
The Annals of Statistics
2017, Vol. 45, No. 4, 1810–1833
DOI: 10.1214/16-AOS1514
© Institute of Mathematical Statistics, 2017

SHARP DETECTION IN PCA UNDER CORRELATIONS:
ALL EIGENVALUES MATTER

BY EDGAR DOBRIBAN1

Stanford University

Principal component analysis (PCA) is a widely used method for di-
mension reduction. In high-dimensional data, the “signal” eigenvalues cor-
responding to weak principal components (PCs) do not necessarily separate
from the bulk of the “noise” eigenvalues. Therefore, popular tests based on
the largest eigenvalue have little power to detect weak PCs. In the special case
of the spiked model, certain tests asymptotically equivalent to linear spec-
tral statistics (LSS)—averaging effects over all eigenvalues—were recently
shown to achieve some power.

We consider a “local alternatives” model for the spectrum of covariance
matrices that allows a general correlation structure. We develop new tests to
detect PCs in this model. While the top eigenvalue contains little information,
due to the strong correlations between the eigenvalues we can detect weak
PCs by averaging over all eigenvalues using LSS. We show that it is possible
to find the optimal LSS, by solving a certain integral equation. To solve this
equation, we develop efficient algorithms that build on our recent method for
computing the limit empirical spectrum [Dobriban (2015)]. The solvability of
this equation also presents a new perspective on phase transitions in spiked
models.

1. Introduction. Introduced by Pearson and Hotelling in the early 1900s,
Principal Component Analysis (PCA) is a widely used method for dimension re-
duction. Inference in PCA is classically based on the asymptotic distribution of the
top eigenvalues of the sample covariance matrix, which are consistent estimators
of the top population eigenvalues under low-dimensional asymptotics—when the
sample size grows while the dimension is fixed [Anderson (1963, 2003)].

In contrast, in high dimensions—when the dimension is proportional to the sam-
ple size—the behavior of the eigenvalues is different. Below a critical value of the
top eigenvalue in the population, the top sample eigenvalue has the same behav-
ior as if there were only null eigenvalues; see, for example, Baik, Ben Arous and
Péché (2005), Benaych-Georges and Nadakuditi (2011) for results in this direc-
tion, and Hachem, Hardy and Najim (2015) for a survey. Tests based on the top
eigenvalue alone have small power to detect weak PCs in high dimensions.
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How should one test for the presence of weak PCs in high dimensions? To un-
derstand the problem, one may leverage results from random matrix theory, where
the eigenvalues of large sample covariance matrices have been studied for nearly
50 years, dating back to Marchenko and Pastur (1967). There is a lot of work on
models with general population covariance [see, e.g., Bai and Silverstein (2009),
Couillet and Debbah (2011), Paul and Aue (2014), Yao, Zheng and Bai (2015), for
reference].

Despite this work, our current methods for detecting weak PCs are limited to
a small number of covariance matrix models solved explicitly. These all center
on the special case of the “spiked model,” where the covariance matrix is a low
rank perturbation of the identity [Johnstone (2001)]. For instance, Onatski, Mor-
eira and Hallin (2013, 2014) study likelihood ratio tests in Gaussian spiked mod-
els. This is extended to F -matrices and a few other explicitly solved examples
[Dharmawansa, Johnstone and Onatski (2014), Johnstone and Onatski (2015)].
Is it possible to detect weak PCs under general covariance matrix models, such as
those of Marchenko and Pastur (1967)? This question is relevant for settings where
the spiked model is not a good description of empirical data.

In our setting, working with general covariance models, however, poses sev-
eral challenges. First, these models are characterized by certain difficult fixed-
point equations. While the theoretical existence of these equations has been known
for a long time, a reliable numerical approach has only recently been developed
[Dobriban (2015)]. This has enabled us to compute eigenvalue densities for exam-
ples never done before.

A second key challenge is that the pre-existing theoretical approach does not
generalize directly. The likelihood approach of Onatski, Moreira and Hallin (2013,
2014) is hard to extend to general covariance matrices, and a new approach is
needed.

In this paper we show how to detect weak PCs generally under local alterna-
tives, in spiked models that generalize the standard one to the general covariance
matrix setting. We overcome the computational challenges by using our recent
SPECTRODE method [Dobriban (2015)]. We overcome the theoretical challenges
by working with linear spectral statistics, a broad class of functionals of the eigen-
values that include Gaussian LR tests as a special case.

As a consequence of our results, below certain problem-specific signal strengths
quite generally all eigenvalues matter to achieve optimal detection of PCs in high-
dimensional data. This is in contrast to the low-dimensional case, as well as to
the high-dimensional case with strong PCs separating from the bulk [e.g., Baik,
Ben Arous and Péché (2005), Paul (2007), etc.]. Thus, our results identify a special
but broad regime where optimal inference must be based on all eigenvalues.

