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Abstract

We obtain necessary and sufficient conditions for the Marchenko-Pastur theorem for
matrices with IID isotropic rows. Our conditions are related to a weak concentration
property for certain quadratic forms of the rows.
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1 Introduction

The Marchenko-Pastur (MP) theorem [15] is a classical result in random matrix theory.
It states that, with probability one, the empirical spectral distribution of

~ 1 <& T
znzﬁkz_lxpkxpk (1.1)

converges weakly to the MP law with parameter p > 0 as n — co and p = p(n) = pn+o(n)
if {xp,x }7_, are IID copies of an isotropic R”-valued random vector x, satisfying certain
conditions.

In the simplest case, the entries of x, = (X1, ..., X,,) are assumed to be IID copies
of a zero-mean random variable with unit variance (e.g., see Theorem 3.6 in [4]). More
generally, the entries can be any independent zero-mean random variables that have
unit variance and satisfy Lindeberg’s condition

D
pli_)n;o ;1) ;]EXE,CIQXPM >ey/p)=0 foralle >0 (1.2)
(see [20]). The independence assumption can be relaxed in a number of ways. E.g., in
[19], the MP theorem is proved for isotropic x, having a log-concave distribution.

All of the above assumptions imply that the quadratic forms x;,rApxp concentrate
near their expectations up to an error term o(p) with probability 1 — o(1), where 4, is
any p x p complex matrix with the spectral norm ||A4,| < 1. This concentration property
is a widely used technical tool in random matrix theory. In fact, this condition alone is
sufficient for the MP theorem (see [2], [5], [9], [11], [19], Theorem 19.1.8 in [21], and
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[27]). Recently, it has been proved in [8] that the extreme eigenvalues of in converge
in probability to the edges of the support of the limiting MP law when a version of the
concentration property holds (see also [26]). There are many papers closely related to
the MP theorem, where some other dependence assumptions are considered. E.g., see
[1]1, [6], [71, [12], [16], [17], [18], [22], and [24].

As noted in [1], the concentration property is not a necessary condition for the MP
theorem. In this paper, we show that this condition becomes necessary and sufficient if
we consider only a restricted class of quadratic forms.

The paper is structured as follows. Section 2 contains our main results. Section 3
deals with the proofs. Some additional results are given in an Appendix.

2 Main results

We now introduce some notation that will be used throughout the paper.

For each p > 1, let x, be an isotropic random vector in R?, i.e. ]E)xpx;gr = I, for the
p X p identity matrix I,,. Assume further that all random elements are defined on the
same probability space. Let also f)n be given in (1.1), where {x,;}}_, are IID copies of
Xp. In what follows, in and x,, will be independent.

Define the MP law p, with parameter p > 0 by

(b—z)(z—a)

dp, = max{1 —1/p,0} ddo + Smp

I(z € [a,b]) dz,

where §. is a Dirac function with mass at ¢, a = (1 — \/p)?, and b = (1 + \/p). In this
paper, all measures are defined on the Borel o-algebra of R. For a real symmetric p x p
matrix A with eigenvalues Ay, ..., A,, its empirical spectral distribution is given by

1 p
pA = — 25)%
p k=1

and ||A|| denotes the spectral norm of A.
We can now state our main result (proved in Section 3).

Theorem 2.1. Let p = p(n) satisfy p/n — p > 0 as n — oo. If x,, is isotropic for all
p = p(n), then the following conditions are equivalent:

i) s, converges weakly to u, almost surely as n — oo,

(ii) for alle > 0,

1 N ~
i[x;(Zn +el) ' xp — tr(S, +el,) 50, n— o
Furthermore, (i) implies that x,) X, /p L

Remark 2.2. For istropic x,, the convergence in probability in (ii) can be replaced by
the convergence in L. By Jensen’s inequality, the latter yields that
(iii) for all ¢ > 0 and A, (¢) = E(X,, +¢l,)7 1,
1
=[x, Anle)x, — tr(An(e))] 50, no .
p

Under certain assumptions, (iii) = (ii). E.g., one can assume that pP(|x, y| > e/p) = 0
uniformly in unit y € R? as p — oo for all € > 0. This will be shown elsewhere.

