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Abstract

We consider a process Z on the real line composed from a Lévy process and its
exponentially tilted version killed with arbitrary rates and give an expression for the
joint law of the supremum Z, its time T , and the process Z(T + ·)−Z. This expression
is in terms of the laws of the original and the tilted Lévy processes conditioned to stay
negative and positive respectively. The result is used to derive a new representation
of stationary particle systems driven by Lévy processes. In particular, this implies
that a max-stable process arising from Lévy processes admits a mixed moving maxima
representation with spectral functions given by the conditioned Lévy processes.
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1 Introduction

Let X = (X(t))t≥0 be a general Lévy process, but not a compound Poisson process,
and assume that X drifts to −∞ as t → ∞. It is well-known that such a process splits
at its unique supremum into two independent parts, where the post-supremum process
has the law of X conditioned to stay negative and the defective pre-supremum process
(look backwards and down from the supremum) has the law of X conditioned to stay
positive, see [4, 9, 16, 11]. We note that when X drifts to −∞ the term ‘conditioned to
stay positive’ has certain ambiguity [22], and so we avoid using it in this case in the
following. It turns out that a similar representation holds true if the process X is suitably
extended to the real line. This leads to an important application to Lévy driven particle
systems.

Consider the Laplace exponent ψ(θ) = logEeθX(1) and assume that ψ(ν) = 0 for some
ν > 0. Let Xν be an independent Lévy process with Laplace exponent ψ(θ + ν) called
the associated or exponentially tilted process. It is well-known that X drifts to −∞ and
Xν drifts to +∞ for t→∞. Define a càdlàg process Z on the real line by

Z(t) = 1{t≥0}X(t)− 1{t<0}X
ν((−t)−), t ∈ R, (1.1)
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A Lévy-derived process seen from its supremum

and denote by Z the supremum of the process Z and by T the time at which the
supremum occurs. In this paper we give an expression for the joint law of the process Z
shifted with its supremum point into the origin, together with the supremum point, that
is we specify the measure

P((Z(T + s)− Z)s∈R ∈ B, T ∈ dt, Z ∈ dx). (1.2)

In fact, this law is closely related to the law of a process Y obtained as the process Z
‘conditioned to stay negative’, see (2.4). The problem of multiple possible definitions of
a conditioned process does not arise in our case, because Z(t)→ −∞ as |t| → ∞. Our
result is formulated in a more general framework, where the only assumptions are: the
Laplace exponent ψ(ν) is finite for some ν ∈ R and the Lévy processes X and Xν are
killed with arbitrary exponential rates.

In the case ψ(ν) = 0, the process −Xν can be seen as the process X reversed in
time with respect to its invariant measure π(dx) = e−νxdx, since for any t > 0 and Borel
subsets C,D ⊂ R we have∫

C

P(x+X(t) ∈ D)π(dx) =

∫
D

P(y −Xν(t) ∈ C)π(dy). (1.3)

Let {Ui, i ∈ N} be a Poisson point process (PPP) on R with intensity measure π(dx) and
let Zi, i ∈ N, be independent copies of the process Z, also independent of {Ui, i ∈ N}.
The above implies that the Poisson point process

Ψ1 = {Ui + Zi, i ∈ N}

of particles started at the Ui’s and moving along the trajectories of X for t ≥ 0 and −Xν

for t < 0, respectively, is stationary.
The process η of pointwise maxima of the system Ψ1

η(t) = max
i∈N

Ui + Zi(t), t ∈ R, (1.4)

is well-known in extreme value theory. It follows from [8, 33, 17] that η is stationary, has
càdlàg paths and is max-stable. The latter means that for any n ∈ N and independent
copies η1, . . . , ηn of η, the process maxi=1,...,n ηi− log n has the same distribution as η (cf.,
[21]). For instance, if B(t), t ∈ R, is a standard Brownian motion and X(t) = B(t)− t/2,
t ≥ 0, then Z(t) = B(t)− |t|/2, t ∈ R, and η coincides with the original definition of the
Brown-Resnick process in [7]. Its extension to Gaussian random fields in [24] has become
a standard model in extreme value statistics for assessing the risk of rare meteorological
events.

It was asked in [33] whether for a general Lévy processes X the max-stable process η
possesses a stochastic representation as a mixed moving maxima process

max
i∈N

Vi + Fi(t− Ti), t ∈ R, (1.5)

for some Poisson point process {(Fi, Ti, Vi), i ∈ N} on D ×R×R with intensity measure
C0PF (dω) dt e−νvdv, where C0 > 0 is a constant. Here D is the space of càdlàg functions
on the real line, and PF is the law of a stochastic process on the real line called the
spectral process. The existence of such a representation is important as it implies that
the process is mixing and can be efficiently simulated. For the original Brown-Resnick
process, that is Z(t) = B(t)−|t|/2, the answer is positive. Indeed, [24] prove the existence
and [19] show that the spectral functions in this case are given by 3-dimensional (drifted)
Bessel processes.
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A Lévy-derived process seen from its supremum

Applying the new expression for the joint law of (1.2) given in Corollary 2.3, we show
that for a general Lévy processes X there is a stochastic representation of η as a mixed
moving maxima process. More importantly, we derive the explicit distribution PF of the
spectral processes Fi in (1.5). It turns out that PF is the law of Y , that is, the process Z
conditioned to stay negative. Finally, we believe that the identity relating the laws of Z
and Y may have a theoretical interest on its own.

In Section 2 we give necessary preliminaries and state the two main theorems, that is,
the identity relating the law of (1.2) with Y , and the mixed moving maxima representation
of η. The proof of the former is postponed to Section 3 where we use Itô’s excursion
theory and the recent result from [10] to analyze the process Z seen from its supremum.
As a side result we relate the excursion measures of the tilted process to the ones of the
original process in Proposition 3.6. Finally, Section 4 discusses possible approaches to
simulation of the process η based on its mixed moving maxima representation.

2 Main results

2.1 Two Lévy processes

Let us first fix some notation. Let (Ω,F ,P) be a probability space equipped with
a filtration (Ft)t≥0, satisfying the usual conditions. Let also X = (X(t))t≥0, be a Lévy
process on this filtered probability space with characteristic triplet (a, σ,Π), that is

ψ(θ) = logEeθX(1) = aθ +
1

2
σ2θ2 +

∫
R

(eθx − 1− θx1{|x|<1})Π(dx), (2.1)

where σ2 ≥ 0 and Π are the variance of the Brownian component and the Lévy measure,
respectively. The so-called Laplace exponent ψ(θ) is finite for θ ∈ iR, but may be infinite
for some θ ∈ R. For details on Lévy processes we refer the reader to [5, 27]. Throughout
this work we assume that X is neither a process with monotone paths, nor is it a
Compound Poisson Process (CPP), but see also Remark 2.4.

