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Rejoinder∗

Garrit L. Page†§ and Fernando A. Quintana‡¶

1 Introduction

We would very much like to thank Marina Vannucci, the Editor of Bayesian Analysis, for
the opportunity of receiving additional feedback regarding our work on spatial product
partition models. The comments made by the discussants were insightful and thought
provoking. For this we would like to thank Robert Gramacy, Herbie Lee, Brian Reich,
Montserrat Fuentes, Carlo Gaetan, Simone Padoan and Igor Prünster for the time spent
on reading and critiquing the paper. Our rejoinder is organized according to specific
comments made by each discussant.

As a general preliminary comment we would like to emphasize that our main goal was
to develop a probability model for partitions that takes into account spatial dependence
when forming clusters. This, however, does not preclude the use of various types of
sampling models that may be used in tandem with the sPPM prior, including areal
and even count data, which may require the use of models beyond Gaussian processes.
Therefore, the sPPM prior generically introduces spatial dependence in a statistical
model and as a result complements additional spatial structure that may be considered
at other stages of a hierarchical model.

2 Gramacy and Lee

Gramacy and Lee (GL)’s comments focused on comparing methods that incorporate
regional partitions to produce flexible nonstationary spatial models to the sPPM. The
nonstationarity is induced by fitting independent “local” models (e.g., Gaussian pro-
cess) at each regional partition. Among the methods that were mentioned are local
approximate Gaussian processes and treed Gaussian processes (tgp). We would like to
thank GL for bringing these methods to our attention as they were not discussed in the
main article.

The tgp approach builds a partition by recursively splitting the space so that subset
boundaries are parallel to coordinate axes. Within partitions, tgp fits a Gaussian process
to the set of responses. A variation of this idea was considered in Kim et al. (2005) with
partitions defined in terms of Voronoi tessellations. The sPPM prior provides support
that in addition to these, includes subsets of potentially different shapes, according to
the spatial features encouraged by the definition of cohesion functions adopted. We
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could also envision combining the sPPM prior with flexible Gaussian processes for each
subset in the partition.

GL noted that fitting a tgp model to the first 600 observations of the SIMCE data
produced a lower mean squared prediction error (MSPE) on the last 615 SIMCE obser-
vations than the conditional model described in Section 4.2 of the main article except
for the Conditional Model with Prior Spatial Structure (CPS) 4. Our main concern with
the comparisons made in GL’s comments deals with the information used to partition
the feature space. According to our understanding, the entire feature space is parti-
tioned for tgp which in the example considered includes mother’s education in addition
to spatial coordinates. The conditional models of Section 4.2 based on the sPPM only
incorporate spatial coordinates in the partition model (i.e., mother’s education only
appears in the likelihood). To make comparisons more equitable the partition model of
sPPM would need to depend on mother’s education.

As mentioned in the last section of the main article making this extension is fairly
straightforward if the covariate dependent product partition model ideas of Müller et al.
(2011) are considered. All that is required is to multiply the cohesion function of the
sPPM by a nonnegative function g(·) that measures the similarity of the mother’s edu-
cation values (x’s) that are in x�

j = {xi : i ∈ Sj}. This would change equation (3.1) of
the main article to

Pr(ρ) ∝
kn∏
j=1

C(Sj , s
�
j )g(x

∗
j ).

g(·) is referred to as a similarity function and in principle can be any nonnegative
function that produces larger values when the x’s in x∗

j are more similar. That said,
here we opt to employ the so called double dipper similarity (the same object used to
construct C4, see Quintana et al. 2015) which has the following form

g(x∗
j ) =

∫ ∏
i∈Sj

q(xi|ξj)q(ξj |x∗
j )dξj .

Notice that this similarity has the functional form of a posterior predictive distribution,
but we are not assuming the x’s to be random. We are simply using a “likelihood”
and “posterior” to measure closeness of covariate values. For mother’s education we set
q(xi|ξj = (mj , v

2
j )) = N(xi|mj , v

2
j ). According to suggestions in Müller et al. (2011) we

set vj = 10s, where s is the empirical standard deviation of mother’s education scores.
Using a Gaussian “prior” for mj produces q(ξj = mj |x∗

j ) = N(mj |m∗
j , v

2∗
j ) where m∗

j

and v2∗j are the typical weighted average and variance found in the posterior distribution
using a Gaussian likelihood and Gaussian prior on the mean.

