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Principal component analysis (PCA) is a well-known tool in multivariate
statistics. One significant challenge in using PCA is the choice of the num-
ber of principal components. In order to address this challenge, we propose
distribution-based methods with exact type 1 error controls for hypothesis
testing and construction of confidence intervals for signals in a noisy matrix
with finite samples. Assuming Gaussian noise, we derive exact type 1 error
controls based on the conditional distribution of the singular values of a Gaus-
sian matrix by utilizing a post-selection inference framework, and extending
the approach of [Taylor, Loftus and Tibshirani (2013)] in a PCA setting. In
simulation studies, we find that our proposed methods compare well to exist-
ing approaches.

1. Introduction.

1.1. Overview. Principal component analysis (PCA) is a commonly used
method in multivariate statistics. It can be used for a variety of purposes in-
cluding as a descriptive tool for examining the structure of a data matrix, as a
pre-processing step for reducing the dimension of the column space of the ma-
trix [Josse and Husson (2012)], or for matrix completion [Cai, Candès and Shen
(2010)].

One important challenge in PCA is how to determine the number of principal
components to retain. Jolliffe (2002) provides an excellent summary of existing
approaches to determining the number of principal components, grouping them
into three branches: subjective methods (e.g., the scree plot), distribution-based test
tools (e.g., Bartlett’s test) and computational procedures (e.g., cross-validation).
Each branch has advantages as well as disadvantages, and no single method has
emerged as the community standard.

Figure 1 offers a scree plot as an example. The data are five test scores from
88 students [taken from Mardia, Kent and Bibby (1979), pages 3–4]; the figure
shows the five singular values in decreasing order. The “elbow” in this plot seems
to occur at rank two or three, but it is not clearly visible. We revisit this example
with our proposed approach in Section 5.3.
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FIG. 1. Singular values of the score data in decreasing order. The data consist of exam scores of
88 students on five different topics (Mechanics, Vectors, Algebra, Analysis and Statistics).

In this paper, we propose a class of statistical methods utilizing hypothesis test-
ing framework for determining the rank of the signal matrix in a noisy matrix
model. The estimated rank here corresponds to the number of principal compo-
nents to retain in PCA. Under Gaussian assumption, the proposed hypothesis test-
ing method provides exact type 1 error controls along with exact confidence inter-
vals of signal parameters in finite samples.

1.2. Related works. Our approach is analogous to the exact test of variables in
forward stepwise regression proposed by Tibshirani et al. (2014). Both approaches
sequentially investigate statistical significance of the statistic in interest–principal
components or variables, and provide exact type 1 error controls via conditioning
on the selection event. To achieve exact type 1 error control in forward stepwise
regression, Tibshirani et al. (2014) proposed the truncated Gaussian test condition-
ing on the event of selecting active variables. The proposed truncated Gaussian test
utilizes the fact that the selection event can be characterized by an observed data
vector y falling into a polyhedral set. Despite the analogous objectives of PCA
and regression, the truncated Gaussian test is not applicable to PCA; in PCA, the
event of selecting principal components cannot be characterized by an observed
data matrix Y falling into a polyhedral set. While selecting a variable is a discrete
event in forward stepwise regression, a principal components in PCA are chosen
from a continuum for Y being a matrix. As the domain of the selection event is a
continuum, the resulting null distribution conditional on the the selection event is
defined on a measure zero domain rather than being a truncated Gaussian distribu-
tion. Therefore, establishing an exact test in PCA via conditioning requires subtle
approach.

To address this challenge, we utilize the Kac–Rice test, an exact method for test-
ing and constructing confidence intervals for signals under a global null hypothesis
in adaptive regression. Under the global null scenario, one of our proposed meth-
ods corresponds to the application of the Kac–Rice test to a penalized regression
minimizing the Frobenius norm with a nuclear norm penalty. In this paper, we
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extend the Kac–Rice test and the construction of confidence intervals to not only
the global null scenario but the general case. Also in the global null scenario, one
of the extended methods provides stronger power than the Kac–Rice test. The ex-
act property of the Kac–Rice test is preserved in extension to a general step by
incorporating a post-selection inference framework. The resulting statistics use a
conditional survival function of the eigenvalues of a Wishart matrix.

In the context of inference based on the distribution of eigenvalues, Muirhead
(1982), Theorem 9.6.2 on page 409, and, more recently, Kritchman and Nadler
(2008) have proposed methods for testing essentially the same hypothesis as in
this paper. Both Muirhead (1982), Theorem 9.6.2 on page 409, and Kritchman
and Nadler (2008) benefit from an asymptotic distribution of the test statistic:
Muirhead (1982), Theorem 9.6.2 on page 409, forms a likelihood ratio test with
the asymptotic Chi-square distribution, and Kritchman and Nadler (2008) use the
Tracy–Widom law, which is the asymptotic distribution of the largest eigenvalue
of a Wishart matrix, incorporating the result of Johnstone (2001). While these
test methods show conservative results and thus lose signal detection power in the
general stage, our proposed methods provide exact type 1 error controls and decent
detection power at the same time. Additionally, our approach provides a method
for constructing confidence intervals in addition to hypothesis testing.

1.3. Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we propose methods based on the distribution of eigenvalues of a
Wishart matrix. Section 2.1 introduces the main points of the Kac-Rice test [Taylor,
Loftus and Tibshirani (2013)] from which we derive our proposals. Then we pro-
pose hypothesis testing procedures regarding the true rank of a signal matrix in
Section 2.2. Our method for constructing exact confidence intervals of signals is
described in Section 2.3.

In Section 3, we propose a method for estimating the rank of a signal matrix
from the hypothesis tests. We illustrate a sequential hypothesis testing procedure
for determining the matrix rank, based on a proposal of G’Sell et al. (2013).

Section 4 introduces a data-driven method for estimating the noise level.
Our proposed method is analogous to cross-validation. In order to apply cross-
validation to a data matrix, we use a method proposed by Mazumder, Hastie and
Tibshirani (2010).

Section 5 provides additional examples of the proposed methods. In Section 5.1,
simulation results with estimated noise level are presented. Section 5.2 shows sim-
ulation results with non-Gaussian noise to check for robustness. We revisit the real
data example introduced in Figure 1 in Section 5.3. The paper concludes with a
brief discussion in Section 6.

2. Proposed distribution-based methods. Throughout this paper, we as-
sume that the observed data matrix Y ∈ R

N×p is the sum of a low-rank signal
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matrix B ∈ R
N×p and a Gaussian noise matrix E ∈R

N×p as follows:

Y = B + E,

rank(B) = κ < min(N,p),

Eij ∼ i.i.d. N
(
0, σ 2)

for i ∈ {1, . . . ,N}, j ∈ {1, . . . , p}
that is,

(2.1) Y ∼ N
(
B,σ 2IN ⊗ Ip

)
.