Pick ν ∈ R such that ψ(ν) <∞ which is equivalent to
∫
|x|>1

eνxΠ(dx) <∞ according

to [27, Thm. 3.6]. One can see that ψ(θ) < ∞ for all θ ∈ [0, ν] if ν > 0 and θ ∈ [ν, 0] if
ν < 0. Moreover, one can define an exponentially tilted measure with respect to ν, also
known as the Esscher transform:

dPν

dP

∣∣∣∣
Ft

= eνX(t)−ψ(ν)t, t ≥ 0.

It is known that X under Pν is a Lévy process, say Xν , with Laplace exponent ψν(θ) =

ψ(θ + ν) − ψ(ν), which implies that σν = σ and Πν(dx) = eνxΠ(dx), see e.g. [27].
Furthermore, X has paths of bounded variation on compacts if and only if so does Xν , in
which case (2.1) can be written as

ψ(θ) = âθ +

∫
R

(eθx − 1)Π(dx),

where â ∈ R is the linear drift, and then âν = â. This furthermore shows that Xν is
neither a process with monotone paths, nor is it a CPP.

The case ν > 0, ψ(ν) = 0, will be of special interest. In this case EX(1) < 0 and
EνX(1) > 0, which follows from the convexity of ψ(θ) on [0, ν], see e.g. [27, Ch. 3]. This
implies that X drifts to −∞ and Xν drifts to +∞.

In addition, we will allow for defective (or killed) processes. We say that X and Xν

are killed at rates q > 0 and p > 0 if they are sent to an additional ‘cemetery’ state ∂ at
the times eq and ep respectively, where eq denotes an exponentially distributed random
variable of rate q independent of everything else. We let ζ and ζν be the life times of X
and Xν respectively.
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2.2 Two processes on the real line

Consider two independent Lévy processes X and Xν killed at rates q > 0 and p > 0

(with respective life times ζ and ζν) as defined in Section 2.1. Define a càdlàg process Z
on the real line:

Z(t) = 1{t≥0}X(t)− 1{t<0}X
ν((−t)−)

for t ∈ [−ζν , ζ) and put Z(t) = ∂ otherwise. The left hand side of Figure 1 illustrates the
construction of Z. Roughly speaking, the process Z(t), t ≤ 0 seen with respect to ‘small’
axis is Xν , which may help to better understand various relations in the following. We

Figure 1: Schematic sample paths of Z and Y .

Z

T

remark that for 0 ≤ s ≤ t, given that ζν > t, it holds that Z(−t+ s)−Z(−t) has the same
distribution as Xν(s). Furthermore, if X has no positive (negative) jumps then Z has no
positive (negative) jumps either. For simplicity of notation we assume that ∂ ∨ x = x and
∂ ∧ x = x for any x ∈ R. Define the overall supremum and its time

Z = sup
t∈[−ζν ,ζ)

{Z(t)}, T = inf{t ∈ R : Z(t) ∨ Z(t−) = Z}. (2.2)

It turns out that the law of the process Z can be described by another process Y which
we now define. Letting

X = sup
t∈[0,ζ)

{X(t)}, T = inf{t ≥ 0 : X(t) ∨X(t−) = X},

Xν = inf
t∈[0,ζν)

{Xν(t)}, T ν = inf{t ≥: Xν(t) ∧Xν(t−) = Xν}

be the supremum of X and its time, and the infimum of Xν and its time, we define two
post extremal processes:

X↓(t) = X(T + t)−X, t ∈ [0, ζ − T ) (2.3)

Xν↑(t) = Xν(T ν + t)−Xν , t ∈ [0, ζν − T ν),

and assign X↓(t) = ∂ and Xν↑(t) = ∂ otherwise. It is well-known, see [4, 11], that X↓ and
Xν↑ are time-homogeneous (sub-)Markov processes, such that when started away from
zero their laws coincide with the laws of X and Xν started at the corresponding levels
and conditioned to stay negative and positive, respectively, explaining the notations and
terminology. For completeness and with almost no additional work, we provide this
statement in a rigorous form in Lemma 3.4.

Finally, we define another càdlàg process on the real line:

Y (t) = 1{t≥0}X↓(t)− 1{t<0}X
ν↑((−t)−) (2.4)
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for t ∈ [−(ζν −T ν), ζ−T ) and put Y (t) = ∂ otherwise, see the right hand side of Figure 1.
Roughly speaking, we find the time of supremum of Z(t) for t ≥ 0 and for t ≤ 0, delete the
path in between these times and shift these supremum points into (0, 0). Interestingly,
the law of the processes Z(t) can be easily recovered from the law of the process Y (t) as
shown in Theorem 2.1.

2.3 An identity relating the laws

Take a Lévy process X (neither a CPP, nor a process with monotone paths) with the
Laplace exponent ψ(θ), and a number ν ∈ R such that ψ(ν) <∞. Consider the processes
Z and Y on the real line as they are defined in Section 2.2. Recall that the left part of Z is
killed with rate p > 0 and the right part with rate q > 0 (ψ refers to the original non-killed
process, i.e. ψ(0) = 0). Consider the set of càdlàg paths on the real line with values in
R ∪ {∂} with Skorohod’s topology, and let B be the corresponding Borel σ-algebra. The
following result relates the laws of Z and Y .

Theorem 2.1. Assume that p, q > 0, ψ(ν) < ∞. Then for any B ∈ B, t ∈ R and x ≥ 0 it
holds that

P((Z(T + s)− Z)s∈R ∈ B, T ∈ dt, Z ∈ dx)

= Ce−νx+(ψ(ν)+p−q)tP(Y ∈ B,−Y (−t) ∈ dx)dt,

where

C =
qk(p+ ψ(ν), ν)

k(q, 0)
=

pk(q, 0)

k(p+ ψ(ν),−ν)
> 0 (2.5)

and k(α, β) and k(α, β) are the bivariate Laplace exponents of the ascending and de-
scending ladder processes respectively, corresponding to X (without killing).

The bivariate Laplace exponents k(α, β) and k(α, β) are discussed in detail in Sec-
tion 3.1, see also [27, Ch. 6.4] and [5, Ch. VI.1]. We only note at this point that these
exponents are unique up to a scaling constant (coming from the scaling of local times),
which clearly can be arbitrary in the above result.

It is important to realize that Y (−t) takes values in R∪{∂}. Let us illustrate this with
a simple calculation providing a check of our expression for C. Taking ν = 0, B the full
set, and integrating over x ∈ R we obtain

P(T ∈ dt) = Ce(p−q)tP(Y (−t) 6= ∂)dt.