1.1. Our contributions. Suppose we have an n × p data matrix Xn×p , with n

rows sampled from a p-dimensional population. The samples are allowed to have
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a general covariance structure via the model Xi = �
1/2
p εi for white noise εi with

i.i.d. real standardized entries. In the special case of the spiked model [Johnstone
(2001)], the null hypothesis is that the covariance matrix is identity, �p = Ip . The
alternative hypothesis is that �p = Ip + ∑k

j=1 hjvjv
�
j , for orthonormal directions

vj and scalars hj . The problem is to test if there are any directions with hj > 0.
We will work under high-dimensional asymptotics, taking n,p → ∞ such that

p/n → γ > 0. In the standard spiked model, the top eigenvalue λ1 of the sample
covariance matrix �̂ = n−1X�

n×pXn×p undergoes a phase transition. If h1 >
√

γ ,
λ1 is asymptotically separated from the bulk of the noise eigenvalues, that is, the
other eigenvalues of �̂. However, if 0 ≤ h1 <

√
γ , the top eigenvalue does not sep-

arate from the bulk [e.g., Baik, Ben Arous and Péché (2005), Baik and Silverstein
(2006), Paul (2007), etc.]. Therefore, tests based on it have trivial power.

Onatski, Moreira and Hallin (2013, 2014) have recently discovered that weak
PCs can still be detected with nontrivial power by suitable likelihood ratio (LR)
tests. They showed that the LR test is asymptotically equivalent to a specific linear
spectral statistic—or LSS—tr(ϕ(�̂)) = ∑

i ϕ(λi), where λi are the eigenvalues of
�̂. An LSS aggregates effects over all eigenvalues, unlike the top eigenvalue. Our
contributions are then as follows:

1. We consider a hypothesis testing formulation for PCA in a local alternatives
model. Our model allows for general distributions of eigenvalues, so the measured
variables can be correlated even under the null. Though we assume that the spec-
trum is a discrete distribution, we will argue that this is not a limitation.

We give an integral equation for the optimal LSS in this testing problem (The-
orem 2.2), and describe the maximum power (Theorem 2.3). In simulations, we
show that there is a large power for spikes below the phase transition when the
null H is “spread out” (Section 2.3). We briefly explain how our results are related
to the classical theory of optimal testing under local alternatives (Section 2.4).

2. As an innovation in the proofs, we find the weak derivative of the Mar-
chenko–Pastur forward map of the eigenvalues (Theorem 4.1). This key new object
allows us to find the difference in the mean of the LSS under the null and alterna-
tive.

We can then show in Proposition 2.5 that the power of the optimal LSS is
unity for spikes above the known phase transition in previous spiked models [Baik,
Ben Arous and Péché (2005), Benaych-Georges and Nadakuditi (2011), Bai and
Yao (2012)] (Theorem 2.4). Finally, we explain how the weak derivative sheds new
light on the phase transition phenomenon.

3. We extend our framework to allow for an unknown scale factor. For this,
we introduce scale-invariant linear standardized spectral statistics tr(ϕ(�̂/σ̂ 2)) =∑p

i=1 ϕ(λi/σ̂
2), where σ̂ 2 = p−1 tr �̂. After establishing a CLT for them, we ob-

tain results similar to those for LSS.
4. We develop an efficient algorithm to solve the integral equation (Section 3),

based on our SPECTRODE method [Dobriban (2015)]. Software implementing the
method and for reproducing our simulations is available at github.com/dobriban.

http://github.com/dobriban
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2. Sharp detection in PCA. More rigorously, we observe an n × p data ma-
trix Xn×p , where n is the sample size and p is the dimensionality. If the sam-
ples are drawn independently from a population with covariance matrix �p , then

one can model Xn×p = Zn×p�
1/2
p , where the n × p matrix Zn×p has i.i.d. stan-

dardized entries, and �p is a p × p deterministic positive semidefinite population
covariance matrix. Let Hp be the spectral distribution of �p , that is, the discrete
uniform distribution on its eigenvalues li , sorted so that l1 ≥ l2 ≥ · · · ≥ lp . Its cu-
mulative distribution function is defined as Hp(x) = p−1 ∑p

i=1 I (li ≤ x). The li
are the population variances of the principal components.

The null hypothesis of identity �p = Ip is equivalent to Hp = δ1, where δc is the
point mass at c. The spiked alternative �p = Ip+∑k

j=1 hjvjv
�
j , for orthonormal

vj , is equivalent to Hp = (1 − k/p)δ1 + p−1 ∑k
j=1 δ1+hj

. This expresses the null
and spiked alternative in terms of the spectrum of �p .