Finally, retaining the assumption of a global likelihood variance and slope, once
cluster labels are introduced the hierarchical specification of the CPS model becomes

yi|xi, μ
∗
j , σ

2, ci = j ∼ N(μ∗
j + βxi, σ

2) with σ ∼ UN(0, 10)

μ∗
j ∼ N(μ0, σ

2
0)
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μ0 ∼ N(0, 1002)

Pr(ρ) ∝
kn∏
j=1

C(Sj , s
�
j )g(x

∗
j ).

We will refer to this hierarchical model as sPPMx.

The MSPE values produced by fitting sPPMx to the SIMCE data treating the first
600 observations as training and the remaining 615 as testing are provided in Table 1.
We also list the tgp MSPE as reported by GL. It appears that Cohesions 1 and 4 of
sPPMx provide lower MSPE values, but tgp performs better relative to Cohesions 2
and 3. Expecting to outperform tgp for all cohesions would not be realistic as the
tgp incorporates very flexible cluster specific Gaussian process fits. As noted by GL
the partition used to split the SIMCE dataset into testing and training observations
influences the MSPE values. Therefore, we also considered 100 randomly generated
partitions of the of the data into testing and training observations and fit the models to
each in addition to fitting a tgp model using the default settings of the btgp function
found in the tgp package (Gramacy 2007 and Gramacy and Taddy 2010) for R (R Core
Team 2015). The average MSPE values are provided in the second column of Table 1.
Here tgp is more competitive, but Cohesions 3 and 4 still outperform tgp in terms of
MSPE.

Model MSPE MSPE

CSP1 361.1 346.1
CSP2 398.4 409.5
CSP3 371.3 345.7
CSP4 360.9 345.6
TGP 365.0 345.8

Table 1: MSPE values when fitting sPPM with 4 cohesions and tgp to the SIMCE
data. The data was divided into 600 training and 615 testing observations. The first
column corresponds to the first 600 observations being training. The second column
is the average MSPE value over 100 different partitions of the data into testing and
training observations.

The comment regarding the utility of nonstationary methods to model the SIMCE
dataset is warranted. We believe that the data set is useful to make comparisons between
different spatial partitioning methods, but upon further exploration, we noticed that
mother’s education tends to explain much of the of the spatial structure in SIMCE
math scores. Therefore, conditional on mother’s education level simple spatial models
for SIMCE math scores are very competitive. This motivated the inclusion of the scallops
data in the main article.

We finish our response to GL’s comments by noting that even though the sPPM does
produce competitive MSPE values relative to tgp and spatial stick breaking (SSB) of
Reich and Fuentes (2007), our main focus was to develop probabilistic partition models
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that incorporate spatial information in a principled way. That is, a model that places
higher probability on spatially “pleasing” clusters (only through the process of develop-
ing the sPPM did we become aware of some of the nice spatial properties that resulted
in fitting a model on top of the spatially referenced partition). Therefore, the comment
regarding interpreting the spatially referenced clusters is highly relevant. In the supple-
mentary file of the main article we provide figures that contain estimated partitions of
the schools (employing Dahl 2006’s least-squares method). The estimated partitions are
quite different for each of the cohesions, but all grouping generally followed the socio-
economic “boundaries” that are generally believed to influence school performance in
Santiago.

3 Reich and Fuentes

Reich and Fuentes (RF) point out many interesting connections and extensions of the
sPPM methodology. We start by noting that connected partitions, though desirable
in many applications, are hard to impose through the prior. Thus, our philosophi-
cal approach considers priors that encourage connectedness but that still allow depar-
tures from this with hopefully small probability. This introduces some local correlation.
Smoothness can be further controlled at a local and/or global level by conveniently
chosen sampling models, as exemplified in Section 3.3 of the main article. As further
discussed in Section 2 of this rejoinder our model fares well when compared to the treed
Gaussian processes of Gramacy and Lee (2008).

We agree with RF that the results in Table 4 of the simulation study were unexpected
and upon further investigation found a slight error in how the mean squared prediction
error (MSPE) was calculated. This motivated an improved simulation study that better
illustrates the utility of the methodology being developed. Since the sPPM model and
the spatial regression (SR) model accommodate spatial information very differently (the
former in the prior and the latter in the likelihood), using the SR model as a baseline
model is not appropriate. A more appropriate baseline model would be the product
partition model with no spatial information (PPM). However to illustrate sPPM’s abil-
ity to accommodate non-stationary spatial processes, we retain the SR model in the
simulation study. A table of new results is provided here in Tables 2 and 3.

