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The goal of this paper is to integrate the notions of stochastic conditional
independence and variation conditional independence under a more general
notion of extended conditional independence. We show that under appropri-
ate assumptions the calculus that applies for the two cases separately (axioms
of a separoid) still applies for the extended case. These results provide a rig-
orous basis for a wide range of statistical concepts, including ancillarity and
sufficiency, and, in particular, the Decision Theoretic framework for statistical
causality, which uses the language and calculus of conditional independence
in order to express causal properties and make causal inferences.

1. Introduction. Conditional independence is a concept that has been widely
studied and used in Probability and Statistics. The idea of treating conditional in-
dependence as an abstract concept with its own calculus was introduced by Dawid
[12], who showed that many results and theorems concerning statistical concepts
such as ancillarity, sufficiency, causality, etc., are just applications of general prop-
erties of conditional independence—extended to encompass stochastic and non-
stochastic variables together. Properties of conditional independence have also
been investigated by Spohn [50] in connection with causality, and Pearl and Paz
[45], Pearl [44], Geiger et al. [34], Lauritzen et al. [42] in connection with graphi-
cal models. For further related theory, see [15–19, 27, 30].

In this paper, we consider two separate concepts of conditional independence:
stochastic conditional independence, which involves solely stochastic variables,
and variation conditional independence, which involves solely nonstochastic vari-
ables. We argue that, although these concepts are fundamentally different in terms
of their mathematical definitions, they share a common intuitive understanding as
“irrelevance” relations. This allows them to satisfy the same set of rules (axioms
of a separoid [18]). Armed with this insight, we unify the two notions into the
more general concept of extended conditional independence, and show that (under
suitable technical conditions) extended conditional independence also satisfies the
axioms of a separoid. This justifies the hitherto informal or implicit application of
these axioms in a number of previous works [11, 14, 20, 21, 24–26, 28, 29, 31,
37].
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To motivate the need for such a theory, we recall some fundamental con-
cepts of statistics. First, consider the concept of ancillarity [33]. Let X :=
(X1,X2, . . . ,Xn) be a random sample from a probability distribution with un-
known parameter θ , and let T = T (X) be a statistic. T is called an ancillary
statistic for θ if its distribution does not depend on the value of θ [2]. For example,
consider an independent and identically distributed sample (X1,X2, . . . ,Xn) from
the normal N (θ,1) distribution. Then the range T := max{X1,X2, . . . ,Xn} −
min{X1,X2, . . . ,Xn} is an ancillary statistic, because its distribution does not
change as θ changes. Ancillary statistics can be used to recover information lost by
reducing the data to the maximum likelihood estimate [36]. For our purposes, we
remark that the definition of ancillarity can be understood intuitively as requiring
the independence of the stochastic variable T from the nonstochastic variable θ .
We can express this property using the now standard (conditional) independence
notation introduced by Dawid [12]: T ⊥⊥ θ .

Another example is the notion of sufficiency [33]. With notation as above, T

is a sufficient statistic for θ if the conditional distribution of the full data X,
given the value of T (X), does not depend on the value of the parameter θ ([6],
page 272). For example, consider an independent and identically distributed sam-
ple X = (X1,X2, . . . ,Xn) from the Poisson distribution with mean θ . Then the
sample total T = X1 + X2 + · · · + Xn is a sufficient statistic for θ , since the dis-
tribution of X, given T = t , is multinomial M(t;1/n, . . . ,1/n) for all θ . Here,
we emphasize that sufficiency can be expressed intuitively as: “Given T , X is in-
dependent of θ”, where X and T are stochastic variables and θ is a nonstochastic
variable. Using conditional independence notation: X ⊥⊥ θ | T .

A further application of these ideas emerges from the area of causality: in partic-
ular, the Decision Theoretic framework of statistical causality [23]. In this frame-
work, the language and calculus of conditional independence are fundamental
for expressing and manipulating causal concepts. The Decision Theoretic frame-
work differentiates between observational and interventional regimes, using a non-
stochastic variable to index the regimes. Typically, we consider the regime under
which data can be collected (the observational regime) and a number of interven-
tional regimes that we wish to compare. Since we mostly have access to purely ob-
servational data, we focus on extracting information from the observational regime
relevant to the interventional regimes. Then the conditions that would justify trans-
fer of information across regimes can be expressed in the language of conditional
independence. To illustrate this, suppose we are interested in assessing the effect
of a binary treatment variable T on a disease outcome variable Y (e.g., recovery).
Denote

T =
{

0 for control treatment,

1 for active treatment.
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We consider three regimes, indexed by a nonstochastic variable �:

� =

⎧⎪⎪⎨
⎪⎪⎩
∅ denotes the observational regime,

0 denotes the interventional regime under control treatment,

1 denotes the interventional regime under active treatment.

In the simplest case, we might entertain the following (typically unrealistic) prop-
erty: for either treatment choice T = 0,1, the conditional distribution of the disease
variable Y , given the treatment variable T , is the same in the observational and
the corresponding interventional regime. We can express this property, using con-
ditional independence notation, as Y ⊥⊥ � | T . Such a property, when it can be
taken as valid, would allow us to use the observational regime to make causal infer-
ence directly. However, in most cases this assumption will not be easy to defend.
Consequently, we would like to explore alternative, more justifiable, conditions,
which would allow us to make causal inference. For such exploration, a calculus
of extended conditional independence becomes a necessity. Some abstract theory
underlying such a calculus was presented in [15]. The current paper develops and
extends that theory in a somewhat more concrete setting. Some further detail is
presented in [7].

The layout of the paper is as follows. In Section 2, we give the definition of a
separoid, an algebraic structure with five axioms, and show that stochastic con-
ditional independence and variation conditional independence both satisfy these
axioms. In Section 3, we rigorously define extended conditional independence, a
combined form of stochastic and variation conditional independence, and explore
conditions under which extended conditional independence satisfies the separoid
axioms, for the most part restricting to cases where the left-most term in an ex-
tended conditional independence relation is purely stochastic. In Section 4, we
take a Bayesian approach, which allows us to deduce the axioms when the regime
space is discrete. Next, using a more direct measure-theoretic approach, we show
in Section 5 that the axioms hold when all the stochastic variables are discrete,
and likewise in the presence of a dominating regime. In Section 6, we introduce
a slight weakening of extended conditional independence, for which the axioms
apply without further conditions. Next, Section 7 attempts to extend the analysis
to cases where nonstochastic variables appear in the left-most term. Our analysis
is put to use in Section 8, which gives some examples of its applications in causal
inference, illustrating how extended conditional independence, equipped with its
separoid calculus, provides a powerful tool in the area. We conclude in Section 9
with some comments on the usefulness of combining the theory of extended con-
ditional independence with the technology of graphical models.

2. Separoids. In this section, we describe the algebraic structure called a sep-
aroid [18]: a three-place relation on a join semilattice, subject to five axioms.
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Let V be a set with elements denoted by x, y, . . . , and ≤ a quasiorder (a reflex-
ive and transitive binary relation) on V . For x, y ∈ V , if x ≤ y and y ≤ x, we say
that x and y are equivalent and write x ≈ y. For a subset A ⊆ V , z is a join of A if
a ≤ z for all a ∈ A, and it is a minimal element of V with that property; we write
z = ∨

A; similarly, z is a meet of A (z = ∧
A) if z ≤ a for all a ∈ A, and it is a

maximal element of V with that property. We write x ∨ y for
∨{x, y}, and x ∧ y

for
∧{x, y}.

Clearly, if z and w are both joins (resp., meets) of A, then z ≈ w. We call (V ,≤)

(or, when ≤ is understood, just V ) a join semilattice if there exists a join for any
nonempty finite subset; similarly, (V ,≤) is a meet semilattice if there exists a meet
for any nonempty finite subset. When (V ,≤) is both a meet and join semilattice,
it is a lattice.

DEFINITION 2.1 (Separoid). Given a ternary relation · ⊥⊥ · | · on V , we call
⊥⊥ a separoid (on (V ,≤)), or the triple (V ,≤, ⊥⊥) a separoid, if:

S1: (V ,≤) is a join semilattice

and

P1: x ⊥⊥ y | z ⇒ y ⊥⊥ x | z
P2: x ⊥⊥ y | y
P3: x ⊥⊥ y | z and w ≤ y ⇒ x ⊥⊥ w | z
P4: x ⊥⊥ y | z and w ≤ y ⇒ x ⊥⊥ y | (z ∨ w)

P5: x ⊥⊥ y | z and x ⊥⊥ w | (y ∨ z) ⇒ x ⊥⊥ (y ∨ w) | z.

The following lemma shows that, in P4 and P5, the choice of join does not
change the property.

LEMMA 2.1. Let (V ,≤, ⊥⊥) be a separoid and xi, yi, zi ∈ V (i = 1,2) with
x1 ≈ x2, y1 ≈ y2 and z1 ≈ z2. If x1 ⊥⊥ y1 | z1, then x2 ⊥⊥ y2 | z2.

PROOF. See Corollary 1.2 in [18]. �

DEFINITION 2.2 (Strong separoid). We say that the triple (V ,≤, ⊥⊥) is a
strong separoid if we strengthen S1 in Definition 2.1 to

S1′: (V ,≤) is a lattice

and in addition to P1–P5 we require

P6: if z ≤ y and w ≤ y, then x ⊥⊥ y | z and x ⊥⊥ y | w ⇒ x ⊥⊥ y | (z ∧ w).
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2.1. Stochastic conditional independence as a separoid. The concept of
stochastic conditional independence is a familiar example of a separoid (though
not, without further conditions, a strong separoid [13]).

Let (�,A), (F,F) be measurable spaces, and Y : � → F a random variable.
We denote by σ(Y ) the σ -algebra generated by Y , that is, {Y−1(C) : C ∈ F}. We
write Y : (�,A) → (F,F) to imply that Y is measurable with respect to the σ -
algebras A and F ; equivalently, σ(Y ) ⊆ A.

LEMMA 2.2. Let Y : (�,σ(Y )) → (FY ,FY ) and Z : (�,σ(Z)) → (FZ,FZ)

be surjective random variables. Suppose that FY contains all singleton sets {y}.
Then the following are equivalent:

(i) σ(Y ) ⊆ σ(Z).
(ii) There exists measurable f : (FZ,FZ) → (FY ,FY ) such that Y = f (Z).