We consider a more general local alternatives model. Let H =d−1 ∑d
i=1 δti and

Gj =h−1 ∑h
i=1 δ

s
j
i

, j = 0,1 be fixed probability distributions on [0,∞). Under

the null, we take the eigenvalues to be t1, t2, . . . , td each with multiplicity m, and
s0

1 , s0
2 , . . . , s0

h. Under the alternative, the eigenvalues are ti with the same multiplic-
ity, and s1

1 , s1
2 , . . . , s1

h.
In this paper, d and h are fixed constants, so the total number of eigenvalues is

p = dm + h, and h of them differ between null and alternative. Without loss of
generality, we can take p → ∞ along such a subsequence (as m → ∞).

We can write this sequence of null hypotheses Hp,0 and alternatives Hp,1 as

Hp,0 : Hp = (
1 − hp−1)

H + hp−1G0,(1)

Hp,1 : Hp = (
1 − hp−1)

H + hp−1G1.(2)

Taking H = δ1, G0 = δ1 and G1 = h−1 ∑h
j=1 δ1+hj

, the above null generalizes
the hypothesis of identity Hp = δ1 against spiked alternatives.

In our spiked paper, H is a finite mixture of point masses. The CLT of Bai
and Silverstein (2004) requires a fixed sequence of covariance matrices, implying
that Hp are finite mixture of point masses. Further, we need the form Hp = (1 −
hp−1)H + hp−1G0 for our argument via the weak derivative. This explains why
H must be a finite mixture of point masses in our paper.

However, we insist that this is not a significant limitation of the proposed
methodology. The reason is twofold. First, d and h can be arbitrarily large con-
stants. Therefore, our model is still quite flexible. Second, it is more natural to
test hypotheses about the spectrum Hp than about the limiting spectrum H . The
limiting spectrum H is a purely theoretical quantity that helps with the analysis.
However, it seems more natural to test hypotheses about the finite-sample quan-
tity Hp . Now, Hp is usually a discrete mixture of point masses, so we can use the
methods proposed in this paper.
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As explained later in Section 2.4, there are some analogies between our model
and optimal testing under local alternatives in classical statistics. Building on this
analogy, we call h the local parameter.

We will construct tests based on linear spectral statistics (LSS) Tp(ϕ) =
tr(ϕ(�̂)) = ∑p

i=1 ϕ(λi), where �̂ = n−1X�
n×pXn×p is the sample covariance ma-

trix, and λi are its eigenvalues. We will find the optimal LSS for the hypothesis
testing problem (1) versus (2), when the sample size n and dimension p grow such
that γp = p/n → γ > 0. In fact, we will assume that γp = γ , so that γ must be
rational. This is not a limitation, because in practice we always have finite n,p,
and we can set γ := p/n to use our methods.

In this model, the Marchenko–Pastur forward map—or simply Marchenko–
Pastur map—describes the weak limit of the spectral distribution Fp of �̂. If the
entries of Zn×p come from an infinite array of i.i.d. variables with mean zero
and variance 1, and Hp ⇒ H weakly, then with probability 1, Fp ⇒ Fγ (H) for
a probability measure Fγ (H) [Marchenko and Pastur (1967), Bai and Silverstein
(2009)]. We will assume H 	= δ0. An example is the autoregressive covariance ma-
trix of order 1, where the entries of �p are �p[i, j ] = ρ|i−j |, ρ ∈ (0,1); for other
examples, see Dobriban and Wager (2015).

The Marchenko–Pastur map Fγ has a smoothing effect: for any H , Fγ (H) has a
continuous density for all x 	= 0, and also for x = 0 if γ < 1 [Silverstein and Choi
(1995)]. If γ > 1, the so-called companion limit empirical spectral distribution
(ESD) F , defined by F = γFγ (H) + (1 − γ )I[0,∞) has a density at zero. We will
find it convenient to work with this distribution. The companion limit ESD is the
limit of the spectral distribution of the matrix �̂ = n−1Xn×pX�

n×p .
The asymptotic distribution of the LSS is known for smooth functions ϕ. Let

I = [a, b] be a compact interval whose interior includes [lim inf lp(�p)I (γ ∈
(0,1))(1 − √

γ )2, lim sup l1(�p)(1 + √
γ )2] for both null and alternative �p se-

quences, where we assume l1(�p) is uniformly bounded above. This interval in-
cludes the support of the limiting ESD Fγ (H) [Bai and Silverstein (2009)]. Let
H(I) be the set of complex analytic functions on some open domain of C contain-
ing I , and let ϕ ∈ H(I). Suppose that the i.i.d. real standardized random variables
Zn×p[i, j ] = Z[i, j ] come from an infinite array, with E[Z[i, j ]4] = 3.