Here, following the notation from Muirhead (1982), page 73, Y ∼ N(B,σ 2IN ⊗
Ip) in (2.1) denotes

⎛
⎜⎝

Y1
...

YN

⎞
⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎝

B1
...

BN

⎞
⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

σ 2Ip 0 · · · 0
0 σ 2Ip · · · 0
...

...
. . .

...

0 0 · · · σ 2Ip

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ ,

where Yj and Bj represent the j th row vectors of Y and B , respectively, and the
Kronecker product is denoted by ⊗. In this paper, without loss of generality, we
assume that N > p. For the case of N < p, we can simply switch the role of N

and p by dealing with YT instead of Y . In this paper, we focus on finding κ , the
rank of the signal matrix B , and the construction of confidence intervals for the
signals in B .

With a centered data matrix, our proposed approaches with this model assump-
tion are valid for the popular spiked covariance model as well; both traditional
spiked covariance approaches and our proposed tests with a centered data matrix
are examining basically the same statistics, noting that the centering operation of
a data matrix does not change the rank of B . The statistics in interest for the tra-
ditional spiked covariance model approaches are the eigenvalues of a covariance
matrix, and our proposed methods investigate the singular values of a data ma-
trix, where the eigenvalues from the covariance matrix are the same as the squared
singular values of a centered data matrix.

We first review the global null test and confidence interval construction of the
first signal of Taylor, Loftus and Tibshirani (2013) and its application in matrix
denoising problem in Section 2.1 which corresponds to the PCA setting. Then we
extend the global null test to a general test procedure for testing Hk,0 : rank(B) ≤
k − 1 versus Hk,1 : rank(B) ≥ k for k = 1, . . . , p − 1 in Section 2.2 and describe
how to construct confidence intervals for the kth largest signal parameters in Sec-
tion 2.3.

2.1. Review of the Kac–Rice test. We briefly discuss the framework of Taylor,
Loftus and Tibshirani (2013) and its application to a matrix denoising problem,
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which we extend further later in this paper. Section 2.1.1 covers the testing proce-
dure for a class of null hypothesis. This null hypothesis corresponds to the global
null in our matrix denoising problem. In Section 2.1.2, we discuss the construction
of a confidence interval for the largest signal.

2.1.1. Global null hypothesis testing. Taylor, Loftus and Tibshirani (2013) de-
rived the Kac–Rice test, a test providing exact type 1 error controls for a class of
regularized regression problems of the following form:

(2.2) β̂ ∈ argmin
β∈Rp

1

2
‖y − Xβ‖2

2 + λ ·P(β)

with an outcome y ∈ R
p , a predictor matrix X ∈ R

N×p and a penalty term P(·)
with a regularization parameter λ ≥ 0. Assuming that the outcome y ∈ R

N is gen-
erated from

y ∼ N(Xβ,�),

the Kac–Rice test [Taylor, Loftus and Tibshirani (2013)] provides a method for
testing

(2.3) H0 : P(β) = 0

that yields exact type 1 error controls under the assumption that the penalty func-
tion P is a support function of a convex set C ⊆ R

p , that is,

P(β) = max
u∈C uT β.

When applied to a matrix denoising problem of a popular form, (2.3) becomes
a global null hypothesis:

(2.4) H0 : �1 = 0 ≡ rank(B) = 0 ≡ B = 0N×p,

where �1 ≥ �2 ≥ · · · ≥ �p ≥ 0 denote the singular values of B . Here are the
details. For an observed data matrix Y ∈ R

N×p , a widely used method to recover
the signal matrix B in (2.1) is to solve the following criterion:

(2.5) B̂ ∈ argmin
B∈RN×p

1

2
‖Y − B‖2

F + λ‖B‖∗ where λ > 0,

where ‖ · ‖F and ‖ · ‖∗ denote a Frobenius norm and a nuclear norm, respectively.
The nuclear norm term plays an analogous role as an �1 penalty term in lasso
regression [Tibshirani (1996)]. The objective function (2.5) falls into the class of
regression problems described in (2.2), with the predictor matrix X being IN ⊗ Ip

and the penalty function P(·) being

P(B) = ‖B‖∗ = max
u∈C 〈u,B〉
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with C = {A : ‖A‖op ≤ 1} where ‖ · ‖op denotes a spectral norm. We can therefore
directly apply the Kac–Rice test with the resulting test statistic as follows, under
the assumed model discussed in the beginning of Section 2:

(2.6) S1,0 =
∫ ∞
d1

e
− z2

2σ2 zN−p ∏p
j=2(z

2 − d2
j ) dz

∫ ∞
d2

e
− z2

2σ2 zN−p
∏p

j=2(z
2 − d2

j ) dz

,

where d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 denote the observed singular values of Y . The test
statistic S1,0 in (2.6) is uniformly distributed under the null hypothesis (2.4) and
provides exact type 1 error controls for testing the global null hypothesis. Here,
the value S1,0 represents the probability of observing more extreme values than d1
under the null hypothesis, which coincides with the traditional notion of p-value.

Viewed differently, the test statistic S1,0 corresponds to a conditional survival
probability of the largest observed singular value d1 conditioned on all the other
observed singular values d2, . . . , dp . The integrand of S1,0 coincides with the con-
ditional distribution of the largest eigenvalue of a central Wishart matrix [James
(1964)] via a change of variables. The denominator of S1,0 acts as a normalizing
constant since the domain of the largest singular value d1 conditioning on all the
other singular values becomes (d2,∞). A small magnitude of S1,0 implies large
d1 compared to d2, and thus supports H1 : �1 > 0.

2.1.2. Confidence intervals for the largest signal. Along with the Kac–Rice
test mentioned in Section 2.1.1, a procedure for constructing an exact confidence
interval for the leading signal in adaptive regression is proposed in Taylor, Loftus
and Tibshirani (2013). As in Section 2.1.1, by applying the result of Taylor, Loftus
and Tibshirani (2013) to our matrix denoising setting, we can generate an exact
confidence interval for �̃1 which is defined as follows:

�̃1 = 〈
U1V

T
1 ,B

〉
,

where Y = UDVT is a singular value decomposition of Y with D = diag(d1, . . . ,

dp) for d1 ≥ · · · ≥ dp , and U1 and V1 are the first column vectors of U and V

respectively. It is desirable to directly find the confidence interval for �1 instead
of �̃1, however, as B is unobservable, U1V

T
1 is the “best guess” of the unit vector

associated with �1 in its direction.
To discuss the procedure in detail, in the matrix denoising problem of (2.5),

the result from Taylor, Loftus and Tibshirani (2013) yields an exact conditional
survival probability of d1 as follows:

(2.7) S1,�̃1
=

∫ ∞
d1

e
− (z−�̃1)2

2σ2 zN−p ∏p
j=2(z

2 − d2
j ) dz

∫ ∞
d2

e
− (z−�̃1)2

2σ2 zN−p
∏p

j=2(z
2 − d2

j ) dz

∼ Unif(0,1).
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When data is generated under �1 = 0, then �̃1 = 0 holds. In this case, (2.7) is
the same as the test statistic S1,0 for testing H0 : �1 = 0 in Section 2.1.1, and
yields exact type 1 error controls due to its uniformity. The proposed procedure
for constructing the level α confidence interval is as follows:

(2.8) CI = {
δ : min(S1,δ,1 − S1,δ) > α/2

}
.

