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COCOLASSO FOR HIGH-DIMENSIONAL
ERROR-IN-VARIABLES REGRESSION

BY ABHIRUP DATTA AND HUI ZOU1

Johns Hopkins University and University of Minnesota

Much theoretical and applied work has been devoted to high-dimensional
regression with clean data. However, we often face corrupted data in many
applications where missing data and measurement errors cannot be ignored.
Loh and Wainwright [Ann. Statist. 40 (2012) 1637–1664] proposed a non-
convex modification of the Lasso for doing high-dimensional regression with
noisy and missing data. It is generally agreed that the virtues of convexity
contribute fundamentally the success and popularity of the Lasso. In light of
this, we propose a new method named CoCoLasso that is convex and can
handle a general class of corrupted datasets. We establish the estimation er-
ror bounds of CoCoLasso and its asymptotic sign-consistent selection prop-
erty. We further elucidate how the standard cross validation techniques can
be misleading in presence of measurement error and develop a novel cali-
brated cross-validation technique by using the basic idea in CoCoLasso. The
calibrated cross-validation has its own importance. We demonstrate the supe-
rior performance of our method over the nonconvex approach by simulation
studies.

1. Introduction. High-dimensional regression has wide applications in var-
ious fields such as genomics, finance, medical imaging, climate science, sensor
networks, etc. The current inventory of high-dimensional regression methods in-
cludes Lasso [24], SCAD [12], elastic net [31], adaptive lasso [30] and Dantzig
selector [8] among others. The articles [13] and [14] provide an overview of these
existing methods while the book by [6] discusses their statistical properties in finer
details. The canonical high-dimensional linear regression model assumes that the
number of available predictors (p) is larger than the sample size (n), although the
true number of relevant predictors (s) is much less than n. The model is expressed
as y = Xβ∗ + w where y = (y1, . . . , yn)

′ is the vector of responses, X = (xij ) is
the n × p matrix of covariates, β∗ is a p × 1 sparse coefficient vector with only s

nonzero entries and w = (w1, . . . ,wn)
′ is the noise vector.

Much of the existing theoretical and applied work on high-dimensional regres-
sion has focused on the clean data case. However, we often face corrupted data
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in many applications where the covariates are observed inaccurately or have miss-
ing values. Common examples include sensor network data [22], high-throughput
sequencing [3] and gene expression data [19]. It is well known that misleading
inference results will be obtained if the regression method for clean data is naively
applied to the corrupted data. In order to facilitate further discussion, we assume
that we observe a corrupted covariate matrix Z = (zij )1≤i≤n,1≤j≤p instead of the
true covariate matrix X. Depending on the context, there can be various ways to
model the measurement error. In the additive model setup, zij = xij + aij where
A = (aij ) is the additive error matrix. In the multiplicative error setup, zij = xijmij

where mij s are the multiplicative errors. Missing predictors can be interpreted as a
special case of multiplicative measurement errors with mij = I (xij is not missing)

where I (·) is the indicator function.
Without loss of generality, we take the Lasso as an example to illustrate the

impact of measurement errors. We apply the Lasso to the clean data by minimizing

(1.1) 1/(2n)‖y − Xβ‖2
2 + λ‖β‖1

with respect to β . Here, λ > 0 is the regularization parameter and ‖ ·‖p denotes the
�p norm for vectors and matrices for 1 ≤ p ≤ ∞. If we ignore the measurement
error issue, we would apply the Lasso to the corrupted data by minimizing:

(1.2) 1/(2n)‖y − Zβ‖2
2 + λ‖β‖1.

However, as pointed out in [20], the resulting estimate of β is often erroneous if the
noise is large. We need to find a proper modification of (1.2) such that its solution
is comparable/close to the clean Lasso estimate (1.1).

Observe that the clean Lasso objective function can be equivalently formulated
as

(1.3)
1

2
β ′�β − ρ′β + λ‖β‖1 where � = 1

n
X′X,ρ = 1

n
X′y.

In [17], Loh and Wainwright use Z and y to construct unbiased surrogates �̂ for �

and ρ̃ for ρ. To elucidate, let us consider the classical additive measurement error
case. Following [17], assume the additive errors aij are independent with mean
zero and variance τ 2 where τ 2 is a known constant, then

E

[
1

n
Z′Z

]
= 1

n
X′X + τ 2I, E

[
1

n
Z′y − 1

n
X′y

]
= 0.

Thus, Loh and Wainwright suggested using unbiased surrogates

(1.4) �̂ = 1

n
Z′Z − τ 2I, ρ̃ = 1

n
Z′y

and then solve the following optimization problem to get an estimate of β:

(1.5)
1

2
β ′�̂β − ρ̃′β + λ‖β‖1.
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Although the above solution is very natural, (1.5) is fundamentally different
from the clean Lasso. Notice that �̂ may not be positive semi-definite. In fact,
when p > n, �̂ is guaranteed to have negative eigenvalues. In such instances, the
objective function in (1.5) is no longer convex. Moreover, the objective function
is unbounded from below when �̂ has a negative eigenvalue. To overcome these
technical difficulties, Loh and Wainwright defined a constrained estimator similar
to the constrained (primal) form of the Lasso as

(1.6) β̂ ∈ arg min
‖β‖1≤R

1

2
β ′�̂β − ρ̃′β

for some constant R. They also defined a regularized (and constrained) estimator
as

(1.7) β̂ ∈ arg min
‖β‖1≤bo

√
s

1

2
β ′�̂β − ρ̃′β + λ‖β‖1

for some constants b0. Note that “∈” not “=” is used in (1.6) and (1.7) because
the objective functions may still have multiple local/global minimizers even within
the respective regions ‖β‖1 ≤ R and ‖β‖1 ≤ bo

√
s. Through some careful analy-

sis, Loh and Wainwright showed that, if b0 and R are properly chosen, a projected
gradient descent algorithm will converge in polynomial time to a small neighbor-
hood of the set of all global minimizers.

In this article, we propose the Convex Conditioned Lasso (CoCoLasso) that can
handle a general class of corrupted datasets including the cases of additive or mul-
tiplicative measurement error and random missing data. CoCoLasso automatically
enjoys the theoretical and computational benefits of convexity that contribute fun-
damentally to the success of the Lasso. Theoretically, we derive the desirable sta-
tistical error bounds for the CoCoLasso estimate. Additionally, we establish the
asymptotic sign-consistent selection property of CoCoLasso. Earlier [23] derived
asymptotic selection consistency properties for the estimator in (1.7) only for the
restrictive case of additive measurement error. However, our result does not re-
quire any specification of the type of measurement error. This is arguably the
most general result for sign consistency in presence of measurement error. Loh
and Wainwright (2012) did not provide any sign-consistency result for the non-
convex approach.

Our method has another significant advantage over the nonconvex approach by
Loh and Wainwright in practice. Loh and Wainwright’s method depend on some
crucial hidden parameters. First, theoretical results for the constrained estimator
(1.6) in [17] assume R = ‖β∗‖1. As the authors acknowledge, this is very restric-
tive as ‖β∗‖1 is unknown. So they prefer the regularized estimator (1.7), where
b0 is critically important because their theory requires that b0 ≥ ‖β∗‖2 in order to
have desirable error bounds and b0 cannot be too large due to the required lower-
RE and upper-RE conditions. See Theorem 1 in [17] for details. Note that both
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β∗ and s are unknown. One might try to guess b0 and s based on the naive lasso
estimator, but this is not trustworthy as such an initial estimator suffers from the
measurement error. The iterative algorithms used to obtain β̂ in [17] also depend
a step-size of 2α2 where α2 is an upper restricted eigenvalue of the design matrix,
which is also unknown. Therefore, in practice one has a lot of difficulties in using
the nonconvex approach despite the theoretical results offered in [17]. In contrast,
CoCoLasso does not have any of these concerns. CoCoLasso uses one tuning pa-
rameter λ which can be chosen by cross-validation in practice.

We notice that in the current literature little attention has been paid to the cross
validation methods used for corrupted data. Simply replacing Z by X leads to
biased version of the cross validation procedure [similar to (1.5) being a biased
version of (1.3)]. This leads to inconsistent estimates of β∗ obtained through cross-
validation. We demonstrate how the ideas used to develop CoCoLasso can be
seamlessly adapted to propose new calibrated cross-validation technique tailored
for data with measurement error. To our best knowledge, the existing work on
high-dimensional regression with measurement error did not touch on this cross-
validation issue. The new calibrated cross-validation has its own independent im-
portance.