By Theorem 2.1, the following condition is sufficient for the MP theorem:

[x;Apxp —tr(Ap)]/p % 0 as p — o for all sequences of real symmetric

positive semi-definite p x p matrices A, with ||4,| < 1. (2.1)
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A short proof of this fact for not necessarily isotropic x,, is given in [27].

Condition (2.1) holds in many cases of interest. In particular, (2.1) < (1.2) if each
x, has zero-mean independent entries with unit variance (see Proposition 2.1 in [27]).
More complicated models satisfying (2.1) are given in [2], [3], [5], [9], and [25].

In general, (2.1) does not follow from (ii) in Theorem 2.1. Recall the following example
from [1]. Take p = 2¢ for ¢ = ¢(n) and consider an isotropic random vector x, defined by

Xp = V2(248,24(1 - §)),

where z, is a standard normal vector in RY, £ is a random variable independent of z,,
and P(¢ = a) =1/2, @ € {0,1}. Assume also that n — oo and p/n — p > 0.

As either ¢ = 0 or 1 — ¢ = 0, the matrix in will be block-diagonal with two ¢ x ¢
diagonal blocks f)nl and f)ng. It is easy to verify that each ks, . converges weakly to p,
almost surely and, as a result, the same is true for ug . Thus, (ii) in Theorem 2.1 holds.
However, (2.1) does not hold for 4, = II,, being the orthogonal projection on the first ¢
coordinates since

1
;[X;—HPXP — tr(I1,)]

_2§Z;Zq_QE>2§—1
p 2

We now give necessary and sufficient conditions in the classical setting.

, g — 0Q.

Corollary 2.3. Let p = p(n) satisfy p/n — p > 0 asn — oo. Ifx, = (Xp1,...,X,,) has
zero-mean independent entries with unit variance for all p = p(n), then L5, converges
weakly to u, almost surely as n — oo iff (1.2) holds for given p = p(n).

This result proved in Section 3 is not new. As far as we know, it was initially obtained
by Girko via a different method (see Theorem 4.1 in Chapter 3 in [10]).

3 Proofs

Proof of Theorem 2.1. Let further n — oo and p = p(n) = pn + o(n). Recall some useful
facts and definitions. For a finite measure p with support in R, its Stieltjes transform

on R; is given by
% p(dA)
S(e, pu) = —, e>0.
(e, 1) /0 PR
The next lemma proved in the Appendix is a version of the Stieltjes continuity theorem.

Lemma 3.1. Let p, yu1, 2, . . . be random probability measures with support in Ry . Then
Wn converges weakly to p a.s. iff P(S(e, un) = S(e,p)) = 1 for all e > 0.

Denote Sy, (¢) = S(¢, s, ). Then Sy, (e) = p~Ltr(E, 4 I,)"! by the definition of pis -
By the standard martingale argument,’

Sp(e) —ES,(e) = 0 a.s. 3.1)
for any € > 0. The latter and Lemma 3.1 imply that (i) holds iff
ES,(e) = S(e,up,) foralle > 0. (3.2)

The next lemma that assumes neither (i) nor (ii) will play a key role in our analysis.
Lemma 3.2. Under the conditions of Theorem 2.1,
X;(En + Elp)_lxp/p

1=FE — +eES, () + o(1)
L+ px) (8, +el,) 1%, /p

foranye >0 asn — oo.

lSee Step 1 in the proof of Theorem 1.1 in [5] or Lemma 4.1 in [1] and the trace bound above (4.2).
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The proof of Lemma 3.2 is deferred to the Appendix.
Let us now show that (i) & (3.3) < (ii), where

X;-zr(in + EIP)_lxp/p —E Sp(€)
1+px;(f)n+alp)—1xp/p 1+ pSi(e)

First, we prove that (3.2) < (3.3). This will imply that (i) & (3.3) as (i) < (3.2).
Assume that (3.3) holds. By (3.1) and the dominated convergence theorem,

Sn(e) _  ESu(e)

+o(1) foralle > 0. (3.3)

= 1). 4
14 pSp(e) 1+ pES,(e) o) G4
Therefore, Lemma 3.2 yields
_ ES,(e)

and we see that ES,,(¢) converges to the unique positive solution of the equation

1 +ef. (3.6)

1y pS
Lemma 3.3. Foralle >0, S = S(e, p1,,) is a unique positive root of (3.6).