Since S1,�̃1
in (2.7) is uniformly distributed, we observe that

P(�̃1 ∈ CI) = 1 − α,

and thus (2.8) generates an exact level α confidence interval.

2.2. General hypothesis testing. In this section, we extend the test for the
global null in Section 2.1.1 to a general test which investigates whether there exists
the kth largest signal in B .

Suppose that we want to test the hypothesis

H0,k : �k = 0 versus H1,k : �k > 0
(2.9)

⇔ H0,k : rank(B) < k versus H1,k : rank(B) ≥ k,

for k = 1, . . . , p−1. For k = 1, the null hypothesis in (2.9) corresponds to a global
null as in Section 2.1.1. At k = p the signal matrix B is full rank under the alter-
native hypothesis with �p �= 0. In this scenario, the problem of rank(B) = p with
the noise level of σ 2, becomes unidentifiable with the problem of rank(B) = p −1
with noise level of σ 2 + �2

p . Thus, we assume rank(B) < p, and do not consider
the case of k = p.

One of the most straightforward approaches for extending the global test (2.6) to
testing (2.9) for k = 1, . . . , p − 1 would be to apply it sequentially, with removing
the first observed k − 1 singular values at the kth step, and start at the kth observed
singular value. That is, at the kth step, we can ignore the first k − 1 observed
singular values of Y , and apply the test with plugging in the kth value to the place
of the 1st value, the (k+1)th to the place of the 2nd value, and so on. This approach
of ignoring the existence of the first k − 1 singular values is analogous to other
methods dealing with essentially the same hypothesis testing [Muirhead (1982),
Kritchman and Nadler (2008)].

How well does this work? Figure 2 shows an example. Here, N = 20, p = 10
and there is a rank one signal of moderate size. The top panels show quantile-
quantile plots of the p-values for the aforementioned sequential Kac–Rice test
versus the uniform distribution. We see that the p-values are small when the alter-
native hypothesis H1,1 is true (step 1), and then fairly uniform for testing rank ≤1
versus >1 (step 2) as desired, which is the first case in which the null hypothesis
is true. However, the test becomes more and more conservative for higher steps,
although the p-values are generated under the null distributions. The conservative-
ness of these p-values can lead to potential loss of power. One of the reasons for
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FIG. 2. Quantile-quantile plots of the observed quantiles of p-values versus the uniform quantiles.
With N = 20 and p = 10, the true rank of B is rank(B) = 1. The top panels are from the sequential
Kac–Rice test and the bottom panels are from the CSV. The kth column represents quantile-quantile
plots of the p-values for testing H0,k : rank(B) ≤ k − 1 for steps k = 1,2,3,4.

this conservativeness is that, at step k = 3, for example, the test does not consider
that the two largest singular values have been removed. The test instead ignores the
existence of the 1st and the 2nd singular values, and treats the 3rd one as the 1st
singular value, plugging it into the place of the 1st singular value. As the 1st and
the 3rd largest singular values do not have the same distribution with the density
of the 1st singular value having more weights on large values, the sequential Kac–
Rice test at k = 3 is no longer uniformly distributed; the test results in conservative
p-values.

The plots in the bottom panel come from our proposed conditional singular
value (CSV) test, to be described in Section 2.2.1. It follows the uniform distribu-
tion quite well for all null steps. For testing H0,k : �k = 0 at the kth step, the CSV
method takes it into account that our interest is the kth signal by conditioning on
the first k − 1 singular values when deriving its test statistic.

Section 2.2.1 discusses the CSV test procedure in detail. In Section 2.2.2, we
propose the ICSV test, an integrated version of the CSV which has better power.
Simulation results of the proposed procedures are illustrated in Section 2.2.3.

2.2.1. The conditional singular value test. In this section, we introduce a test
in which the test statistic has an “almost exact” null distribution under H0,k in (2.9)
for k ∈ {1, . . . , p − 1}.

Here are some notation used throughout the paper. We write the singular value
decomposition of a signal matrix B as B = UBDBV T

B , the singular value de-
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composition of an observed data matrix Y as Y = UDVT , and an N × r and an
N × (p − r) column-wise submatrices of an N × p matrix M by M[r] and M[−r]
where M = [M[r]|M[−r]]. Also, PQ denotes a projection matrix onto a column-
space of an n1 × n2 matrix Q, and P ⊥

Q denotes a projection matrix onto a kernel
of PQ. that is, assuming n1 ≥ n2 and Q is of full-rank, we have

PQ = Q
(
QT Q

)−1
QT ,

P ⊥
Q = In1 − PQ.

With these notation, the hypothesis in (2.9) can be rewritten as

H0,k : P ⊥
UB[k−1]BP ⊥

VB[k−1] = 0N×p versus
(2.10)

H1,k : P ⊥
UB[k−1]BP ⊥

VB[k−1] �= 0N×p

since P ⊥
UB[k−1]BP ⊥

VB[k−1] = 0N×p is equivalent to �k = · · · = �p = 0. The hypoth-

esis in (2.10) examines whether the column spaces of UB[k−1] and VB[k−1] capture
all nontrivial signals in B , or equivalently, whether the deflated residual space
(UB[−(k−1)],VB[−(k−1)]) contains any signals.

The proposed test procedure which we refer to as the conditional sin-
gular value test (CSV) is as follows:

TEST 2.1 (Conditional Singular Value test). With a given level α, and the
following test statistic:

(2.11) Sk,0 =
∫ dk−1
dk

e
− z2

2σ2 zN−p ∏p
j �=k |z2 − d2

j |dz

∫ dk−1
dk+1

e
− z2

2σ2 zN−p
∏p

j �=k |z2 − d2
j |dz

,

where d0 = ∞, we reject H0,k if Sk,0 ≤ α and accept H0,k otherwise.

Analogous to (2.6), Sk,0 compares the relative size of dk ranging between
(dk+1, dk−1), and a small value of Sk,0 implies a large value of dk , supporting
the alternative hypothesis H1,k : �k > 0. Likewise, the test statistic Sk,0 plays the
role of a p-value: it is the probability of observing larger values of the kth sin-
gular value than the actually observed dk , under the distribution that is close to
the null scenario. Here, Sk,0 represents a survival probability of the kth singular
value conditional on the observed U[k−1],V[k−1] and all the other singular values.
As aforementioned, the distribution of Sk,0 well represents the null. It is the con-
ditional distribution of the kth singular value when the following situation holds:

(2.12) P ⊥
U[k−1]BP ⊥

V[k−1] = 0N×p.