It is worth pointing out that a Dantzig selector-type estimator named matrix
uncertainty (MU) estimator was proposed in [20] for additive measurement error
models. An improved version of MU estimator was proposed in [21]. Belloni et
al. [1] establishes near-optimal minimax properties of the estimator in [21] and de-
velops a conic-programming based estimator that achieves minimax bounds. Two
more conic programming based estimators have been recently proposed in [2] for
the same model setup. It has been empirically observed that solving the Lasso
problem can be much faster than solving the Dantzig selector [11]. Compared to
Dantzig selector-type estimators and the conic programming based estimators, the
direct Lasso-modification methods, such as CoCoLasso, would enjoy computa-
tional advantages, which is very important for high-dimensional data analysis.

The rest of the article is organized as follows. In Section 2, we define the CoCo-
Lasso estimator. In Section 3, we discuss the main theoretical results. In Section 4,
we discuss the consequences of the results in Section 3 for additive and multiplica-
tive measurement error setups. A new cross-validation technique for corrupted data
is developed in Section 5. In Section 6, we present simulation results to demon-
strate the empirical performance of CoCoLasso.

2. CoCoLasso. We first introduce some necessary notation. For any matrix
K = (kij ), we write K > 0 (≥ 0) when it is positive (semi-)definite. Let ‖K‖∞ =
maxi

∑
j |kij | denote the matrix �∞ norm whereas ‖K‖max = maxi,j |kij | denote

the elementwise maximum norm. Also, let 	min(K) and 	max(K) denote the min-
imum and maximum eigenvalues of K , respectively. We assume that all vari-
ables are centered so that the intercept term is not included in the model and
the covariance matrix X has normalized columns, that is, 1

n

∑n
i=1 x2

ij = 1 for
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every j = 1, . . . , p. Without loss of generality, assume that S = {1,2, . . . , s} is
the true support set of the regression coefficient vector and write β∗ = (β∗T

S ,0′)′
and X = (XS,XSc). Hence, the true model can be rewritten as y = XSβ∗

S + w

where the components of β∗
S are nonzero. For any vector v, we can partition it as

v = (v′
S, v′

Sc)
′. Also, we partition � as

� =
(

(1/n)X′
SXS (1/n)X′

SXSc

(1/n)X′
ScXS (1/n)X′

ScXSc

)
=

(
�S,S �S,Sc

�Sc,S �Sc,Sc

)
.

The true design matrix X is fixed. In the theoretical literature on the clean Lasso,
it is often assumed that wi ’s are independent and identically distributed sub-
Gaussian random variables with parameter σ 2. We use the same assumption here.

As mentioned earlier, in a clean setting where the predictor matrix X is ob-
served accurately, a Lasso estimate is obtained by minimizing (1.3). When the
dataset is corrupted by measurement errors, the observed matrix of predictors Z

is some function of the true design matrix X and the random error matrix. Based
on Z and y, estimates �̂ and ρ̃ are constructed as surrogates to replace � and ρ,
respectively, in (1.3). Different pairs of unbiased estimates (�̂, ρ̃) are provided in
[17] for various types of measurement errors. We will present the actual form of
(�̂, ρ̃) in Section 4, but for now we only need to assume that (�̂, ρ̃) have been
constructed.

As discussed earlier, �̂ is often not positive semi-definite in a high dimensional
setup. We now define a nearest positive semi-definite matrix projection operator as
follows: for any square matrix K ,

(K)+ = arg min
K1≥0

‖K − K1‖max.

Then we denote �̃ = (�̂)+ and define our Convex conditioned Lasso (CoCoLasso)
estimate as

(2.1) β̂ = arg min
β

(1/2)β ′�̃β − ρ̃′β + λ‖β‖1.

We use an alternating direction method of multipliers (ADMM) [5] to obtain
�̃ from �̂. The ADMM algorithm is very efficient and details of the algorithm
are provided in Appendix A. By definition, �̃ is always positive semi-definite.
Subsequently, we can reformulate our problem as

(2.2) β̂ = arg min
β

1

2n
‖ỹ − Z̃β‖2

2 + λ‖β‖1,

where Z̃/
√

n is the Cholesky factor of �̃, that is, 1
n
Z̃′Z̃ = �̃ and ỹ is such that

Z̃′ỹ = ρ̃.
Numerically, (2.2) is just like the clean Lasso. One can apply several very fast

solvers to solve (2.1), such as the coordinate descent algorithm [15] or the least
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angle regression algorithm [10]. This is a great advantage for practitioners, as the
Lasso solvers are widely used in practice.

Theoretically, (2.1) can be analyzed by the tools for analyzing the clean Lasso.
The surrogate �̂ chosen by [17] is often an unbiased estimate of the true gram
matrix �, achieving a desired rate of convergence under the max norm. Note that
� is always positive semi-definite. So by definition, we have

(2.3) ‖�̃ − �‖max ≤ ‖�̃ − �̂‖max + ‖�̂ − �‖max ≤ 2‖�̂ − �‖max.

Equation (2.3) ensures that �̃ approximates � as well as the initial surrogate �̂.
Compared with Loh and Wainwright’s estimator in [17], CoCoLasso is guaran-

teed to be convex. This avoids the need of doing any nonconvex analysis of the
method. Furthermore, unlike [17] our method does not require any knowledge of
‖β‖1, and thereby eliminates the need for an initial estimate to obtain a bound
for ‖β‖1. In the next section, we show that CoCoLasso is sign consistent and has
desirable �1, �2 error bounds.

3. Theoretical analysis. In this section, we derive the �1 and �2 bounds for
the statistical error of the CoCoLasso estimate as well as its support recovery prob-
ability bounds.

3.1. Statistical error bounds. We assume that �̂ and ρ̃ are sufficiently “close”
to � and ρ respectively in the following sense.

DEFINITION 1. Closeness condition: Let us assume that the distribution of �̂

and ρ̃ are identified by a set of parameters θ . Then there exists universal constants
C and c and positive functions ζ and ε0 depending on θ and σ 2 such that for every
ε ≤ ε0, �̂ and ρ̃ satisfy the following probability statements:

Pr
(|�̂ij − �ij | ≥ ε

) ≤ C exp
(−cnε2ζ−1) ∀i, j = 1, . . . , p,

(3.1)
Pr

(|ρ̃j − ρj | ≥ ε
) ≤ C exp

(−cns−2ε2ζ−1) ∀j = 1, . . . , p.

The closeness condition requires that the surrogates �̂ (and hence �̃) and ρ̃ are
close to � and ρ, respectively, in terms of the elementwise maximum norm. We
show later in Section 4 that this condition is satisfied by the surrogates defined in
[17] for commonly used additive or multiplicative measurement error models.

We also assume the following compatibility or restricted eigenvalue condition:

(3.2) 0 < � = min
x �=0,‖xSc‖1≤3‖xS‖1

x′�x

‖x‖2
2

.

Restricted eigenvalue condition similar to this has been used in [26] to obtain
bounds of statistical error of the clean Lasso estimate. We show in Lemma 4 that
the commonly used version of the restricted eigenvalue condition used to derive
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the error bounds for the Lasso estimate (see, e.g., [4]) implies condition (3.2). The
analogous results for the nonconvex Lasso in [17] are also derived assuming a
variant of the restricted eigenvalue condition [4]. Also, the algorithmic results in
[17] require an upper restricted eigenvalue condition. We do not need any such
assumptions.

We now state the result on the �1, �2 and prediction errors of the CoCoLasso
estimate. All proofs are provided in Section 8. Note that, for all the theoretical
results, C and c denote generic positive constants. Their values may vary from
expression to expression.

THEOREM 1. Under the assumptions stated in equations (3.1) and (3.2), for
s
√

(ζ logp)/n < λ ≤ min(ε0,12ε0‖β∗
S‖∞), the following results hold with prob-

ability at least 1 − C exp(−c logp):

(�1 and �2 error:)
∥∥β̂ − β∗∥∥

2 ≤ Cλ
√

s/�,
∥∥β̂ − β∗∥∥

1 ≤ Cλs/�,(3.3)

(Prediction error:)
∥∥X(

β∗ − β̂
)∥∥

2/
√

n ≤ Cλ
√

s/
√

�.(3.4)

The finite sample error bounds given in Theorem 1 assume the scaling that
s2 logp � n which is satisfied even when the predictor dimension p varies expo-
nentially with n. For instance, if p =O(exp(nc1)) and s =O(nc2), then s2 logp =
o(n) as long as c1 + 2c2 is less than one. The error bounds also depend on the
presence of error in the variables through the component ζ . Precise expressions
for ζ are derived for the case of additive and multiplicative measurement errors in
Section 4.

