpoint of the jth large gap in τ̂ . Then, decomposing

over the first σ̂ renewal in the interval [T
(j)
τ̂ − n, T (j)

τ̂ ), we get, similarly to (4.28)

P(Jτ̂ > j + 1) 6 P (Jτ̂ > j)× sup
x∈(0,n]

P0,−x (Jτ̂ > 1)

6 P (Jτ̂ > j) sup
x∈(0,n]

P0,−x (ρ1 > n+ 1) 6 ηP (Jτ̂ > j) ,

where the last inequality is valid provided that n is large enough, thanks to Lemma 4.3.
This completes the proof of (4.22), and thus also of Theorem 1.7(iii).

5 Proof of Lemma 1.5: Stretching of gaps

By assumption ρ is recurrent, and we need to show that when n is large P(ρ1 = n) ≈
P(ρ1 = n+ k) for all k ∈ (0, εn), with ε� 1. The idea is to take the set of trajectories of
τ and σ such that ρ1 = n, and to stretch them slightly so that ρ1 = n+ k, see Figure 1.
In Section 5.1, we prove that for some δ > 0, conditioned on ρ1 = n, the largest gap of τ
and σ in [0, n] is larger than δn with high probability; see Lemma 5.1. Assume that it is
a τ -gap, and that it has length m. Then, in Section 5.2, we show that for ε� δ we can
stretch this τ -gap by k 6 εn� m, and stretch σ inside this τ -gap by the same k, without
altering the probability significantly.

σ

τ

0 ρ1 = n

τi − τi−1 = m > δn

p
t1 t2 t3

j

Figure 1: How to “stretch” trajectories, to go from ρ1 = n to ρ1 = n+ k : we identify the
largest gap in τ (which is larger than δn with great probability, see Lemma 5.1) and we
stretch it by k, while at the same time stretching one of the three associated σ-intervals
(the largest of t1, t2, t3). See the proof of Lemma 5.2 for more detailed explanations.

EJP 21 (2016), paper 68.
Page 13/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP17
http://www.imstat.org/ejp/


Intersection of two independent renewals

5.1 Probability of having a large gap

Denote by Aδ the event that there is a gap (either in σ or τ ) longer than δn:

Aδ :=
{
∃ i : τi − τi−1 > δn , τi 6 n or σi − σi−1 > δn , σi 6 n

}
. (5.1)

We will show that Acδ contributes only a small part of {ρ1 = n}. Recall that

vn = P(ρ1 > n)2P(n ∈ ρ) .

Lemma 5.1. Assume (1.1). There exist c6 > 0 and δ0 such that if δ ∈ (0, δ0), then for n
sufficiently large,

P
(
ρ1 = n ; Acδ

)
6 e−c6/δvn .

Proof. On the event {ρ1 = n} ∩ Acδ, all τ and σ gaps are smaller than δn, and therefore
all blocks of length at least δn are visited by both τ and σ. We control probabilities in
each third of [0, n] separately. To that end, define

`τ = max τ ∩ (0, n/3), `σ = maxσ ∩ (0, n/3),

and define events

G1 : τ ∩ σ ∩ (0, n/8) = ∅, G2 : τ ∩ σ ∩ [n/3, 2n/3] = ∅, (5.2)

G3 : τ ∩ σ ∩ (7n/8, n) = ∅,

Dδτ : τi − τi−1 6 δn for all i with [τi−1, τi] ∩ [n/3, 2n/3] 6= ∅,

Dδσ : σi − σi−1 6 δn for all i with [σi−1, σi] ∩ [n/3, 2n/3] 6= ∅,

L1 : `τ , `σ ∈ (n/4, n/3).

Assuming δ < 1/12, we have Acδ ⊆ Dδτ ∩ Dδσ ⊆ L1.