Observe that the event {Y (−t) 6= ∂} corresponds to {|t| < ζ − T} for t < 0 and to
{t < ζ0 − T 0} for t > 0; the superscript ν = 0 refers to the copy of X killed with rate
p > 0. Hence integrating over t ∈ R yields

C−1 = E

∫ ζ−T

0

e(q−p)tdt+ E

∫ ζ0−T 0

0

e(p−q)tdt =
1

q − p
Ee(q−p)(ζ−T ) +

1

p− q
Ee(p−q)(ζ

0−T 0).

Using the Wiener-Hopf factorization, see e.g. [27, Thm. 6.16], we obtain

C−1 =
1

q − p
k(q, 0)

k(p, 0)
+

1

p− q
k(p, 0)

k(q, 0)
.

Strictly speaking, we have also relied here on analytic continuation. Finally, using the
relation k(q, 0)/k(p, 0) = qk(p, 0)/(pk(q, 0)), see Section 3.1, we obtain (2.5) with ν = 0.

Let us also present a representation of the law of X as seen from its supremum in
terms of the law of Y , which somewhat resembles Theorem 2.1. It may be interesting to
note that the left hand side (lhs) of the equality in Proposition 2.2 does not depend on p.
The proofs of Theorem 2.1 and Proposition 2.2 are given in Section 3.2.
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Proposition 2.2. Assume that p, q > 0, ψ(ν) < ∞. Then for any B ∈ B, and t, x ≥ 0 it
holds that

P((X(T + s)−X)s∈R ∈ B, T ∈ dt,X ∈ dx)

=
1

p
Ce−νx+(ψ(ν)+p−q)tP(Y ∈ B, l ∈ dt,−Y (−l) ∈ dx),

where l = − inf{t : Y (t) 6= ∂} is the life time of Xν↑.

Finally, the following corollary of Theorem 2.1 considers non-defective processes,
that is, p = q = 0, when ν > 0 and ψ(ν) = 0. Recall from Section 2.1 that this implies that
X drifts to −∞ and Xν drifts to +∞, and hence T ∈ R a.s.

Corollary 2.3. Assume that p = q = 0 and ψ(ν) = 0 for some ν > 0. Then for any
B ∈ B, t ∈ R and x ≥ 0 it holds that

P((Z(T + s)− Z)s∈R ∈ B, T ∈ dt, Z ∈ dx) = C0e
−νxP(Y ∈ B,−Y (−t) ∈ dx)dt, (2.6)

where

C0 =
k(0, ν)

k′(0, 0)
=
k(0, 0)k(0, ν)

k(1, 0)k(1, 0)
> 0, (2.7)

where the derivative k′(0, 0) is with respect to the first argument.

The only non-trivial part of its proof concerns the identification of C0, which is done
in Section 3.1. Again, the scaling of k and k is arbitrary. It is noted that a similar result
holds true for any ν ∈ R such that ψ(ν) is finite, under additional requirement that
ψ′(0) < 0 and ψ′(ν) > 0.

Remark 2.4. One would expect that similar results hold true for random walks, which
then can be extended to CPPs as well. On the one side analysis of random walks is less
technical, but on the other side one will have to distinguish between strict and weak
ascending ladder times, left-most and right-most supremum times, as well as random
walks conditioned to stay positive and conditioned to stay non-negative.

2.4 Examples

The bivariate Laplace exponents k(α, β) and k(α, β) can be given explicitly in a
number of cases, some of which we consider below. In all of these cases we compute
the constants C and C0. Recall that the process Y is constructed from the conditioned
processes X↓ and Xν↑, see (2.4). The conditioned Lévy processes can be obtained in
various possible ways, which we summarize in Section 4.

2.4.1 Spectrally-negative process

Suppose X is a spectrally-negative process, and so ψ(θ) exists for all θ ≥ 0 ∧ ν. Let Φ(q)

be the right inverse of ψ(θ), i.e., Φ(q) is the right-most solution of ψ(θ) = q. According
to [27, Sec. 6.5.2] we may take

k(α, β) = Φ(α) + β, k(α, β) =
α− ψ(β)

Φ(α)− β
(2.8)

for α, β ≥ 0, and so one easily obtains from either representation in (2.5) that

C =
pΦ(q)

Φ(p+ ψ(ν))− ν

if p+ ψ(ν) ≥ 0. The latter assumption may be dropped, because (2.8) can be analytically
continued to α > ψ(ν), see also (3.4). Note also that the denominator in the expression
of C is always positive.
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Under the condition of Corollary 2.3 we have Φ(0) = ν. By continuity we obtain
k(0, ν) = limβ→ν

−ψ(β)
ν−β = ψ′(ν) and then from either representation in (2.7) we get

C0 = νψ′(ν). (2.9)

2.4.2 Spectrally-positive process

Suppose X is a spectrally-positive process then X̃ = −X is spectrally-negative, and we

can take k(α, β) = k̃(α, β) and k(α, β) = k̃(α, β). So according to (2.5) and (2.8) written
for the process X̃ we get

C =
qΦ̃(p+ ψ(ν)) + ν

Φ̃(q)
,

where Φ̃ is the (right) inverse of ψ̃(θ) = ψ(−θ).
Under the condition of Corollary 2.3 we have Φ̃(0) = 0 and so we obtain from (2.7)

that
C0 = −ψ′(0)ν = −νEX(1). (2.10)

2.4.3 Brownian motion

Clearly, the above formulas should coincide ifX is both spectrally-negative and spectrally-
positive process, that is, X is a Brownian motion with drift. For simplicity we only
consider the constant C0, i.e., equations (2.9) and (2.10).

In this case, ψ(θ) = 1
2σ

2θ2 + µθ with σ > 0 and µ < 0. Hence ν = −2µ/σ2 and then
ψ′(ν) = σ2ν + µ = −µ = −ψ′(0), which shows that indeed the above formulas coincide
and result in

C0 = −µν =
2µ2

σ2
.

So choosing σ = 1 and µ = −1/2 we get C0 = 1/2 confirming the result in [19].

2.4.4 More general examples

There are examples of Lévy processes with both positive and negative jumps with explicit
bivariate exponents k(α, β) and k(α, β). A rather general process of this type is given
by an independent sum of an arbitrary spectrally-negative Lévy process and a CPP with
positive jumps characterized by a rational transform, see [28] and [1] for the particular
case of positive jumps having so-called phase type distributions. Taking the negative
of such a process we may also allow for arbitrary positive jumps and finite intensity
negative jumps characterized by a rational transform. Here we only mention that the
resulting expressions are in terms of roots of certain equations.