First notice that in both tables the sPPM outperforms the PPM in terms of model
fit and prediction in all data generating scenarios and for all four cohesion functions.
Thus, including spatial information in the partition model is useful. Also, the sPPM
incorporates spatial information more efficiently than the SSB which is evidenced by
the better fits and out of sample predictions across all data generating scenarios. Next,
notice that in Table 3 where the data are generated from the SR model (i.e., there is
only one cluster) the SR model has the best performance in terms of MSPE which is
to be expected. The fact that the sPPM is somewhat competitive is surprising since
the SR model is not only the correct model, but also incorporates spatial information
more directly (i.e., through the likelihood) than the sPPM. The LPML values associated
with the SR model are quite sensitive to a few MCMC iterates that produce very small
likelihood values and hence produce low LPML values. We also consider a scenario
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M = 0.01 M = 0.1 M = 1.0

Error Cluster Method RAND LPML MSPE RAND LPML MSPE RAND LPML MSPE

Gaussian

Square

CPS C1α=1 0.71 -139.79 3.43 0.63 -139.15 4.65 0.54 -139.97 6.67
CPS C1α=2 0.45 -138.62 2.73 0.38 -138.97 3.44 0.30 -141.38 5.60
CPS C2 0.80 -147.81 2.00 0.78 -146.51 2.04 0.61 -146.52 2.14
CPS C3 0.97 -143.66 1.61 0.97 -144.01 1.70 0.97 -144.08 1.66
CPS C4 0.98 -142.78 1.46 0.95 -142.56 1.58 0.88 -141.60 1.62
PPM 0.70 -160.08 14.34 0.70 -157.50 14.29 0.66 -156.09 14.07
SSB 0.69 -160.05 14.90 0.68 -158.07 14.54 0.70 -153.53 14.39
SR - -130.43 1.81 - -98.20 1.78 - -126.15 1.68

Irregular

CPS C1α=1 0.73 -139.90 5.15 0.63 -138.28 5.55 0.53 -139.07 7.04
CPS C1α=2 0.56 -140.66 4.31 0.48 -139.82 4.56 0.40 -141.84 6.13
CPS C2 0.70 -155.44 5.38 0.71 -154.34 5.03 0.60 -151.24 5.73
CPS C3 0.92 -145.50 3.61 0.96 -143.02 3.25 0.95 -143.20 3.33
CPS C4 0.95 -143.57 3.27 0.94 -142.12 2.98 0.87 -140.88 3.02
PPM 0.69 -158.23 13.88 0.72 -156.13 14.41 0.68 -153.02 14.33
SSB 0.69 -171.93 9.41 0.73 -163.47 9.84 0.74 -150.15 10.10
SR - -637.28 4.14 - -611.88 3.78 - -540.67 3.64

Mixture

Square

CPS C1α=1 0.68 -150.21 3.87 0.61 -148.13 5.02 0.55 -150.11 6.90
CPS C1α=2 0.44 -150.52 3.08 0.36 -149.70 3.74 0.31 -153.48 5.95
CPS C2 0.77 -158.03 2.29 0.76 -156.56 2.17 0.60 -156.87 2.45
CPS C3 0.95 -156.12 1.99 0.96 -154.58 1.93 0.96 -156.96 1.96
CPS C4 0.96 -155.30 1.83 0.94 -152.70 1.77 0.85 -153.44 1.94
PPM 0.65 -169.13 14.64 0.67 -164.99 14.50 0.62 -162.98 14.13
SSB 0.67 -167.11 15.14 0.68 -168.31 15.01 0.68 -161.82 14.39
SR - -154.11 2.09 - -168.53 2.07 - -144.63 2.01