Here, (2.12) addresses the situation that (U[k−1],V[k−1]) captures all the sig-
nals in B . Though (2.12) is close to H0,k in (2.10), there exists slight discrep-
ancy between these two scenarios. As Y is drawn from a noisy matrix of B ,
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(U[k−1],V[k−1]) is also perturbed and does not coincide with (UB[k−1],VB[k−1]).
As a result, even though H0,k : rank(B) < k is true, the (U[k−1],V[k−1]) cannot
capture the entire signals and the bits of left-over remains in the deflated residu-
als. This happens especially when k − 1 = rank(B). However, as the signals grow
stronger and the step k advances further, the singular values (U[k−1],V[k−1]) cap-
ture most of the signals, and thus the discrepancy between H0,k in (2.10) and (2.12)
becomes slimmer.

Here, the data singular vectors (U[k−1],V[k−1]) involved in (2.12) can be viewed
as a component of a data-driven model of B with its rank being k − 1. As k

goes beyond rank(B), there is little information remaining to estimate the later
singular vectors of B as their corresponding population singular value is 0. Nev-
ertheless, the validity of the test statistic Sk,0 depends only on finding candidate
subspaces that contain the true singular vector subspaces of B . Continuing well be-
yond rank(B) we will have added several left and right singular vectors that have
little to do with B [cf. Theorem 4 of Paul (2007)]. The fact that (2.12) remains
valid even well beyond rank(B) at least partially explains why our tests continue
to have roughly exact size while pseudo-rank becomes more and more conserva-
tive, as seen in Figure 3. Also, the bottom panels of Figure 2 confirm the claimed
exact type I error control property of the procedure as after the true rank of one,
the p-values are all close to uniform. Empirical results show close to exact type 1
error controls regardless of the magnitude of the signals even at k − 1 = rank(B).
Theorem 2.1 shows that the test statistic Sk,0 is uniformly distributed when (2.12)
holds, and thus yields close to exact type 1 error controls.

THEOREM 2.1.

If Y is drawn from N(B, IN ⊗ Ip) and P ⊥
U[k−1]BP ⊥

V[k−1] = 0N×p hold,

then Sk,0 ∼ Unif(0,1).

In constructing the test statistic Sk,0, conditioning on (U[k−1],V[k−1]) and
(d1, . . . , dk−1) represents the selection event of choosing k − 1 active principal
components at step k, and conditioning additionally on dk+1, . . . , dp leads to an
inference of a saturated model. Though the test statistic Sk,0 and its associated
conditional density do not involve (U[k−1],V[k−1]) since the singular vectors are
independent from the singular values, it is incorporated in the test procedure as a
component of the selection event of choosing k − 1 active principal components.
By accounting for the selection event of active principal components along with
their associated singular vectors, the proposed test procedure achieves (approxi-
mately) exact type 1 error controls; by constraining the test space to a deflated
residual space via conditioning on the selection event, we can achieve the null
distribution reflecting the current stage led by the selection procedure. This frame-
work involves the post-selection inference as in the work of Tibshirani et al. (2014).
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FIG. 3. Quantile-quantile plots of the empirical quantiles of p-values versus the uniform quantiles
when p = 10 and N = 50 at m = 1.5. From the top to the bottom, each row represents the case of
the true rank(B) from 0 to 3. The columns represent the results for testing H0,1 to H0,4 from the
left to the right. The six plots including (2nd row, 1st column), (3rd row, 1st column), (3rd row, 2nd
column), (4th row, 1st column), (4th row, 2nd column) and (4th row, 3rd column) represent the cases
under the alternative. The rest of the plots are under the null.



ON RANK ESTIMATION IN PCA 2601

The resulting conditional density of the singular values used in the test statistic re-
flects the fact that (U[k−1],V[k−1]) is a sufficient statistic for B under (2.12). The
detailed ideas of the test procedure and the proofs of the results are given in the
supplementary material [Choi, Taylor and Tibshirani (2017)].

2.2.2. The integrated conditional singular value test. As a potential improve-
ment of the CSV, we introduce an integrated version of Sk,0 which we refer as
Integrated Conditional Singular Value (ICSV) test. Our aim is to
achieve higher power in detecting signals in B compared to the ordinary CSV. The
idea is that conditioning on less can lead to greater power. The ordinary CSV test
statistic Sk,0 assumes a saturated model, conditioning on all the observed singular
values except for the kth one. Here, we condition on only the first k − 1 observed
singular values, and integrate out the last p − k singular values with respect to
the null distribution conditional on the first k − 1 observed singular values. This
can be considered as averaging the last p − k singular values across all the pos-
sible values of those with proper weights where the proper weights correspond to
the conditional null distribution of the last p − k singular values. The resulting
statistic becomes a function of d1, . . . , dk , only the first k observed singular values
of Y , which are associated with the selection event of active principal components
that lead to step k. While the ordinary CSV test statistic Sk,0 utilizes a saturated
model by conditioning on all the observed singular values except for the kth one,
the ICSV conditions only on the selection event and can be viewed as an inference
on nonsaturated model. In its construction, the ICSV test utilizes a post-selection
inference framework as in the work of Tibshirani et al. (2014) in the same manner
as the ordinary CSV test.

The proposed test statistic is as follows:

(2.13) Vk,0 =
∫ dk−1
dk

g(yk;d1, . . . , dk−1) dyk∫ dk−1
0 g(yk;d1, . . . , dk−1) dyk

,

where

g(yk;d1, . . . , dk−1)

=
∫

· · ·
∫ p∏

i=k

(
e
− y2

i

2σ2 y
N−p
i

)( p∏
i=k

∏
j>i

(
y2
i − y2

j

))
(2.14)

·
(

k−1∏
i=1

p∏
j=k

(
d2
i − y2

j

))
1{0≤yp≤yp−1≤···≤yk≤dk−1} dyk+1 · · ·dyp.

Our proposed Integrated Conditional Singular Value (ICSV)
test is as follows:

TEST 2.2 (ICSV test). With a given level α, we reject H0,k if Vk,0 ≤ α

and accept H0,k otherwise, where Vk,0 is as defined in (2.13).
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As in the CSV test, Vk,0 performs as a p-value for the test. It examines the rel-
ative size of a gap from dk to dk−1, and a small value of Vk,0 implies a large value
of dk , supporting the alternative hypothesis H1,k : �k > 0. In the ICSV test, the
range of dk is enlarged from (dk+1, dk−1) to (0, dk−1) compared to the CSV test.
The test statistic Vk,0 is a survival probability of the kth singular value conditioned
on the observed U[k−1],V[k−1] and the first k − 1 singular values with the distri-
bution under (2.12), where the conditions reflect the data-driven selection event
from the previous steps. In accordance with the CSV test, the test statistic of the
ICSV test is uniformly distributed under (2.12), and thus provides close to exact
type 1 error controls, which is shown in Theorem 2.2. Here, fixing the observed
(U[k−1],V[k−1], d1, . . . , dk−1) corresponds to the selection of a data-driven model,
and the proposed procedure investigates the deflated residual space resulting from
conditioning on the selection event.