Lemma 3.3 is proved in the Appendix. Combining this lemma with (3.4) and (3.5),
we get (3.3) = (3.2). Conversely, assume that (3.2) holds. By Lemma 3.3, (3.2) = (3.5).
Using Lemma 3.2 and (3.4), we see that (3.5) = (3.3).

We have proved that (3.2) < (3.3) and, as a result, (i) < (3.3). Now, we need to verify
that (3.3) < (ii). If (ii) holds, then (3.3) holds by the following fact: if &, E) 0 and there is
C > 0 such that P(|¢,| < C) =1 for every n > 1, then E¢,, — 0. R

Suppose (3.3) holds. Note that, by IExpx;,r = I,, and the independence of x, and 3,

Elx] (S, + L) 1%, |E0] = tr(E, +eL,) L = pSa(e).

Then (ii) follows from (3.3) and the next lemma, where we put Z,, = px;(in +5Ip)*1xp/p
and Y, = EA]n (for a proof, see the Appendix).

Lemma 3.4. Let {Z,,}°2, be non-negative random variables such that EZ,, is bounded
overn. IfY,, n > 1, are random elements satisfying

Zn E E(Z,|Yx)

E _
1+ Z, 1+ E(Z,|Y)

— 0, n— oo,

then Z, — E(Z,|Y,) 5 0.
We have proved that (i) < (3.3) < (ii). Let us show that (ii) implies that X;Xp/p E) 1.
Suppose (i)-(ii) hold. Then
1 ~ ~
— [x;(EEn + 1) ', — tr(eX, + 1) Lo
p

for any given € > 0. Hence, we can find {e,}52 ; that slowly tend to 0 and are such that

_ a 17 P
A, = ;[x;(snxn + 1) "%, — tr(en S0 + 1) 7] = 0.

By (i), us, converges weakly to u, a.s.. The support of y, is bounded. Hence, writing
enin =>r_ Aerel for some A\ = A\i(n) > 0 and orthonormal vectors ey, = ex(n) € R?,
k=1,...,p, we conclude that

1< P
];ZI()% > 6,) =0

k=1
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when §,, = Ke,, — 0 and K > 0 is large enough. In addition, we have

T

X, Xy, —
An_ o ; b = Un+v7u
where

1
D W (e )( _1>,
pk.,\kgan +1

1 1
- |x;—ek2—1)( —1).
pk X >0 A +1

We finish the proof by showing that U, L 0and Vi Eo. By the independence of in and
xp, we have E(|x, ex|*|X,) = e/ e = 1. Furthermore,

a A
E|U,| = =
U] = E[E(U|S,)] < 2B > 1 S 2 =o(l),
k>\k<6

a 2
E|V,| = E[E(|V,|[Z,)] < EEZI()% > 0p) = o(1).
k=1
Finally, we conclude that (x, x, —p)/p = A, — (Un + Vi) 5o. O

Proof of Corollary 2.3. If Lindeberg’s condition (1.2) holds, then pg converges weakly
to p, almost surely by Theorem 3.10 in [4]. Conversely, suppose the latter holds. Recall
the Gnedenko-Kolmogorov conditions for relative stability (see (A) and (B) in [13]):

if {Zpk }p>k>1 are non-negative independent random variables with EZ,;, — 0
uniformly in k as p — co and Y 7_, EZ,; = 1forall p > 1, then
P P
P
> Zpy =1 iff Y BZyI(Zys > ) — 0foralle > 0.
k=1 k=1

As E[x,) x,] = p and X} X,,/p P 1 by Theorem 2.1, the above conditions yield (1.2). O

4 Appendix

Proof of Lemma 3.1. If u,, converges weakly to i a.s., then

S(E,,un):/R tn(d)) /fdun%/fdu N H(d) =S(e, ) as.

Ate Ate

foralle > 0 as u,(Ry) = u(R4+) =1 a.s. and f = f(A) is a bounded continuous function
on R, where f(\) = (A+¢&)"1, A >0, and f(A\) =71, A <0.
Suppose now P(S(e, p,) = S(e, 1)) = 1 for all ¢ > 0. Then

P(S(e, pn) — S(e,p) foralle € QN (0,00)) = 1.
Taking into account that |S(e,v) — S(eg, )| < |e — eo|v(R4)/(ec0), €,60 > 0, we get
P(S(e, pn) — S(e,p) foralle > 0) = 1.