The CLT for linear spectral statistics of Bai and Silverstein (2004) implies
that the centered test statistics converge weakly: Tp(ϕ) − p

∫
ϕ(x)dFγp(Hp) ⇒

N (mϕ,σ 2
ϕ ) under the null and alternative, for a certain mean mϕ and variance σ 2

ϕ .
The limit parameters depend on H and γ . We focus on variables whose fourth
moment matches the Gaussian distribution, but a similar approach should work for
more generally, using the CLT of Pan and Zhou (2008) for diagonal �p or the CLT
of Zheng, Bai and Yao (2015).

Recall that the Stieltjes transform of a signed measure μ on [0,∞) is defined
as the map m : C \ [0,∞) → C, m(z) = ∫

(x − z)−1 dμ(x). Let v(z) = vγ (z;H)

be the Stieltjes transform of the limiting companion ESD F . The limit v(x) =
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limz→x v(z) exists for all x ∈ R \ {0} [Silverstein and Choi (1995)]. We will also
need the kernel (well defined a.s. with respect to Lebesgue measure on R):

(3) k(x, y) = kγ (x, y;H) = 1

2π2 log
(

1 + 4
�(v(x))�(v(y))

|v(x) − v(y)|2
)
.

Note that k 	= 0 only within the support of Fγ (H).

2.1. Main results. In the above model, the optimal LSS depends on the weak
derivative δFγ of the Marchenko–Pastur map. For two probability measures H,G,
we define this as the signed measure arising in the weak limit

(4) δFγ (H,G) = lim
ε→0

Fγ ((1 − ε)H + εG) −Fγ (H)

ε
.

We will show in Theorem 4.1 that the limit exists. To find the optimal LSS, we
will first give an asymptotically equivalent normal test for fixed LSS.

THEOREM 2.1 (Asymptotically equivalent normal test). Consider the prob-
lem of testing for weak PCs in the local alternatives model (1) versus (2). For
each ϕ ∈ H(I), there is a sequence of constants cp such that under the null
Hp,0, one has Tp(ϕ) − cp ⇒ N (0, σ 2

ϕ ), while under the alternative Hp,1, one has

Tp(ϕ) − cp ⇒N (μϕ,σ 2
ϕ ).

The mean and variance are

μϕ = −h

∫
I
ϕ′(x)�(x)dx and(5)

σ 2
ϕ =

∫
I

∫
I
ϕ′(x)ϕ′(y)k(x, y) dx dy.(6)

Here, � = δFγ (H,G1) − δFγ (H,G0) is the difference of the weak derivatives
δFγ (H,Gi), and k denotes the kernel defined in (3).

The proofs of the results in this section are outlined in Section 4.1. Therefore,
using the linear spectral statistic Tp(ϕ) is asymptotically equivalent to a hypothe-
sis test of a distribution N (0, σ 2

ϕ ) against N (μϕ,σ 2
ϕ ). The next step is to optimize

over LSS ϕ. In analogy to the asymptotic theory of optimal testing in i.i.d. mod-
els, we will call θ(ϕ) = μϕ/σϕ the efficacy of a test sequence Tp(ϕ) [Lehmann
and Romano (2005), page 536]. If σϕ = 0 while μϕ 	= 0, we define θ(ϕ) = +∞,
because the efficacy in distinguishing N (0, σ 2

ϕ ) from N (μϕ,σ 2
ϕ ) is infinite. Sim-

ilarly, if σϕ = 0 while μϕ = 0, define θ(ϕ) = 0. With these definitions, one does
not have to worry about dividing by 0.

We will maximize the efficacy over certain function classes X :

(7) sup
ϕ∈X

μϕ

σϕ

.
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The value of the optimization problem will be called the efficacy over X , and will
be denoted θ∗(X ). A function ϕ ∈ X achieving this value will be called an optimal
LSS over X . Due to the quadratic nature of the the objective, it will be easier to op-
timize first over the space W(I) = {ϕ : I → R : ϕ′(x) exists for almost every x ∈
I; and ϕ′ ∈ L2[I]}, using Hilbert space techniques.

Accordingly, we define the linear integral operator K = Kγ,H : L2[I] → L2[I]
induced by k in the usual way: K(ϕ)(x) = ∫

I k(x, y)ϕ(y) dy. Since k is a loga-
rithmically weakly singular kernel [Bai and Silverstein (2004), page 564], K is
compact [see Kress (2014), pages 29 and 62, for this property]. We write 〈·, ·〉 for
the inner product on L2[I], Im(K) = {Kl : l ∈ L2(I)} for the image of K , and
Im(K) for the closure of Im(K). We now find the optimal LSS.