Theorem 2 of [17] provides error bounds for the estimates obtained by projected
gradient descent algorithm for the nonconvex objective function in (1.6). However,
owing to the iterative nature of their solutions, the analogous bounds depends on
the initial value of β . Specifically, if β̂(t) denotes the solution obtained after t iter-
ations starting with an initial value β0, then the error bounds for β̂(t) are inflated
by an additional O(αt‖β̂ − β0‖2) term where α ∈ (0,1) and β̂ denotes the global
minimizer of (1.7). Although, this term diminishes at a geometric rate and may
seem to be insignificant for large enough t , in practice α depends on the lower and
upper restricted eigenvalues of � and can be very close to one. Consequently, the
rate of decay for this term can be very slow. We have observed in simulations that
the error bounds of β̂(t) for different choices of initial estimators are drastically
different after the same number of iterations. Since, α is not known in practice, the
minimum number of iterations required to make this geometric term sufficiently
small is also unknown. Hence, the choice of the initial value and number of itera-
tions become very critical to the nonconvex Lasso. CoCoLasso, on the other hand,
does not involve any such issues.



CONVEX CONDITIONED LASSO FOR CORRUPTED DATA 2407

3.2. Sign consistency. There was no variable selection result for the noncon-
vex approach in [17]. In this section, we establish the sign consistency of CoCo-
Lasso by assuming the same technical conditions for the sign consistency of the
clean lasso. We assume the irrepresentable and minimum eigenvalue conditions on
� which are sufficient and nearly necessary for sign consistency of the clean Lasso
[28–30]:

(3.5)
∥∥�Sc,S�−1

S,S

∥∥∞ = 1 − γ < 1, 	min(�S,S) = Cmin > 0.

The main result on recovery of signed support is stated as follows.

THEOREM 2. Under the assumptions given in equations (3.1) and (3.5),
for λ ≤ min(ε0,4ε0/γ ) and ε ≤ min(ε1, λ/(λε2 + ε3)) where εi ’s are bounded
positive constants depending of �S,S , β∗

S , θ and σ 2, the following occurs
with probability at least 1 − δ1 where δ1 = p2C exp(−cns−2γ 2λ2ζ−1) +
p2C exp(−cns−2ε2ζ−1):

(a) There exists a unique solution β̂ minimizing (2.1) whose support is a subset
of the true support.

(b) ‖β̂S − β∗
S‖∞ ≤ κλ where κ = (4‖�−1

S,S‖∞ + C
−1/2
min ).

(c) If |β∗
min| ≥ κλ, then sign(β̂S) = sign(β∗

S).

If we assume for simplicity that κ is O(1) and the triplet {n,p, s} and β∗ satisfy:

s2 logp/n → 0 as n,p → ∞,
(3.6) ∣∣β∗

min
∣∣ � s(ζ logp/n)1/2,

then from the expression of δ1 in Theorem 2 we can choose λ so that 1 − δ1 goes
to one, which implies the sign-consistency of the CoCoLasso estimate.

COROLLARY 1. If �, �̃ and ρ̃ satisfy the regularity conditions given in Theo-
rem 2, then under the scaling in equation (3.6), the CoCoLasso estimate β̂ defined
in (2.1) is sign-consistent if |β∗

min| � λ � s(ζ logp/n)1/2 and we also have the
�∞ error bound Pr(‖β̂S − β∗

S‖∞ ≤ κλ) → 1.

So far in this section we have derived a general theory for the CoCoLasso where
there is no assumption on the type of measurement error and the form of the es-
timates �̂ and ρ̃. The only condition that requires a careful check is that the es-
timates �̂ and ρ̃ are close enough to � and ρ, respectively, in the sense defined
in (3.1). In the next section, we consider two specific types of error-in-variables
models and use the results of this section to derive the theoretical properties of
CoCoLasso estimates for those models.

4. CoCoLasso under two types of measurement errors.

4.1. Additive error. We assume that the entries of the observed design matrix
Z is contaminated by additive measurement error, that is, zij = xij + aij or in
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matrix notation, Z = X + A where A = (aij ) is the matrix of measurement errors.
We also assume that the rows of A are independent and identically distributed with
0 mean, finite covariance �A and sub-Gaussian parameter τ 2. Following [17], we
assume that �A is known. The unbiased estimates of � and ρ are given by �̂add =
1
n
Z′Z − �A and ρ̃add = 1

n
Z′y, respectively. It is easy to observe that �̂add can

have negative eigenvalues precluding convex optimization. CoCoLasso estimates
for this model will be based on the modified objective function

f̃add(β) = (1/2)β ′�̃addβ − ρ̃′
addβ + λ‖β‖1 where �̃add = (�̂add)+.

The following results show that �̂add and ρ̃add satisfy the conditions in equa-
tion (3.1).

LEMMA 1. �̂add and ρ̃add satisfy the closeness conditions in (3.1) with ζ =
max(τ 4, σ 4,1) and ε0 = τ 2.

So, even though �̂add may not be positive definite, the surrogates �̂add and ρ̃

satisfy (3.1). The following result is an immediate consequence.

COROLLARY 2. The results of Theorems 1 and 2 (and Corollary 1) hold for
the CoCoLasso estimate for the additive error model under the assumptions (3.2)
and (3.5) [and (3.6)], respectively.

From the expression of ζ in Lemma 1, we observe that for every fixed value
of τ 2 and σ 2, the CoCoLasso estimate for additive measurement error achieves
statistical consistency for any λ � s

√
ζ logp/n. However, as ζ increases with τ

we see that the lower bound for λ required in the Theorem 1 and Corollary 1 also
increases with τ . This implies that more penalization is required in presence of
larger measurement error to accurately recover the sparse support or equivalently
for larger τ we need a larger sample size to achieve the same error bounds.

Note that the additive error covariance �A is assumed to be known in order to
compute the CoCoLasso estimate. Similar assumption was used in [17] and [21]
as it is unclear how to obtain a data-driven estimate of �A when only one dataset is
available. If however, multiple replicates of the data are available, following [17],
one can obtain a data-driven estimate �̂A of �A and define �̂add = 1

n
Z′Z − �̂A.

4.2. Multiplictive error and missing data. If we assume that the errors are
multiplicative, we observe zij = xijmij . In matrix notation, we have Z = X � M

where M = (mij ) and � denotes the elementwise multiplication operator for vec-
tors and matrices. We assume that the rows of M are independent and identically
distributed with mean μM , covariance �M and sub-Gaussian parameter τ 2. Un-
der the assumption that the entries of μM and �M + μMμ′

M are strictly positive,
[17] suggests using the unbiased surrogates �̂mult = (1/n)ZZ′ � (�M + μMμ′

M)
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and ρ̃mult = (1/n)Z′y � μM where � denotes the elementwise division operator
for vectors and matrices. �̂mult once again may not be positive semi-definite. The
CoCoLasso estimate β̂ is obtained as

min
β

(1/2)β ′(�̃mult)+β − ρ̃′
multβ + λ‖β‖1 where �̃mult = (�̂mult)+.

Randomly missing covariates can be formulated as a multiplicative error model.
For example, a simple model assumes that xij ’s are missing randomly with prob-
ability r and their missing statuses are independent of one another. Then we
can defining zij = xijmij where mij = I (xij is not missing ) ∼ Bernoulli(1 − r).
Other missing data models with different choices of the missing probabilities [e.g.,
mij ∼ Bernoulli(1 − rj )] will also fall under the same setup. We can obtain esti-
mate of r (or rj ) as the proportion of missing entries in the matrix (or in the j th
column). For simplicity, we can assume r is known and then �M and μM are
known as well.

We now establish analogous results for the CoCoLasso estimate in this multi-
plicative model setup. Note that as the errors are multiplicative, in order to have all
the zij ’s to be close to the respective xij ’s, we need an upper bound for both xij and
mij . We also need a positive lower bound for the entries of μM and �M + μMμ′

M

for the expressions of �̂mult and ρ̃mult to be meaningful. To ensure these, we im-
pose the following additional set of regularity conditions for the multiplicative
setup:

max
i,j

|Xij | = Xmax < ∞, min
i,j

E
(
m1m

′
1
) = Mmin > 0,

(4.1)
minμM = μmin > 0, maxμM = μmax < ∞.

Under these regularity conditions, the following lemma shows that �̃mult and
ρ̃mult satisfies the conditions in (3.1).

