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Abstract

We establish a sufficient condition for the tightness of a sequence of stochastic
processes. Our condition makes it possible to study processes with accumulations
of fixed times of discontinuity. Our motivation comes from the study of processes
in varying or random environment. We demonstrate the usefulness of our condition
on two examples: Galton Watson branching processes in varying environment and
logistic branching processes with catastrophes.
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1 Main result: statement and discussion

Statement

Let (X, d) be a separable, complete metric space and DX be the space of càdlàg
functions f : [0,∞)→ X. The space DX is endowed with the Skorohod J1 topology, and
we write fn → f for convergence in this space and Xn ⇒ X for the corresponding weak
convergence of stochastic processes. See, for instance, Billingsley [3] for more details.
For f ∈ DX and t ≥ 0 we write f(t−) = lims↑t f(s) (with the convention f(t−) = f(0) if
t = 0) and ∆f(t) = d(f(t), f(t−)). The above definitions and notation apply to the case
X = R and d is the Euclidean distance, in which case we denote by V the set of càdlàg
functions f ∈ DR which are non-decreasing.

For each n ≥ 1, we consider a càdlàg process Xn = (Xn(t), t ≥ 0) adapted to a
filtration {Fnt , t ≥ 0}. Unless otherwise specified, the identities and inequalities stated
for the processes hold almost surely (a.s.).

Theorem 1.1. Assume that:

A1) For each T, ε > 0, there exists a compact set K of X such that

lim inf
n→∞

P (Xn(t) ∈ K,∀t ≤ T ) ≥ 1− ε. (1.1)
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Tightness for processes with fixed points of discontinuities

A2) There exist stochastic processes Fn, F ∈ V such that σ(Fn) ⊂ Fn0 and Fn ⇒ F and
β > 0 such that for every n ≥ 1 and every 0 ≤ s ≤ t,

E
[
1 ∧ d (Xn(t), Xn(s))

β | Fns
]
≤ Fn(t)− Fn(s). (1.2)

Then the sequence (Xn, n ≥ 1) is tight in DX.

One easily checks, for instance by going back to the Arzelà–Ascoli characterization of
tightness, that in presence of the compact containment condition A1 the sequence (Xn)

is tight if and only if for every compact set K, the sequence (Xn) stopped upon its first
exit of K is tight. Thus we have the following simple extension of the previous theorem.

Corollary 1.2. For K ⊂ X let TKn = inf{t ≥ 0 : Xn(t) 6∈ K}. Assume that the compact
containment condition A1 holds and that:

A2’) For every compact subset K ⊂ X, there exist stochastic processes Fn, F ∈ V such
that σ(Fn) ⊂ Fn0 and Fn ⇒ F and β > 0 such that for every n ≥ 1 and every
0 ≤ s ≤ t,

E
[
1 ∧ d

(
Xn(t ∧ TKn ), Xn(s ∧ TKn )

)β | Fns ] ≤ Fn(t)− Fn(s). (1.3)

Then the sequence (Xn, n ≥ 1) is tight in DX.

We finally mention a second direct extension which is useful for the study of Galton–
Watson processes in varying environments, see below.

Corollary 1.3. Assume that the compact containment condition A1 holds, and that:

A2”) There exist stochastic processes Fn, F ∈ V such that σ(Fn) ⊂ Fn0 and Fn ⇒ F and
β, η > 0 such that for every n ≥ 1 and every 0 ≤ s ≤ t such that Fn(t)− Fn(s) ≤ η,

E
[
1 ∧ d (Xn(t), Xn(s))

β | Fns
]
≤ Fn(t)− Fn(s). (1.4)

Then the sequence (Xn, n ≥ 1) is tight in DX.

Proof. Let F̃n(t) = Fn(t)/1 ∧ η: then the inequality

E
[
1 ∧ d (Xn(t), Xn(s))

β | Fns
]
≤ F̃n(t)− F̃n(s)

holds for every 0 ≤ s ≤ t. Indeed, if Fn(t) − Fn(s) ≤ η then this follows from (1.4) by
dividing by 1 ∧ η ≤ 1, while if Fn(t)− Fn(s) ≥ η then F̃n(t)− F̃n(s) ≥ 1 and the inequality
is trivially satisfied. Thus we can invoke Theorem 1.1 to conclude.