By Theorem 2.2 and Remark 2.3 in [23], the latter implies that i, — iz vaguely on the
compact set [0, oc] a.s., where, for a finite measure v on R, the measure 7 on [0, o0] is
defined by 7({cc}) = 0 and

v(B) = / v(d)) for all Borel sets B C R.
B A+1
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The function f,(A) = (A+1)/(A — z) with f(co) = 1 is continuous on [0, o0] for all z € C
with Im(z) > 0. Hence, the above vague convergence implies that

Lo (A _ _ p(dA
S(Zvﬂn):/ %:/ fzd,un_> fzdlff: /\( ) 28(27/14)
R, N % [0,00] [0,00] Ry N %
a.s. for any given z. By the standard Stieltjes continuity theorem (e.g., see Theorem B.9
on page 515 in [4]), u, — p vaguely a.s.. For probability measures, vague convergence
is equivalent to weak convergence. This finishes the proof of the lemma. O

Proof of Lemma 3.2. Proceeding as in [27], we now do some algebraic computations.
Let xp py1 = Xp,

n n+1
A, = nf]n = prkx;k, and B, =A4, + xpx;,r = Z xpkx;k.
k=1 —

For any given € > 0, the matrix B,, 4+ enl), is invertible and

n+1
p =tr((Bn +enly,)(B, + enl,) Z Xy (Bn + endy) ' xpp + entr(B, +enl,) !

k=1

Taking expectations and using the exchangeability of {x, }Z;l

p=(n+1)Ex, (B, +enl,) 'x, + enEtr(B, + enl,) " (4.1)

Recall the Sherman-Morrison formula:

ClzgzTC?

Ty=1 _ ~—1_
(Ctaz’)™ =0 1+z7C 1z

if z € RP, C € RP*P is positive definite, and C = C'T.

In particular, by a direct calculation,

O (€)= O o O <o,
2T (C+arT) e = hf;golix <L 4.2)
Since ||(An + enl,) || < (en)™!, the latter implies that
Etr(B,, +enl,) " = Etr(A, +enl,) ' +o0(1) and Ex (B, +enl,) 'x, = O(1).
Thus, by (4.1),
p/n=Ex) (B, +enl,) 'x, + cEtr(A, + enl,) "' + o(1). (4.3)

Recall that A, = n%,. Then tr(A, +enl,)~! = (p/n)S,(c) and, by (4.2),
_ x, (An +enl,)'x
* L4+ x] (An +enly)~1x,
x;(in +el,) %, /n
L+x,) (8, +el,)"1x,/n
p X;(En +elp)"'%,/p

==K = + o(1).
N1+ px) (B, +elp)7ix,/p

Ex, (B, +enl,) "

Combining the above relations, we obtain the desired result. O
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Proof of Lemma 3.3. Denote further C. = {z € C: Im(z) > 0} and let

st = [ 50

be the Stieltjes transform (on C.) of p,. It is well-known (e.g., see Remark 1.1 in [5])
that s = s(z, u,), z € C4, is a unique solution in C; of the equation

pzs®+ (p+2—1)s+1=0 or, equivalently, 1 — zs. (4.4)

:1+ps

Letting z —+ —¢ < 0 and using the dominated convergence theorem, we conclude that
s(z, pp) = S(e, p) and (4.4) becomes (3.6). O

Proof of Lemma 3.4. We have

Zn E(Z,|Y;) Zn — E(Z,|Yy)
I —E =E
1+ Z, 14+ E(Z,|Yn) 1+ Z,)1+E(Z,Y))
Zn - IE(ZTLD/U) (Zn - E(Znn/n))Q

(1 +E(Zn|Yn))? (14 Zn)(1 + E(Z,[Yn))?
(Zn - E(Zn|yn))2
(14 Z,) (1 + E(Z,|Y0))?

As a result, we see that
(ZTL - E(Z7L|Yn,))2 P

— 0.
(1+ Zn) (1 + E(Z,|Yn))?
Since EZ, is bounded and Z,, > 0 a.s., we conclude that Z,, and E(Z,|Y,,) are bounded
asymptotically in probability and Z,, — E(Z,|Y,) 5o. O
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