LEMMA 2. �̂mult and ρ̃mult satisfy the closeness conditions in (3.1) with ζ =
max(τ 4, σ 4,1) and ε0 = τ 2.

Having proved Lemma 2, once again we use Theorems 1, 2 and Corollary 1 to
have the following results.

COROLLARY 3. The results of Theorems 1 and 2 (and Corollary 1) hold for
the CoCoLasso estimate for the multiplicative error/missing data model under the
assumptions (3.2) and (3.5) [and (3.6)], respectively.

5. Calibrated cross-validation. In applications, cross-validation [16] is a
widely used technique for choosing the tuning parameter in penalized methods.
However, cross validation for data corrupted with measurement error has received
very little attention. In the presence of noisy/corrupted data, naive application of
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cross-validation is biased and a novel correction is needed. To elucidate, consider
the usual K-fold cross validation for selecting the tuning parameter in the clean
Lasso. Let (Xk , yk) denote the true design matrix and response vector for the kth
fold of the data for k = 1,2, . . . ,K . Likewise, let (X−k , y−k) denote the design
matrix and response vector, respectively, after removing the kth fold. In absence
of measurement error, the estimate for the prediction error for the kth fold is given
by 1

nk
‖yk − Xkβ̂k(λ)‖2

2 where nk is the size of the kth fold and β̂k(λ) is the Lasso
estimate based on X−k , y−k with tuning parameter λ. The optimal λ is obtained
by minimizing the total cross-validation error, that is,

(5.1) λ̂ = arg min
λ

1

K

K∑
k=1

1

nk

∥∥yk − Xkβ̂k(λ)
∥∥2

2.

However, when we face noisy/corrupted data, as X is unknown or partially miss-
ing, (5.1) is not directly available. If we naively use the observed data (Z, y), then
the cross-validated choice of λ is defined by minimizing

(5.2)
1

K

K∑
k=1

1

nk

∥∥yk − Zkβ̂k(λ)
∥∥2

2.

Even when we use the CoCoLasso (or the estimator in 1.7) to compute β̂k(λ) based
on Z−k , y−k , the above criterion is biased compared to (5.1) in the same way the
loss function in (1.5) is a biased version of (1.3).

Using simple algebra, we observe that (5.1) is equivalent to

(5.3) λ̂ = arg min
λ

1

K

K∑
k=1

β̂k(λ)′�kβ̂k(λ) − 2ρ′
kβ̂k(λ),

where �k = 1
nk

X′
kXk and ρk = 1

nk
X′

kyk .

It may seem that using the unbiased surrogates �̂k and ρ̃k in (5.3) may overcome
the bias issue. However, as �̂k possibly has negative eigenvalues, this will lead to
a cross validation function unbounded from below.

In the light of the above discussion, we propose a new cross validation method
for corrupted data that adapts the same central idea used to construct CoCoLasso,
that is, we can use (�̂k)+ and ρ̃k in (5.3). With this correction, the cross-validated
λ is defined as

(5.4) λ̃ = arg min
λ

K∑
k=1

β̂k(λ)′(�̂k)+β̂k(λ) − 2ρ̃′
kβ̂k(λ).

We call the above procedure the calibrated cross-validation.

6. Numerical studies. We use simulated datasets to evaluate the performance
of CoCoLasso. For comparison we also included the nonconvex Lasso (NCL) by
Loh and Wainwright described in (1.6).
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6.1. Simulation models. We considered both additive measurement errors and
multiplicative measurement errors in the simulation study.

Additive errors case. We generate data from the model y ∼ N(Xβ∗, σ 2I )

where

β∗ = (3,1.5,0,0,2,0, . . . ,0)′.

The sample size n is set to be 100 and p = 250. The rows of X are independent and
identically distributed normal random variables with mean zero and covariance
matrix �X . We consider two models for �X—autoregressive (�X,ij = 0.5|i−j |)
and compound symmetry [�X,ij = 0.5 + I (i = j) ∗ 0.5]. We set σ = 3 giving
a signal to noise ratio of 2.36 for autoregressive (AR) and 3.20 for compound
symmetry (CS). We generate Z = X +A where the rows of A are independent and
identically distributed N(0, τ 2I ) where τ = 0.75, 1 and 1.25.

Multiplicative errors case. We also evaluated the performance of CoCoLasso
and NCL in a multiplicative errors setup. The true model is assumed to be same
as in the additive error setup. We now generate Z = X � M where we assume that
the elements of M = (mij ) follow log-normal distribution, that is, log(mij )’s are
independent and identically distributed N(0, τ 2) where τ = 0.25, 0.5 and 0.75.

6.2. Simulation results and conclusions. We used 5-fold calibrated cross-
validation for the CoCoLasso in our numerical examples. The code for NCL was
provided by Dr. Po-Ling Loh. NCL requires an initial estimator. Following [23],
the initial estimate is a naive Lasso estimate based on y and Z which is tuned by
5-fold cross validation. NCL also requires knowledge of ‖β∗

S‖1 for choosing the
constraint parameter. Since this is impossible to know beforehand, a naive 5-fold
cross validation was used to select the optimal R from 100 equally spaced values
in [Rmax/500,2 ∗ Rmax] where Rmax is the �1 norm of the initial estimate.

The accuracy of estimators is gauged by the Prediction Error (PE) and the
Squared Error (SE) where

PE(β̂) = (
β∗ − β̂

)′
�X

(
β∗ − β̂

)
and

SE(β̂) = ∥∥β∗ − β̂
∥∥2

2.

To evaluate variable selection, we record C and IC that denote the number of
correct and incorrect predictors identified, respectively.

Tables 1 and Table 2 summarize the simulation results for the additive error
case and the multiplicative error case, respectively. For each of the four statistics
C, IC, SE and PE we present the median numbers based on N = 100 Monte Carlo
simulations. The standard errors of the medians are calculated using bootstrap as
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TABLE 1
Summary statistics for the additive error simulation study based on 100 replications. Reported

numbers are the medians and standard errors (se) are computed by bootstrap. “CoCo” stands for
CoCoLasso. “NCL” is the method in Loh and Wainwright [17]. AR denotes Autoregressive

covariance for the predictors whereas CS denotes compound symmetry covariance

τ = 0.75 τ = 1.0 τ = 1.25

CoCo NCL CoCo NCL CoCo NCL

C 3 (0) 3 (0) 3 (0) 2 (0.07) 3 (0.07) 2 (0.45)
AR IC 11 (0.75) 3 (0.69) 11 (1.09) 1 (0.33) 10 (0.84) 0 (0.17)

PE 3.66 (0.19) 4.13 (0.26) 5.8 (0.26) 6.91 (0.34) 8.49 (0.5) 10.92 (0.46)
SE 3.81 (0.19) 3.76 (0.18) 5.57 (0.2) 6.07 (0.27) 7.94 (0.24) 8.36 (0.3)

C 2 (0.18) 2 (0) 2 (0) 1.5 (0.48) 2 (0.03) 1 (0)
CS IC 14 (0.64) 11.5 (0.58) 18 (0.71) 7 (0.22) 21 (0.48) 5 (0.28)

PE 4.49 (0.22) 4.57 (0.31) 6.03 (0.22) 6.91 (0.34) 6.99 (0.25) 10.47 (0.58)
SE 8.05 (0.33) 8.03 (0.48) 11.01 (0.4) 10.31 (1.0) 12.97 (0.34) 15.06 (1.06)

follows. We calculate the prediction error PE 100 times, once from each dataset.
We resample from this sample of PEs to create a bootstrapped sample of size N

and calculate the median PE. We repeat this process 500 times and the standard
error of the 500 medians gives the bootstrapped standard error for median of PE.
We use the same procedure for all the other three statistics as well.