PROOF. See the online supplementary material [8]. �

In the sequel, whenever we invoke Lemma 2.2 we shall implicitly assume
that its conditions are satisfied. In most of our applications of Lemma 2.2, both
(FY ,FY ) and (FZ,FZ) will be the real or extended real line equipped with its
Borel σ -algebra B.

We recall Kolmogorov’s definition of conditional expectation ([4], page 445).

DEFINITION 2.3 (Conditional expectation). Let X be an integrable real-
valued random variable defined on a probability space (�,A,P) and let G ⊆ A
be a σ -algebra. A random variable Y is called (a version of) the conditional expec-
tation of X given G, and we write Y = E(X | G), if

(i) Y is G-measurable; and
(ii) Y is integrable and E(X1A) = E(Y1A) for all A ∈ G.

When G = σ(Z), we may write E(X | Z) for E(X | G).
It can be shown that E(X | G) exists, and any two versions of it are almost surely

equal ([4], page 445). In particular, if X is G-measurable then E(X | G) = X a.s.
Thus for any integrable function f (X), E{f (X) | X} = f (X) a.s. Also by (ii) for
A = �, E(X) = E{E(X | G)}. We will use this in the form E(X) = E{E(X | Y)}.

DEFINITION 2.4 (Conditional independence). Let X,Y,Z be random vari-
ables on (�,A,P). We say that X is (conditionally) independent of Y given Z

(with respect to P) and write X ⊥⊥s Y | Z [P], or just X ⊥⊥s Y | Z when P is
understood, if:

For all AX ∈ σ(X), E(1AX
| Y,Z) = E(1AX

| Z) a.s. [P].
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We refer to the above property as stochastic conditional independence; we use
the subscript s under ⊥⊥ ( ⊥⊥s ) to emphasize that we refer to this stochastic defi-
nition.

To prove the separoid axioms, we need equivalent forms of the above definition.

PROPOSITION 2.3. Let X,Y,Z be random variables on (�,A,P). Then the
following are equivalent:

(i) X ⊥⊥s Y | Z.
(ii) For all real, bounded and measurable functions f (X), E{f (X) | Y,Z}=

E{f (X) | Z} a.s.
(iii) For all real, bounded and measurable functions f (X), g(Y ),

E{f (X)g(Y ) | Z} = E{f (X) | Z}E{g(Y ) | Z} a.s.
(iv) For all AX ∈ σ(X) and all AY ∈ σ(Y ), E(1AX∩AY

| Z) = E(1AX
|

Z)E(1AY
| Z) a.s.

PROOF. See [5], page 42. �

Henceforth, we write X � Y when X = f (Y ) for some measurable function f .

THEOREM 2.4 (Axioms of conditional independence). Let X,Y,Z,W be ran-
dom variables on (�,A,P). Then the following properties hold (the descriptive
terms are those assigned by Pearl [43]):

P1s (Symmetry): X ⊥⊥s Y | Z ⇒ Y ⊥⊥s X | Z.
P2s : X ⊥⊥s Y | Y .
P3s (Decomposition): X ⊥⊥s Y | Z and W � Y ⇒ X ⊥⊥s W | Z.
P4s (Weak Union): X ⊥⊥s Y | Z and W � Y ⇒ X ⊥⊥s Y | (W,Z).
P5s (Contraction): X ⊥⊥s Y | Z and X ⊥⊥s W | (Y,Z) ⇒ X ⊥⊥s (Y,W) | Z.

PROOF. See the online supplementary material [8]. �

Theorem 2.4 shows that stochastic conditional independence satisfies the ax-
ioms of a separoid. Denoting by V the set of all random variables defined on the
probability space (�,A,P) and equipping V with the quasiorder �, (V ,�) be-
comes a join semilattice and the triple (V ,�, ⊥⊥) is then a separoid.

Using stochastic conditional independence in an axiomatic way, we can me-
chanically prove many useful conditional independence results.

EXAMPLE 2.1. Let X,Y,Z be random variables on (�,A,P). Then
X ⊥⊥s Y | Z implies that (X,Z) ⊥⊥s Y | Z.

PROOF. Applying P1s to X ⊥⊥s Y | Z, we obtain

(2.1) Y ⊥⊥s X | Z.
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By P2s , we obtain

(2.2) Y ⊥⊥s (X,Z) | (X,Z).

Applying P3s to (2.2), we obtain

(2.3) Y ⊥⊥s Z | (X,Z)

and applying P5s to (2.1) and (2.3), we obtain

(2.4) Y ⊥⊥s (X,Z) | Z.

The result follows by applying P1s to (2.4). �

EXAMPLE 2.2 (Nearest Neighbour Property of a Markov Chain). Let X1, X2,
X3, X4, X5 be random variables on (�,A,P) and suppose that:

(i) X3 ⊥⊥s X1 | X2,
(ii) X4 ⊥⊥s (X1,X2) | X3,

(iii) X5 ⊥⊥s (X1,X2,X3) | X4.

Then X3 ⊥⊥s (X1,X5) | (X2,X4).

PROOF. See [12]. �

2.2. Variation conditional independence as a separoid. Variation conditional
independence, which concerns solely nonstochastic variables, is another, indeed
much simpler, example of a separoid.

Let S be a set with elements denoted by, for example, σ , and let V be the set
of all functions with domain S and arbitrary range space. The elements of V will
be denoted by, for example, X,Y, . . . . We do not require any additional properties
or structure such as a probability measure, measurability, etc. We write X � Y to
denote that X is a function of Y , that is, Y(σ1) = Y(σ2) ⇒ X(σ1) = X(σ2). The
equivalence classes for this quasiorder correspond to partitions of S . Then (V ,�)

forms a join semilattice, with join X ∨ Y the function (X,Y ) ∈ V .
The (unconditional) image of Y is R(Y ) := Y(S) = {Y(σ) : σ ∈ S}. The condi-

tional image of X, given Y = y is R(X | Y = y) := {X(σ) : σ ∈ S, Y (σ ) = y}. For
simplicity of notation, we will sometimes write R(X | y) instead of R(X | Y = y),
and R(X | Y) for the function R(X | Y = ·).

DEFINITION 2.5. We say that X is variation (conditionally) independent
of Y given Z (on �) and write X ⊥⊥v Y | Z [S] (or, if S is understood, just
X ⊥⊥v Y | Z) if:

for any (y, z) ∈ R(Y,Z), R(X | y, z) = R(X | z).
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We use the subscript v under ⊥⊥ ( ⊥⊥v) to emphasize that we refer to the above
nonstochastic definition. In parallel with the stochastic case, we have equivalent
forms of the above definition.

PROPOSITION 2.5. The following are equivalent:

(i) X ⊥⊥v Y | Z.
(ii) The function R(X | Y,Z) of (Y,Z) is a function of Z alone.

(iii) For any z ∈ R(Z), R(X,Y | z) = R(X | z) × R(Y | z).

PROOF. See the online supplementary material [8]. �

PROPOSITION 2.6. The following are equivalent:

(i) W � Y .
(ii) there exists f : R(Y ) → R(W) such that W = f (Y ).

PROOF. See the online supplementary material [8]. �

THEOREM 2.7 (Axioms of variation independence). Let X,Y,Z,W be func-
tions on S . Then the following properties hold:

P1v: X ⊥⊥v Y | Z ⇒ Y ⊥⊥v X | Z.
P2v: X ⊥⊥v Y | Y .
P3v: X ⊥⊥v Y | Z and W � Y ⇒ X ⊥⊥v W | Z.
P4v: X ⊥⊥v Y | Z and W � Y ⇒ X ⊥⊥v Y | (W,Z).
P5v: X ⊥⊥v Y | Z and X ⊥⊥v W | (Y,Z) ⇒ X ⊥⊥v Y | (W,Z).

PROOF. See the online supplementary material [8]. �

The above theorem shows that variation independence satisfies the axioms of
a separoid. Indeed—and in contrast with stochastic conditional independence—
variation independence also satisfies the axioms of a strong separoid [19].

3. Extended conditional independence. There are numerous contexts in
which it would appear fruitful to merge the concepts of stochastic conditional in-
dependence and variation conditional independence, allowing both stochastic and
nonstochastic variables to appear together.

EXAMPLE 3.1 (Inference in the presence of nuisance parameters [10, 14]).
Let X have a distribution governed by a parameter �, and let T be a function
of X. We call T a cut in this model [1] if there exists a pair of parameters �,�

(functions of �), such that:

(i) The marginal distribution of T depends only on �
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(ii) The conditional distributions of X, given T , depend only on �

(iii) � and � are variation independent.

In this case, T has been termed S-sufficient for �, and, it has been suggested, infer-
ence about � might reasonably be based on the marginal distribution of T , which
by (i) does only involve �. The justification for ignoring any information obtain-
able from the neglected aspect of the model, namely the conditional distribution of
X given T , is based on the argument that, by (ii), this is directly informative only
about �, and so by (iii) supplies no information “logically relevant” to �.

The above definition could be rephrased, intuitively, in terms of conditional
independence:

(i) T ⊥⊥ � | �
(ii) X ⊥⊥ � | (T ,�)

(iii) � ⊥⊥ �.

Now a Bayesian, who regards (�,�) as random, could take ⊥⊥ = ⊥⊥s , so
interpreting (i) and (ii) straightforwardly as stochastic independence properties.
Such an interpretation for (iii) would however require a priori independence of �

and �, which is a much stronger property than variation independence. When this
can be assumed, we can apply the separoid properties of stochastic independence
to derive

(3.1) � ⊥⊥ (X,�) | T .

This in turn is equivalent to

� ⊥⊥ X | T ,(3.2)

� ⊥⊥ � | X.(3.3)

With this stochastic interpretation, (3.2) affirms that the Bayesian’s posterior distri-
bution of �, given the full data X, is the same as that based on T alone; while (3.3)
shows that the prior independence of � and � is preserved in their joint posterior
distribution.

What though of the non-Bayesian, who wishes to derive the consequences of
(i)–(iii) without assigning stochastic status to the parameters? This requires an ex-
tended interpretation of conditional independence. We shall clarify and rigorise
such an extended interpretation of the statements (i) and (ii) in Definition 3.2 be-
low.