End thirds. By Lemma A.1, there exists C0 such that

max
i,j∈(n/4,n/3)

P
(
G1 | `τ = i, `σ = j) = max

i,j∈(n/4,n/3)
P
(
G1 | i ∈ τ, j ∈ σ) 6 C0P(G1). (5.3)

It follows that

P(ρ1 =n,Acδ | n ∈ ρ) 6 P
(
G1 ∩G2 ∩G3 ∩ Dδτ ∩ Dδσ

∣∣ n ∈ ρ)
= P (G1 | G2 ∩G3 ∩ Dδτ ∩ Dδσ ∩ {n ∈ ρ}) P (G2 ∩G3 ∩ Dδτ ∩ Dδσ | n ∈ ρ)

= E
(
P(G1 | `τ , `σ)

∣∣ G2 ∩G3 ∩ Dδτ ∩ Dδσ ∩ {n ∈ ρ}
)

×P (G2 ∩G3 ∩ Dδτ ∩ Dδσ | n ∈ ρ)

6 C0P(G1)P (G2 ∩G3 ∩ Dδτ ∩ Dδσ | n ∈ ρ) . (5.4)

Symmetrically we obtain

P
(
G2 ∩G3 ∩ Dδτ ∩ Dδσ

∣∣ n ∈ ρ) 6 C0P(G3)P
(
G2 ∩ Dδτ ∩ Dδσ

∣∣ n ∈ ρ) (5.5)

so, using Theorem 1.3,

P(ρ1 = n,Acδ | n ∈ ρ) 6 C2
0P(ρ1 > n/8)2P

(
G2 ∩ Dδτ ∩ Dδσ

∣∣ n ∈ ρ)
6 c7P(ρ1 > n)2P

(
G2 ∩ Dδτ ∩ Dδσ

∣∣ n ∈ ρ) . (5.6)

Middle third. We need to bound the last probability in (5.6). We divide the interval
[n/3, 2n/3] into blocks Bi = [ai−1, ai] of length Aδn where A is a (large) constant to be
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specified. We denote by d(i)τ and f (i)τ the first and last renewals, respectively, of τ in Bi,
and similarly for d(i)σ , f

(i)
σ . Let Bi,` := [ai−1, ai−1+δn] and Bi,r := [ai−δn, ai]. On the event

Dδτ ∩ Dδσ, we have d(i)τ , d
(i)
σ ∈ Bi,` and f

(i)
τ , f

(i)
σ ∈ Bi,r. Let B(1)

i := [ai−1, ai−1 + Aδn/3]

denote the first third of Bi. Define events

D(i)
δτ : τj − τj−1 6 δn for all j with τj−1 ∈ B(1)

i ,

D(i)
δσ : σj − σj−1 6 δn for all j with σj−1 ∈ B(1)

i .

Using again Lemma A.1, we obtain

P
(
G2 ∩ Dδτ ∩ Dδσ

∣∣ n ∈ ρ)
6

∏
i 6 1/(3Aδ)

max
h,k∈Bi,`, j,m∈Bi,r

P

(
τ ∩ σ ∩B(1)

i = ∅,D(i)
δτ ,D

(i)
δσ

∣∣∣ d(i)τ = h, f (i)τ = j, d(i)σ = k, f (i)σ = m

)
6

∏
i 6 1/(3Aδ)

max
h,k∈Bi,`

C0 P
(
τ ∩ σ ∩B(1)

i = ∅,D(i)
δτ ,D

(i)
δσ

∣∣ d(i)τ = h, d(i)σ = k
)
. (5.7)

We claim that for any η > 0, there exists A > 0 such that, for δ small, for n large
enough, for all h, k ∈ [0, δn),

Ph,k
(
τ ∩ σ ∩ (0, 13Aδn] = ∅ , Ďδτ , Ďδσ

)
6 η , (5.8)

with Ďδτ = {τj − τj−1 6 δn for all j with τj−1 6 Aδn/3}, and analogously for Ďδσ. This
bounds all the probabilities on the right side of (5.7) by η, which with (5.6) and (5.7)
shows that, provided η is small,

P(ρ1 = n,Acδ | n ∈ ρ) 6 c7P(ρ1 > n)2(C0η)1/(3Aδ) 6 e−c6/δP(ρ1 > n)2,

which completes the proof of the lemma.