We observe that CoCoLasso is more accurate than NCL, and the gap between
the two methods widens as the perturbation level increases (measured by τ ). NCL

TABLE 2
Summary statistics for the multiplicative error simulation study based on 100 replications. Reported
numbers are the medians and standard errors (se) are computed by bootstrap. “CoCo” stands for

CoCoLasso. “NCL” is the method in Loh and Wainwright [17]. AR denotes Autoregressive
covariance for the predictors whereas CS denotes compound symmetry covariance

τ = 0.25 τ = 0.5 τ = 0.75

CoCo NCL CoCo NCL CoCo NCL

C 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 2 (0)
AR IC 14 (1.41) 12 (2.4) 12 (0.87) 6 (0.74) 10 (0.81) 1 (0.46)

PE 2.02 (0.15) 2.47 (0.18) 3.25 (0.14) 3.58 (0.25) 7.32 (0.2) 8.32 (0.29)
SE 1.95 (0.09) 2.26 (0.14) 2.93 (0.14) 3.09 (0.18) 6.19 (0.2) 6.58 (0.26)

C 3 (0) 3 (0) 3 (0.18) 3 (0.18) 2 (0) 1 (0.45)
CS IC 15 (0.72) 18 (1.49) 13 (0.77) 11 (0.7) 16 (0.88) 4 (0.36)

PE 2.23 (0.16) 2.37 (0.1) 3.66 (0.15) 3.82 (0.19) 7.93 (0.3) 9.31 (0.41)
SE 4.21 (0.27) 4.32 (0.21) 6.11 (0.27) 5.75 (0.26) 10.43 (0.25) 9.34 (0.61)
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tends to select a sparser model than CoCoLasso, it often misses importance vari-
ables as the noise level is high.

7. Summary. In this paper, we have proposed a novel convex approach to
modify the classical Lasso with the clean data to handle the noisy data case. Our
approach, named CoCoLasso, is easy to understand, easy to use and has solid
theoretical foundations. We also have devised a novel cross validation methods
for corrupted data. We have demonstrated the superior performance of our method
over the nonconvex approach in Loh and Wainwright [17] by simulation studies.

Cross-validation is an integrated part of many modern statistical methods. In
the presence of measurement error, the usual cross-validation has a systematic bias
issue which has been ignored in the literature. We have proposed a calibrated cross-
validation to fix the bias issue. A future research topic is to prove the consistency
of calibrated cross-validation.

Finally, we would like to comment on the generality of the CoCoLasso ap-
proach. Although we use the Lasso to illustrate the idea of CoCoLasso, the basic
approach of CoCoLasso can be directly used in conjunction with other popular
convex penalized methods. For example, the fused Lasso [25] is a popular tech-
nique for ordered variable selection. Following the development of CoCoLasso,
we can readily develop CoCo-FusedLasso. We opt not to discuss these variants in
the present paper.

8. Proofs. In this section, we present the proofs of Theorems 1 and 2 as well
as Lemmas 1 and 2. A few useful properties and technical results about sub-
Gaussian random variables required in the proofs are provided in Appendix B.
Throughout this section, we denote C and c to be universal constants whose values
may vary across different expressions. We also introduce a few additional notation
used subsequently in the proofs:

D = �̃ − �, G = �Sc,S�−1
S,S,

G̃ = �̃Sc,S�̃−1
S,S, H = G̃ − G,

(8.1)
F = �̃−1

S,S − �−1
S,S, φ = ∥∥�−1

S,S

∥∥∞,

ψ = ‖�S,S‖∞, B = ∥∥β∗
S

∥∥∞.

8.1. Proof of Theorem 1. We first state and prove a simple result which will
be later used in the proof.

LEMMA 3. For any ε > 0, we have

(8.2) Pr
(‖�̃ − �‖max ≥ ε

) ≤ p2 max
i,j

Pr
(|�̂ij − �ij | ≥ ε/2

)
.
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PROOF. From equation (2.3), we have

Pr
(‖�̃ − �‖max ≥ ε

) ≤ Pr
(‖�̂ − �‖max ≥ ε/2

)
.

The proof then follows using union bounds over Pr(|�̂ij − �ij | ≥ ε/2). �

Note that the compatibility condition (3.2) is slightly different from the re-
stricted eigenvalue condition used to derive �2 error bounds for the traditional
Lasso estimate. However, the following lemma shows that the restricted eigen-
value condition defined in [4] as

(8.3) min
A⊆{1,2,...,p}

|A|≤s

min
x �=0

‖xAc‖1≤4‖xA‖1

min
x′�x

‖xA‖2
2

= �′ > 0

is sufficient to ensure the compatibility condition (3.2).

LEMMA 4. The restricted eigenvalue condition (8.3) implies the compatibility
condition (3.2).

PROOF. Let x ∈ R
p such that ‖xSc‖1 ≤ 3‖xS‖1. Let A denote the index set

corresponding to the entries of x with s-highest absolute values. Hence, ‖xAc‖∞ ≤
‖xA‖1/s and ‖xS‖1 ≤ ‖xA‖1. Also,

‖xAc‖1 = ‖xAc∩S‖1 + ‖xAc∩Sc‖1

≤ s‖xAc‖∞ + ‖xSc‖1

≤ ‖xA‖1 + 3‖xS‖1

≤ 4‖xA‖1.

Using this, we have ‖xAc‖2
2 ≤ ‖XAc‖∞‖XAc‖1 ≤ 4‖XA‖2

1/s ≤ 4‖XA‖2
2. So,

x′�x

x′x
= x′�x

‖XA‖2
2 + ‖XAc‖2

2

≥ x′�x

5‖XA‖2
2

≥ �′

5
. �

PROOF OF THEOREM 1. The general idea of the proof closely resembles the
proofs of [6], Lemma 6.3 and Theorem 6.1, for obtaining the error bounds of the
traditional Lasso estimate. From the definition of β̂ in (2.1), we have

1

2
β̂ ′�̃β̂ − ρ̃′β̂ + λ‖β̂‖1 ≤ 1

2
β∗T �̃β∗ − ρ̃′β∗ + λ

∥∥β∗∥∥
1.

Expanding β̂ as v̂ + β∗ where v̂ = β̂ − β∗, this simplifies to

1

2
v̂′�̃v̂ + λ‖β̂‖1 ≤ v̂′(ρ̃ − �̃β∗) + λ

∥∥β∗∥∥
1

(8.4)
≤ ‖v̂‖1

∥∥ρ̃ − �̃β∗∥∥∞ + λ
∥∥β∗∥∥

1.
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In order to obtain an upper bound for the left-hand side, we first bound the quantity
‖ρ̃ − �̃β∗‖∞. Using triangular inequality, we have∥∥ρ̃ − �̃β∗∥∥∞ ≤ ‖ρ̃ − ρ‖∞ + ∥∥ρ − �β∗∥∥∞ + ∥∥Dβ∗∥∥∞.

Using union bounds on the second equation of (3.1), we see that for λ ≤ 6ε0, we
have P(‖ρ̃ − ρ‖∞ > λ/6) ≤ pC exp(−ncs−2λ2ζ−1). As ‖Dβ∗‖∞ ≤ sB‖D‖max,
Lemma 3 along with the first equation of (3.1) implies that for λ ≤ 12Bε0,
P(sB‖D‖max > λ/6) ≤ p2C exp(−ncs−2λ2ζ−1B−2). The third component ρ −
�β∗ = 1

n
X′w is a linear combination of independent sub-Gaussian errors w.

As the columns of X are normalized, invoking property B.2, we have P(‖ρ −
�β∗‖∞ > λ/6) ≤ pC exp(−ncλ2σ−2). Redefining ζ as the maximum of previous
ζ and σ 2, we have∥∥ρ̃ − �̃β∗∥∥∞ < λ/2 on F where P(F) ≥ 1 − p2C exp

(−ncs−2λ2ζ−1)
.

For the remainder of the proof, we restrict ourselves to F adjusting for the proba-
bility of Fc. Returning to equation (8.4), we now have on F ,

1

2
v̂′�̃v̂ + λ‖β̂‖1 ≤ λ

2
‖v̂‖1 + λ

∥∥β∗∥∥
1.

Since β∗
Sc = 0, we know that v̂Sc = β̂Sc , ‖β∗‖1 = ‖β∗

S‖1. Also for any vector x, we
can write ‖x‖1 = ‖xS‖1 + ‖xSc‖1. Combining these, we have

1

2
v̂′�̃v̂ + λ‖β̂S‖1 + λ‖v̂Sc‖1 ≤ λ

2
‖v̂S‖1 + λ

2
‖v̂Sc‖1 + λ

∥∥β∗
S

∥∥
1.

Using the fact that ‖β̂S‖1 ≥ ‖β∗
S‖1 − ‖v̂S‖1, we now have

v̂′�̃v̂ + λ‖v̂Sc‖1 ≤ 3λ‖v̂S‖1.(8.5)

As v̂′�̃v̂ ≥ 0, we have that on F , ‖v̂Sc‖1 ≤ 3‖v̂S‖1. The compatibility condition
(3.2) implies that on F , ‖v̂S‖2

1 ≤ s‖v̂‖2
2 ≤ sv̂′�v̂/�. Now

v̂′�v̂ + λ‖v̂‖1 = v̂′�̃v̂ + λ‖v̂S‖1 + λ‖v̂Sc‖1 + v̂′Dv̂

≤ 4λ‖v̂S‖1 + v̂′Dv̂ using equation (8.5)

≤ 4λ
√

s

√
v̂′�v̂

�
+ v̂′Dv̂ using condition (3.2)

≤ v̂′�v̂

4
+ 16λ2s

�
+ ∣∣v̂′Dv̂

∣∣ using 4ab ≤ a2/4 + 16b2.