In general the bivariate Laplace exponents k(α, β) and k(α, β), and hence the con-
stants C and C0, can be computed (at least theoretically) using a Spitzer-type identity,
see e.g. [27, Thm. 6.16]. This would require triple integration, assuming that one inverts
the transform to obtain the distribution of X(t). Under certain conditions it is sufficient
to perform a single integration in the complex domain, see [26, Thm. 7].

2.5 Stationary particles systems and mixed moving maxima processes

Let X be a Lévy process whose Laplace exponent fulfills ψ(ν) = 0 for a ν > 0, and
fix p = q = 0. Suppose that Xν and Z are defined as above. Let further {Ui, i ∈ N} be a
Poisson point process on R with intensity measure π(dx) and let Zi, i ∈ N be independent
copies of the process Z, also independent of {Ui, i ∈ N}. We consider the system

Ψ1 = {Ui + Zi, i ∈ N} (2.11)
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of particles started at the Ui’s and moving along the trajectories of X for t ≥ 0 and −Xν

for t < 0, respectively. Then Ψ1 is a Poisson point process on the space D of càdlàg
functions on R. It follows from the duality of X and −Xν with respect to the measure
π(dx) = e−νxdx, see (1.3), that the system Ψ1 is stationary (or translation invariant), in
the sense that for any u ∈ R, the shifted system {Ui + Zi( · + u), i ∈ N} has the same
distribution as Ψ1. This kind of systems has been analyzed in [23] in the case that the
particles move along Gaussian trajectories.

In the definition of Ψ1, the point t = 0 is an exceptional point at which each single
particle changes from the trajectory of −Xν to the trajectory of X. Stationarity of Ψ1

shows that, in fact, t = 0 is not special. Furthermore, we will show using Corollary 2.3
that the particle system Ψ1 can be equivalently represented by a system Ψ2, generated
by scattering the starting time points of the particles uniformly over the real line and
letting them move along the trajectories of processes distributed as Y in (2.4). This also
provides an alternative proof that the particle system is stationary.

As mentioned in the introduction, the pointwise maximum in (1.4) of the particles
in Ψ1 is a stationary, max-stable process that generalizes the Brown-Resnick process
in [7]. From both a theoretical and a practical point of view, an important question
is whether such a process has a stochastic representation as a mixed moving maxima
process as defined in (1.5). It implies that the process is mixing (cf., [33, 14]) and can
be efficiently simulated if the law of the spectral processes PF is known (cf. Section 4
for details). The equivalent representation of Ψ1 in terms of the conditioned process Y
in the theorem below directly yields a mixed moving maxima representation of η. We
thus give an affirmative answer to the open question of [33] on the existence of such a
representation and, moreover, we provide the law of the spectral processes.

Theorem 2.5. Assume that p = q = 0 and ψ(ν) <∞ for some ν > 0. Let {(Yi, Ti, Vi), i ∈
N} be a PPP on D × R × R with intensity measure C0PY (dω) dt e−νvdv, where PY is
the law of the process in (2.4) and C0 > 0 is given by (2.7). Then, Ψ1 has the same
distribution as the Poisson point process

Ψ2 = {Vi + Yi(· − Ti), i ∈ N},

on D. Furthermore, the process η in (1.4) possesses the mixed moving maxima repre-
sentation

(η(t))t∈R
d
=

(
max
i∈N

Vi + Yi(t− Ti)
)
t∈R

. (2.12)

Remark 2.6. The constant C0 in the above theorem has an alternative representation

C−10 = E

[∫
R

exp(νY (t))dt

]
.

This follows either directly from (2.6) or from a computation of − logP(η(0) ≤ x) using
void probabilities of the PPP Ψ1 on the one side and the PPP Ψ2 on the other:

ν−1e−νx = − logP(η(0) ≤ x) = ν−1e−νxC0E

[∫
R

exp(νY (t))dt

]
.

Proof. We first introduce some notation. For two measurable spaces (S1,S1) and (S2,S2),
a measurable function m : S1 → S2 and a measure κ on S1, denote by m∗κ the pushfor-
ward measure of κ under m, i.e., m∗κ(E) = κ(m−1(E)), for all E ∈ S2. Further, let D∗ be
the Borel subset of D of functions that drift to −∞, that is, D∗ = {ω ∈ D : lim|t|→∞ ω(t) =

−∞}, and note that P(Z ∈ D∗) = 1. For ω ∈ D∗ let

ω = sup
t∈R

ω(t), gω = inf{t ∈ R : ω(t) ∨ ω(t−) = ω}.
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A Lévy-derived process seen from its supremum

Let Γ be the Poisson point process {(Ui, Zi), i ∈ N} on R × D∗ with intensity measure
γ(du dω) = e−νuduPZ(dω). We define the mapping f by

f : R×D∗ → D∗ ×R×R, (x, ω) 7→ (ω(gω + · )− ω, gω, x+ ω) .

It is straightforward to check that f is measurable. Moreover, it induces a Poisson point
process f∗Γ = {f(Ui, Zi), i ∈ N} on D∗ × R × R which has intensity measure f∗γ by
a general mapping theorem (cf., [25]). In fact, for Borel sets B ⊂ D∗, I, E ⊂ R, we
compute

f∗γ(B × I × E) =

∫
f−1(B×I×E)

γ(du dω) (2.13)

=

∫
u∈R

e−νu
∫
t∈I

∫
y∈E

P
(
(Z(T + s)− Z)s∈R ∈ B, T ∈ dt, u+ Z ∈ dy

)
du

= C0

∫
R

e−νu
∫
I

∫
E

e−ν(y−u)P (Y ∈ B, u− Y (−t) ∈ dy) dt du

= C0

∫
I

∫
R

∫
E

e−νyP (Y ∈ B, u− Y (−t) ∈ dy) du dt

where the second last equation is a direct consequence of the identity (2.6). For fixed
B ⊂ D∗, define the measure ρB by ρB(D) =

∫
R
P (Y ∈ B, u− Y (−t) ∈ D) du, for all Borel

sets D ⊂ R, and note that

ρB(D) =

∫
R

∫
R

1{u∈D−y}duP (Y ∈ B,−Y (−t) ∈ dy) = P (Y ∈ B)

∫
D

du.

Thus, ρB is a multiple of Lebesgue measure and we obtain together with (2.13)

f∗γ(B × I × E) = C0 P (Y ∈ B)

∫
I

dt

∫
E

e−νydy.