It remains to prove (5.8). In the case of α > 1, α̃ > 1, we can drop the events
Ďδτ , Ďδσ and (5.8) follows from Lemma 4.3. So suppose α < 1; we will show that
P0,0(Ďδτ ) 6 η. (This is sufficient, since Ph,k(Ďδτ ) 6 Pδn,0(Ďδτ ) for all h, k ∈ [0, δn) and
the last probability is unchanged if we replace δn with 0 and 1

3A with 1
3A − 1.) We

therefore drop the subscript 0, 0 in the notation.
Let J := min{j > 1 : τj − τj−1 > δn}, let τ̄1 have the distribution of τ1 given τ1 6 δn,

and let τ̄ be a renewal process with gaps distributed as τ̄1. We have for k > 1:

P(Ďδτ ) 6
k−1∑
j=0

P(J = j + 1, τj > Aδn/3) + P(J > k)

6
k−1∑
j=0

P(J = j + 1)P
(
τ̄j >

1
3Aδn

)
+ P

(
max
i 6 k

(τi − τi−1) 6 δn

)
,

6 P
(
τ̄k >

1
3Aδn

)
+ e−kP(τ1>δn) . (5.9)

Then we use that for any α ∈ [0, 1) there exist some c8, c9 > 0 such that for large n,
E[τ̄1] 6 c8ϕ(n)(δn)1−α, and P(τ1 > δn) > c9ϕ(n)(δn)−α (in fact P(τ1 > δn) � ϕ(n) for
α = 0.) We obtain that

P(D(1)
δτ ) 6

3c8
A
kϕ(n)(δn)−α + e−c9kϕ(n)(δn)

−α
. (5.10)

Choosing k = A1/2ϕ(n)−1(δn)α with A large enough, we get that P(Ďδτ ) 6 η. This
completes the proof of (5.8).
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5.2 Stretching argument

We next show that, on the event Aδ, we can formalize the stretching previously
described, and the cost of the stretching is small.

Lemma 5.2. Assume (1.1). Given δ > 0, if n is sufficiently large, then for any k ∈ [0, 2δ3n]

we have
P(ρ1 = n ; Aδ(n)) 6 (1 + δ)P(ρ1 = n+ k) .

Proof. Fix n and denote

Mτ := max{τi − τi−1 : τi 6 n} and Mσ := max{σi − σi−1 : τi 6 n} ,

Aτδ (n) := {ρ1 = n} ∩ Aδ ∩ {Mτ >Mσ}, Aσδ (n) := {ρ1 = n} ∩ Aδ ∩ {Mσ > Mτ}.

We will show that provided that δ is small enough, for n large enough and k ∈ [0, 2δ3n]

P(Aτδ (n)) 6 (1 + δ)P(ρ1 = n+ k , Mτ >Mσ) . (5.11)

The analogous statement also holds with Aσδ (n) instead of Aτδ (n); combining the two
completes the proof.

To prove (5.11), define random indices

i0 := min{i > 1 : τi − τi−1 = Mτ}, `0 := min{` > 1 : σ` > τi0−1},

`1 := min{` > 1 : σ` > τi0}.

We call [τi0−1, τi0 ] the maximal gap, and the three intervals [σ`i−1, σ`i ], i = 0, 1 and
[σ`0 , σ`1−1] are called associated σ-intervals. We decompose the probability according to
the locations of this gap and the intervals: define the events

Aτδ (n, j,m, p, t1, t2, t3) := Aτδ (n) ∩
{
τi0 = j, τi0 − τi0−1 = m,σ`0−1 = p,

σ`0 − σ`0−1 = t1, σ`1−1 − σ`0 = t2, σ`1 − σ`1−1 = t3
}
.

This means the maximal gap (in τ ) is from j to j +m, and σ has gaps from p to p+ t1 and
from p+ t1 + t2 to p+ t1 + t2 + t3, each containing an endpoint of the maximal τ gap, see
Figure 1. For the event to be nonempty, we must have m > δn and

0 6 p < j < p+ t1 6 p+ t1 + t2 < j +m 6 p+ t1 + t2 + t3 6 n. (5.12)

Given such indices let us define I 6 3 by tI = max{t1, t2, t3}, with ties broken arbitrarily.
Consider now the map Φk which assigns to each nonempty event Aτδ (n, j,m, p, t1, t2, t3)

the event

Φk(Aτδ (n, j,m, p, t1, t2, t3)) :=


Aτδ (n+ k, j,m+ k, p, t1 + k, t2, t3) if I = 1,

Aτδ (n+ k, j,m+ k, p, t1, t2 + k, t3) if I = 2,

Aτδ (n+ k, j,m+ k, p, t1, t2, t3 + k) if I = 3.