Discussion

If F were continuous, then the result would follow immediately from Theorem 3.8.6

of [5] by taking γα(δ) = sup0≤t≤t+u≤T,u≤δ(Fα(t+u)−Fα(t)) (see also Theorem 4.20 of [8]).
But, of course, the point of Theorem 1 of the paper is that F is not continuous. Allowing F
to be discontinuous is motivated by the study of processes in varying environment, where,
typically, non-critical environments can create fixed times of discontinuity which translate
to discontinuities of F . When there are only finitely many fixed times of discontinuity,
one can prove tightness on time-intervals without fixed times of discontinuity and then
“glue” the pieces together (using for instance Lemma 2.2 in Whitt [13]). However, this
approach seems more challenging when fixed times of discontinuity can accumulate, and
even be dense. The interest of Theorem 1.1 is to allow for such cases and we provide
motivations and applications in Sections 3 and 4.
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Tightness for processes with fixed points of discontinuities

2 Proof of Theorem 1.1

First step

We start with some preliminary remarks and the introduction of some auxiliary
functions γn, Yn and Gn. First, note that we can assume without loss of generality that
Fn and F satisfy the following three properties:

i) Fn(t)− Fn(s), F (t)− F (s) ≥ t− s for any 0 ≤ s ≤ t;

ii) Fn(0) = F (0) = 0;

iii) Fn and F are unbounded.

Indeed, otherwise we can simply replace Fn and F by F̃n(t) = Fn(t)− Fn(0) + t and
F̃ (t) = F (t) − F (0) + t, so that Fn(t) − Fn(s) = F̃n(t) − F̃n(s) − (t − s) ≤ F̃n(t) − F̃n(s)

and assumption A2 still holds with F̃n in place of Fn. In particular, Fn and F are strictly
increasing and unbounded.

In the sequel, we therefore assume that Fn satisfies these three properties. For f ∈ V
and unbounded we define f−1 ∈ V the function defined by f−1(t) = inf{s ≥ 0 : f(s) > t}.
We will consider in particular γn = F−1n , which satisfies the following properties (see
Section 13.6 in Whitt [14]):

i) γn(0) = 0 and γn is Lipschitz continuous and unbounded;

ii) γ−1n = Fn and γn ◦ γ−1n = Id, with Id the identity function Id(t) = t;

iii) γn(t) is Fn0 -measurable and hence is a {Fnt }-stopping time.

We further define the càdlàg processes

Yn(t) = lim
s→t+

Xn (γn(s)−) and Gn(t) = lim
s→t+

Fn (γn(s)−) . (2.1)

Since γn ◦ Fn = Id and γn(Fn(a)) < γn(s) if s > Fn(a) and Xn is right continuous,

Xn = Yn ◦ Fn.

The proof now consists in proving that Yn is tight and to derive the tightness of Xn using
Lemma 2.5 of [9].

First, the compact containment condition for (Yn) simply follows from the identity

P (Yn(t) ∈ K,∀t ≤ T ) = P (Xn(t) ∈ K,∀t ≤ γn(T ))

together with the facts that the sequence (γn(T )) is bounded and that (Xn) satisfies by
assumption the compact containment condition A1.

Second step

We now prove that the sequence (Yn) is tight. Let in the sequel q(x, y) = 1 ∧ d(x, y).
Note that since γn(t) is Fn0 -measurable for any t ≥ 0, (1.2) implies that for 0 < s < t and
0 < δ < γn(s),

E
[
q(Xn(γn(t)− δ), Xn(γn(s)− δ))β |Fnγn(s)−δ

]
≤ Fn(γn(t)− δ)− Fn(γn(s)− δ),

and letting δ → 0

E
[
q(Xn(γn(t)−), Xn(γn(s)−))β |Fnγn(s)−

]
≤ Fn(γn(t)−)− Fn(γn(s)−). (2.2)
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Tightness for processes with fixed points of discontinuities

Again, we are using that for each t, γn(t) is a predictable stopping time. Define Gns =

∩r>sFnγn(r)−. Taking decreasing limits in (2.2), we have

E
[
q (Yn(t), Yn(s))

β | Gns
]
≤ Gn(t)−Gn(s)

which implies in particular that q(Yn(t), Yn(s)) ≤ 1{Gn(t)>Gn(s)}. Thus for any 0 ≤ v ≤ t

we have

E
[
q(Yn(t+ u), Yn(t))β | Gnt

]
q(Yn(t), Yn(t− v))β ≤ (Gn(t+ u)−Gn(t))1{Gn(t)>Gn(t−v)}.