In other words, the intensity measure of f∗Γ factorizes and equals the intensity measure
of {(Yi, Ti, Vi), i ∈ N}. Finally, let h be the measurable mapping

h : D∗ ×R×R→ D∗, (ω, t, y) 7→ y + ω( · − t),

so that h(f(x, ω)) = x + ω(·). The induced PPP h∗(f∗Γ) = {h(f(Ui, Zi)), i ∈ N} is thus
nothing else than Ψ1. Furthermore, it has the same intensity measure as Ψ2 according to
the construction of Ψ2. Taking pointwise maxima within the two point processes yields
the mixed moving maxima representation (2.12).

2.6 Particles with births and deaths

In parallel to this work, [18] considered stationary Lévy driven particle systems,
where particles can die and be born. Assuming that

ψ(ν) + p− q = 0,

where p ≥ 0 and q ≥ 0 are the killing rates of Xν and X respectively, we observe that
the processes X and −Xν are in duality relative to π(dx), see (1.3). Following Mitro [29]
one can construct a Kuznetsov measure Q, see e.g. [12, Ch. XIX], with a stationary
entrance rule π(dx) and a transition semigroup corresponding to X killed at rate q. Now
a stationary Lévy driven particle system with births and deaths is obtained by considering
a Poisson point process with intensity given by the above Kuznetsov measure. In this
system births and deaths of particles occur according to the intensities pdtπ(dx) and
qdtπ(dx) respectively, see [18] for more details.
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Interestingly, the problem of providing a mixed moving maxima representation is
much simpler for a max stable process derived from a particle system with births and
deaths. It is necessary to consider one ‘special’ point of a trajectory, and in the case of
a finite life time one may choose the time of birth (or death) instead of the time of the
maximum as the ‘special’ point. In this way the need for the law of a trajectory as seen
from its maximum can be avoided when p > 0 or q > 0. Nevertheless, we can generalize
Theorem 2.5 by expressing the associated Kuznetsov measure Q in terms of the law of Y :

Q(dω) = p

∫
R

∫
R

e−νyP(y +X(· − t) ∈ dω)dydt

= C

∫
R

∫
R

e−νyP(y + Y (· − t) ∈ dω)dydt, (2.14)

where X(t) = ∂ for t < 0. Note that the first expression is based on the birth time as a
‘special’ point, and hence it is only valid when p > 0, whereas the second expression is
true in general (when p = 0 or q = 0 we must have ν > 0; if ν < 0 then we consider a
similar representation using points of infima).

Observe that for p = q = 0 the second identity in (2.14) is just a restatement of
Theorem 2.5 based on Corollary 2.3. In general, the proof is based on Theorem 2.1
together with Proposition 2.2, where the latter is needed because some particles, which
are alive at time t > 0, are born at positive times. Furthermore, when p > 0, instead of
viewing the system from time t = 0, we may regard it as a system of particles born with
intensity pdtπ(dx) as expressed by the first identity of (2.14). Using this perspective the
second identity of (2.14) follows from Proposition 2.2 alone. The respective calculations
are similar to those in the proof of Theorem 2.5 and hence are omitted.

Finally, we note that the Kuznetsov measure described above also appears in the
study of real self-similar Markov processes, see e.g. [20, 6, 13], which may lead to further
applications of our result.

2.7 Relation to the result of Barczy and Bertoin [2]

Assume that p = q = 0, ψ(ν) = 0 for some ν > 0 and consider the process X + x for
x < 0 conditioned on {X + x > 0}. Under a minor additional integrability assumption
it is shown in [2, Thm. 2] that this process, when time shifted so that T = 0, weakly
converges to the process Y + eν as x → −∞, where eν is an independent exponential
variable of rate ν. Thus the process Y arises in two different ways: from this limiting
procedure, and from a stationary particle system described in the previous section. Let
us provide some explanation of this intriguing observation. We keep our discussion
rather informal and emphasize on the intuitive understanding of the connection between
the two set-ups; rigorous proofs along the following lines seem to be hard to implement.

Let us use the limiting result from [2] to explain the mixed moving maxima rep-
resentation of Theorem 2.5; one could also go the other way around. By Cramér’s
estimate we know that P(X + x > 0) is approximately eνxC̃ for large negative x, where

C̃ = k(0, 0)/(νk
′
(0,−ν)) and the derivative is with respect to the second argument, see

e.g. [27, Thm. 7.6]. Thus intensity of particles starting in x at t = 0 (for large nega-
tive x) and going above 0 is C̃dx (approximately). Moreover, one can show that T/|x|
conditioned on {X + x > 0} converges to 1/EXν(1) as x→ −∞; again we pretend that
T = |x|/EXν(1) for large negative x. Thus the times of positive maxima should spread
uniformly with intensity C̃EXν(1)dt for large t. Finally, we see that the points (Yi, Ti, Vi)

must have intensity measure C̃EXν(1)PY (dω)dtνe−νvdv (for v > 0 and large t > 0),
because the conditional limit of the shifted X is Y + eν according to [2]. Extension to
v ∈ R can be achieved by using other reference levels than 0, whereas stationarity of
the particle system generalizes this ‘result’ to all t ∈ R.
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Let us finally check that νC̃EXν(1) = k(0, 0)ψ′(ν)/k
′
(0,−ν) indeed coincides with C0.

According to the Wiener-Hopf factorization there is an identity

−ψ(θ) = k(0,−θ)k(0, θ)

for a certain range of θ ∈ C including θ = ν (when k and k are scaled so that k(1, 0) =

k(1, 0) = 1, see also Section 3.1). Now express k(0,−θ) and differentiate it at θ = ν to
obtain

k
′
(0,−ν) = ψ′(ν)/k(0, ν),

which then readily shows the equality of the above constants.

3 Proofs

Throughout this section we write Xt instead of X(t) and similarly for other processes
which leads to somewhat cleaner expressions.

3.1 Bivariate Laplace exponents

Consider a (non-defective) Lévy process X as in Section 2.1. Define the running
supremum and infimum processes:

Xt = sup
s∈[0,t]

Xs, Xt = inf
s∈[0,t]

Xs,

as well as all time supremum and infimum: X = X∞, X = X∞. Let L be the local time
of the strong Markov process Xt −Xt at 0 and let n be the measure of its excursions
away from 0, see e.g. [5, Ch. 4]. Recall that L is defined in a unique way up to a scaling
constant. Let also

k(α, β) = − logE(e−αL
−1
1 −βH1 ;L

−1
1 <∞) (3.1)

be the Laplace exponent of a bivariate ascending ladder process (L
−1
, H), where L

−1
t =

inf{s : Ls > t} and Ht = X
L

−1
t

. We also write L, n and k(α, β) for the analogous objects

constructed from −X, i.e., we consider the strong Markov process Xt −Xt (note also
that Ht = −XL−1

t
≥ 0 is a non-decreasing process).