The last term on the right-hand side is bounded as follows:∣∣v̂′Dv̂
∣∣ ≤ ‖D‖max‖v̂‖2

1 = ‖D‖max
(‖v̂S‖1 + ‖v̂Sc‖1

)2 ≤ 16‖D‖max‖v̂S‖2
1 on F

≤ 16‖D‖max
sv̂′�v̂

�
(compatibility condition).
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Using Lemma 3 and the closeness condition (3.1), for ε less than some constant ε0,

P
(
16s‖D‖max > �/4

) = P
(‖D‖max > �/64s

) ≤ p2C exp
(−ncs−2ε2ζ−1)

.

Hence, with probability greater than 1 − p2C exp(−ncs−2ε2ζ−1) −
p2C exp(−ncs−2λ2ζ−1) we now have

v̂′�v̂ + λ‖v̂‖1 ≤ v̂′�v̂

4
+ 16λ2s

�
+ v̂′�v̂

4
.

We now have the combined inequality:

v̂′�v̂

2
+ λ‖v̂‖1 ≤ 16λ2s

�

which yields the bounds for both the �1 error as well as the prediction error in
Theorem 1. The �2 error bound is obtained by one more application of the com-
patibility condition as ‖v̂‖2

2 ≤ v̂′�v̂/�. �

8.2. Proof of Theorem 2. The proof for the sign consistency result of the Co-
CoLasso is involved. We first present a series of results required to prove Theo-
rem 2.

LEMMA 5. Let ∂‖x‖1 denotes the sub-gradient of ‖x‖1 for any vector x. Then
we have the following results: (a) β̂ is the optimal solution to f̃ (β) = (1/2)β ′�̃β −
ρ̃′β + λ|β‖1 iff there exists a vector ũ in ∂‖β̂‖1 such that

(8.6) �̃β̂ − ρ̃ + λũ = 0.

(b) If |ũj | < 1 ∀j ∈ Sc, then any other optimal solution β̃ will have support
S(β̃) ⊆ S. (c) If we assume that �̃

S(β̂),S(β̂)
is invertible, then under the conditions

of part (b), f̃ (β) has unique minima.

PROOF. This lemma is a modified version of [28], Lemma 1. We omit the
proof as it is exactly analogous to that in the paper. �

Note that the invertibility assumption of part (c) of Lemma 5 needs to hold to
establish the uniqueness of the Lasso solution. We now show that this occurs with
probability tending to 1. For notational convenience, we define

(8.7) δ(ε, ζ ) = p2C exp
(−cns−2ε2ζ−1)

.

LEMMA 6. Pr(�̃S,S > 0) ≥ 1 − δ(ε, ζ ) for all ε ≤ min(ε0,Cmin/2).

PROOF. From equation (8.1), we have

	min(�̃S,S) ≥ 	min(�S,S) − ∣∣	max(−DS,S)
∣∣ ≥ Cmin − ‖DS,S‖2

≥ Cmin − s‖DS,S‖max ≥ Cmin − s‖D‖max ≥ Cmin/2,
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where the last inequality occurs with probability at least 1 − δ(ε, ζ ) for ε ≤
min(ε0,Cmin/2) �

LEMMA 7. If �̂ and ρ̃ satisfy (3.1), then there exists positive constants C, c

such that for every ε ≤ min(ε0,1/φ),

Pr
(‖F‖∞ ≥ εφ2(1 − φε)−1) ≤ δ(ε, ζ ),

(8.8)
Pr

(‖H‖∞ ≥ εφ(2 − γ )(1 − φε)−1) ≤ δ(ε, ζ ).

PROOF. Let η1 = ‖DS,S‖∞ and η2 = ‖DSc,S‖∞. Now,
∑s

j=1 |Dij | ≤
s‖D‖max for (i = 1, . . . , s). Consequently, if ‖D‖max ≤ ε/s then both η1 and η2
are less than ε. From (3.1) and (8.2), Pr(η1 ≤ ε, η2 ≤ ε) ≥ 1 − δ(ε, ζ ) for ε ≤ ε0.
The remainder of the proof follows from [18], Lemma A2. �

PROOF OF THEOREM 2 PART (a). We use a Primal Dual Witness construc-
tion technique similar to [28] to prove Theorem 2. Let β̂S be the solution to the
restricted modified Lasso program, that is,

(8.9) β̂S = arg min
βS

f̃S(βS) where f̃S(βS) = 1

2
β ′

S�̃S,SβS − ρ̃′
SβS + λ‖βS‖1.

Let β̂ = (β̂ ′
S,0′

(p−s)×1)
′ and ũ = (ũ′

S, ũ′
Sc)

′ where ũS ∈ ∂(‖β̂S‖1) and ũSc is some

unspecified (p − s) × 1 vector. From part (a) of Lemma 5, we observe that β̂ is an
optimal solution to (2.1) iff {β̂, ũ} satisfies

�̃S,Sβ̂S − ρ̃S + λũS = 0,
(8.10)

�̃Sc,Sβ̂S − ρ̃Sc + λũSc = 0.

Solving for β̂S and ũSc from equation (8.10), we have

(8.11) β̂S = �̃−1
S,S(ρ̃S − λũS), ũSc = G̃ũS + 1

λ
(ρ̃Sc − G̃ρ̃S).

From parts (b) and (c) of Lemma 5, we see that β̂ will be the unique solution
to (2.1) if �̃S,S is nonsingular and all the entries of ũSc have absolute values less
than 1. Lemma 6 provides lower bounds for Pr(�̃S,S > 0). We now derive the
bounds for Pr(‖ũSc‖∞ < 1). We expand ũSc as

ũSc = GũS + HũS + 1

λ

(
(ρ̃Sc − ρSc) + (ρSc − GρS) + G(ρS − ρ̃S) − Hρ̃S

)
= GũS + H

(
ũs + 1

λ
(ρS − ρ̃S) − 1

λ
ρS

)
+ 1

λ

(
(ρ̃Sc − ρSc) + (ρSc − GρS) + G(ρS − ρ̃S)

)
.



2418 A. DATTA AND H. ZOU

Taking the absolute values and using triangular inequalities, we have

‖ũSc‖∞ ≤ ‖GũS‖∞ + ‖H‖∞
(

1 + 1

λ
‖ρ̃S − ρS‖∞ + 1

λ
‖ρS‖∞

)
× 1

λ
‖ρSc − GρS‖∞ +

(
1

λ
‖ρ̃Sc − ρSc‖∞ + 1

λ

∥∥G(ρ̃S − ρS)
∥∥∞

)
.

We bound each of the four terms on the right-hand side separately. The irrepre-
sentable condition (3.5) implies that ‖GũS‖∞ < (1 − γ ). It also implies that for
λ ≤ 4ε0/γ we have

Pr
(

1

λ
‖ρ̃Sc − ρSc‖∞ + 1

λ

∥∥G(ρ̃S − ρS)
∥∥∞ < γ/2

)
≥ Pr

(
1

λ
‖ρ̃ − ρ‖∞ < γ/4

)
≥ 1 − δ(λγ, ζ ),

where the last inequality follows from taking union bounds on the second equation
in (3.1).

The term (ρSc − GρS) = 1
n
X′

Sc(I − XS(X′
SXS)−1X′

S)w is a linear combina-
tion of sub-Gaussian random variables. A direct application of (B.2) yields that
Pr((1/λ)‖ρSc − GρS‖∞ ≥ γ /4) ≤ δ(λγ, ζ ) where ζ is redefined as maximum of
the previous ζ and σ 2.