THEOREM 2.2.

If Y is drawn from N(B, IN ⊗ Ip) and P ⊥
U[k−1]BP ⊥

V[k−1] = 0N×p hold,

then Vk,0 ∼ Unif(0,1)

Along with controlling type 1 errors to exact target levels, the ICSV test yields
independent p-values when p-values are generated under (2.12). This indepen-
dence relation between p-values is shown in Theorem 2.3, which corresponds to
a special case of Theorem 4 by Fithian et al. (2015), page 15. The independence
between p-values under the null hypothesis is a sufficient condition for a num-
ber of multiple hypothesis testing correction procedures [Benjamini and Hochberg
(1995), G’Sell et al. (2013), Simes (1986)].

THEOREM 2.3.

If Y is drawn from N(B, IN ⊗ Ip) and P ⊥
U[k−1]BP ⊥

V[k−1] = 0N×p hold,

then {Vi,0|i ∈ {k, . . . , p − 1}} are independent to each other.

Figure 3 demonstrates that the ICSV procedure achieves higher power than the
ordinary CSV, and controls type 1 error for testing H0,k : rank(B) ≤ k − 1 near an
exact target level as desired.

In this paper, we use importance sampling to evaluate the integral in (2.13) with
samples drawn from the eigenvalues of a (N −k+1)× (p−k+1) Wishart matrix.
As the computational cost increases sharply with large p, we are currently unable
to compute this test for p beyond say 30 or 40. An interesting open problem is
the numerical approximation of this integral, in order to scale the test to larger
problems. We leave this as future work.
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2.2.3. Simulation examples. In this section, we present results of the CSV and
the ICSV for testing the general hypothesis H0,k : rank(B) ≤ k − 1 in (2.9) on
simulated examples. We compare the performance of these proposed methods with
those in Kritchman and Nadler (2008) and Muirhead (1982), Theorem 9.6.2 on
page 409, mentioned in Section 1.2, which we refer as the pseudorank and the
Muirhead’s method, respectively:

TEST 2.3 (Pseudorank). With a given level α, and following μN,p and σN,p ,

μN,p =
(√

N − 1

2
+

√
p − 1

2

)2
,

σN,p =
(√

N − 1

2
+

√
p − 1

2

)(
1√

N − 1/2
+ 1√

p − 1/2

)1/3
,

we reject H0,k : rank(B) ≤ k − 1 if

d2
k − μN,p−k

σN,p−k

> s(α),

where s(α) is the upper α-quantile of the Tracy–Widom distribution.

TEST 2.4 (Muirhead’s method). With a given level α, and Vk defined as

Vk = (N − 1)q−1 ∏p
i=k d2

i

( 1
q

∑p
i=k d2

i )q
,

we reject H0,k : rank(B) ≤ k − 1 if

−
(
N − k − 2q2 + q + 2

6q
+

k−1∑
i=1

l̄2
q

(d2
i − l̄q )2

)
logVk > χ2

(q+2)(q−1)/2(α),

where q = p − k + 1, l̄q = ∑p
i=k d2

i /q and χ2
m(α) denotes the upper α quantile of

the χ2 distribution with degree m.

We investigate cases with i.i.d. Gaussian noise entries with σ 2 = 1. An N × p

data matrix Y has the signal matrix B formed as follows:

(2.15) B = UBDBV T
B , �i = m · i · σ 4

√
Np · I{i≤rank(B)},

where DB = diag(�1, . . . ,�p) with �1 ≥ · · · ≥ �p , and UB , VB are rotation op-
erators generated from a singular value decomposition of an N × p random Gaus-
sian matrix with i.i.d. entries. The signals of B increase linearly. The constant
m determines the magnitude of the signals. From m = 1, a phase transition phe-
nomenon is observed when rank(B) = 1 in which the expectation of the largest
singular value of Y starts to reflect the signal [Nadler (2008)].
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We illustrate two cases of (N,p) = (50,10) and (N,p) = (120,100). For the
former case, we set m = 1.5, with rank(B) = 0,1,2,3. For the latter case, we set
m = 1.3 with rank(B) = 3,5,10,50. For both cases, we evaluate the procedure
across 1000 repetition. The true known value of the noise level σ 2 = 1 is used for
all testing procedures.

Figures 3 and 4 present quantile-quantile plots of the expected (uniform) quan-
tiles versus the observed quantiles of p-values for testing the general hypothesis in
(2.9). Under H1,k , the ICSV test shows improved power compared to the CSV, and
close to that of the pseudorank in Figure 3 [the six plots including (2nd row, 1st
column), (3rd row, 1st column), (3rd row, 2nd column), (4th row, 1st column), (4th
row, 2nd column) and (4th row, 3rd column)]. The first column of Figure 4 is under
H1,k and illustrates that the CSV shows stronger power relative to the other meth-
ods as the true rank of B increases. For the instance of N = 120 and p = 100 with
small true rank of B , the Muirhead’s test shows anti-conservative performance un-
der the null at the early steps which increases the risk of false discovery. Under
H0,k , both the CSV and the ICSV quantiles nearly agree with the expected quan-
tiles and provide almost exact type 1 error controls as the theory predicts for all
null steps. The results from both the Pseudorank and the Muirhead’s test become
strongly conservative for further steps.

2.3. Confidence interval construction. Here, we generalize the exact confi-
dence interval construction procedure of the largest singular value in (2.8) to the
kth signal parameter for any k = 1, . . . , p − 1.

We define the kth signal parameter �̃k as follows:

(2.16) �̃k = 〈
UkV

T
k ,B

〉
,

where Uk and Vk are the kth column vector of U and V , respectively. We propose
an approach to construct an exact level α confidence interval of �̃k . Our proposed
procedure is as follows:

CIk(S) = {
δ : min(Sk,δ,1 − Sk,δ) > α/2

}
,(2.17)

where

Sk,δ =
∫ dk−1
dk

e
− (z−δ)2

2σ2 zN−p ∏p
j �=k |z2 − d2

j |dz

∫ dk−1
dk+1

e
− (z−δ)2

2σ2 zN−p
∏p

j �=k |z2 − d2
j |dz

.