Following [10] we assume in the rest of this work that the local times are normalized
so that

k(1, 0) = k(1, 0) = 1, (3.2)

which implies, see e.g. [10], that

k(p, 0)k(p, 0) = p,∀p ≥ 0. (3.3)

Let also d ≥ 0 and d ≥ 0 be the linear drifts of the subordinators L
−1
t and L−1t . We are

ready to give a proof of Corollary 2.3.

Proof of Corollary 2.3. Consider the result of Theorem 2.1 and let p, q ↓ 0. Let us

compute C0 as the limit of C in (2.5). Note that {L−11 <∞} = {L∞ > 1}, which can not
happen a.s. when EX(1) < 0. Hence from (3.1) we find that k(0, 0) > 0 and similarly we
conclude that k(0, 0) = 0. Using (3.3) we write C = k(q, 0)k(p+ ψ(ν), ν) which results in
C0 = k(0, 0)k(0, ν). For arbitrary scaled k, k we first scale them so that (3.2) holds, which
results in the second representation of C0 in (2.7). Now the first representation of C0

in (2.7) is obvious.

We will require the following expressions for the Laplace exponents kν , k
ν

of the
ladder processes corresponding to Xν , see also [3] and [27, Ch. 7.2].
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Lemma 3.1. For α, β ≥ 0 it holds that

kν(α, β) = k(α+ ψ(ν), β + ν), k
ν
(α, β) = k(α+ ψ(ν), β − ν). (3.4)

Proof. The first equation follows immediately from the definition of k(α, β) given by (3.1).
That is,

kν(α, β) = − logE(e
νX

L
−1
1
−ψ(ν)L−1

1 e
−αL−1

1 +βX
L
−1
1 ;L−11 <∞) = k(α+ ψ(ν), β + ν),

and similarly for the second equation, where we have used the fact that the inverse local
times are stopping times, see [27, Lem. 6.9].

Moreover, we will need the following representation of the Wiener-Hopf factors

Ee−ψ(ν)T ep+νXep =
k(p, 0)

k
ν
(p, 0)

, Ee
−ψ(ν)T ep+νXep =

k(p, 0)

kν(p, 0)
, (3.5)

where T ep and T ep are the time of supremum and the time of infimum respectively,
see [27, Thm. 6.16] and (3.4). This requires an additional commentary, because strictly
speaking the first identity holds for ψ(ν) ≥ 0, ν ≤ 0, and the second for ψ(ν) ≥ 0, ν ≥ 0.
Nevertheless these identities can be continued analytically to include arbitrary ν and
ψ(ν) if we can show that the left sides are finite. For this write

1 = Ee−ψ(ν)ep+νXep ≥ E(e−ψ(ν)ep+νXep ;T ep < 1, Xep < 1)

= Ee−ψ(ν)(ep−T ep )+ν(Xep−Xep )E(e−ψ(ν)T ep+νXep ;T ep < 1, Xep < 1)

and recall that ep − T ep has the law of T ep , and Xep −Xep the law of Xep
, see [27, Thm.

6.16]. This shows that Ee
−ψ(ν)T ep+νXep < ∞ and the other factor can be handled in a

similar way. Now we also see that

k(p, 0)

k
ν
(p, 0)

k(p, 0)

kν(p, 0)
= Ee−ψ(ν)ep+νXep = 1

yielding
k
ν
(p, 0)kν(p, 0) = p, ∀p > 0, (3.6)

in view of (3.3).

3.2 Excursion theory and splitting

In this section we adopt a very convenient notation of [16, 10] and rely on Thm. 5
in [10]. We let Ω = D be the space of càdlàg paths ω : [0,∞) → R with lifetime
ζ(ω) = inf{t ≥ 0 : ωt = ωs,∀s ≥ t}. The space Ω is equipped with the Skorohod’s
topology, and the usual completed filtration (Ft)t≥0 is generated by the coordinate
process Xt(ω) = ω(t). We denote by Pq and Pνq the laws of Lévy processes X and Xν

killed at rate q > 0. Similarly, P↓q and P↑q denote the laws of X↓ and X↑, which are the
post-supremum and post-infimum processes of the killed X, see (2.3). Furthermore,
Pνq
↑ is used with the obvious meaning. Note that in this setup instead of assigning ∂

at the killing time we keep the process constant. This setup will be sufficient to prove
Theorem 2.1.

Let ω0 be a path identically equal to 0, and define three operators on D:

θt(ω) = (ωt ∨ ωt− − ωt+u)u≥0,

kt(ω) = (ωu1{u<t} + ωt1{u≥t})u≥0,
rt(ω) = (ωt ∨ ωt− − ω(t−u)−1{u<t})u≥0,
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Figure 2: Operators θs, ks, rs acting on ω.

θtrt

kt

tt

see Figure 2, as well as the usual shift operator: st(ω) = (ωt+u − ωt)u≥0.

In the following we let F,K be two bounded Borel functionals on D and put g =

inf{s ≥ 0 : Xs ∨Xs− = X}. First, we note that

E↑p(F ) = Ep(F ◦ rg), E↓p(K̃) = Ep(K ◦ θg) (3.7)

with K̃(ω) = K(−ω), where the second follows directly from the definition of X↓, and
the first from the definition of X↑ for a time-reversed process X ◦ rep , which has the
same law as the process X ◦ kep , see [5, Lem. II.2].

The following result is well-known, see e.g. [5, Lem. VI.6] and note that if there is a
jump up at g then it is necessarily the case (i) of this Lemma, and if there is a jump down
at g then it is the case (ii); otherwise there is no difference.

Theorem 3.2. For p > 0 it holds that

Ep(F ◦ rg ·K ◦ θg) = Ep(F ◦ rg)Ep(K ◦ θg),

that is, the pre- and post-supremum processes are independent.

The following result expresses the law of pre- and post-supremum processes via
excursion measures, see [10, Thm. 5]. One can either extract the following identity
directly from the proof of [10, Thm. 5], or integrate the result of [10, Thm. 5] multiplied
by pe−p and change the order of integration.

Theorem 3.3 (Chaumont). For p > 0 it holds that

pEp(F ◦ rg ·K ◦ θg) =
(
n(F ◦ kep , ep < ζ) + pdF (ω0)

) (
n(K ◦ kep , ep < ζ) + pdK(ω0)

)
.

It is noted that F (ω0) and K(ω0) correspond to the events {g = 0} and {g = ep}
respectively. Furthermore, according to [10] at least one of d and d is 0 and

k(p, 0) = n(ep < ζ) + pd, k(p, 0) = n(ep < ζ) + pd.