Applying Φk corresponds to stretching the maximal gap and the longest of the associated
σ-intervals by the amount k. It is easy to see that for distinct tuples (j,m, p, t1, t2, t3), the
corresponding events Φk(Aτδ (n, j,m, p, t1, t2, t3)) are disjoint subsets of Aτδ (n + k); this
just means that the relevant interval and gap lengths in the original configuration are
identifiable from the stretched configuration. We claim that provided δ is small enough,
for n large enough and k ∈ [0, 2δ3n],

P (Aτδ (n, j,m, p, t1, t2, t3)) 6 (1 + δ)P
(
Φk
(
Aτδ (n, j,m, p, t1, t2, t3)

))
(5.13)
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whenever Aτδ (n, j,m, p, t1, t2, t3) 6= ∅. Due to the aforementioned disjointness, summing
this over (j,m, p, t1, t2, t3) immediately yields (5.11). To prove (5.13), note that if I = 1

then t1 > m/3, so k/t1 6 6δ2, while k/m < 2δ2, so provided δ is small,

P (Aτδ (n, j,m, p, t1, t2, t3))

P (Φk(Aτδ (n, j,m, p, t1, t2, t3)))
=

P(τ1 = m)

P(τ1 = m+ k)

P(σ1 = t1)

P(σ1 = t1 + k)
< 1 + δ.

The same bound holds if I = 3. If I = 2 we have t2 > m/3, so k/t2 6 6δ2, and provided
that δ is small

P (Aτδ (n, j,m, p, t1, t2, t3))

P (Φk(Aτδ (n, j,m, p, t1, t2, t3)))
=

P(τ1 = m)

P(τ1 = m+ k)

P(t2 ∈ σ)

P(t2 + k ∈ σ)
< 1 + δ.

The claim (5.13), and hence the lemma, now follow.

We proceed with the proof of Lemma 1.5. Indeed, the second inequality in (1.8) is
immediate from Lemmas 5.1 and 5.2. Also, since vn is regularly varying, Lemma 5.1
gives that for δ small, for any j ∈ (0, δ3n],

P(ρ1 = n− j ; Acδ(n− j)) 6 2e−c6/δvn .

This and Lemma 5.2 yield that for any k ∈ (0, δ3n] ⊆ (0, 2δ3(n− k)],

P(ρ1 = n− k) 6 (1 + δ)P(ρ1 = n) + 2e−c6/δvn . (5.14)

and the first inequality in (1.8) follows.

6 Proof of Theorem 1.6

Let

A+
n (ε) :=

P(ρ1 > n)−P(ρ1 > (1 + ε)n)

εn
,

A−n (ε) :=
P(ρ1 > (1− ε)n)−P(ρ1 > n)

εn
.

We claim that, if ρ is recurrent, there is a constant c10 > 0 such that for sufficiently small
ε > 0, when n is large,

vn 6 c10A
±
n (ε) . (6.1)

It is sufficient to prove this for A+
n (ε), since vn is regularly varying. Consider first α∗ = 0.

It follows readily from (3.1) and Theorem 2.2 that for small ε, when n is large we have

A+
n (ε) >

1

2
(U∗n)−2P(n ∈ ρ) >

1

4
vn . (6.2)

Next consider α∗ ∈ (0, 1). Here α∗ = 1− θ∗, so by Theorem 1.3, for some c11, for small ε
we have for large n

A+
n (ε) > c11n

−(1+α∗)ψ∗(n)−1 = c11n
−θ∗ψ∗(n)n−2α

∗
ψ∗(n)−2 > c12vn .

Finally consider α∗ > 1; here 1 6 α 6 α̃. Since P(τ1 = n) and P(σ1 = n) are regularly
varying, it follows from Theorem 1.3 that for ε small and large n,

A+
n (ε) >

1

2
(µ̃nP(τ1 = n) + µnP(σ1 = n)) = µ̃n

ϕ(n)

2n1+α
+ µn

ϕ̃(n)

2n1+α̃
.