We can find the boundary points of CIk(S) using bisection. Theorem 2.4 below
shows that CIk(S) is an exact level α confidence interval. The proposed confi-
dence interval construction procedure in (2.17) can be viewed as a variation of the
previously proposed CSV test. The CSV test fixes δ = 0, and yields a correspond-
ing p-value. On the other hand, the confidence interval approach (2.17) provides
pivots δs that generate p-values within the target range.
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FIG. 4. Quantile-quantile plots of the empirical quantiles of p-values versus the uniform quantiles
when p = 100 and N = 120 at m = 1.3. From the top to the bottom, each row represents the case
of κ , the true rank of B , equals 3,5,10 and 50. The columns represent the results for testing H0,κ ,
H0,κ+1, H0,60 and H0,90 from the left to the right. The first column represents the instances under
the alternative. The rest of the columns are under the null.
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THEOREM 2.4. Sk,δ is uniformly distributed when δ = �̃k .

Figure 5 shows the coverage rates of CIk(S). As expected, the coverage rate of
the true parameter is close to the target 1 − α.

2.3.1. Simulation studies of the confidence interval construction. We illustrate
the coverage rates of CIk(S) in (2.17) on simulated data. The simulation settings
are the same as in Section 2.2.3 with N = 50 and p = 10. Figure 5 shows the
coverage rate of the 95% confidence intervals for the first two signal parameters
�̃1 and �̃2 in (2.16). Here, we vary m in (2.15) from 0 to 2. Large m leads to large
magnitude of true �̃1 and �̃2.

Figure 5 shows that regardless of the step k = 1,2, the true value of rank(B),
or the size of �̃k , the constructed confidence intervals cover the parameters at the
desired level as expected.

3. Rank estimation. This section discusses the selection of the number of
principal components, or equivalently, the estimation of the true rank of B under
our model assumptions. For determining the rank of B , here we investigate the
StrongStop procedure [G’Sell et al. (2013)], applying it to the tests developed in
Section 2.2 (CSV and ICSV).

We determine the rank of B based on our testing results on H0,k : rank(B) ≤ k−
1 in (2.9), since H0,k explicitly tests the range of the true rank. Given the sequence
of hypothesis H0,k : rank(B) ≤ k − 1 with k = 1, . . . , p − 1, the rejection of these
must be carried out in a sequential fashion such that once Hk,0 is rejected, all Hγ,0
for γ ≤ k should be rejected as well. Under such sequential testing framework of
this kind, it is natural to choose rank(B) to be the largest k that rejects H0,k . The
question here is how to choose the ‘stopping point’ for rejection.

One of the simplest methods is to choose the value k at which H0,k is rejected
for the last time with a given level α:

κ̂simple = max
{
k ∈ {1, . . . , p − 1} : pk ≤ α

}
,

which we refer as SimpleStop.
In this paper, instead of the SimpleStop, we use the StrongStop. This procedure

takes sequential p-values as its input and controls family-wise error rate. When the
p-values under the null are drawn from uniform distribution, independent to each
other, the StrongStop procedure controls the family-wise error rate under a given
level of α [G’Sell et al. (2013)], Theorem 3. For rank determination, by the nature
of our hypothesis, H0,γ : rank(B) ≤ γ − 1 being true implies H0,k : rank(B) ≤
k − 1 also being true for all k > γ . The family-wise error rate control property in
rank determination, therefore, becomes control of rank over-estimation with level
α as follows:

P(κ̂ > κ) ≤ α,
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FIG. 5. Coverage rate of �̃1 and �̃2 versus the magnitude m in (2.15) with N = 50 and p = 10.
The first and the second signal correspond to �̃1 and �̃2, respectively. Coverage rate denotes the
proportion of times that the constructed confidence intervals from CIk(S) covered the true parameter.
From the top to the bottom, each row represents the case of the true rank(B) being 1 to 3. The columns
illustrate the results regarding �̃1 and �̃2 from the left to the right.

where κ̂ denotes the selected rank(B) = κ . The proposed procedure is as follows:

κ̂ = max

{
k ∈ {1, . . . , p − 1} : exp

(p−1∑
j=k

logpj

j

)
≤ αk

p − 1

}
.

Here, pk denotes the value of either Sk,0 of the CSV or Vk,0 of the ICSV, and
conventionally max(∅) = 0. As shown in Theorem 2.2 and Theorem 2.3, under
the general null steps in (2.9), the p-values from the ICSV test are almost uni-
formly and independently distributed to each other, practically satisfying the the
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FIG. 6. Rate of selecting the correct rank(B) versus rank(B) for the ICSV procedure with N = 50
and p = 10. From the left to the right, m increases from 1.5 to 2 where m determines the magnitude
of the signals in (2.15). The black dots and the red dots represent the results from the SimpleStop
and the StrongStop respectively. For both stopping rules, α = 0.1 is used.

assumptions of the StronStop. For the CSV test, the independence property is not
guaranteed.

Figure 6 illustrates the simulation results of the StrongStop on p-values from
the ICSV procedure with α = 0.1. The simulation setting is the same as in Sec-
tion 2.2.3 with N = 50 and p = 10. We compare the StrongStop with the Sim-
pleStop. From Figure 6, we observe that for weaker signals, the SimpleStop tends
to choose the correct rank of B more often than the StrongStop while for strong
signals, the StrongStop shows better performance in general.

4. Estimating the noise level. For the testing procedures CSV and ICSV,
and the confidence interval CIk(S) construction procedure, we have assumed that
the noise level σ 2 is known. In case the prior information of σ 2 is unavailable,
the value of σ 2 needs to be estimated. In this section, we introduce a data-driven
method for estimating σ 2.

For the estimation of σ 2, it is popular to assume that the rank of B is known.
One of the simplest methods estimates σ 2 using mean of sum of squared residuals
by

σ̂ 2
simple = 1

N(p − κ)

p∑
j=κ+1

d2
j

with known rank(B) = κ .
Instead of using the rank of B , Gavish and Donoho (2014) use the median of

the singular values of Y as a robust estimator of σ 2 as follows:

(4.1) σ̂ 2
med = d2

med

N · μβ

,
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where dmed is a median of the singular values of Y and μβ is a median of a
Marčenko-Pastur distribution with β = N/p. This estimator works under the as-
sumption that rank(B) � min(N,p).

In this paper, we propose an estimator, which makes few assumptions. Our ap-
proach uses cross-validation and the sum of squared residuals as an extension of
classical noise level estimator. For a fixed value of λ, we define our estimator
σ̂ 2

λ,df,c as follows:

σ̂ 2
λ,df,c = 1

N · (p − c · df
B̂λ

)
‖Y − B̂λ‖2

F for c ∈ [0,1](4.2)

with

B̂λ = argmin
B∈RN×p

1

2
‖Y − B‖2

F + λ‖B‖∗

df
B̂λ

=
p∑

k=1

1{lλ,k > 0},

where lλ,k denotes the kth singular value of B̂λ. For c = 0, the estimator σ̂ 2
λ,df,c

represents the ordinary mean squared residual, and for c = 1, it accounts for the
degrees of freedom as proposed by Reid, Tibshirani and Friedman (2016). With
c ∈ (0,1), the performance of the estimator lies between σ̂ 2

λ,df,0 and σ̂ 2
λ,df,1. We

use cross-validation for choosing the appropriate value of the regularization pa-
rameter λ.