Statement (iii) is now to be interpreted as variation independence. Theory ad-
dressing the combination of this with the other statements, and their interpretation,
will be introduced in Section 7: this will give meaning to, and justify, the con-
clusions (3.1) and (3.3). Conclusion (3.2), however, which might be interpreted,
informally, as justifying the basing of any inference about � on T alone, is not
justified by our analysis; indeed its very interpretation remains in need of further
clarification.
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There is a basic intuitive similarity between the notions of stochastic condi-
tional independence and variation independence. A statement like X ⊥⊥s Y | Z
for stochastic variables, or X ⊥⊥v Y | Z for nonstochastic variables, reflects our
informal understanding that, having already obtained information about Z, further
information about Y will not affect the uncertainty (suitably understood) about X.
Building on this intuitive interpretation, one can extend X ⊥⊥s Y | Z to the case
that one or both of Y and Z involve nonstochastic variables, such as parameters or
regime indicators. Such an extended version of conditional independence would
embrace the notions of ancillarity, sufficiency, causality, etc.

The first authors to consider sufficiency in a general abstract setting were Hal-
mos and Savage [39]. Removing any assumption such as the existence of a proba-
bility mass function or a density with respect to a common measure, sufficiency is
defined as follows.

DEFINITION 3.1 (Sufficiency). Consider a a random variable X, and a family
P = {Pθ } of probability distributions for X, indexed by θ ∈ �. A statistic T =
T (X) is sufficient for P , or for θ , if for any real, bounded and measurable function
h, there exists a function w(T ) such that, for any θ ∈ �,

Eθ

{
h(X) | T } = w(T ) a.s. [Pθ ].

Interpreting the definition carefully, we require that, for any real, bounded and
measurable h(X), there exist a single function w(T ) that serves as a version of the
conditional expectation Eθ {h(X) | T } under Pθ , simultaneously for all θ ∈ �.

In the Decision Theoretic framework, we consider, instead of the parameter
space �, a space S of different regimes, typically σ ,1 under which data can be ob-
served. We thus consider a family P = {Pσ : σ ∈ S} of probability measures over a
suitable space (�,A). A stochastic variable, such as X : (�,σ(X)) → (R,B), can
have different distributions under the different regimes σ ∈ S . We write Eσ (X | Y)

to denote a version of the conditional expectation E(X | Y) under regime σ : this
is defined a.s. [Pσ ]. We also consider nonstochastic variables, functions defined
on S , which we term decision variables. Decision variables give us full or partial
information about which regime is operating. For the rest of the paper, we denote
by � the identity function on S .

We aim to extend Definition 3.1 to express a statement like X ⊥⊥ (Y,�) |
(Z,�), where X,Y,Z are stochastic variables and �,� decision variables. In
order to formalise such a statement, we first describe what we would like a con-
ditional independence statement like X ⊥⊥ � | � to reflect intuitively: that the
distribution of X, given the information carried by (�,�) jointly about which

1The regime indicator σ is not to be confused with the σ -algebra generated by X, denoted by
σ(X).
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regime is operating, is in fact fully determined by the value of � alone. How-
ever, in order for this to make sense, we must assume that � and � together do
fully determine the regime σ ∈ S operating, and thus, the distribution of X in this
regime. Formally, we require that the function (�,�) defined on S be an injection:
if �(σ1) = �(σ2) and �(σ1) = �(σ2), then σ1 = σ2. (Note that, unless explicitly
stated, we do not require that � and � be variation independent). In this case, we
say that � and � are complementary (on S), or that � is complementary to �

(on S). The property of complementarity extends in an obvious way to more than
two decision variables.

This leads to the following definition.

DEFINITION 3.2. Let X, Y and Z be stochastic variables, and let � and � be
complementary decision variables. We say that X is (conditionally) independent
of (Y,�) given (Z,�) and write X ⊥⊥ (Y,�) | (Z,�) if, for all φ ∈ �(S) and
all real, bounded and measurable functions h, there exists a function wφ(Z) such
that, for all σ ∈ �−1(φ),

(3.4) Eσ

{
h(X) | Y,Z

} = wφ(Z) a.s. [Pσ ].

We will refer to this definition of conditional independence as extended con-
ditional independence. Note that the only important property of � in the above
definition is that it be complementary to �; beyond this, the actual form of � be-
comes irrelevant (we could even take � = �). Henceforth, we will write down a
conditional independence statement involving decision variables only when those
variables are complementary.

REMARK 3.1. Assume that X ⊥⊥ (Y,�) | (Z,�) and consider wφ(Z) as in
Definition 3.2. Then

Eσ

{
h(X) | Z} = Eσ

[
Eσ

{
h(X) | Y,Z

} | Z]
a.s. Pσ

= Eσ

{
wφ(Z) | Z}

a.s. Pσ

= wφ(Z) a.s. Pσ .

Thus, wφ(Z) also serves as a version of Eσ {h(X) | Z} for all σ ∈ �−1(φ).

The following example shows that, even when (3.4) holds, we cannot use just
any version of the conditional expectation in one regime to serve as a version
of the conditional expectation in another regime. This is because two versions of
the conditional expectation can differ on a set of probability zero, but a set of
probability zero in one regime could have positive probability in another.

EXAMPLE 3.2. Let the regime space be S = {σ0, σ1}, let binary variable T

represent the treatment taken (where T = 0 denotes placebo and T = 1 denotes
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active treatment), and let X be an outcome of interest. Regime σt (t = 0,1) repre-
sents the interventional regime under treatment t : in particular, Pσj

(T = j) = 1.
We consider the situation where the treatment is ineffective, so that X has the

same distribution in both regimes. We then have X ⊥⊥ � | T —since, for any func-
tion h(X), we can take as Eσ {h(X) | T }, for both σ0 and σ1, the (constant) common
expectation of h(X) in both regimes.2

In particular, suppose X has expectation 1 in both regimes. Then the func-
tion w(T ) ≡ 1 is a version both of Eσ0{h(X) | T } and of Eσ1{h(X) | T }. That
is, Eσ0(X | T ) = 1 almost surely [Pσ0], and Eσ1(X | T ) = 1 almost surely [Pσ1].

Now consider the functions:

k0(t) = 1 − t and k1(t) = t.

We can see that k0(T ) = w(T ) almost surely [Pσ0], so that k0(T ) is a version
of Eσ0{h(X) | T }; similarly, k1(T ) is a version of Eσ1{h(X) | T }. However, almost
surely, under both Pσ0 and Pσ1 , k0(T ) �= k1(T ). Hence, neither of these variables
can replace w(T ) in supplying a version of Eσ (X | T ) simultaneously in both
regimes.

We now introduce some equivalent versions of Definition 3.2.

PROPOSITION 3.1. Let X,Y,Z be stochastic variables and let �,� be com-
plementary decision variables. Then the following are equivalent:

(i) X ⊥⊥ (Y,�) | (Z,�).
(ii) For all φ ∈ �(S) and all real, bounded and measurable function h1, there

exists a function wφ(Z) such that, for all σ ∈ �−1(φ) and all real, bounded and
measurable functions h2,

Eσ

{
h1(X)h2(Y ) | Z} = wφ(Z)Eσ

{
h2(Y ) | Z}

a.s. [Pσ ].

(iii) For all φ ∈ �(S) and all AX ∈ σ(X), there exists a function wφ(Z) such
that, for all σ ∈ �−1(φ) and all AY ∈ σ(Y ),

Eσ (1AX∩AY
| Z) = wφ(Z)Eσ (1AY

| Z) a.s. [Pσ ].

(iv) For all φ ∈ �(S) and all AX ∈ σ(X), there exists a function wφ(Z) such
that, for all σ ∈ �−1(φ),

(3.5) Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ].

PROOF. See the online supplementary material [8]. �

Using Proposition 3.1, we can obtain further properties of extended conditional
independence. For example, we can show that Definition 3.2 can be equivalently

2Indeed, this encapsulates the still stronger property X ⊥⊥ (�,T ).
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expressed in two simpler statements of extended conditional independence, or that
when all the decision variables are confined to the right-most term symmetry does
follow. In Section 3.1, we will show still more properties.

PROPOSITION 3.2. Let X, Y , Z be stochastic variables and �, � comple-
mentary decision variables. Then the following are equivalent:

(i) X ⊥⊥ (Y,�) | (Z,�)

(ii) X ⊥⊥ Y | (Z,�,�) and X ⊥⊥ � | (Z,�).

PROOF. (i) ⇒ (ii). Since X ⊥⊥ (Y,�) | (Z,�), for all φ ∈ �(S) and AX ∈
σ(X), there exists wφ(Z) such that for all σ ∈ �−1(φ),

Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ]

which proves that X ⊥⊥ Y | (Z,�,�). Also, by Remark 3.1,

Eσ (1AX
| Z) = wφ(Z) a.s. [Pσ ]

which proves that X ⊥⊥ � | (Z,�).
(ii) ⇒ (i). Since X ⊥⊥ Y | (Z,�,�), for all σ ∈ S and AX ∈ σ(X), there exists

wσ (Z) such that

(3.6) Eσ (1AX
| Y,Z) = wσ (Z) a.s. [Pσ ].

By Remark 3.1,

(3.7) Eσ (1AX
| Z) = wσ (Z) a.s. [Pσ ].

Since X ⊥⊥ � | (Z,�), for all φ ∈ �(S) and AX ∈ σ(X) there exists wφ(Z) such
that, for all σ ∈ �−1(φ),

(3.8) Eσ (1AX
| Z) = wφ(Z) a.s. [Pσ ].

By (3.7) and (3.8),

wσ (Z) = wφ(Z) a.s. [Pσ ].

Thus, by (3.6),

Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ],

which proves that X ⊥⊥ (Y,�) | (Z,�). �

PROPOSITION 3.3. Let X, Y , Z be stochastic variables, and � the regime in-
dicator. Then X ⊥⊥ Y | (Z,�) if and only if X ⊥⊥s Y | Z under Pσ for all σ ∈ S .