THEOREM 2.2 [Optimal linear spectral statistics over W(I)]. Consider the
optimization of the efficacy over W(I). The following dichotomy arises:

1. If � ∈ Im(K), then the efficacy over W(I) equals h · 〈�,K+�〉1/2 < ∞.
The optimal linear spectral statistics over W(I) are given by a Fredholm integral
equation of the first kind for their derivatives:

(8) K
(
ϕ′) = −η�,

where η > 0 is any constant.
2. On the other hand, if � /∈ Im(K), then the efficacy over W(I) equals +∞. If

in addition � /∈ Im(K), the optimal LSS are all functions ϕ ∈ W(I) with K(ϕ′) =
0 and 〈�,ϕ′〉 < 0.

This gives an equation for the optimal LSS, which we call the optimal LSS
equation. Since the equation does not depend on h, the optimal LSS is uniformly
optimal against all h > 0. If the equation is not solvable in L2(I), we will construct
a sequence ϕn ∈ W(I) with efficacies θ(ϕn) → ∞, showing that the supremum of
asymptotic power over W(I) is unity.

We now return to smooth LSS. While the solution of the optimal LSS may not
be an analytic function, we will show that analytic functions in H(I) have the
same maximum power as functions in W(I). Denoting the centered test statistics
T̃p(ϕ) = Tp(ϕ)−p

∫
ϕ(x)dFγp(Hp) − mϕ , we consider two-sided testing proce-

dures that reject Hp,0 if T̃p(ϕ) /∈ [t−ϕ , t+ϕ ] for some constants t−ϕ < t+ϕ . Our goal is
to optimize over smooth functions ϕ ∈ H(I) and the critical values t−ϕ < t+ϕ . The
maximal asymptotic power is defined as

β = sup
ϕ∈H(I),t−ϕ <t+ϕ

lim
p→∞PHp,1

(
T̃p(ϕ) /∈ [

t−ϕ , t+ϕ
])

.

We find an expression for the power, depending on the null, the spikes, and the
local parameter. This requires the generalized inverse K+ of K , the linear operator
assigning to each � ∈ Im(K) the minimum norm solution to the equation Kl = �

[see, e.g., Groetsch (1977), page 115].
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THEOREM 2.3 (Asymptotic power). Among tests based on linear spectral
statistics Tp(ϕ) for ϕ ∈ H(I) with asymptotic level α ∈ (0,1), the maximal asymp-
totic power is

β =
{
�

(
zα + h

〈
�,K+�

〉1/2)
, if � ∈ Im(K),

1, if � /∈ Im(K).

Here, � = δFγ (H,G1)− δFγ (H,G0) is the difference of the weak derivatives, K

is the compact operator induced by the kernel (3), and K+ is the pseudoinverse
of K .

This shows that there are two possibilities, depending on the relation between
the null and the alternative. If � ∈ Im(K), the asymptotic power depends on the
norm of � via 〈�,K+�〉1/2. This is reasonable, as a “larger” derivative � perturbs
the null more, and should be easier to detect. A larger local parameter h > 0 also
leads to more power, as there are more spikes.

The second case, � /∈ Im(K), can occur—for instance—if the alternative sam-
ple spikes separate from the bulk. In certain spiked models, the existence of a
threshold beyond which the top eigenvalue separates from the bulk was shown
for complex-valued Gaussian white noise in Baik, Ben Arous and Péché (2005),
and for correlated noise in Benaych-Georges and Nadakuditi (2011), Bai and Yao
(2012) [see also Yao, Zheng and Bai (2015), Chapter 11]. While the models differ
slightly between the authors, the location of the phase transition is the same.

For large spikes, we will show in Section 2.5 that the weak derivative δFγ has
mass outside of the support S of Fγ (H). Hence, the distribution function � is not
in the image of K , which is supported on S. Thus, there is full power above the
phase transition.

Intuitively, � ∈ Im(K) should correspond to spikes below the phase transition.
Indeed, in this case � is supported within S. However, it is not clear that � belongs
to the image of the compact operator K . Showing this requires a more detailed
operator-analytic study of K . We leave this for future research.

2.2. Examples of optimal LSS; Numerical results.

2.2.1. Standard spiked model. We take a detour to illustrate the optimal LSS
in two simple cases. First, in the “standard spiked model” introduced in Johnstone
(2001), the null is specified by H = δ1 and G0 = δ1, while the alternative has
G1 = δt . We take the aspect ratio γ = 1/2. The well known BBP phase transition
[Baik, Ben Arous and Péché (2005)] states that for a “subcritical” spike t below
the “phase transition” (PT) threshold 1 + √

γ ≈ 1.7, the corresponding “sample
spike” moves to the top of the bulk spectrum. For a “supercritical” spike t above
the PT threshold, the sample spike moves to a value z(t) = t[1 + γ /(t − 1)] above
the bulk edge.
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FIG. 1. Optimal LSS and density of δFγ (H,G1) with H = δ1, G0 = δ1, G1 = δt , γ = 1/2. On
the left, the spike t = 1.6 is below the phase transition, while on the right t = 3 is above the phase
transition. On the left figure, the LSS equivalent to the LRT from OMH is also plotted, and agrees
with our LSS.