For the estimator σ̂ 2
λ,df,c, choosing an appropriate value for the regularization

parameter λ is important, since B̂λ depends on λ. In penalized regression, it is
common to use cross-validation for this purpose, examining a grid of λ values.
Unlike the regression setting, however, here there is no outcome variable, and thus
it is not clear how to make predictions on left-out data points. In this paper, we use
the softImpute algorithm [Mazumder, Hastie and Tibshirani (2010)] to address this
issue. In the presence of missing values in a given data matrix, softImpute carries
out matrix completion with the following criterion:

(4.3) min
B

1

2

∥∥P
(Y ) − P
(B)
∥∥2
F + λ‖B‖∗,

where 
 is an index set of observed data points with a function P
(·) such that
P
(Y )(i,j) = Yi,j if (i, j) ∈ 
 and 0 otherwise. We define the prediction error of
the unobserved values in 
 as follows:

errλ(
) = ∥∥P
̃(Y ) − P
̃

(
B̂S

λ (
)
)∥∥2

F ,

where B̂S
λ (
) denotes the estimator of B acquired from (4.3) and 
̃ denotes the

index set of unobserved values in 
 (
̃ = 
c). Using this prediction error, we
carry out k-fold cross-validation, randomly generating k nonoverlapping leave-out
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TABLE 1
Simulation results for estimating the noise level σ 2 = 1 with N = 50 and p = 10. We vary rank(B)

from 0 to 3, and m from 0.5 to 2.0. Each column represents the mean estimated value of σ2 (“Est”),
and standard error (“se”) of the corresponding estimator

σ̂ 2
λCV ,df,0 σ̂ 2

λCV ,df, 2
3

σ̂ 2
λCV ,df,1 σ̂ 2

med

m Est se Est se Est se Est se

rank(B) = 0
0.0 0.863 0.230 0.926 0.210 0.990 0.230 0.996 0.084

rank(B) = 1
0.5 0.869 0.236 0.934 0.216 1.000 0.238 1.006 0.085
1.0 0.869 0.254 0.954 0.234 1.039 0.263 1.027 0.088
1.5 0.823 0.271 0.969 0.254 1.127 0.318 1.044 0.090
2.0 0.789 0.246 0.999 0.224 1.245 0.324 1.052 0.091

rank(B) = 2
0.5 0.871 0.260 0.962 0.237 1.061 0.280 1.039 0.089
1.0 0.784 0.262 1.025 0.244 1.321 0.355 1.093 0.096
1.5 0.700 0.288 1.052 0.201 1.611 0.431 1.121 0.100
2.0 0.646 0.211 1.047 0.196 1.762 0.471 1.134 0.102

rank(B) = 3
0.5 0.827 0.303 1.002 0.288 1.206 0.365 1.098 0.095
1.0 0.674 0.235 1.076 0.231 1.771 0.459 1.186 0.107
1.5 0.585 0.202 1.062 0.228 2.135 0.623 1.226 0.113
2.0 0.549 0.180 1.057 0.224 2.324 0.711 1.242 0.116

sets of size N ·p
k

from Y . For a grid of λ values, we compute the average of errλ for
each λ over the k left-out data sets. We choose our λ to be the minimizer of the
average errλ as in usual cross-validation [see, e.g., Hastie, Tibshirani and Friedman
(2009)].

4.1. A study of noise level estimation. We illustrate simulation examples of
noise level estimation of the proposed method σ̂ 2

λ,df,c with c = 0, 2
3 and 1 in (4.2)

compared to σ̂ 2
med in (4.1). These approaches do not require predetermined knowl-

edge of rank(B).
Simulation settings are the same as in Section 2.2.3 with N = 50 and p = 10.

The true value of the noise level is σ 2 = 1 and for choosing λ, 20-fold cross-
validation is used. Table 1 illustrates the simulation results for the proposed esti-
mators.

In this setting, σ̂ 2
λCV,df,0

decreases with larger rank(B) and signals while σ̂ 2
λCV,df,1

and σ̂ 2
med increases. For large rank(B) and signals, σ̂ 2

λ
CV,df, 2

3

shows good results,

as compared to other methods. The poor performance of σ̂ 2
λCV ,df,1 may be caused
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by the use of an improper definition of df , the degrees of freedom. Following
the definition of degrees of freedom by Efron et al. (2004), our simulation result
shows that the number of nonzero singular values does not coincide with degrees
of freedom under our setting. Further investigation into the degrees of freedom is
needed in future work.

The competing method σ̂ 2
med consistently shows small standard deviations.

However, with large rank(B), especially when rank(B) ≥ p/2, the procedures
over-estimates σ 2 due to the effect of the signals.

5. Additional examples. We discuss additional examples in this section. Sec-
tion 5.1 presents results of the proposed methods when the estimated noise level is
used. In Section 5.2, hypothesis testing results with non-Gaussian noise are illus-
trated. Section 5.3 shows results on some real data.

5.1. Simulation examples with unknown noise level. In this section, we illus-
trate the results when estimated σ 2 value is used on simulated data. For the es-
timation of the noise level, we use σ̂ 2

λCV ,df, 2
3

and σ̂ 2
med which showed good per-

formance in Section 4.1. As in Section 4.1, for the estimator σ̂ 2
λCV ,df,c, 20-fold

cross-validation and c = 2/3 is used. The simulation settings are the same as in
Section 2.2.3 with N = 50 and p = 10. We investigate the case of m = 1.5.

Table 2 illustrates the estimated σ 2 values we used for the testing procedure.
Figure 7 shows quantile-quantile plots of observed p-values obtained from us-
ing the estimated σ 2 versus the expected (uniform) quantiles. In quantile-quantile
plots, both estimators of σ 2 show reasonable results in general, and for large
rank(B), σ̂ 2

λCV ,df, 2
3

shows better result than σ̂ 2
med. In terms of coverage rate of

confidence interval, we can see from Figure 8 that σ̂ 2
med dominates for all cases,

which might be due to small standard deviation of σ̂ 2
med estimator. The estimation

TABLE 2
Simulation results for estimating the noise level σ 2 = 1 at

m = 1.5 with N = 50 and p = 10. We vary the rank of B from 0
to 3. Shown are the mean estimated noise level (“Est”) and

standard error (“se”) of the corresponding estimators

σ̂ 2
λCV ,df, 2

3
σ̂ 2

med

rank(B) Est se Est se

0 0.926 0.210 0.996 0.084
1 0.969 0.254 1.044 0.090
2 1.052 0.201 1.121 0.100
3 1.062 0.228 1.226 0.113
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FIG. 7. Quantile-quantile plots of the empirical quantiles of p-values with estimated σ 2 versus the
uniform quantiles at m = 1.5 with N = 50 and p = 10. Emprical p-values are from the CSV test.
Each row represents rank(B) = 0 to rank(B) = 3 from the top to the bottom. Each column represents
the 1st test to the 4th test from the left to the right. The black dots (CV) and the red dots (med)
represent p-values from using σ̂ 2

λCV ,df, 2
3

and σ̂ 2
med, respectively.
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FIG. 8. Coverage rate versus rank(B) of the first two signal parameters at m = 1.5 using estimated
σ 2 with N = 50 and p = 10. Coverage rate denotes proportion of times that the constructed confi-
dence interval from CIk(S) covered the true parameter. The black dots (CV) and the red dots (med)
represent the estimation using σ̂ 2

λCV ,df, 2
3

and σ̂ 2
med, respectively.

of rank(B) is presented in Table 3. For the estimation, the StrongStop is applied to
the CSV p-values with level α = 0.05. The estimation performance seems to vary
with the quality of the estimate of σ 2.