PROOF. Follows from Proposition 2.3 and Proposition 3.1. �

COROLLARY 3.4. X ⊥⊥ Y | (Z,�) ⇒ Y ⊥⊥ X | (Z,�).
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3.1. Some separoid properties. Comparing Definition 3.2 for extended condi-
tional independence with Definition 2.4 for stochastic conditional independence,
we observe a close technical, as well as intuitive, similarity. This suggests that
these two concepts should have similar properties, and motivates the conjecture
that the separoid axioms of conditional independence will continue to hold for the
extended concept. In this section, we show that this is indeed so, in complete gen-
erality, for a subset of the axioms. However, in order to extend this to other axioms
we need to impose additional conditions; this we shall develop in later sections.

One important difference between extended conditional independence and
stochastic conditional independence concerns the symmetry axiom P1. Whereas
symmetry holds universally for stochastic conditional independence, its appli-
cation to extended conditional independence is constrained by the fact that, for
Definition 3.2 even to make sense, the first term x in an extended conditional in-
dependence relation of the form x ⊥⊥ y | z must be fully stochastic, whereas the
second term y can contain a mixture of stochastic and nonstochastic variables—in
which case it would make no sense to interchange x and y. This restricted symme-
try also means that each of the separoid axioms P2–P5 has a possibly nonequiva-
lent “mirror image” version, obtained by interchanging the first and second terms
in each relation. Yet another restriction is that the decision variables featuring in
any extended conditional independence assertion must be complementary.

The following theorem demonstrates certain specific versions of the separoid
axioms.

THEOREM 3.5. Let X, Y , Z, W be stochastic variables, �, � complementary
decision variables, and � the regime indicator. Then the following properties hold:

P1′: X ⊥⊥ Y | (Z,�) ⇒ Y ⊥⊥ X | (Z,�).
P2′: X ⊥⊥ (Y,�) | (Y,�).
P3′: X ⊥⊥ (Y,�) | (Z,�) and W � Y ⇒ X ⊥⊥ (W,�) | (Z,�).
P4′: X ⊥⊥ (Y,�) | (Z,�) and W � Y ⇒ X ⊥⊥ (Y,�) | (Z,W,�).
P4a′: X ⊥⊥ (Y,�) | (Z,�) and 	 � � ⇒ X ⊥⊥ (Y,�) | (Z,�,	).
P5′: X ⊥⊥ (Y,�) | (Z,�) and X ⊥⊥ W | (Y,Z,�,�) ⇒ X ⊥⊥ (Y,W,�) |

(Z,�).

PROOF.

P1′. Proved in Proposition 3.3.
P2′. Let σ ∈ S and AX ∈ σ(X). Then for all AY ∈ σ(Y ),

Eσ (1AX∩AY
| Y) = 1AY

Eσ (1AX
| Y) a.s. [Pσ ]

which completes the proof.
P3′. Let φ ∈ �(S) and AX ∈ σ(X). Since X ⊥⊥ (Y,�) | (Z,�), there exists

wφ(Z) such that, for all σ ∈ �−1(φ),

Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ].
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Since W � Y , it follows from Lemma 2.2 that σ(W) ⊆ σ(Y ), and thus
σ(W,Z) ⊆ σ(Y,Z). Then

Eσ (1AX
| W,Z) = Eσ

{
Eσ (1AX

| Y,Z) | W,Z
}

a.s. [Pσ ]

= Eσ

{
wφ(Z) | W,Z

}
a.s. [Pσ ]

= wφ(Z) a.s. [Pσ ]

which completes the proof.
P4′. Let φ ∈ �(S) and AX ∈ σ(X). Since X ⊥⊥ (Y,�) | (Z,�), there exists

wφ(Z) such that, for all σ ∈ �−1(φ),

Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ].

Since W � Y , it follows from Lemma 2.2 that σ(W) ⊆ σ(Y ), and thus
σ(Y,Z,W) = σ(Y,Z). Then

Eσ (1AX
| Y,Z,W) = Eσ (1AX

| Y,Z) a.s. [Pσ ]

= wφ(Z) a.s. [Pσ ]

which completes the proof.
P4a′. Follows readily from Definition 3.2.
P5′. Let φ ∈ �(S) and AX ∈ σ(X). Since X ⊥⊥ (Y,�) | (Z,�), there exists

wφ(Z) such that, for all σ ∈ �−1(φ),

Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ].

Since W � Y , it follows from Lemma 2.2 that σ(W) ⊆ σ(Y ), and thus
σ(Y,W,Z) = σ(Y,Z). Then

Eσ (1AX
| Y,W,Z) = Eσ (1AX

| Y,Z) a.s. [Pσ ]

= wφ(Z) a.s. [Pσ ]

which completes the proof. �

Lack of symmetry introduces some complications as the mirror image variants
of axioms P3′, P4′ and P5′ do not automatically follow.

Consider the following statements, which mirror P3′–P5′:

P3′′: X ⊥⊥ (Y,�) | (Z,�) and W � X ⇒ W ⊥⊥ (Y,�) | (Z,�).
P4′′: X ⊥⊥ (Y,�) | (Z,�) and W � X ⇒ X ⊥⊥ (Y,�) | (Z,W,�).
P5′′: X ⊥⊥ (Y,�) | (Z,�) and W ⊥⊥ (Y,�) | (X,Z,�) ⇒ (X,W) ⊥⊥ (Y,�) |

(Z,�).

P3′′ follows straightforwardly, and P5′′ will be proved to hold in Proposition 3.7
below. However, P4′′ presents some difficulty.
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LEMMA 3.6. Let X, Y , Z, W be stochastic variables and �, � be comple-
mentary decision variables. Then

X ⊥⊥ (Y,�) | (Z,�) and W � X ⇒ (W,Z) ⊥⊥ (Y,�) | (Z,�).

PROOF. Since X ⊥⊥ (Y,�) | (Z,�), for all φ ∈ �(S) and all AX ∈ σ(X)

there exists wφ(Z) such that, for all σ ∈ �−1(φ),

(3.9) Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ].

To prove that (W,Z) ⊥⊥ (Y,�) | (Z,�), let φ ∈ �(S) and AW,Z ∈ σ(W,Z). We
will show that there exists aφ(Z) such that, for all σ ∈ �−1(φ),

(3.10) Eσ (1AW,Z
| Y,Z) = aφ(Z) a.s. [Pσ ].

Consider

D = {
AW,Z ∈ σ(W,Z) : there exists aφ(Z) such that (3.10) holds

}
and


 = {
AW,Z ∈ σ(W,Z) : AW,Z = AW ∩ AZ for AW ∈ σ(W) and AZ ∈ σ(Z)

}
.

Then σ(
) = σ(W,Z) ([46], page 73). We will show that D is a d-system that
contains 
. We can then apply Dynkin’s lemma ([4], page 42), to conclude that D
contains σ(
) = σ(W,Z).

To show that D contains 
, let AW,Z = AW ∩ AZ with AW ∈ σ(W) and AZ ∈
σ(Z). Then

Eσ (1AW
1AZ

| Y,Z) = 1AZ
Eσ (1AW

| Y,Z) a.s. [Pσ ]

= 1AZ
wφ(Z) a.s. [Pσ ] by (3.9).

Now define aφ(Z) := 1AZ
wφ(Z) and we are done.

To show that D is a d-system, first note that � ∈ D. Also, for A1,A2 ∈ D such
that A1 ⊆ A2, we can readily see that A2 \ A1 ∈ D. Now consider an increasing
sequence (An : n ∈ N) in D and denote by a

An

φ (Z) the corresponding function
such that (3.10) holds. Then An ↑ ⋃

n An and 1An ↑ 1⋃
n An

pointwise. Thus, by
conditional monotone convergence ([32], page 193),

Eσ (1⋃
n An

| Y,Z) = lim
n→∞Eσ (1An | Y,Z) a.s. [Pσ ]

= lim
n→∞a

An

φ (Z) a.s. [Pσ ].

Now define aφ(Z) := limn→∞ a
An

φ (Z) and we are done. �

PROPOSITION 3.7. Let X, Y , Z, W be stochastic variables and �, � com-
plementary decision variables. Then
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P5′′:
X ⊥⊥ (Y,�) | (Z,�)

and
W ⊥⊥ (Y,�) | (X,Z,�)

⎫⎬
⎭ ⇒ (X,W) ⊥⊥ (Y,�) | (Z,�).

PROOF. Following the same approach as in the proof of Lemma 3.6, to prove
that (X,W) ⊥⊥ (Y,�) | (Z,�) it is enough to show that, for all φ ∈ �(S) and all
AX,W = AX ∩ AW where AX ∈ σ(X) and AW ∈ σ(W), there exists wφ(Z) such
that, for all σ ∈ �−1(φ),

(3.11) Eσ (1AX,W
| Y,Z) = wφ(Z) a.s. [Pσ ].

Since W ⊥⊥ (Y,�) | (X,Z,�), for all φ ∈ �(S) and all AW ∈ σ(W) there exists
w1

φ(X,Z) such that, for all σ ∈ �−1(φ),

(3.12) Eσ (1AW
| X,Y,Z) = w1

φ(X,Z) a.s. [Pσ ].

Also by Lemma 3.6,

X ⊥⊥ (Y,�) | (Z,�) ⇒ (X,Z) ⊥⊥ (Y,�) | (Z,�).

Thus, for all φ ∈ �(S) and all h(X,Z), there exists w2
φ(Z) such that, for all σ ∈

�−1(φ),

(3.13) Eσ

{
h(X,Z) | Y,Z

} = w2
φ(Z) a.s. [Pσ ].