In a Gaussian model, Onatski, Moreira and Hallin (2013) (OMH) showed that
the LR test is asymptotically equivalent to the LSS with f (x) = − log(z(t) − x),
which we call the “OMH LSS.”

With these preparations, we show the density of the weak derivative δFγ (H,

G1), the pointwise values of our optimal LSS, and the OMH LSS (Figure 1). They
are normalized to have maximum absolute value equal to unity. On the left plot,
the spike t = 1.6 is below the PT, while on the right t = 3 is above the PT.

We observe the following:

1. The density of δFγ (H,G1): The density of the weak derivative exists within
the support of the Marchenko–Pastur bulk [(1 −√

γ )2, (1 +√
γ )2]. In the subcrit-

ical case, we will show later that δFγ (H,G1) is supported on the same set as the
bulk (see Proposition 2.5). Furthermore, we see that it has a positive singularity at
the right edge, and a negative singularity at the left edge. This shows that the per-
turbation by the spike t affects the whole bulk, and the effect is strongest at the two
edges. Since t > 1 and the sample spike moves to the right edge, it makes sense
that the perturbation “moves mass” from toward the right edge. No mass is moved
outside the bulk, consistent with the classical spiked model [Baik, Ben Arous and
Péché (2005)].

In the supercritical case, we will show later in Proposition 2.5 that δFγ (H,G1)

has a point mass at z(t). Now the density is negative throughout the bulk, showing
that the perturbation moves mass away.

2. The LSS: In the subcritical case, our optimal LSS agrees with the OMH LSS
[Onatski, Moreira and Hallin (2013)] within numerical precision. This confirms
that we recover their methods as a special case.
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FIG. 2. Density of δFγ (H,G1) and optimal LSS with H = 2−1(δ1 + δ3), G1 = δt , γ = 1/2. On
the left plot, the spike t = 0.8; while on the right plot t = 3.6; both are subcritical.

Our theory only specifies the optimal LSS within the support of the Marchenko–
Pastur map—and we extend it as a constant to the complement; see Section 3. This
is illustrated by the dotted line.

For a supercritical spike, there is more latitude in the choice of the optimal LSS.
Here, we set it to 0 on the support of the bulk and to unity above the location of
the sample spike z(t), interpolating by an Epanechnikov kernel (see Section 3).

2.2.2. Local alternatives. Next, we consider a general instance of local al-
ternatives, with a mixture H = 2−1(δ1 + δ3), and G0 = H . In this background
noise, we want to test for the presence of a PC with magnitude t , corresponding to
G1 = δt .

We show the density of δFγ (H,G1), and the optimal LSS for γ = 1/2 (Fig-
ure 2) and γ = 1/10 (Figure 3). We consider two values for t , 0.8 and 3.6, both of
which turn out to be subcritical.

FIG. 3. The same plot as Figure 2, except with γ = 1/10.
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We observe the following:

1. The density of δFγ : For γ = 1/10, the bulk of sample eigenvalues has two
components; for γ = 1/2, it has only one. This affects both the weak derivative and
the optimal LSS. For γ = 1/2, the singularities of δFγ are similar to the standard
case. For γ = 1/10, the spike seems to perturb positively the component of the
bulk containing it, and perturb negatively the other component.

2. The LSS: The optimal LSS are highly nonlinear, and differ a great deal be-
tween the four settings (γ ∈ {1/10,1/2}, t ∈ {0.8,3.6}). Our theorem only speci-
fies the LSS within the support of the bulk S. We extend them by linear interpola-
tion outside; see Section 3. This is indicated by the dotted lines.

In general, the optimal LSS are “large” where the density of δFγ is positive.
However, they have nontrivial shapes; in particular, they show sharp “peaks” at the
edges. It appears that the test statistics have qualitatively novel properties.

2.3. Simulation results. To illustrate the finite-sample performance of our
methods, we present the results of a Monte Carlo (MC) simulation (Figure 4).
The eigenvalues of an autoregressive covariance matrix of order 1 (AR-1) with
�ij = ρ|i−j |, and ρ = 0.5 make up the null H . The sample size is n = 500 while
γ = 1/2, so the dimension is p = 250. Experiments reported in Appendix C [see
Dobriban (2017)] show parallel results for γ = 2. For large p, it is well known that
the largest eigenvalue of � is approximately (1 + ρ)/(1 − ρ), which equals three
(3) in our case. The null spike s0 = 1 is buried within the population bulk, while
the alternative spike s1 = 3.5 sticks out. The spike s1 can be seen clearly in the
histogram in the top left plot of Figure 4.