5.2. Simulation example with non-Gaussian noise. Our testing procedure is
based on an assumption of Gaussian noise. Here, we investigate the performance
of the CSV test on simulated examples with the normality assumption of noise
violated. Simulation settings are the same as in Section 2.2.3 with N = 50 and p =
10 except for the noise distribution. We study the case of rank(B) = 1 with m = 1.5
along with two sorts of noise distribution: heavy tailed and right skewed. The heavy

tailed noise is drawn from
√

3
5 t5 where t5 denotes t-distribution with degrees of

TABLE 3
Simulation results for selecting an exact rank(B) from the CSV
test using estimated σ 2 at m = 1.5 with N = 50 and p = 10.

The StrongStop is applied to sequential p-values with
α = 0.05. We vary the rank of B from 0 to 3. Shown are the rate
of selecting the correct rank of B (“Rate”) and mean squared

error (“MSE”) using the corresponding estimator of σ2

σ̂ 2
λCV ,df, 2

3
σ̂ 2

med

rank(B) Rate MSE Rate MSE

0 0.894 3.704 0.948 0.063
1 0.455 4.243 0.486 0.514
2 0.231 1.080 0.157 0.853
3 0.181 0.845 0.026 0.975
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FIG. 9. Quantile-quantile plots of empirical quantiles of p-values versus uniform quantiles when
noises are drawn i.i.d. from the heavy tailed or the right skewed distribution with known value of
σ 2 = 1 with N = 50 and p = 10. The true rank of B is rank(B) = 1 with m = 1.5. The top panels

correspond to the heavy tailed noise from
√

3
5 t5 and the bottom panels correspond to the right skewed

noise from
√

3
10 t5 +

√
1
2 (exp(1) − 1). Each column represents the 1st test to the 4th test from the left

to the right.

freedom = 5, and the right skewed noises are drawn from
√

3
10 t5 +

√
1
2(exp(1)−1)

where exp(1) denotes the exponential distribution with mean = 1. In each case,
noise entries are drawn i.i.d., and known value of σ 2 = 1 is used.

Figure 9 shows quantile-quantile plots of the observed p-values versus ex-
pected (uniform) quantiles. The top panels correspond to the heavy tailed noise

from
√

3
5 t5 and the bottom panels correspond to the right skewed noise from√

3
10 t5 +

√
1
2(exp(1) − 1). Quantile-quantile plots from both types of noise show

that the p-values deviate slightly from a uniform distribution under the null
H0,2 : rank(B) ≤ 1. For further steps, p-values lie closer to the reference line.

The nonconformity shown in early steps under the null hypothesis is not surpris-
ing considering the construction of the CSV procedure based on Gaussian noise.
In future work, we will investigate whether the procedures introduced here can be
extended to a method robust to nonnormality using the data-oriented method such
as bootstrap.

5.3. Real data example. In this section, we revisit the real data example men-
tioned in Figure 1. We apply the CSV test to the centered data of examination
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TABLE 4
P -values at each step (“Step”) and the selected number of
principal components (“Selected”) from the CSV test using

the estimated noise level on the examination marks of 88
students on five different topics (Mechanics, Vectors,

Algebra, Analysis and Statistics). The StrongStop is applied
to select the number of principal components at level
α = 0.05. The estimated value of σ 2 is 37.560 for the

estimator σ̂ 2
λCV ,df, 2

3
and 104.551 for the estimator σ̂ 2

med

Step σ̂ 2
λCV ,df, 2

3
σ̂ 2

med

1 0.000 0.000
2 0.000 0.000
3 0.000 0.739
4 0.000 0.551

σ̂ 2
λCV ,df, 2

3
σ̂ 2

med

Selected 4 2

marks of 88 students on 5 different topics of Mechanics, Vectors, Algebra, Analy-
sis and Statistics [Mardia, Kent and Bibby (1979), pages 3–4], and determine the
number of principal components to retain for PCA.

In this data, Mechanics and Vectors were closed book exams while the other
topics were open book exam. We use σ̂ 2

λCV ,df,c = 37.560 and σ̂ 2
med = 104.551 for

the estimated noise level. For σ̂ 2
λCV ,df,c, 20-fold cross-validation is used with c =

2/3. The CSV test results are presented in Table 4. The estimated rank(B) varies
with the estimator of σ 2 in use: the estimated rank(B) is 4 with σ̂ 2

λCV ,df,c estimator

and 2 with σ̂ 2
med with level α = 0.05 using the StrongStop. Thus, in PCA we may

use two or four principal components depending on our choice of the noise level.

6. Conclusions. In this paper, we have proposed distribution-based methods
for choosing the number of principal components of a data matrix. We have pro-
posed novel methods both for hypothesis testing and the construction of confi-
dence intervals of the signals. The methods have exact type I error control and
show promising results in simulated examples. We have also introduced data-based
methods for estimating the noise level.

There are many topics that deserve further investigation. In following studies,
the analysis of power of the proposed tests and the width of the constructed confi-
dence interval will be investigated. Also, application of the methods to high di-
mensional data using numerical approximations will be explored. For multiple
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hypothesis testing corrections to be properly applied, we will study the depen-
dence structure of the p-values between different steps. In addition, for robustness
to non-Gaussian noise, bootstrap versions of this procedure will be investigated.
Future work may involve a notion of degrees of freedom of the spectral estima-
tor of the signal matrix. These extensions may lead to improvement in noise level
estimation.

Variations of these procedures can potentially be applied to canonical correla-
tion analysis (CCA) and linear discriminant analysis (LDA), and these are topics
for future work.
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SUPPLEMENTARY MATERIAL

Supplement to “Selecting the number of principal components: estimation
of the true rank of a noisy matrix” (DOI: 10.1214/16-AOS1536SUPP; .pdf). The
supplement to this paper [Choi, Taylor and Tibshirani (2017)] contains additional
details of the proposed CSV and ICSV tests, and proofs of the main theorems.
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