Let φ ∈ �(S) and AX,W = AX ∩ AW , where AX ∈ σ(X) and AW ∈ σ(W). Then

Eσ (1AX∩AW
| Y,Z) = Eσ

{
Eσ (1AX∩AW

| X,Y,Z) | Y,Z
}

a.s. [Pσ ]

= Eσ

{
1AX

Eσ (1AW
| X,Y,Z) | Y,Z

}
a.s. [Pσ ]

= Eσ

{
1AX

w1
φ(X,Z) | Y,Z

}
a.s. [Pσ ] by (3.12)

= w2
φ(Z) a.s. [Pσ ] by (3.13),

which proves (3.11). �

What we have shown in this section (without making any specific assumptions
about the nature of the stochastic variables or the regime space) is that axioms
P2′–P5′ as well as the mirror axioms P3′′ and P5′′ hold in full generality. However,
validity of P4′′ in full generality remains an open problem. In the subsequent sec-
tions, we will study P4′′ under certain additional conditions. In Section 4, we take
a Bayesian approach and develop a set-up that allows us to prove P4′′ under the
assumption of a discrete regime space (Corollary 4.6), and in Section 5 we take a
measure-theoretic approach, which allows us to prove P4′′ under the assumption
of discreteness of the stochastic variables (Proposition 5.1) or the existence of a
dominating regime (Proposition 5.2).
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4. A Bayesian approach. In the present section, we introduce a Bayesian
construction in an attempt to justify the remaining separoid axioms. We extend
the original space in order to construe both stochastic and nonstochastic vari-
ables as measurable functions on the new space and create an analogy between
extended conditional independence and stochastic conditional independence. Sim-
ilar ideas can be found in a variety of contexts in probability theory and statistics.
Examples include Poisson random processes [40], pages 82–84, or Bayesian ap-
proaches to statistics [41]. We will see that, under the assumption of a discrete
regime space, extended conditional independence and stochastic conditional inde-
pendence are equivalent. Thus, we can continue to apply all the properties P1s–P5s

of Theorem 2.4.
Consider a measurable space (�,A) and a regime space S and let F be a σ -

algebra of subsets of S . We can expand the original space (�,A) and consider the
product space � × S with its corresponding σ -algebra A ⊗ F , where A ⊗ F :=
σ(A × F) := σ({A × B : A ∈ A,B ∈ F}). Thus, we can regard all stochastic
variables X,Y,Z, . . . defined on (�,A) also as defined on (�×S,A⊗F) and all
F -measurable decision variables �,�, . . . defined on S also as defined on (� ×
S,A ⊗ F). To see this, consider any stochastic variable X : (�,A) → (R,BX).
For any such X, we define X∗ : (�×S,A⊗F) → (R,BX) by X∗(ω,σ ) = X(ω).
It is readily seen that X∗ is A ⊗ F -measurable. Similarly, for a decision variable
� : S → �(S) we will denote by �∗ : (� × S,A ⊗ F) → (R,BX) the function
defined by �∗(ω,σ ) = �(σ). We will use similar conventions for all the variables
we consider.

REMARK 4.1. Note that for any stochastic variable X as above, σ(X∗) =
σ(X) × {S}. Similarly, for any decision variable �∗, σ(�∗) = {�} × σ(�). Thus,

σ
(
X∗,�∗) = σ

({
AX∗ ∩ A�∗ : AX∗ ∈ σ

(
X∗)

,A�∗ ∈ σ
(
�∗)})

(see [46], page 73)

= σ
({

AX∗ ∩ A�∗ : AX∗ ∈ σ(X) × {S},A�∗ ∈ {�} × σ(�)
})

= σ
({

(AX × S) ∩ (� × A�) : AX ∈ σ(X),A� ∈ σ(�)
})

= σ
({

AX × A� : AX ∈ σ(X),A� ∈ σ(�)
})

=: σ(X) ⊗ σ(�).

Thus, for any σ ∈ S and AX∗ ∈ σ(X∗), the function 1σ
AX∗ : � → {0,1} de-

fined by 1σ
AX∗ (ω) := 1AX∗ (ω,σ ) does not depend on σ . It is equal to 1AX

, for
AX ∈ σ(X) such that AX∗ = AX × {S}. Also for AX∗,�∗ ∈ σ(X∗,�∗), the func-
tion 1AX∗,�∗ is (σ (X) ⊗ σ(�))-measurable, and by Lemma 4.1, for σ ∈ S , the
function 1σ

AX∗,�∗ : � → {0,1} defined by 1σ
AX∗,�∗ (ω) := 1AX∗,�∗ (ω,σ ) is σ(X)-

measurable. 1σ
AX∗,�∗ (ω) is equal to 1Aσ

X
for Aσ

X ∈ σ(X) such that Aσ
X is the section

of AX∗,�∗ at σ .
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Now in the initial space (�,A), we can talk about extended conditional inde-
pendence and in the product space (� × S,A⊗F), after we equip it with a prob-
ability measure, we can talk about stochastic conditional independence. To rigor-
ously justify the equivalence of extended conditional independence and stochastic
conditional independence, we will need the following results.

LEMMA 4.1. Let f : � × S → R be A ⊗ F -measurable. Define for all σ ∈
S , fσ : � → R by fσ (ω) := f (ω,σ ). Then fσ is A-measurable. If further f is
bounded, define for all σ ∈ S , Eσ (fσ ) : S → R by Eσ (fσ ) := ∫

� fσ (ω)Pσ (dω).
Then the function σ �→ Eσ (fσ ) is bounded and F -measurable.

PROOF. See [4], page 231, Theorem 18.1, and page 234, Theorem 18.3. �

Now let π be a probability measure on (F,F). For A∗ ∈ A⊗F , define

(4.1) P
∗(

A∗) :=
∫
S

∫
�

1A∗(ω,σ )Pσ (dω)π(dσ).

THEOREM 4.2. P
∗ is the unique probability measure on A⊗F such that

(4.2) P
∗(A × B) =

∫
B
Pσ (A)π(dσ)

for all A ∈A and B ∈ F .

PROOF. See the online supplementary material [8]. �

THEOREM 4.3. Let f : �×S →R be an A⊗F -measurable integrable func-
tion. Then

(4.3) E
∗(f ) =

∫
S

∫
�

f (ω,σ)Pσ (dω)π(dσ).

PROOF. See the online supplementary material [8]. �

In the above theorems, we have constructed a new probability measure P
∗ on

the measurable space (� × S,A ⊗ F) and also obtained an expression for the
integral of a A ⊗ F -measurable function under P∗. We now use this expression
to justify the analogy between extended conditional independence and stochastic
conditional independence in the case of a discrete regime space.

4.1. Discrete regime space. We now suppose that S is discrete, and take F to
comprise all subsets of S . In particular, every decision variable is F -measurable.
Moreover, in this case we can, and shall, require π({σ }) > 0 for all σ ∈ S .
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Now (4.3) becomes

E
∗(f ) = ∑

σ∈S

∫
�

f (ω,σ )Pσ (dω)π(σ)

= ∑
σ∈S

Eσ (fσ )π(σ ).

THEOREM 4.4. Let X,Y,Z be A-measurable functions on �, and let �,�

be decision variables on S , where S is discrete. Suppose that � is complementary
to �. Then X ⊥⊥ (Y,�) | (Z,�) if and only if X∗ ⊥⊥s (Y ∗,�∗) | (Z∗,�∗).

PROOF. ⇒: Since X ⊥⊥ (Y,�) | (Z,�), by Proposition 3.1, for all φ ∈ �(S)

and all AX ∈ σ(X), there exists a function wφ(Z) such that, for all σ ∈ �−1(φ),

(4.4) Eσ (1AX
| Y,Z) = wφ(Z) a.s. [Pσ ],

that is,

(4.5) Eσ (1AX
1AY,Z

) = Eσ

{
wφ(Z)1AY,Z

}
whenever AY,Z ∈ σ(Y,Z).

To show that X∗ ⊥⊥s (Y ∗,�∗) | (Z∗,�∗), by Proposition 2.3 we need to show
that, for all AX∗ ∈ σ(X∗), there exists a function w(Z∗,�∗) such that

E
∗(

1AX∗ | Y ∗,�∗,Z∗,�∗) = w
(
Z∗,�∗)

a.s. [P∗],

that is,

(4.6) E
∗(1AX∗ 1AY∗,�∗,Z∗,�∗ ) = E

∗{
w

(
Z∗,�∗)

1AY∗,�∗,Z∗,�∗
}

whenever AY ∗,�∗,Z∗,�∗ ∈ σ(Y ∗,�∗,Z∗,�∗).
Let AX∗ ∈ σ(X∗) and define w(z∗, φ∗) = wφ∗(z∗) as in (4.5). Then for all

AY ∗,�∗,Z∗,�∗ ∈ σ(Y ∗,�∗,Z∗,�∗),

E
∗(1AX∗ 1AY∗,�∗,Z∗,�∗ ) = ∑

σ∈S
Eσ (1AX

1Aσ
Y,Z

)π(σ )

= ∑
σ∈S

Eσ

{
wφ(Z)1Aσ

Y,Z

}
π(σ) by (4.5)

= E
∗{

w
(
Z∗,�∗)

1AY∗,�∗,Z∗,�∗
}

which proves (4.6).
⇐: To show that X ⊥⊥ (Y,�) | (Z,�), let φ ∈ �(S) and AX ∈ σ(X). Then,

for any σ0 ∈ �−1(φ),

Eσ0(1AX
1AY,Z

)π(σ0) = ∑
σ∈S

Eσ

{
1AX

1AY,Z
1σ0(σ )

}
π(σ)

= E
∗(1AX∗ 1AY,Z×{σ0})
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= E
∗{

w
(
Z∗,�∗)

1AY,Z×{σ0}
}

by (4.6)

= ∑
σ∈S

Eσ

{
w

(
Z;�(σ)

)
1AY,Z

1σ0(σ )
}
π(σ)

= Eσ0

{
w

(
Z;�(σ0)

)
1AY,Z

}
π(σ0).

Since π(σ0) > 0, we have proved (4.5) with wφ(z) = w(z,φ). �

COROLLARY 4.5. Suppose we are given a collection of extended conditional
independence properties as in the form of Definition 3.2. If the regime space S is
discrete, any deduction made using the separoid axioms of stochastic conditional
independence will be valid, so long as, in both premisses and conclusions, each
conditional independence statement involves complementary decision variables,
and no decision variable appears in the left-most term. We are however allowed to
violate these conditions in intermediate steps of an argument.

COROLLARY 4.6. In the case of a discrete regime space, we have:

P4′′: X ⊥⊥ (Y,�) | (Z,�) and W � X ⇒ X ⊥⊥ (Y,�) | (Z,W,�).

5. Other approaches. Inspecting the proof of Theorem 4.4, we see that the
assumption of discreteness of the regime space S is crucial. If we have an un-
countable regime space S and assign a distribution π over it, the arguments for
the forward direction will still apply but the arguments for the reverse direction
will not. Intuitively, this is because (4.1) holds almost everywhere but not neces-
sarily everywhere. Thus, we cannot immediately extend it to hold for all σ ∈ S as
in (4.4). However, using another, more direct, approach we can still deduce P4′′
if we impose appropriate conditions. In particular, this will hold if the stochastic
variables are discrete. Alternatively, we can use a domination condition on the set
of regimes.