Without loss of generality, we assume that ε0 ≤ 1. Then with probability greater
than 1−δ(ε, ζ ), we can write ‖ρ̃S −ρS‖∞+‖ρS‖∞ ≤ ‖ρ̃S −ρS‖∞+‖ 1

n
X′

Sw‖∞+
‖ 1

n
X′

SXSβ∗
S‖∞ ≤ 2 + Bψ for ε ≤ min(1, ε0). Combining this with Lemma 7, we

have, with probability at least 1 − δ(ε, ζ ):

‖H‖∞
(

1 + 1

λ
‖ρ̃S − ρS‖∞ + 1

λ
‖ρS‖∞

)
≤

(
1 + 1

λ
(2 + Bψ)

)
εφ(2 − γ )

(1 − φε)
≤ γ

8

for ε ≤ ε∗
0 where ε∗

0 = min(ε0, γ λφ−1(8(2 − γ )(λ + 2 + Bψ) + γ λ)−1).
Combining all the probabilities and adjusting for the invertibility probability, for

λ ≤ 4ε0/γ and ε ≤ min(ε∗
0,Cmin/2), we have Pr(‖ũSc‖∞ ≥ 1−γ /8) ≤ δ(λγ, ζ )+

δ(ε, ζ ). �

PROOF OF THEOREM 2 PARTS (B) AND (C). Using the expression of β̂S from
equation (8.11), we expand

β̂S − β∗
S = �̃−1

S,S

(
ρ̃S − ρS + 1

n
X′

SXSβ∗
S + 1

n
X′

Sw − λũS

)
− β∗

S

= FS,S

(
ρ̃S − ρS + 1

n
X′

SXSβ∗
S + 1

n
X′

Sw

)
+ �−1

S,S(ρ̃S − ρS) + 1

n
�−1

S,SX′
Sw − λ�̃−1

S,SũS.
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We analyze each of the terms above separately. From the definition of sub-
Gaussian vectors in (B.2), we observe that 1

n
�−1

S,SX′
Sw is sub-Gaussian with pa-

rameter at most σ 2Cmin/n. This implies that ‖ 1
n
�−1

S,SX′
Sw‖∞ is less than λ/

√
Cmin

with probability at least 1 − δ(λ, ζ ). Moreover, as �̃ = � + F , from Lemma 7 we
have with probability at least 1 − δ(ε, ζ ), for ε ≤ min(ε0, (2φ)−1):

‖�̃S,S‖∞ ≤ φ + ‖F‖∞ ≤ φ + φ2ε(1 − φε)−1 ≤ 2φ.

The closeness condition for ρ̃ in equation (3.1) implies that ‖ρ̃S − ρS‖∞ ≤ λ

with probability at least 1 − δ(λ, ζ ) for λ ≤ ε0. Following the proof of part (a),
we can also conclude that for ε ≤ ε0, we have ‖ρ̃S − ρS‖∞ + ‖ 1

n
X′

SXSβ∗
S‖∞ +

‖ 1
n
X′

Sw‖∞ ≤ (2 + Bψ) with probability at least 1 − δ(ε, ζ ). Therefore,∥∥∥∥FS,S

(
ρ̃S − ρS + 1

n
X′

SXSβ∗
S + 1

n
X′

Sw

)∥∥∥∥∞
< (2 + Bψ)

φ2ε

1 − φε
≤ λφ

with probability 1 − δ(ε, ζ ) for ε ≤ λφ−1(λ + 2 + Bψ)−1. Combining all the
probabilities, we have∥∥β̂S − β∗

S

∥∥∞ ≤
∥∥∥∥FS,S

(
ρ̃S − ρS + 1

n
X′

SXSβ∗
S + 1

n
X′

Sw

)∥∥∥∥∞

+ φ‖ρ̃S − ρS‖∞ +
∥∥∥∥1

n
�−1

S,SX′
Sw

∥∥∥∥∞
+ 2λφ

≤ λ

(
4φ + 1√

Cmin

)
with probability 1 − δ(λ, ζ ) − δ(ε, ζ ) for ε ≤ (ε0,Cmin/2, (2φ)−1, λφ−1(λ + 2 +
Bψ)−1) and λ ≤ ε0.

This proves part (b). If |β∗
min| > λ(4φ + 1√

Cmin
), then the Lasso estimate is sign

consistent proving Part(c). �

8.3. Proofs of Lemmas 1 and 2. We assume sub-Gaussian additive or multi-
plicative measurement errors in Section 4. The proofs of Lemmas 1 and 2 mainly
rely on the properties of sub-Gaussian random variables and vectors which can be
found in Appendix B.

PROOF OF LEMMA 1. Let �A = (σa,ij ) and bj denotes the j th column of
any matrix B . Then �̂add,jk − �jk = 1

n
a′
j xk + 1

n
a′
kxj + ( 1

n
a′
j ak − σa,jk). Since

1
n
‖xj‖2

2 = 1 and the entries of aj are independent and sub-Gaussian with param-
eter at most τ 2 for all j , property (B.2) implies that |(1/n)a′

j xk| and |(1/n)a′
j xk|

are each greater than ε/3 with probability less than C exp(−cnε2/τ 2). Let zi =
(aij , aik)

′. Then zi ’s are independent sub-Gaussian vectors with parameter at
most τ 2. The tail probability for 1

n
a′
j ak − σa,jk can now be made small using

Lemma B.1. Hence, �̂add satisfies (3.1) with ζ = max(τ 4, τ 2) and ε0 = cτ 2.
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We observe that ρ̃add,j − ρj = 1
n
a′
jXSβ∗

S + 1
n
a′
jw. Consequently, |ρ̃add,j − ρj |

is less than B
∑s

i=1 | 1
n
a′
j xi | whose tail probability of exceeding ε/2 is at most

C exp(−nε2s−2τ−2B−2). Letting zi = (aij ,wi), Lemma B.1 can be applied to
obtain the tail bound for 1

n
a′
jw. Hence, ρ̃add satisfies (3.1) with ζ = max(σ 4, τ 4,1)

and ε0 = τ 2. �

PROOF OF LEMMA 2. The proof once again relies on Lemma B.1. Let �M =
(σm,jk), then

�̂mult,jk − �jk = 1

n

n∑
i=1

xij xik

μjμk + σm,jk

(mijmik − μjμk − σm,jk)

= 1

n

n∑
i=1

xij xik

μjμk + σm,jk

(
(mij − μj)(mik − μk) − σm,jk

)

+ 1

n

n∑
i=1

xij xik

μjμk + σm,jk

(
μj(mik − μk) + μk(mij − μj)

)
.

Using the regularity conditions in equation (4.1), we have

|�̂mult,jk − �jk| ≤ 1

Mmin

∣∣∣∣∣(1/n)

n∑
i=1

xij xik

(
(mij − μj)(mik − μk) − σm,jk

)∣∣∣∣∣
+ μmax

Mmin

∣∣∣∣∣(1/n)

n∑
i=1

xij xik(mik − μk)

∣∣∣∣∣(8.12)

+ μmax

Mmin

∣∣∣∣∣(1/n)

n∑
i=1

xij xik(mij − μj)

∣∣∣∣∣.
We denote the three terms on the right-hand side of (8.12) by T1, T2 and T3, respec-
tively. Note that, if v = (v1, v2, . . . , vn) where vi = xij xjk , then ‖v‖∞ ≤ X2

max.
As, the errors are once again sub-Gaussian, using Lemma B.1, we see that for
ζ = max(τ 4X4

max/M
2
min, τ

2X2
maxμ

2
max/M

2
min) and ε ≤ cτ 2X2

max/Mmin we have

Pr(T1 ≥ ε) ≤ C exp
(−cnε2ζ−1)

.

The terms T2 and T3 can be similarly bounded using property (B.2). This proves
that �̂mult satisfies (3.1). We now show that ρ̃mult also satisfies (3.1). Recall that

ρ̃mult,j − ρj = (1/n)(zj − μjxj )
′y/μj . As y = XSβ∗

S + w, we have

|ρ̃mult,j − ρj | ≤ 1

μmin

s∑
k=1

∣∣∣∣1

n
(zj − μjxj )

′xkβ
∗
k

∣∣∣∣ + 1

μmin

∣∣∣∣1

n
(zj − μjxj )

′w
∣∣∣∣

≤ B

μmin

s∑
k=1

∣∣∣∣∣(1/n)

n∑
i=1

xij xik(mij − μj)

∣∣∣∣∣
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+ 1

μmin

∣∣∣∣∣(1/n)

n∑
i=1

xijwj (mij − μj)

∣∣∣∣∣.
Using Lemma B.1, we have for ζ = X2

max max(τ 2B2/, τ 4, σ 4)/μ2
min and ε ≤

cXmax max(τ 2, σ 2)/μmin:

Pr

(
1

μmin

∣∣∣∣∣(1/n)

n∑
i=1

xijwj (mij − μj)

∣∣∣∣∣ ≥ ε/2

)
≤ C exp

(−cnε2ζ−1)
,

Pr

(
B

μmin

∣∣∣∣∣(1/n)

n∑
i=1

xij xik(mij − μj)

∣∣∣∣∣ ≥ ε/2s

)
≤ C exp

(−cnε2s−2ζ−1)
,

where the last inequality follows from property (B.2). Assuming Xmax, μmin, Mmin
and B to be constants, Lemma 2 is proved with ε0 = τ 2 and ζ = max(τ 4, σ 4,1).