So picking K = 1 and using (3.3) we obtain

Ep(F ◦ rg) =
(
n(F ◦ kep , ep < ζ) + pdF (ω0)

)
/k(p, 0) (3.8)

and similarly for the other term Ep(K ◦ θg), which combined with Theorem 3.3 and (3.3)
proves Theorem 3.2. Note also that (3.8) equals to E↑p(F ) according to (3.7) and hence it
specifies the law of the conditioned process in terms of the excursion measure.

Let us show that X↑ is a time-homogeneous Markov process, such that when started
in x > 0 its law coincides with the law of X started in x and conditioned to stay above 0,
see also [4, 11].
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Lemma 3.4. For x > 0 it holds that

E↑p(F ◦ kt ·K ◦ st, Xt ∈ dx, t < ζ) = E↑p(F ◦ kt, Xt ∈ dx, t < ζ)Ep(K|X > −x), (3.9)

which furthermore can be expressed as

n(F ◦ kt, Xt ∈ dx, t < ep, t < ζ)Ep(K,X > −x)/k(p, 0).

Proof. According to (3.7) and (3.8) the lhs of (3.9) is given by

n((F ◦ kt ·K ◦ st, Xt ∈ dx, t < ζ) ◦ kep , ep < ζ)/k(p, 0)

= n(F ◦ kt ·K ◦ kep−t ◦ st, Xt ∈ dx, t < ep < ζ)/k(p, 0),

where the term containing ω0 results in 0, because x > 0. Recall that n(·|t < ζ) is the
law of the first excursion from the minimum of length larger than t, see [5, Ch. IV].
The standard application of the strong Markov property of X at the first time when its
excursion from the minimum exceeds length t yields the following identity:

n(F ◦ kt ·K ◦ kep−t ◦ st, Xt ∈ dx, t < ep < ζ|t < ζ)

= n(F ◦ kt, Xt ∈ dx, t < ep|t < ζ)Ep(K,X > −x),

where X > −x in the second term signifies that the excursion length exceeds ep. Here
we also used the memoryless property of the exponential distribution. This finally yields

n(F ◦ kt, Xt ∈ dx, t < ep, t < ζ)Ep(K,X > −x)/k(p, 0)

for the lhs of (3.9). Plugging K = 1 we obtain an expression for E↑p(F ◦ kt, Xt ∈ dx, t < ζ),
which then immediately leads to the result.

The following identity for the pre-supremum process and t > 0 will be important:

Ep(F ◦ rg, g ∈ dt,X ∈ dx) = pe−ptn(F ◦ kt, Xt ∈ dx, t < ζ)dt/k(p, 0). (3.10)

To see it observe that the lhs is

Ep((F1{Xζ∈dx,ζ∈dt}) ◦ rg) = n((F1{Xζ∈dx,ζ∈dt}) ◦ kep , ep < ζ)/k(p, 0)

= n(F ◦ kep , Xep ∈ dx, ep ∈ dt, t < ζ)/k(p, 0),

where the second step follows from (3.8), because t > 0. The final expression is clearly
the right hand side (rhs) of (3.10).

Remark 3.5. Recall that n/k does not depend on the scaling of the local time process [5,
Ch. IV], and hence (3.10) holds irrespective of the assumption (3.2), and in particular it
holds under measure change. The same is true with respect to Lemma 3.4.

The following result, extending (3.8) in [3], expresses the excursion measures under
measure change.

Proposition 3.6. Let nν and nν be the excursion measures associated to X under the
measure Pν . Then for t > 0 it holds that

nν(F ◦ kt, Xt ∈ dx, t < ζ) = eνx−ψ(ν)tn(F ◦ kt, Xt ∈ dx, t < ζ), (3.11)

nν(F ◦ kt, Xt ∈ dx, t < ζ) = e−νx−ψ(ν)tn(F ◦ kt, Xt ∈ dx, t < ζ). (3.12)

Proof. By the definition of Pν we have
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Eνp(F ◦ rg, g ∈ dt,X ∈ dx) = Ep(e
νXζ−ζψ(ν)F ◦ rg, g ∈ dt,X ∈ dx)

= Epe
ν(Xζ−X)−ψ(ν)(ζ−g)Ep(e

νX−ψ(ν)gF ◦ rg, g ∈ dt,X ∈ dx)

=
k(p, 0)

kν(p, 0)
eνx−ψ(ν)tEp(F ◦ rg, g ∈ dt,X ∈ dx),

where we use Theorem 3.2 (splitting at the supremum) in the second step, and (3.5) in
the third. Combining this with (3.10) we obtain

nν(F ◦ kt, Xt ∈ dx, t < ζ)dt = eνx−ψ(ν)tn(F ◦ kt, Xt ∈ dx, t < ζ)dt,

which proves (3.11) for Lebesgue almost all t. Extension to all t can be done as in the
proof of Thm. 5 of [10].

The equation (3.12) follows immediately from (3.11) by considering the process −X
and changing measure according to −ν. Note that (−X)−ν is just −Xν and hence the
lhs of (3.11) corresponds to the measure nν . Finally, the first term on the rhs of (3.11)
becomes e−νx−ψ(−(−ν))t, which completes the proof.

We are now ready to give the proof of our main result.

Proof of Theorem 2.1. First suppose that t > 0. According to splitting at the supremum
of X, see Theorem 3.2, the post-supremum process (ZT+s − Z)s≥0 given T > 0 is
independent of the rest (including the supremum and its time) and has the law of (Ys)s≥0.
So we are only concerned with the pre-supremum process and the supremum with its
time. It is only required to show that

Eq(F ◦ rg, g ∈ dt,X ∈ dx)Eνp(K,X > −x) (3.13)

= f(x, t)Eνp
↑(F ◦ kt ·K ◦ st, Xt ∈ dx, t < ζ)dt,

where f(x, t) = Ce−νx+(ψ(ν)+p−q)t and Pνp
↑ is the law of the pre-supremum process of

Y . Here we split the sample path of the pre-supremum process at time t and apply
functional F to the first part and functional K to the second. See also the lhs of Figure 3,
where the additional axes show a convenient perspective on the sample path and its
splitting.

t

x

−t

x

Figure 3: Schematic sample paths of Z: the cases T > 0 and T < 0.

According to (3.10) the lhs of (3.13) equals

qe−qtn(F ◦ kt, Xt ∈ dx, t < ζ)Eνp(K,X > −x)/k(q, 0)dt.