5.1. Discrete variables.

PROPOSITION 5.1. Let X, Y , Z, W be discrete stochastic variables, and �,
� complementary decision variables. Then

P4′′: X ⊥⊥ (Y,�) | (Z,�) and W � X ⇒ X ⊥⊥ (Y,�) | (Z,W,�).

PROOF. To show that X ⊥⊥ (Y,�) | (Z,W,�) we need to show that, for
all φ ∈ �(S) and all AX ∈ σ(X), there exists wφ(Z,W) such that, for all σ ∈
�−1(φ),

Eσ (1AX
| Y,Z,W) = wφ(Z,W) a.s. [Pσ ],
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that is,

Eσ (1AX
1AY,Z,W

) = Eσ

{
wφ(Z,W)1AY,Z,W

}
(5.1)

whenever AY,Z,W ∈ σ(Y,Z,W).

Observe that it is enough to show (5.1) for AY,Z,W ∈ σ(Y,Z,W) such that
Pσ (AY,Z,W ) > 0. Also since X, Y , Z and W are discrete, we need to show (5.1)
only for sets of the form {X = x} and {Y = y,Z = z,W = w}. Thus, it is enough
to show that, for all φ ∈ �(S) and all x, there exists wφ(Z,W) such that, for all
σ ∈ �−1(φ), and all y, z,w such that Pσ (Y = y,Z = z,W = w) > 0,

Eσ (1{X=x}1{Y=y,Z=z,W=w}) = Eσ

{
wφ(Z,W)1{Y=y,Z=z,W=w}

}
.

Let φ ∈ �(S). For σ ∈ �−1(φ) and all x, y, z,w such that Pσ (Y = y,Z =
z,W = w) > 0,

(5.2)

Eσ (1{X=x}1{Y=y,Z=z,W=w})
= Pσ (X = x,Y = y,Z = z,W = w)

= Pσ (X = x | Y = y,Z = z,W = w)Pσ (Y = y,Z = z,W = w)

= Pσ (X = x,W = w | Y = y,Z = z)

Pσ (W = w | Y = y,Z = z)
Pσ (Y = y,Z = z,W = w).

Since X ⊥⊥ (Y,�) | (Z,�) and W � X, there exist w1
φ(Z) and w2

φ(Z) such that

Eσ (1{X=x,W=w} | Y,Z) = w1
φ(Z) a.s. [Pσ ]

and

Eσ (1{W=w} | Y,Z) = w2
φ(Z) a.s. [Pσ ]

where w1
φ(Z) = 0 unless w = W(x).

Define

wφ(z) =

⎧⎪⎪⎨
⎪⎪⎩

w1
φ(z)

w2
φ(z)

if w2
φ(z) �= 0,

0 if w2
φ(z) = 0

and note that w2
φ(z) �= 0 when Pσ (Y = y,Z = z,W = w) �= 0. Also note that since

wφ(Z) is σ(Z)-measurable it is also σ(W,Z)-measurable. Returning to (5.2), we
get

Eσ (1{X=x}1{Y=y,Z=z,W=w}) = wφ(z)Pσ (Y = y,Z = z,W = w)

= Eσ

{
wφ(Z)1{Y=y,Z=z,W=w}

}
which completes the proof. �
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5.2. Dominating regime. Another approach is based on the existence of a
dominating regime in a set of distributions, that is, one such that every other
distribution in the set is absolutely continuous with respect to it. This will auto-
matically be the case if all the distributions under consideration have the same
support. Such a domination condition is the foundation of the abstract version of
the Fisher–Neyman factorisation criterion for sufficiency [39], using the Radon–
Nikodym theorem. However, our analysis does not use that construction.

DEFINITION 5.1 (Dominating regime). Let S index a set of probability mea-
sures on (�,A). For S0 ⊆ S , we say that σ ∗ ∈ S0 is a dominating regime in S0, if,
for all σ ∈ S0, Pσ � Pσ ∗ ; that is,

Pσ ∗(A) = 0 ⇒ Pσ (A) = 0 for all A ∈A and all σ ∈ S0.

PROPOSITION 5.2. Let X, Y , Z, W be stochastic variables, and �, � com-
plementary decision variables. Suppose that, for all φ ∈ �(S), there exists a dom-
inating regime σφ ∈ �−1(φ). Then

P4′′: X ⊥⊥ (Y,�) | (Z,�) and W � X ⇒ X ⊥⊥ (Y,�) | (Z,W,�).

PROOF. By Proposition 3.2, it suffices to prove the following two statements:

(5.3) X ⊥⊥ Y | (Z,W,�,�)

and

(5.4) X ⊥⊥ � | (Z,W,�).

To prove (5.3), we will use Proposition 3.3 and prove equivalently that Y ⊥⊥ X |
(Z,W,�,�). Note first that since X ⊥⊥ (Y,�) | (Z,�), by Proposition 3.2 it
follows that X ⊥⊥ Y | (Z,�,�), and by Proposition 3.3 it follows that Y ⊥⊥ X |
(Z,�,�). Also, since W � X, by Lemma 2.2 it follows that σ(W) ⊆ σ(X). Let
(φ, θ) ∈ (�,�)(S), σ = (�,�)−1(φ, θ) and AY ∈ σ(Y ). Then

Eσ (1AY
| X,Z,W) = Eσ (1AY

| X,Z) a.s. [Pσ ] since σ(W) ⊆ σ(X)

= Eσ (1AY
| Z) a.s. [Pσ ] since Y ⊥⊥ X | (Z,�,�),

which proves that Y ⊥⊥ X | (Z,W,�,�).
To prove (5.4), let φ ∈ �(S) and AX ∈ σ(X). We will show that there exists

wφ(Z,W) such that, for all σ ∈ �−1(φ),

Eσ (1AX
| Z,W) = wφ(Z,W) a.s. [Pσ ],

that is,

Eσ (1AX
1AZ,W

) = Eσ

{
wφ(Z,W)1AZ,W

}
whenever AZ,W ∈ σ(Z,W).
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Let AZ,W ∈ σ(Z,W) and note that

(5.5) Eσ (1AX
1AZ,W

) = Eσ

{
Eσ (1AX

1AZ,W
| Z)

}
.

Since X ⊥⊥ (Y,�) | (Z,�), by Lemma 3.6 it follows that (X,Z) ⊥⊥ (Y,�) |
(Z,�), and by Proposition 3.2 that (X,Z) ⊥⊥ � | (Z,�). Also, since W � X

there exists aφ(Z) such that

(5.6) Eσ (1AX
1AZ,W

| Z) = aφ(Z) a.s. [Pσ ].

In particular, for the dominating regime σφ ∈ �−1(φ),

Eσφ (1AX
1AZ,W

| Z) = aφ(Z) a.s. [Pσφ ]

and thus

Eσφ

{
Eσφ (1AX

1AZ,W
| Z,W) | Z} = aφ(Z) a.s. [Pσφ ].

Since Pσ � Pσφ for all σ ∈ �−1(φ), it follows that, for all σ ∈ �−1(φ),

(5.7) Eσφ

{
Eσφ (1AX

1AZ,W
| Z,W) | Z} = aφ(Z) a.s. [Pσ ].

Thus, by (5.6) and (5.7), we get that

(5.8) Eσ (1AX
1AZ,W

| Z) = Eσφ

{
Eσφ (1AX

1AZ,W
| Z,W) | Z}

a.s. [Pσ ].

Similarly,

(5.9)
Eσφ

{
Eσφ (1AX

1AZ,W
| Z,W) | Z}

= Eσ

{
Eσφ (1AX

1AZ,W
| Z,W) | Z}

a.s. [Pσ ].

Returning to (5.5), it follows that

Eσ (1AX
1AZ,W

) = Eσ

[
Eσφ

{
1AZ,W

Eσφ (1AX
| Z,W) | Z}]

by (5.8)

= Eσ

[
Eσ

{
1AZ,W

Eσφ (1AX
| Z,W) | Z}]

by (5.9)

= Eσ

{
1AZ,W

Eσφ (1AX
| Z,W)

}
. �

6. Pairwise conditional independence. Yet another path is to relax the no-
tion of extended conditional independence. Here, we introduce a weaker version
that we term pairwise extended conditional independence.

DEFINITION 6.1. Let X, Y and Z be stochastic variables and let � and �

be complementary decision variables. We say that X is pairwise (conditionally)
independent of (Y,�) given (Z,�), and write X ⊥⊥p (Y,�) | (Z,�), if for all
φ ∈ �(S), all real, bounded and measurable functions h, and all pairs {σ1, σ2} ∈
�−1(φ), there exists a function w

σ1,σ2
φ (Z) such that

Eσ1

{
h(X) | Y,Z

} = w
σ1,σ2
φ (Z) a.s. [Pσ1 ]

and

Eσ2

{
h(X) | Y,Z

} = w
σ1,σ2
φ (Z) a.s. [Pσ2 ].
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It is readily seen that extended conditional independence implies pairwise ex-
tended conditional independence, but the converse is false. In Definition 6.1, for
all φ ∈ �(S), we only require a common version for the corresponding conditional
expectation for every pair of regimes {σ1, σ2} ∈ �−1(φ), but we do not require that
these versions agree on one function that can serve as a version for the correspond-
ing conditional expectation simultaneously in all regimes σ ∈ �−1(φ).

Under this weaker definition, the analogues of P1′ to P5′, and of P3′′ and P5′′,
can be seen to hold just as in Section 3.1. Also, by confining attention to two
regimes at a time and applying Corollary 4.6, the analogue of P4′′ will hold without
further conditions.

It can be shown that, when there exists a dominating regime, pairwise extended
conditional independence is equivalent to extended conditional independence. The
argument parallels that of [39], who show that, under domination, pairwise suffi-
ciency implies sufficiency. This property can be used to supply an alternative proof
of Proposition 5.2.

7. Further extensions. So far we have studied extended conditional indepen-
dence relations of the form X ⊥⊥ (Y,�) | (Z,�), where the left-most term is fully
stochastic. We now wish to extend this to the most general expression, of the form
(X,K) ⊥⊥ (Y,�) | (Z,�), where X,Y,Z are stochastic variables and K,�,�

are complementary decision variables, and investigate the validity of the separoid
axioms. An example of such an extended language appears in Example 3.1, where,
by formal application of the separoid properties to (i), (ii) and (iii), we can derive
(T ,�) ⊥⊥ � and (X,�) ⊥⊥ � | T .