Irregular

CPS C1α=1 0.70 -151.62 5.57 0.60 -148.10 6.29 0.53 -150.62 7.14
CPS C1α=2 0.54 -152.50 4.45 0.47 -150.54 5.25 0.39 -154.60 6.39
CPS C2 0.69 -165.92 5.73 0.68 -162.02 6.08 0.58 -161.35 5.54
CPS C3 0.93 -156.49 3.65 0.92 -154.08 3.99 0.93 -154.90 3.59
CPS C4 0.95 -155.80 3.28 0.92 -152.59 3.66 0.85 -152.63 3.41
PPM 0.66 -166.89 14.57 0.68 -162.92 14.70 0.62 -161.30 14.39
SSB 0.66 -179.80 10.26 0.64 -179.93 10.29 0.68 -167.08 10.38
SR - -543.82 4.11 - -563.06 4.36 - -593.35 4.07

Table 2: Simulation study results when data are generated with four clusters.
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M = 0.01 M = 0.1 M = 1.0

Error Cluster Method LPML MSPE LPML MSPE LPML MSPE

Gaussian

Square

CPS C1α=1 -130.04 1.00 -128.05 1.03 -120.70 1.01
CPS C1α=2 -129.52 0.97 -123.90 1.00 -118.40 0.98
CPS C2 -140.56 1.01 -138.54 1.02 -134.69 1.00
CPS C3 -142.98 1.03 -142.58 1.05 -140.97 1.01
CPS C4 -139.64 1.00 -138.10 1.01 -133.87 0.98
PPM -144.10 1.05 -142.66 1.06 -137.02 1.04
SSB -140.49 1.04 -140.28 1.06 -133.81 1.04
SR -281.24 0.84 -293.87 0.85 -292.41 0.84

Irregular

CPS C1α=1 -129.04 0.98 -123.08 0.95 -116.23 1.01
CPS C1α=2 -126.81 0.94 -120.82 0.92 -113.70 0.97
CPS C2 -138.08 0.99 -136.48 0.95 -130.78 1.00
CPS C3 -140.68 1.00 -140.80 0.97 -139.06 1.01
CPS C4 -138.06 0.98 -137.10 0.95 -133.39 0.97
PPM -143.73 1.07 -141.41 1.01 -137.10 1.06
SSB -139.23 1.03 -138.50 1.00 -132.00 1.05
SR -203.34 0.76 -200.72 0.73 -199.90 0.77

Mixture

Square

CPS C1α=1 -142.22 1.29 -136.85 1.28 -133.89 1.26
CPS C1α=2 -142.55 1.25 -137.22 1.25 -133.32 1.23
CPS C2 -153.68 1.30 -149.58 1.28 -144.73 1.25
CPS C3 -157.41 1.31 -153.87 1.29 -152.11 1.26
CPS C4 -153.23 1.29 -148.70 1.27 -143.97 1.22
PPM -155.25 1.32 -151.11 1.32 -145.80 1.29
SSB -152.85 1.32 -152.05 1.31 -145.92 1.29
SR -476.61 1.13 -331.10 1.14 -387.94 1.10

Irregular

CPS C1α=1 -141.53 1.21 -136.98 1.23 -132.90 1.26
CPS C1α=2 -140.48 1.16 -136.10 1.19 -132.36 1.22
CPS C2 -150.64 1.21 -146.96 1.23 -144.37 1.25
CPS C3 -153.69 1.23 -152.58 1.25 -153.29 1.25
CPS C4 -151.16 1.20 -148.71 1.22 -147.97 1.22
PPM -153.81 1.29 -149.66 1.28 -147.42 1.32
SSB -151.71 1.27 -149.96 1.27 -146.85 1.31
SR -468.13 1.00 -383.73 1.03 -436.47 1.06

Table 3: Simulation study results when data are generated with one cluster.

where a small amount of nonstationarity is introduced in the spatial process via cluster

specific intercepts. In this case C3 and C4, which more readily admit nonstationary

spatial processes (see Figure 4 of the main article), produce superior MSPE values even

compared to the SR model. This is quite remarkable given that sPPM is only including

spatial information through the prior.
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The simulation study illustrates the benefits of assigning higher probability to spa-
tially connected partitions in a nonstationary setting (which C3 and C4 do). Since the
Bayesian Kriging predictor is a linear predictor of y which assigns higher weight to
“local” observations, Cohesion 1 which admits more spatially diverse partitions does
not fair as well. The benefit of Cohesion 1 is being able to accommodate stacked clus-
ters (i.e., multiple clusters in the same region) but this flexibility comes at a cost when
modeling nonstationary processes. Additionally we envisioned Cohesion 2 being more
useful in areal data modeling.