Next, Lemma 2.5 in Kurtz [9] implies that Gn(t) ≤ t and that if Gn(t) > Gn(t− v), then
Gn(t) > t− v: therefore,

E
[
q(Yn(t+ u), Yn(t))β | Fnγn(t)

]
q(Yn(t), Yn(t− v))β ≤ v + u,

where this inequality holds for any n ≥ 1 and any 0 ≤ v ≤ t and u ≥ 0. These arguments
also imply that

E
[
q(Yn(δ), Yn(0))β

]
≤ Gn(δ) ≤ δ,

and these two inequalities imply the desired tightness of (Yn) by Theorem 3.8.6 in Ethier
and Kurtz [5], since (Yn) also satisfies the compact containment condition.

Third step

Let us now conclude the proof and show that (Xn) is tight recalling that Xn = Yn ◦Fn.
Since (Yn) is tight, assume without loss of generality (by working along appropriate
subsequences and using the Skorohod representation theorem) that Yn → Y and Fn → F :
if Y were constant (except for maybe one jump) on any interval [u, v] on which F−1 is
constant, then Lemma 2.3(b) in Kurtz [9] would imply that Xn → Y ◦ F and (Xn) would
be tight. Thus, for each interval [u, v] on which F−1 is constant, to conclude the proof it
is enough to show that Y is constant on [u, v).

Let α denote the constant value taken by F−1 on [u, v], and consider a sequence (αn)

such that αn → α, Fn(αn)→ F (α) and Fn(αn−)→ F (α−). Fix u′, v′ with [u′, v′] ⊂ (u, v).
Since F−1 is constant on [u, v] and takes the value α, we have F (α−) ≤ u < v ≤ F (α),
and in particular, Fn(αn−) < u′ < v′ < Fn(αn) for n large enough. For these n, F−1n is
constant on [u′, v′] and since

Yn(t) = lim
s→t+

Xn(F−1n (s)−),

this implies that Yn for n large enough is constant on [u′, v′]. The convergence Yn → Y

in the Skorohod topology then implies that Y is constant on any [u′′, v′′] ⊂ (u′, v′). Since
u′ < v′ were arbitrary in [u, v], and since Y is càdlàg, we obtain by letting u′′ ↓ u and
v′′ ↑ v that Y is constant on [u, v) as desired.

3 Scaling limits of Galton–Watson processes in varying environ-
ment

A Galton Watson branching process (GW process) is an integer-valued Markov chain
(Z(k), k ≥ 0) governed by the recursion

Z(k + 1) =

Z(k)∑
i=1

ξk,i (3.1)

where the ξk,i’s are i.i.d. random variables having as common distribution the so-called
offspring distribution. See, for instance, Athreya and Ney [1] for a general introduction,
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Tightness for processes with fixed points of discontinuities

and the introduction in Bansaye and Simatos [2] for more references pertained to the
following discussion.

GW processes in random environments, where the sequence of offspring distributions
is random, have been introduced by Smith and Wilkinson [12] and have recently been
intensively investigated. So far, they have mostly been studied from the viewpoint of
their long-time behavior and, as far as we know, their scaling limits have only been
studied in the finite variance case. This is in sharp contrast with the case of constant
environment, where scaling limits have been exhaustively characterized by Grimvall [6].
These scaling limits are called Continuous State Branching Processes and we refer to [4]
for more details and complements, see e.g. Proposition 4 therein for the stochastic
differential equation satisfied by these limits.