Using (a+ b)2 6 2a2 + 2b2, we obtain

vn 6 2

(
µ̃n
ϕ(n)

nα
+ µn

ϕ̃(n)

nα̃

)2
1

µnµ̃n
6 4

(
µ̃n
ϕ(n)

n2α
ϕ(n)

µn
+ µn

ϕ̃(n)

n2α̃
ϕ̃(n)

µ̃n

)
6 A+

n (ε), (6.3)

EJP 21 (2016), paper 68.
Page 17/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP17
http://www.imstat.org/ejp/


Intersection of two independent renewals

where for last inequality we used that ϕ(n)
nα−1µn

→ 0 as n→∞ (since ϕ(n)/µn → 0 when

α = 1), and similarly ϕ̃(n)
nα̃−1µ̃n

→ 0. The claim (6.1) is now proved.

For δ sufficiently small, applying Lemma 1.5 and (6.1) we get that for n large and
c13 = c10 + 1,

P(ρ1 = n) > (1− c13δ)A−n (δ3) . (6.4)

Similarly, we get

P(ρ1 = n) 6 (1 + c13δ)A
+
n (δ3) . (6.5)

If α∗ = 0, as with (6.2) it follows easily from Theorem 2.2 that for large n we have

A−n (δ3) > (1− δ)(U∗n)−2P(n ∈ ρ) and A+
n (δ3) 6 (1 + δ)(U∗n)−2P(n ∈ ρ),

and then part (ii) of the theorem follows from (6.4) and (6.5).
If α∗ ∈ (0, 1), then by Theorem 1.3(i), when δ is small we have for large n

A−n (δ3) > (1− δ)α
∗ sin(πα∗)

π
ψ∗(n)−1n−(1+α

∗),

A+
n (δ3) 6 (1 + δ)

α∗ sin(πα∗)

π
ψ∗(n)−1n−(1+α

∗),

and again part (i) of the theorem follows from (6.4) and (6.5).
If α∗ > 1, then by Theorem 1.3(iii), when δ is small we have for large n

A−n (δ3) > (1− δ)
(
µ̃n

ϕ(n)

n1+α
+ µn

ϕ̃(n)

n1+α̃

)
,

A+
n (δ3) 6 (1 + δ)

(
µ̃n

ϕ(n)

n1+α
+ µn

ϕ̃(n)

n1+α̃

)
,

and part (iii) of the theorem follows once more from (6.4) and (6.5).

A Extension of Lemma A.2 in [15]

We generalize here Lemma A.2 of [15], which covers α > 0, to include α = 0. The
idea is essentially unchanged, but the computations are different.

Lemma A.1. Assume that P(τ1 = k) = ϕ(k)k−(1+α) for some α > 0 and some slowly
varying function ϕ(·). Then, there exists a constant C0 > 0 such that, for all sufficiently
large n, for any non-negative function fn(τ) depending only on τ ∩ {0, . . . , n}, we have

E[fn(τ) | 2n ∈ τ ] 6 C0E[fn(τ)] .

Proof. We define Xn to be the last τ -renewal up to n. It is sufficient to show that there
exists c14 > 0 such that for large n, for any 0 6 m 6 n

P(2n ∈ τ | Xn = m) 6 c14P(2n ∈ τ) . (A.1)

To prove this, we write

P(2n ∈ τ | Xn = m) =

n∑
j=1

P(τ1 = j + n−m|τ1 > n−m)P(n− j ∈ τ). (A.2)

We split this sum into j 6 n/2 and j > n/2.
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For j 6 n/2, we use that P(k ∈ τ) is regularly varying and n− j > n/2, to bound the
corresponding part of the sum in (A.2) by

sup
k > n/2

P(k ∈ τ)×
n∑
j=1

P(τ1 = j + n−m|τ1 > n−m) 6 c15P(2n ∈ τ) .

For j > n/2, we use that for n > j > n/2 and n > m > 0,

P(τ1 = j + n−m | τ1 > n−m) 6 c16P(τ1 = n | τ1 > n−m) 6 c16P(τ1 = n | τ1 > n)

to bound the corresponding part of the sum in (A.2) by

c16
P(τ1 = n)

P(τ1 > n)
Un 6

{
c17P(2n ∈ τ) if α = 0;

c18n
−1Un 6 c19P(2n ∈ τ) if α > 0.

Here for α = 0 we used (2.5) together with Un ∼ 1/P(τ1 > n) from Theorem 8.7.3 in [4],
and for α > 0 we used the regular variation of P(n ∈ τ). This completes the proof of
(A.1).
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