RF rightly point out the relevance of the number of clusters. In sPPM and related
models, the maximum number of imputable clusters is n, and the choice of cohesion
functions determines implicitly the prior distribution of kn. Analytical results are un-
fortunately very hard to derive under the type of spatially dependent definitions of
Cj(Sh, s

�
h), j = 1, . . . , 4 we tried. The prior simulation study summarized in Table 2

was partially designed to shed some light on the implied distributions for kn, precisely
because it is not clear how to interpret the M parameter. In this regard, RF suggested
a hierarchical model with a stick breaking prior, as in Dunson and Park (2008). With
a sufficiently large upper bound on the maximum possible number of clusters H, this
indeed allows setting up a gamma prior for the M parameter, which can then be eas-
ily handled. The same idea can be readily extended to more general classes of stick
breaking priors. One subtlety of this approach is that it treats spatial coordinates si as
random, which may have undesired effects in posterior predictive inference, as discussed
in Müller et al. (2011). RF also suggest the clever idea of modeling directly the number
of clusters under a local spatial stationary Gaussian processes, and adopting Voronoi
tessellations as in Kim et al. (2005), thus avoiding the complicated doubly intractable
problem that would result when putting a prior on M under any of the Cj functions we
explore. This idea is promising and certainly deserves to be further studied.

RF wonder about the use of sPPM when cluster-specific parameters are correlated
to cluster centers, discussing two particular forms to achieve such goal. Such strategy
can be certainly adapted to our proposed models. Although the particular details need
to be sorted out, one envisions similar properties to those described in Fuentes and
Reich (2013), with one big caveat: the sPPM does not involve random distributions,
and the prior concentrates on the discrete space of partitions. Adding correlation to
cluster-specific parameters indeed contributes to smoothing out the marginal sampling
process. In addition, it is of interest in such a case to study how this correlation affects
the partitions created.

4 Carlo Gaetan, Simone A. Padoan and Igor Prünster

Similar to RF, Gaetan, Padoan and Prünster (GPP) discuss interesting extensions to
the sPPM and detail some additional contexts in which spatially referenced clusters
might provide some benefit. This opens the door to many possible interesting models.
Our default basic cohesion function c(S) = M × Γ(|S|) gives rise to an exchangeable
partition probability function (EPPF) that is a special case of the general family of
Gibbs-type random partitions. GPP explain that under an exchangeable PPM, consid-
ering a cohesion function that depends only on the subset size leads to a class that
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coincides with the family of Gibbs-type partitions. Of course, as GPP note, our pro-
posed spatially dependent formulation has to go beyond the exchangeable format. But
it is possible to build spatially-dependent extensions using the same general principle.
For instance, taking c(S) = (1−σ)|S|−1 with σ < 1 and where (x)m =

∏m
j=1(x+ j− 1),

one may consider a modification of C2 in (4) as

C̃2(Sh, s
�
h) = (1− σ)|S|−1 ×

∏
i,j∈Sh

I {‖si − sj‖ < a} . (1)

Different variations are also possible. One issue that remains open in this context is
to study the distribution of the number of clusters for the resulting spatial-dependent
partition structure. In addition, incorporating a prior distribution on σ when using the
partition distribution induced by (1) is again a difficult problem, akin to the case of
assuming a prior on M . The simplified version suggested by GPP with σ restricted to
{−1, 0, 1/2} is a very interesting way of combining the various types of baseline prior
behavior for the number of clusters they describe.

GPP also introduced the idea of employing spatially referenced partition models in
the context of spatial extremes and also of models based on max-stable random fields.
We agree that this would be a promising avenue of research, including in particular the
study of the effect that the interplay between likelihood- and partition-based spatial
assumptions has on the observable data. GPP’s suggestions highlight the fact that
indeed the sky is the limit in modeling contexts once a model on ρ has been specified.

In closing this rejoinder, we observe that our proposal as well as many of the sugges-
tions pointed out by the discussants can be extended to a spatio-temporal setting. One
possible goal here would be to define a sequence of partitions that change over time,
where at each time, a covariate- and/or spatially-dependent prior partition distribution
is considered. A possible starting point is the dynamic generalized Pólya urn model
of Caron et al. (2008), where a sequence of urn models are related in time by way of
a deletion-reallocation procedure that guarantees marginal DP-style partitions at each
time.
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