This observation was the starting point of our investigation in [2] of the scaling
limits of GW processes in varying environments, where the offspring distribution may
change from one generation to the next and have unbounded variance. This corre-
sponds to the quenched approach, where one fixes a realization of the sequence of
offspring distributions and studies the behavior of the GW process in this (varying)
environment.

In particular, we use Corollary 1.3 above in order to show in [2] that the sequence
of GW processes in a varying environment (Xn) considered is tight. It relies on the
domination of a characteristic triplet associated to the branching mechanism of Xn.
More precisely, here the process may explode in finite time and [0,∞] is endowed with
the metric d(x, y) = |e−x − e−y|. The Assumption A1 is automatically satisfied since
[0,∞] endowed with d is compact. To apply Corollary 1.3, we prove in [2] that that for
each t ≥ 0, there exists ∆t such that for any s ≤ y0 ≤ y ≤ t with µn(y0, y] ≤ ∆t/2 and
x0 ∈ [0,∞],

E
[
d(x0, Xn(y))2 | Xn(y0) = x0

]
≤ 2∆tµn(y0, y],

where µn is a positive finite measure linked to the characteristic triplet of the process
Xn. In this case Assumption A2” is satisfied with η = ∆2

t , F
n = 2∆tµn and F = 2∆tµ.

In this context and in a large population approximation, each non-critical offspring
distribution (i.e., with mean not equal to one) induces a deterministic jump in the limit:
if Z(k) is large, then the law of large numbers gives, in view of (3.1), Z(k + 1)− Z(k) ≈
E(ξk,1 − 1)Z(k). If the sequence of offspring distributions stems from the realization of
a sequence of i.i.d. offspring distributions that may be, with positive probability, non-
critical, then we naturally end up in the limit with a time-inhomogeneous Markov process
with accumulations of fixed times of discontinuity. Note that the possible accumulations
of these discontinuities comes from the fact that, in the usual renormalization schemes,
time is sped up.

This phenomenon, illustrated on GW processes, is of course not unique to this class
of processes. From a high-level perspective, it suggests that in a varying environment
mixing critical and non-critical environments, it is natural to expect in the limit time-
inhomogeneous Markov processes with accumulations of fixed times of discontinuity. For
instance, the above discussion immediately applies to random walks with time-varying
step distributions, a topic covered by Jacod and Shiryaev [7]. It is also a very natural
framework in population dynamic and evolution. Indeed when considering scaling
limits with time acceleration in a varying environment, fixed times of discontinuity
accumulate as soon as instantaneous jumps at fixed times are recurrent in the original
time scale. In order to illustrate this point, we consider in Section 4 an application
of Theorem 1.1 to study logistic birth and death processes, where the environment
provokes catastrophes.
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Tightness for processes with fixed points of discontinuities

4 Tightness of logistic branching processes with catastrophes

To further motivate our conditions for tightness, we show how to apply the results to
the scaling limits of logistic branching processes with catastrophes.

A logistic branching process

Consider the following birth-and-death process:

z ∈ {0, 1, 2, . . .} −→

{
z − 1 at rate dz + cz2,

z + 1 at rate bz,
(4.1)

for some parameters b, c, d > 0: b is the per-individual birth rate, d is the per-individual
death rate and c > 0 is a logistic term which represents competition between individuals.
This process is an example of population-dependent branching processes and is also a
special case of logistic branching processes. It plays a very important role in population
dynamics, where it is probably the simplest model exhibiting a quasi-stationary regime.
Simply put, under a suitable scaling, the population size tends to stabilize for a very long
time around the value z∗ = (b− d)/c that equalizes the birth and death rates.

Its scaling limits are well-known, namely, if Zn is the above death-and-birth process
with parameters b = λ + nγ, d = µ + nγ and c = κ/n, then the renormalized process
Xn(t) = Zn(t)/n converges weakly to the logistic Feller diffusion, i.e., the unique solution
to the following stochastic differential equation:

dX(t) = (λ− µ− κX(t))X(t)dt+
√
γX(t)dB(t),

with B a standard Brownian motion. See, for instance, [10].