Consider first the expression K ⊥⊥ � | Z. Our desired intuitive interpretation
of this is that conditioning on the stochastic variable Z renders the decision vari-
ables K and � variation independent. We need to turn this intuition into a rigorous
definition, taking account of the fact that Z may have different distributions in the
different regimes σ ∈ S , whereas K and � are functions defined on S .

One way to interpret this intuition is to consider, for each value z of Z, the set
Sz of regimes that for which z is a “possible outcome”, and ask that the decision
variables be variation independent on this restricted set. In order to make this rigor-
ous, we shall require that Z : (�,A) → (FZ,FZ) where (FZ,FZ) is a topological
space with its Borel σ -algebra, and introduce

Sz := {
σ ∈ S : Pσ (Z ∈ U) > 0 for every open set U ⊆ FZ containing z

}
.

In particular, when Z is discrete, with the discrete topology,

Sz := {
σ ∈ S : Pσ (Z = z) > 0

}
.

We now formalise the slightly more general expression K ⊥⊥ � | (Z,�) in the
following definition.
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DEFINITION 7.1. Let Z be a stochastic variable and K,�,� complemen-
tary decision variables. We say that � is (conditionally) independent of K given
(Z,�), and write � ⊥⊥ K | (Z,�) if, for all z ∈ Z(�), � ⊥⊥v K | � [Sz].

We now wish to introduce further definitions, to allow stochastic and de-
cision variables to appear together in the left-most term of a conditional in-
dependence statement. Recall that in Definition 3.2, we defined X ⊥⊥ (Y,�) |
(Z,�) only when � and � are complementary on S . Similarly, we will define
(X,K) ⊥⊥ (Y,�) | (Z,�) only when K , � and � are complementary. Our inter-
pretation of (X,K) ⊥⊥ (Y,�) | (Z,�) will now be a combination of Definitions
3.2 and 7.1. We start with a special case.

DEFINITION 7.2. Let Y,Z be stochastic variables, and K,�,� comple-
mentary decision variables. We say that (Y,�) is (conditionally) independent
of K given (Z,�), and write (Y,�) ⊥⊥ K | (Z,�), if Y ⊥⊥ K | (Z,�,�) and
� ⊥⊥ K | (Z,�). In this case, we may also say that K is (conditionally) indepen-
dent of (Y,�) given (Z,�), and write K ⊥⊥ (Y,�) | (Z,�).

Finally, we have the general definition.

DEFINITION 7.3. Let X,Y,Z be stochastic variables and K,�,� comple-
mentary decision variables. We say that (X,K) is (conditionally) independent of
(Y,�) given (Z,�), and write (X,K) ⊥⊥ (Y,�) | (Z,�), if

X ⊥⊥ (Y,�) | (Z,�,K)(7.1)

and

K ⊥⊥ (Y,�) | (Z,�).(7.2)

REMARK 7.1. From Definition 7.3 and Proposition 3.2, (X,K) ⊥⊥ (Y,�) |
(Z,�) is equivalent to:

X ⊥⊥ Y | (Z,�,K,�),(7.3)

X ⊥⊥ � | (Z,�,K),(7.4)

Y ⊥⊥ K | (Z,�,�),(7.5)

� ⊥⊥ K | (Z,�).(7.6)

7.1. Separoid properties. We now wish to investigate the extent to which ver-
sions of the separoid axioms apply to the above general definition. In this context,
the relevant set V is the set of pairs of the form (Y,�), where Y is a stochastic
variable defined on � and � is a decision variable defined on S .
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For a full separoid treatment, we also need to introduce a quasiorder � on V .
A natural definition would be: (W,	) � (Y,�) if W = f (Y ) for some measurable
function f (also denoted by W � Y ) and 	 = h(�) for some function h. Then
(V ,�) becomes a join semilattice, with join (Y,�) ∨ (W,	) ≈ ((Y,W), (�,	)).
Again, whenever we consider a relation (X,K) ⊥⊥ (Y,�) | (Z,�) we require that
K,�,� be complementary.

THEOREM 7.1 (Separoid-type properties). Let X,Y,Z,W be stochastic vari-
ables and K,�,� complementary decision variables. Then the following proper-
ties hold:

P1g: (X,K) ⊥⊥ (Y,�) | (Z,�) ⇒ (Y,�) ⊥⊥ (X,K) | (Z,�).
P2g: If � and K are complementary, (X,K) ⊥⊥ (Y,�) | (Y,�).
P3g: (X,K) ⊥⊥ (Y,�) | (Z,�), W � Y ⇒ (X,K) ⊥⊥ (W,�) | (Z,�).
P4g: Under the conditions of Corollary 4.6, Proposition 5.1 or Proposition 5.2,

(X,K) ⊥⊥ (Y,�) | (Z,�), W � Y ⇒ (X,K) ⊥⊥ (Y,�) | (Z,W,�).
P4ag: (X,K) ⊥⊥ (Y,�) | (Z,�), 	 � � ⇒ (X,K) ⊥⊥ (Y,�) | (Z,�,	).

P5g:
(X,K) ⊥⊥ (Y,�) | (Z,�)

and
(X,K) ⊥⊥ W | (Y,Z,�,�)

⎫⎬
⎭ ⇒ (X,K) ⊥⊥ (Y,W,�) | (Z,�).

PROOF.

P1g . We need to show:

Y ⊥⊥ X | (Z,�,�,K),(7.7)

Y ⊥⊥ K | (Z,�,�),(7.8)

X ⊥⊥ � | (Z,�,K),(7.9)

K ⊥⊥ � | (Z,�).(7.10)

(7.8) and (7.9) hold automatically by (7.5) and (7.4). Also applying P1′ to (7.3)
we deduce (7.7). Rephrasing (7.6) in terms of variation independence, we have
that, for all z ∈ Z(�), � ⊥⊥v K | � [Sz]. Thus, applying P1v to (7.6) we de-
duce that, for all z ∈ Z(�), K ⊥⊥v � | � [Sz], that is, (7.10).

P2g . We need to show:

X ⊥⊥ (Y,�) | (Y,�,K),(7.11)

Y ⊥⊥ K | (Y,�),(7.12)

� ⊥⊥ K | (Y,�).(7.13)

By P2′, we have that X ⊥⊥ (Y,�,K) | (Y,�,K) which is identical to (7.11).
To show (7.12), let θ ∈ �(S) and AY ∈ σ(Y ). We seek wθ(Y ) such that, for all
σ ∈ �−1(θ),

Eσ (1AY
| Y) = wθ(Y ) a.s. [Pσ ].
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But note that

Eσ (1AY
| Y) = 1AY

a.s. [Pσ ].

To show (7.13), let y ∈ Y(�). By P2v , we have that

(7.14) K ⊥⊥v � | � [Sy].
Applying P1v to (7.12), we deduce that � ⊥⊥v K | � [Sy], that is, (7.13).

P3g . We need to show:

X ⊥⊥ (W,�) | (Z,�,K),(7.15)

W ⊥⊥ K | (Z,�,�),(7.16)

� ⊥⊥ K | (Z,�).(7.17)

Since W � Y , applying P3′ to (7.1) we deduce (7.15), and applying P3′′ to (7.4)
we deduce (7.16); while (7.17) is identical to (7.6).

P4g . We need to show:

X ⊥⊥ (Y,�) | (W,Z,�,K),(7.18)

Y ⊥⊥ K | (W,Z,�,�),(7.19)

� ⊥⊥ K | (W,Z,�).(7.20)

(7.18) follows from (7.1) by P4′. Also (under the given conditions), (7.19) fol-
lows from (7.5) by P4′′.
For simplicity, we restrict the proof of (7.20) to the case that all stochastic vari-
ables are discrete.
We first note that (7.6) is equivalent to: for all z,

(7.21) � ⊥⊥v K | � [Sz],
where Sz = {(θ,φ, k) : Pθ,φ,k(Z = z) > 0}; while (7.20) is equivalent to: for all
(w, z),

(7.22) � ⊥⊥v K | � [Sw,z],
where Sw,z = {(θ,φ, k : Pθ,φ,k(W = w,Z = z) > 0}. Now Pθ,φ,k(W = w,Z =
z) = Pθ,φ,k(Z = z) × Pθ,φ,k(W = w | Z = z). Hence, the additional constraint,
over and above that of Sz, is Pθ,φ,k(W = w | Z = z) > 0. But by (7.5) and
P3′′, W ⊥⊥ K | (Z,�,�), so that Pθ,φ,k(W = w | Z = z) is a function only
of (θ,φ). Thus, (7.22) imposes, on (7.21), the condition I (�,�) = 1, where
I (θ,φ) is the indicator function of the property Pθ,φ(W = w | Z = z) > 0. That
is to say, (7.22) would follow from

� ⊥⊥v K | (
�,I (�,�)

)[Sz].
But this follows from (7.21) and the separoid properties of ⊥⊥v .
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P4ag . We need to show:

X ⊥⊥ (Y,�) | (Z,�,K,	),(7.23)

Y ⊥⊥ K | (Z,�,�,	),(7.24)

� ⊥⊥ K | (Z,�,	).(7.25)

Now (7.23) follows from (7.1) and P4a′; while (7.24) is a trivial conse-
quence of (7.5). As for (7.25), we note that (7.6) can be expressed as: for
all z, � ⊥⊥v K | � [Sz]. By the separoid properties of ⊥⊥v , this implies
� ⊥⊥v K | (�,	) [Sz], which is (7.25).

P5g . We need to show:

X ⊥⊥ (Y,W,�) | (Z,�,K),(7.26)

(Y,W) ⊥⊥ K | (Z,�,�),(7.27)

� ⊥⊥ K | (Z,�).(7.28)

Since (X,K) ⊥⊥ (Y,�) | (Z,�), (7.1), (7.5) and (7.6) hold; while since
(X,K) ⊥⊥ W | (Y,Z,�,�), we have

X ⊥⊥ W | (Y,Z,�,�,K),(7.29)

W ⊥⊥ K | (Y,Z,�,�).(7.30)

Then (7.28) holds by (7.6). Also applying P5′ to (7.1) and (7.29), we de-
duce (7.26) and applying P5′′ to (7.5) and (7.30) we deduce (7.27). �

We illustrate the above theory by applying it to Example 3.1.