�

APPENDIX A: ALGORITHM FOR FINDING THE NEAREST POSITIVE
SEMI-DEFINITE MATRIX

We use an alternating direction method of multipliers to solve for

(A.1) Â = arg min
A≥εI

‖A − �̂‖max

for any ε > 0. We introduce an additional variable B and an equality constraint
B = A − �̂ to rewrite the optimization problem in (A.1) as

(A.2) (Â, B̂) = arg min
A≥εI,B=A−�̂

‖B‖max.

To solve (A.2), we will minimize the augmented Lagrangian function:

(A.3) f (A,B,	) = 1

2
‖B‖max − 〈	,A − B − �̂〉 + 1

2μ
‖A − B − �̂‖2

F ,

where μ is some penalty parameter, 	 is the Lagrangian matrix and 〈·, ·〉 denotes
the matrix inner product which induces the Frobenius norm ‖ · ‖F . We solve for
the minimizer of f (A,B,	) iteratively using the following three steps at the ith
iteration:

A step: Ai+1 = arg min
A≥εI

f (A,Bi,	i),

B step: Bi+1 = arg min
B

f (Ai+1,B,	i),(A.4)

	 step: 	i+1 = 	i − Ai+1 − Bi+1 − �̂

μ
.



2422 A. DATTA AND H. ZOU

We now provide the closed-form solutions for the first two steps in equation (A.4).
The A step can be simplified as

arg min
A≥εI

f (A,Bi,	i) = arg min
A≥εI

1/(2μ)‖A − Bi − �̂‖2
F − 〈	i,A〉

= arg min
A≥εI

‖A − Bi − �̂ − μ	i‖2
F .

The unconstrained solution for the A-step is Bi + �̂ +μ	i . Let for any symmetric
matrix Z, Zε denote the projection of Z into the space of matrices with eigen
values greater than ε. If Z = ∑

j λjpjp
′
j denote the spectral decomposition of Z,

then we have Zε = ∑
j max(λj , ε)pjp

′
j . Hence, the solution for the A-step is given

by

(A.5) Ai+1 = (Bi + �̂ + μ	i)ε.

The B-step is equivalent to

arg min
B

1

2
‖B‖max + 1

2μ

∥∥B − (Ai+1 − �̂)
∥∥2
F − 〈−	i,B〉(A.6)

= arg min
B

∥∥B − (Ai+1 − �̂ − μ	i)
∥∥2
F + μ‖B‖max.

Let for any symmetric matrix M , vecL(M) denote the vector containing the lower
half elements (including the diagonal) of M . Since vecl is an injective mapping,
we can define an inverse mapping matl(x) such that matl(vecl(M)) = M for any
symmetric matrix M . The solution to the B-step is given by

Bi+1 = matl
(
vecl(Ai+1 − �̂ − μ	i) − �1

(
vecl(Ai+1 − �̂ − μ	i),μ

))
,

where for any vector x and μ > 0, �1(x,μ) is the projection of x into the �1 ball
of radius μ. The algorithm to calculate �1(x,μ) is provided in [9]. The complete
details of the ADMM algorithm are given in Algorithm 1.

Algorithm 1 ADMM algorithm for finding the nearest positive semi-definite ma-
trix

1: Input μ and the initial values B0 and 	0
2: At the ith step update:

2.1: (Step A) Ai+1 = (Bi + �̂ + μ	i)ε
2.2: (Step B) Bi+1 = matl(vecl(Ai+1 − �̂ − μ	i) − �1(vecl(Ai+1 − �̂ −

μ	i),μ))

2.3: (Step 	) 	i+1 = 	i − Ai+1−Bi+1−�̂
μ

3: Repeat Step 2 till convergence
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APPENDIX B: SUB-GAUSSIAN RANDOM VARIABLES

In our analysis of the CoCoLasso estimate, we have assumed that the errors
w are independent and identically distributed sub-Gaussian random variables with
parameter τ 2. In this section, we summarize some useful definitions and properties
of sub-Gaussian random variables.

DEFINITION B.1 (Sub-Gaussian random variables Vershynin [27]). A random
variable Z is said to be sub-Gaussian if there exists a finite κ > 0 such that κ =
supp≥1 p−1/2(E|X|p)

1
p . κ is referred to as the sub-Gaussian norm of Z denoted

by ‖Z‖φ .

Equivalently, a sub-Gaussian random variable Z satisfies the following tail
probability bounds:

(B.1) P
(|Z| > t

) ≤ 2 exp
(−t2/2τ 2)

for all t > 0.

To avoid ambiguity, we refer to the sub-Gaussian parameter of Z as the small-
est τ 2 satisfying (B.1). Following [27], Lemma 5.5, we observe that there exists
universal constants m and M such that m‖Z‖2

φ ≤ τ 2 ≤ M‖Z‖2
φ . We note that if

w = (w1,w2, . . . ,wn)
′ that wi ’s are independent zero-centered sub-Gaussian ran-

dom variables, then weighted sums of wi are also sub-Gaussian and satisfy an
useful property [27], Lemma 5.9:

(B.2)
∥∥v′w

∥∥2
φ ≤ K‖v‖2

2max
i

(‖wi‖2
φ

)
,

where K is an absolute constant. The tail-probability characterization in (B.1) en-
ables defining sub-Gaussian random vectors in the following sense.

DEFINITION B.2 (Sub-Gaussian random vectors Cai, Zhang and Zhou [7]).
A random vector w is said to be sub-Gaussian if there exists τ > 0 such that
Pr(|v′(w − E(w))| > t) ≤ 2 exp(− t2

2τ 2 ) for all t > 0 and ‖v‖2 = 1.

From property (B.2), it is clear that if w = (w1,w2, . . . ,wn)
′ is a sub-Gaussian

vector with parameter τ 2, then each wi is also sub-Gaussian with parameter at most
τ 2. Conversely, if wi ’s are independent and sub-Gaussian random variables with
parameter τ 2

i , then w = (w1,w2, . . . ,wn) is a sub-Gaussian vector with parameter
at most τ 2 ≤ (KM/m)(max τ 2

i ). We now state and prove another useful result for
correlated sub-Gaussian sequences.

LEMMA B.1. Let zi = (xi, yi)
′ denote independent and identically distributed

vectors with zero mean, covariance � = ((σij )) and sub-Gaussian parameter τ 2.
Then there exists absolute constants C and c such that, for every ε ≤ cτ 2‖a‖∞,
we have

(B.3) Pr

(
1

n

∣∣∣∣∣
n∑

i=1

ai(xiyi − σ12)

∣∣∣∣∣ ≥ ε

)
≤ C exp

(
− ncε2

τ 4‖a‖2∞

)
.
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PROOF.

(1/n)

n∑
i=1

ai(xiyi − σ12)

= 1

4n

n∑
i=1

ai

(
(xi + yi)

2 − (σ11 + σ22 + 2σ12)
)

− 1

4n

n∑
i=1

ai

(
(xi − yi)

2 − (σ11 + σ22 − 2σ12)
)

= 1

2n

n∑
i=1

ai

((
v′

1zi

)2 − E
((

v′
1z1

)2)) − 1

2n

n∑
i=1

ai

((
v′

2zi

)2 − E
((

v′
2z1

)2))
,

where v1 = (1/
√

2,1/
√

2)′ and v1 = (1/
√

2,−1/
√

2)′. As ‖vk‖ = 1, v′
kz1 is

sub-Gaussian with parameter at most τ 2 for k = 1,2. Using the relationship
between sub-Gaussian and sub-exponential random variables in [27], Lemma
5.14 and Remark 5.18, we see that, for k = 1,2, (v′

kzi)
2 − E((v′

kz1)
2) is sub-

exponential with parameter at most cτ 2 where c is an absolute constant. As a result
ti = ai((v

′
1zi)

2 − E((v′
1z1)

2) is sub-exponential with parameter at most cτ 2‖a‖∞.
A direct application of [27], Corollary 5.17, now yields for ε ≤ cτ 2‖a‖∞:

Pr

(
1

2n

∣∣∣∣∣
n∑

i=1

ti

∣∣∣∣∣ ≥ ε

)
≤ C exp

(
− ncε2

τ 4‖a‖2∞

)
.

�
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