A logistic branching process with catastrophes

There are many different ways to add “catastrophes” to this logistic branching
process. For example, a common way is for the catastrophes to occur at the epochs
of an independent Poisson process, and for each individual to toss a coin and die with
a certain probability. However, we adopt a slightly different framework, technically
more convenient and which fulfills our purpose of illustrating the use of Theorem 1.1
on a non-trivial example. Our framework comes from the equivalent description of the
Markov process with transition rates (4.1) via a stochastic differential equation, namely,
the unique solution to the stochastic differential equation

Z(t) = Z(0) +

∫ t

0

∫ ∞
0

(
1{u≤bZ(s−)} − 1{bZ(s−)<u≤(b+d+cZ(s−))Z(s−)}

)
Q(ds,du), t ≥ 0,

where Q is a Poisson point measure on [0,∞)2 with intensity ds× du. A simple general-
ization to this dynamic is given by

Z(t) = Z(0) +

∫ t

0

∫ ∞
0

(
1{u≤bZ(s−)} − 1{bZ(s−)<u≤(b+d+cZ(s−))Z(s−)}

)
Q(ds,du)

−
∫ t

0

∫ 1

0

(1− θ)Z(s−)q(ds,dθ) (4.2)

where q is a deterministic point measure on [0,∞)× [0, 1] satisfying q({t}× [0, 1]) ∈ {0, 1}
for every t ≥ 0. With the additional integral term

∫ t
0

∫ 1

0
(1− θ)Z(s−)q(ds,dθ), if (t, θ) is

an atom of q, then Z undergoes a catastrophe at time t and loses a fraction θ ∈ [0, 1] of
its population. Note that Z given by (4.2) is no longer integer-valued, but this definition
will be convenient in order to illustrate the use of Theorem 1.1.
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Tightness for processes with fixed points of discontinuities

In the literature, catastrophes are usually added at random times, say at the instant
of a Poisson process. In this case, q would be a Poisson point measure independent of Q,
with intensity ds×P(F ∈ dθ) for some random variable F ∈ [0, 1]: the above formulation
would then correspond to the quenched approach, working conditionally on the random
environment. Let us finally mention that this example could be generalized in a number
of ways, for instance by considering positive jumps at fixed times of discontinuity or
multiple simultaneous births, but here we restrict ourselves to the simplest non-trivial
example where we believe that Theorem 1.1 is useful.

We now consider the same scaling as previously, and we write now the birth and
death rates for the scaled population:

bn(x) = (λ+ nγ)nx, dn(x) =
(
µ+ nγ +

κ

n
nx
)
nx. (4.3)

For each n ≥ 1, we also consider a measure qn with qn({t} × [0, 1]) ∈ {0, 1}, and we
consider Zn the solution to (4.2) with these parameters and with initial condition Zn(0) =

x0n for some x0 ≥ 0. We finally consider the renormalized process

Xn(t) =
Zn(t)

n
, t ≥ 0,

which satisfies the following stochastic differential equation:

Xn(t) = x0 −
∫ t

0

∫ 1

0

(
1− θ

)
Xn(s−)qn(ds,dθ)

+

∫ t

0

∫ ∞
0

1

n

(
1{u≤bn(Xn(s−))} − 1{bn(Xn(s−))<u≤dn(Xn(s−))}

)
Q(ds,du). (4.4)

Let in the sequel

fn(t) =

∫ t

0

∫ 1

0

(1− θ)qn(ds,dθ) and Fn(t) = t+ fn(t).

Lemma 4.1. For K ≥ 0, let TKn = inf{t ≥ 0 : Xn(t) ≥ K}. For any T ≥ 0,

lim
K→∞

lim sup
n→∞

P
(
TKn ≤ T

)
= 0, (4.5)

and for each K ≥ 0, there exists a constant CK such that the inequality

E
[
1 ∧

(
Xn(t ∧ TKn )−Xn(s ∧ TKn )

)2 | Fn(s)
]
≤ CK

(
Fn(t)− Fn(s)

)
(4.6)

holds for all n ≥ 1 and 0 ≤ s ≤ t.
Assuming that Fn → F (which holds for instance if qn converges weakly to some

measure q), this result gives the tightness of the sequence (Xn), since the assumptions of
Corollary 1.2 are then satisfied. Note that Fn and its limit F may be discontinuous, and
the upper bound in (4.6) depends on the constant K considered. Also, it is reasonable
when qn → q to expect any accumulation point to satisfy the following stochastic
differential equation

dX(t) = (λ− µ− cX(t))X(t)dt+
√
γX(t)dB(t)−

∫ t

0

∫ 1

0

(
1− θ

)
X(s−)q(ds,dθ).