We generate a random Gaussian matrix X = Z�1/2 with this covariance struc-
ture. The histograms of the sample eigenvalues—for both null and alternative—are
in the top right plot of Figure 4. The top sample spike does not separate from the
sample bulk. This is reinforced by the scree plots of the top 10 eigenvalues under
null and alternative, shown in the middle row, left plot of Figure 4. The two look
nearly indistinguishable.

Is it possible to distinguish the two distributions? Our approach is to use the
optimal LSS, plotted in in the middle row, right plot of Figure 4. This LSS puts
a large weight on the top eigenvalues, while also putting a smaller weight on the
middle eigenvalues; and it is extended as a constant outside the bulk. This can in-
deed distinguish between the two distributions—in the bottom left plot of Figure 4
we show the histogram of the LSS over 200 MC samples; using the empirical
mean and standard error under the null to standardize both histograms. The dis-
tributions look approximately normal. Under the alternative, the distribution has
mean approximately equal to two (2), which is encouraging.

2.3.1. Increasing the spike. To examine the power more thoroughly, we per-
form a broader MC simulation, increasing the alternative spike s1 from 1 to 5.
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FIG. 4. Simulation results. Top row, left: Histogram of population eigenvalues under null and al-
ternative. Top row, right: Histogram of sample eigenvalues under null and alternative, for one MC
instance. Middle row, left: Scree plot of top 10 sample eigenvalues under null and alternative, for
one MC instance. Middle row, right: pointwise plot of optimal LSS. Bottom row, left: Histogram LSS
under null and alternative, over 200 MC instances. Bottom row, right: Power of optimal LSS and top
eigenvalue-based tests as a function of the position of the spike under the alternative.
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FIG. 5. Power of optimal LSS and top eigenvalue based tests for increasing alternative spike. Left:
ρ = 0 (identity matrix). Right: ρ = 0.7.

We compare the test which rejects if the top eigenvalue is large which rejects if
the LSS is large. We set the critical values based on the empirical distribution un-
der the null, to ensure type I error control at level α = 0.05. We record 1000 MC
iterates with sample size n = 2000 and other parameters kept the same as before.

The results—in the bottom right plot of Figure 4—show that the LSS-based test
has power even below the PT threshold, while the top eigenvalue test does not. The
vertical line shows the location of the asymptotic PT.

To get a broader view of the achievable power in various scenarios, we repeat the
last experiment for two additional values of ρ. We use ρ = 0—corresponding to
an identity covariance matrix—and ρ = 0.7, which allows for higher correlations.
In Figure 5, we show the results recorded over 1000 MC iterates with sample size
n = 500 and γ = 1/2.

For the identity case, the optimal LSS has weak finite sample power. The top
eigenvalue test surpasses it above the PT. In contrast, for ρ = 0.7, the LSS has
a lot of power below the PT. The broad conclusion of these experiments is that
for eigenvalue distributions that are “widely spread,” one has indeed the power to
detect spikes below the PT. The larger power is not due only to the larger phase
transition location. In simulations reported in Appendix C, we show that the power
does not increase perceptibly by scaling the sample covariance matrix � = σ 2Ip

so that the two phase transitions agree.

2.4. Comparison to classical optimal testing. There are connections between
our work and the large literature on optimal testing under local alternatives. In
that work, dating back to the pioneering results or Le Cam, Hájek, and others
in the 1960s, the limiting power of tests under sequences of local alternatives is
calculated using the contiguity of the null and alternative hypotheses. In finite-
dimensional smooth parametric models, the local asymptotic normality of the log-
likelihood ratio process holds, leading to strong optimality results. See Lehmann
and Romano (2005), van der Vaart (1998) for graduate-level introductions.
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It is worth comparing our theorems to some classical results. For instance,
Theorem 13.6.1 from Lehmann and Romano (2005) considers nonparametric
testing of a smooth statistical functional θ(P ) based on n i.i.d. samples from
P ∈ P, where P is the set of all probabilities on a space. The power at P =
Pu,0 along a one-dimensional quadratic mean differentiable (q.m.d.) submodel
Pu,t , with score function u, against local alternatives t = hn−1/2 is bounded by
�(zα + h〈θ̃P , u〉P /|θ̃P |P ), where θ̃P is a type of weak derivative of θ along Pu,t

and 〈u, v〉P = ∫
uv dP . This is similar to our Theorem 2.1: the efficacy of a LSS

is −h〈ϕ′,�〉/〈ϕ′,Kϕ′〉1/2 for the natural inner product on L2(I). The similarity
is due to the asymptotic normality of both problems; however, the probabilistic
reasons for normality are of course different.

2.5. Full power above the phase transition. Here, we show that the opti-
mal LSS have full power when the spikes are above the known phase transition
threshold from classical spiked models. This relies on studying the weak deriva-
tive of the Marchenko–Pastur map. For simplicity, we will let G0 = H , so that
� = δFγ (H,G1), but similar results hold for general G0.