According to Lemma 3.4 (the Markov property of X↑) the rhs of (3.13) reduces to

f(x, t)e−ptnν(F ◦ kt, Xt ∈ dx, t < ζ)Eνp(K,X > −x)/kν(p, 0)dt,
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see also Remark 3.5. Using Proposition 3.6 we see that these expressions indeed coincide
when C = qkν(p, 0)/k(q, 0), which is the left expression of C in (2.5) according to (3.4).

Next suppose that t < 0. One can repeat the above arguments adjusting for the
splitting at the infimum of Xν . Instead of going this way and introducing additional
notation, we simply consider the process −X and change measure according to −ν:
(−X)−ν is just −Xν , see also the second part of the proof of Proposition 3.6. It is then
required to prove for t > 0 that

Ẽ−νp (F ◦ rg, X ∈ dx, g ∈ dt)Ẽq(K,X > −x) = f(x,−t)Ẽ↑q(F ◦ kt,K ◦ st, Xt ∈ dx, t < ζ)dt,

where X under Ẽ is the law of −X under E, see the rhs of Figure 3. Similarly to the
above derivation, the lhs equals

pe−ptnν(F ◦ kt, Xt ∈ dx, t < ζ)Ẽq(K,X > −x)/kν(p, 0)dt

and the rhs equals to

f(x,−t)e−qtn(F ◦ kt, Xt ∈ dx, t < ζ)Ẽq(K,X > −x)/k(q, 0)dt.

Again using Proposition 3.6 we find that both sides are equal when C = pk(q, 0)/k
ν
(p, 0),

which is the right expression of C in (2.5) according to (3.4). Note that both expressions
for C coincide due to (3.6).

It is only left to observe that T does not have a point mass at 0. Indeed, either 0

is regular for (0,∞) relative to X, or 0 is regular for (−∞, 0) relative to X and hence
relative to Xν , see also the definition of Z in Section 2.2.

Proof of Proposition 2.2. This result easily follows from splitting and certain identities
stated above. More concretely, for t > 0 we use (3.10), its counterpart for the post-
infimum process applied to Xν , and the relation between the measures n and nν stated
in (3.11).

For t = 0 we only need to show that P(T = 0) = P(l = 0)C/p. Observe that according
to Theorem 3.3 we have P(T = 0) = dk(q, 0) and also P(l = 0) = dνk

ν
(p, 0). So it is left

to note that d = dν , which can be seen from e.g. (3.5) by letting p→∞.

4 Conditioned processes

Simulation of the process η in (1.4) based on the particle system Ψ1 in (2.11) by simply
sampling the Ui’s top down and adding to each of them a realization Zi of the process Z
is problematic. As Z drifts to −∞ almost surely, stationarity will only be attained locally
around t = 0 for finite sample sizes. The equivalent mixed moving maxima representation
based on Ψ2 derived in Theorem 2.5 offers an appealing alternative sampling method
(see also [32]): Simulation of the points (Vi, Ti) of the Poisson point process with intensity
C0 dt e−νvdv is straightforward. To each of these points, a realization Yi of the conditioned
process Y has to be sampled. This is more subtle since the densities of this process are
unknown in most cases. Below, we will therefore briefly list several possibilities from the
literature to obtain sample paths of a Lévy process conditioned to stay positive (negative)
and hence of Y .

The advantage of this procedure is that the maxima Ti are scattered uniformly over
the real line and thus global stationarity is attained considerably faster than under
simulation based on Ψ1 (see Section 3 in [19] for the case of Brownian motion). For
Brown-Resnick processes which correspond to Gaussian particle systems, [30] used a
similar method. There, the respective constant C0 is not known in closed form and its
computation is expensive. Thanks to formula (2.7), in our case this is unnecessary.
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As mentioned above, simulation of the conditioned process Y is non-trivial. Note that
Y in Theorem 2.5 is composed from −(−X)↑ and (Xν)↑, where both −X and Xν drift to
+∞. Hence for simplicity of notation we assume that X is a Lévy process (not a CPP)
drifting to +∞, and discuss some alternative ways known in the literature to obtain the
conditionally positive process X↑.

1. Post-infimum process: as a first option we consider our definition of X↑ as the
post-infimum process, see (2.3).

2. Conditioned process: the process X↑ on [t,∞) given X↑(t) = x equals in law to the
process X started in x and conditioned to stay positive, see Lemma 3.4. Moreover,
[11, Thm. 2] shows that X↑ can be approximated by the conditioned process started
in x ↓ 0. If 0 is irregular for (0,∞) then this approximation holds for strictly positive
times only, because in such a case X↑(0) is not necessarily 0. The distribution of
the initial value of X↑ can be found in [9] when X has no negative jumps.

3. Excursions from the maximum: [15] extending [34] showed thatX↑ can be obtained
by time-reversing excursions of X from the maximum and sticking them together.
It is assumed here that 0 is regular for (−∞, 0).

4. Excursions from the minimum: X↑ on [0, t] can be simulated from the excursion
measure n as specified by Lemma 3.4. Another representation of a similar type is
given in [35, Thm. 7]

5. Path segments in [0,∞): [4] showed that X↑ can be obtained by sticking together
path segments of X in the positive half-line together with an appropriate correction
according to the behavior of X at 0.

6. Williams’ representation: we recall this representation for a process with no
positive jumps as it is given in [5, Thm. 18 and Cor. 19], and refer to [16, Thm. 4.1,
Thm. 4.2] for the general case. It holds that X↑ up to its last time below x, say
σ↑x, has the same law as X time-reversed at its first passage over x. Moreover, the
evolution of X↑ after σ↑x is independent from the past and has the law of X↑.

7. Pitman’s representation: for a process with no positive jumps [5, Thm. 20] con-
structs X↑ from X by subtracting twice the continuous part of the infimum of X
and by discarding the jumps of X across its previous infimum. This results in a
3-dimensional Bessel process in the case of a Brownian motion with drift, [31].

Exact simulation of X↑ is a challenging topic which, to our knowledge, has not been
considered in the applied literature yet. The choice of a suitable representation may
depend on various factors such as the Lévy measure under consideration.

In order to avoid some possible confusion with the term ‘conditioned to stay positive’,
it is noted that one can ‘condition’ X (started in x > 0) to stay positive even when X

does not drift to +∞, i.e., when Px(X > 0) = 0. In this case there are various natural
ways to do so, which lead to different laws. For example, [22] shows that under Cramér’s
condition the following two limits result in different laws:

lim
s→∞

Px(A|s < τ−0 ), lim
y→∞

Px(A|τ+y < τ−0 ),

where τ−0 and τ+y are the first passage times below 0 and above y, respectively, and A is
an event in Ft for some t > 0. Finally, we note that these ambiguities disappear when X
drifts to +∞ as required by Corollary 2.3.
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