Proof of Lemma 4.1. The fact that (Xn) satisfies the compact containment condition (4.5)
follows from a comparison argument: from (4.3) and (4.4) it follows that

Xn(t) ≤ Xn(0) +

∫ t

0

∫ ∞
0

1

n

(
1{u≤nbXn(s−)} − 1{nbXn(s−)<u≤n(b+d)Xn(s−)}

)
Q(ds,du)
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and so classical comparison arguments for stochastic differential equations (see for
instance [11, Theorem V.43.1]) imply that Xn(t) ≤ X̃n(t) with X̃n given by

X̃n(t) = X̃n(0) +

∫ t

0

∫ ∞
0

1

n

(
1{u≤nbX̃n(s−)} − 1{nbX̃n(s−)<u≤n(b+d)X̃n(s−)}

)
Q(ds,du)

with X̃n(0) = dnXn(0)e/n. One readily checks that X̃n is a linear birth and death process
(scaled in time and space), whose compact containment condition is easily proved
(actually, it is well-known that (X̃n) converges weakly to the Feller diffusion). We now
turn to the proof of (4.6). The process ((Xn(t), t), t ≥ 0) is Markov with generator

Ωn(f)(x, t) =
∂f

∂t
(x, t) +

(
f

(
x+

1

n
, t

)
− f(x, t)

)
bn(x)

+

(
f

(
x− 1

n
, t

)
− f(x, t)

)
dn(x) +

∫
qn({t} × dθ) (f(θx, t)− f(x, t))

and so the stopped process ((Xn(t ∧ TKn ), t ∧ TKn ), t ≥ 0) is Markov and its generator
is given by Ωn(f)(x, t)1{x≤K}. In particular, for a function f that only depends on x,
defining XK

n (t) = Xn(t ∧ TKn ),

E
[
f(XK

n (t))
]

= f(XK
n (0))

+

∫ t

0

E

[(
f

(
XK
n (s) +

1

n

)
− f(XK

n (s))

)
bn(XK

n (s))1{TK
n >s}

]
ds

+

∫ t

0

E

[(
f

(
XK
n (s)− 1

n

)
− f(XK

n (s))

)
dn(XK

n (s))1{TK
n >s}

]
ds

+

∫ t

0

∫
qn(ds× dθ)E

[(
f(θXK

n (s))− f(XK
n (s))

)
1{TK

n >s}
]
.

For f(x) = (x−XK
n (0))2, we find after some computation

E
[(
XK
n (t)−XK

n (0)
)2 | XK

n (0)
]

= 2(λ− µ)

∫ t

0

E
[
XK
n (s)(XK

n (s)−XK
n (0))1{TK

n >s}
]

ds

+
λ+ µ+ 2γn

n

∫ t

0

E
(
XK
n (s)1{TK

n >s}
)

ds

+
c

n

∫ t

0

E
(
XK
n (s)21{TK

n >s}
)

ds

− 2c

∫ t

0

E
[
XK
n (s)2(XK

n (s)−XK
n (0))1{TK

n >s}
]

ds

−
∫ t

0

∫
qn(ds× dθ)(1− θ2)E

[
XK
n (s)21{TK

n >s}
]

+

∫ t

0

∫
qn(ds× dθ)2(1− θ)E

[
XK
n (s)XK

n (0)1{TK
n >s}

]
.

Since f(Xn(t)) = 0 for Xn(0) > K, we can assume that Xn(0) ≤ K and we get

E
[(
XK
n (t)−XK

n (0)
)2 | XK

n (0)
]
≤ 2|λ− µ|K2t+

(λ+ µ+ 2γn)Kt

n
+
c

n
K2t+ 2cK3t

+ 2K2

∫ t

0

∫
(1− θ)qn(ds× dθ).

Since all sequences involved are bounded, the result follows.
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