THEOREM 7.2. Suppose

(i) T ⊥⊥ � | �
(ii) X ⊥⊥ � | (T ,�)

(iii) � ⊥⊥ �.

Then � ⊥⊥ (X,�) | T .

PROOF. Apply P5g to (i) and (iii), taking X,Y,Z and � trivial, and replacing
K by � and W by T . We deduce � ⊥⊥ (T ,�). Then by P4g (which in this special
case can be shown to apply without further conditions), we derive � ⊥⊥ � | T .
Combining this with (ii) yields � ⊥⊥ (X,�) | T . �

COROLLARY 7.3. Under conditions supporting P4g , � ⊥⊥ � | (X,T ). In
particular, if T � X then � ⊥⊥ � | X.

PROOF. From P4g and P3g . �
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8. Applications of extended conditional independence to causality. The
driving force behind this work was the need to establish a rigorous basis for a wide
range of statistical concepts—in particular the Decision Theoretic framework for
statistical causality. In the Decision Theoretic framework, we have stochastic vari-
ables whose outcomes are determined by nature, and decision variables that are
functions of a regime indicator � that governs the probabilistic regime generating
the stochastic variables. Using the language of extended conditional independence,
we are able to express and manipulate conditions that allow us to transfer proba-
bilistic information between regimes, and thus use information gleaned from one
regime to understand a different, unobserved regime of interest.

Here, we illustrate, with two examples, how the language and the calculus of
extended conditional independence can be applied to identify causal quantities.
For numerous further applications and illustrations, see [3, 20–24, 26, 31, 35, 37,
38].

EXAMPLE 8.1 (Average causal effect). Suppose we are concerned with the
effect of a binary treatment T (with value 1 denoting active treatment, and 0 de-
noting placebo) on a disease variable Y . There are 3 regimes of interest, indicated
by a regime indicator �: � = 1 (resp., � = 0) denotes the situation where the pa-
tient is assigned treatment T = 1 (resp., T = 0) by external intervention; whereas
� = ∅ indicates an observational regime, in which T is chosen, in some random
way beyond the analyst’s control,“by nature”. For example, the data may have
been gathered by doctors or in hospitals, and the criteria on which the treatment
decisions were based not recorded.

A typical focus of interest is the Average Causal Effect (ACE) [35, 37],

ACE := E1(Y ) −E0(Y ),

where Eσ (·) = E(· | σ) denotes expectation under regime � = σ . This is a direct
comparison of the average effects of giving treatment versus placebo for a given
patient. However, in practice, for various reasons (ethical, financial, pragmatic,
etc.), we may not be able to observe Y under these interventional regimes, and
then cannot compare them directly. Instead, we might have access to data gener-
ated under the observational regime, where other variables might affect both the
treatment choice and the variable of interest. In such a case, the distribution of the
outcome of interest, for a patient receiving treatment T = t , cannot necessarily be
assumed to be the same as in the corresponding interventional regime � = t .

However, if the observational data have been generated and collected from a
randomised control trial (i.e., the sample is randomly chosen and the treatment is
randomly allocated), we could reasonably impose the following extended condi-
tional independence condition:

(8.1) Y ⊥⊥ � | T .
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This condition expresses the property that, given information on the treatment T ,
the distribution of Y is independent of the regime—in particular, the same under
interventional and observational conditions. When it holds, we are, intuitively, jus-
tified in identifying Et (Y ) with E∅(Y | T = t) (t = 0,1), so allowing estimation
of ACE from the available data.

To make this intuition precise, note that, according to Definition 3.2, property
(8.1) implies that there exists w(T ) such that, for all σ ∈ {∅,0,1},

Eσ (Y | T ) = w(T ) a.s. [Pσ ].

Now in the interventional regimes, for t = 0,1, Pt (T = t) = 1. Thus, for t = 0,1,

w(t) = Et (Y | T = t) = Et (Y ) a.s. [Pt ].

Since both w(t) and Et (Y ) are nonrandom real numbers, we thus must have

(8.2) w(t) = Et (Y ).

Also, in the observational regime,

E∅(Y | T ) = w(T ) a.s. [P∅].

Thus (so long as in the observational regime both treatments are allocated with
positive probability), we obtain, for t = 0,1,

E∅(Y | T = t) = w(t)

= Et (Y ) by (8.2).

Then

ACE = E1(Y ) −E0(Y )

= E∅(Y | T = 1) −E∅(Y | T = 0)

and so ACE can be estimated from the observational data.

EXAMPLE 8.2 (Dynamic treatment strategies). Suppose we wish to control
some variable of interest through a sequence of consecutive actions [47–49]. An
example in a medical context is maintaining a critical variable, such as blood pres-
sure, within an appropriate risk-free range. To achieve such control, the doctor will
administer treatments over a number of stages, taking into account, at each stage,
a record of the patient’s history, which provides information on the level of the
critical variable, and possibly other related measurements.

We consider two sets of stochastic variables: L, a set of observable variables,
and A, a set of action variables. The variables in L represent initial or intermediate
symptoms, reactions, personal information, etc., observable between consecutive
treatments, and over which we have no direct control; they are perceived as gen-
erated and revealed by nature. The action variables A represent the treatments,
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which we could either control by external intervention, or else leave to nature (or
the doctor) to determine.

An alternating ordered sequence I := (L1,A1, . . . ,Ln,An,Ln+1 ≡ Y) with
Li ⊆ L and Ai ∈ A defines an information base, the interpretation being that the
specified variables are observed in this time order. Thus, at each stage i = 1, . . . , n

we will have a realisation of the random variable (or set of random variables)
Li ⊆ L, followed by a value for the variable Ai ∈A. After the realisation of the fi-
nal An ∈ A, we will observe the outcome variable Ln+1 ∈ L, which we also denote
by Y .

In such problems, we might be interested to evaluate and compare different
strategies, that is, well-specified algorithms that take as input the recorded history
of a patient at each stage and give as output the choice (possibly randomised) of the
next treatment to be allocated. These strategies constitute interventional regimes,
for which we would like to make inference. However, it may not be possible to
implement all (or any) of these strategies to gather data, so we may need to rely
on observational data and hope that it will be possible to use these data to estimate
the interventional effects of interest.

We thus take the regime space to be S = {∅} ∪ S∗, where ∅ labels the ob-
servational regime under which data have been gathered, and S∗ is the collection
of contemplated interventional strategies. We denote the regime indicator, taking
values in S , by �. In order to identify the effect of some strategy s ∈ S∗ on the
outcome variable Y , we aim to estimate, from the observational data gathered un-
der regime � = ∅, the expectation Es{k(Y )}, for some appropriate function k(·)
of Y , that would result from application of strategy s.

One way to compute Es{k(Y )} is by identifying the overall joint density of
(L1,A1, . . . ,Ln,An,Y ) in the interventional regime of interest s. Factorising this
joint density, we have

ps(y, l, a) =
{

n+1∏
i=1

ps(li | li−1, ai−1)

}
×

{
n∏

i=1

ps(ai | li , ai−1)

}

with ln+1 ≡ y. Here, li denotes (l1, . . . , li), etc.
In order to compute Es{k(Y )}, we thus need the following terms:

(i) ps(ai | li , ai−1) for i = 1, . . . , n.
(ii) ps(li | li−1, ai−1) for i = 1, . . . , n + 1.

Since s is an interventional regime, corresponding to a well-defined treatment
strategy, the terms in (i) are fully specified by the treatment protocol. So we only
need to get a handle on the terms in (ii).

One assumption that would allow this is simple stability, expressed as

Li ⊥⊥ � | (Li−1,Ai−1) (i = 1, . . . , n + 1).

This says, intuitively, that the distribution of Li , given all past observations, is the
same in both the interventional and the observational regimes. When it holds (and
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assuming that the conditioning event occurs with positive probability in the obser-
vational regime) we can replace ps(li | li−1, ai−1) in (ii) with its observationally
estimable counterpart, p∅(li | li−1, ai−1). We then have all the ingredients needed
to estimate the interventional effect Es{k(Y )}.3

However, in many cases the presence of unmeasured variables, both influencing
the actions taken under the observational regime and affecting their outcomes,
would not support a direct assumption of simple stability. Denote these additional
variables by Ui (i = 1, . . . , n). A condition that might be more justifiable in this
context is extended stability, expressed as

(Li,Ui) ⊥⊥ � | (Li−1,Ui−1Ai−1) (i = 1, . . . , n + 1).

This is like simple stability, but taking the unmeasured variables also into account.
Now extended stability does not, in general, imply simple stability. But using

the machinery of extended conditional independence, we can explore when, in
combination with further conditions that might also be justifiable—for example,
sequential randomisation or sequential irrelevance [24, 26]—simple stability can
still be deduced, and hence Es{k(Y )} estimated.

9. Discussion. We have presented a rigorous account of the hitherto informal
concept of extended conditional independence, and indicated its fruitfulness in
numerous statistical contexts, such as ancillarity, sufficiency, causal inference, etc.

Graphical models, in the form of Directed Acyclic Graphs (DAGs), are of-
ten used to represent collections of conditional independence properties amongst
stochastic variables [9, 42], and we can then use graphical techniques (in particu-
lar, the d-separation, or the equivalent moralisation, criterion) to derive, in a vi-
sual and transparent way, implied conditional independence properties that follow
from the assumptions and the separoid axioms. When such graphical models are
extended to Influence Diagrams, incorporating both stochastic and nonstochastic
variables, the identical methods support causal inference [20]. Numerous applica-
tions may be found in [23]. The theory developed in this paper formally justifies
this extended methodology.

SUPPLEMENTARY MATERIAL

Some Proofs (DOI: 10.1214/16-AOS1537SUPP; .pdf). Supplementary mate-
rial, comprising proofs of Lemma 2.2, Theorem 2.4, Proposition 2.5, Proposi-
tion 2.6, Theorem 2.7, Proposition 3.1, Theorem 4.2 and Theorem 4.3, is available
online.

3The actual computation can be streamlined using G-recursion [26].

https://doi.org/10.1214/16-AOS1537SUPP
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