We want to find out if the weak derivative has mass outside of the support S =
Supp(Fγ (H)). In such a case, �(x) 	= 0 must occur on a set of positive measure
outside S. Since the kernel is supported on S, the optimal LSS equation cannot
have a solution. This argument shows that the asymptotic power is unity.

We say that a spike sj is above the phase transition if sj ∈ −1/v(Sc), where v

is the companion Stieltjes transform of Fγ (H). This is consistent with the pre-
vious definitions for the “generalized” spiked model in Benaych-Georges and
Nadakuditi (2011), Bai and Yao (2012) [see also Yao, Zheng and Bai (2015),
Chapter 11]. Under certain orthogonal invariance assumptions, the phase tran-
sition is derived in Benaych-Georges and Nadakuditi (2011) by first reducing
it to the case �p = Ip + Mp for diagonal Mp , then working with the deter-
minantal equation det(λIp − n−1X�X · (Ip + Mp)) = 0 for the eigenvalues of
n−1X�X · � = �−1/2�̂p�1/2. The PT locations can also be computed numeri-
cally (Section 3).

Our goal is to prove the following result.

THEOREM 2.4 (Full power above phase transition). Suppose that in the local
alternatives model we have H = d−1 ∑d

i=1 δti , G0 = H , and G1 = h−1 ∑h
i=1 δsi .

If there are spikes above the phase transition—so that sj ∈ −1/v(Sc) for some
j—then the asymptotic power of the optimal LSS is unity.

PROOF. If there is a spike sj —with mass uj in G1—above the phase transi-
tion, then δFγ (H,G1) has a point mass of weight γ uj > 0 for some x ∈ Sc by
Proposition 2.5 (to be proved next). Therefore, the distribution function � has a
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discontinuity at x, so it is nonzero on a subset of Sc with positive Lebesgue mea-
sure. Since the kernel k is zero on Sc, � is not in the image of K . By Theorem 2.1,
the asymptotic power is unity. �

It remains to prove the following key proposition, which establishes properties
of the weak derivative δFγ . It will be convenient to define the spike forward map
ψ(s), which for a population spike s and bulk H , gives the location of the sample
spike under the effect of the bulk H . This is defined through its functional inverse,
which is expressed as ψ−1(x) = −1/v(x) [see Yao, Zheng and Bai (2015), Chap-
ter 11]; and one can verify that ψ is well defined outside of the support of H . The
values x ∈ Sc in the image of the spike forward map, that is, for which x = ψ(sj )

for some j , will be called the sample spikes. We study the weak derivative some-
what more generally than the setting of our main results, for arbitrary weighted
mixtures of point masses.

PROPOSITION 2.5 (Properties of the weak derivative). Suppose the popula-
tion bulk is H = ∑k

i=1 wiδti , with wi > 0 such that
∑

i wi = 1. Suppose the spikes
have distribution G = ∑l

j=1 ujδsj with distinct sj > 0 and weights uj > 0 sum-
ming to one. Let the support of the forward map be S = Supp(Fγ (H)), and con-
sider the weak derivative δFγ (H,G). Then:

1. δFγ has a density at all x in the interior of S, x ∈ int(S).
2. δFγ has a point mass γ uj at sample spikes x = ψ(sj ), that is, for the values

x ∈ Sc such that sj = −1/v(x) for some j .
3. δFγ has zero density at all x outside int(S) that are not sample spikes.

The proof is postponed to Section A.3. The result sheds new light on the phase
transition phenomenon. It shows that the population spikes sj are “above the phase
transition,” if and only if they create an isolated point mass in the weak derivative.
We find this explanation illuminating.

2.6. Sphericity tests—PCA with unknown scale. Our entire framework can be
extended to sphericity tests, which allow for an unknown scale parameter in PCA.
Classically this corresponds to the composite null hypothesis �p = σ 2Ip , for some
unknown σ 2 > 0. When studying PCA, the alternative hypothesis of interest is
�p =σ 2(Ip + ∑k

j=1 hjvjv
�
j ), for orthonormal vj . We will study the natural gen-

eralization of the local alternatives model where the pth problem is

Hp,0 : Hp = σ 2[(
1 − hp−1)

H + hp−1G0
]

for some σ 2 > 0,(9)

Hp,1 : Hp = σ 2[(
1 − hp−1)

H + hp−1G1
]

for some σ 2 > 0.(10)

Here, H,G0 and G1 are probability measures and the integer h > 0 is the local
parameter, with same properties as in the previous sections. When H = δ1, G0 =
δ1, h = k and G1 = k−1 ∑k

j=1 δhj+1, this recovers the classical setup.
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The null and alternative are both invariant with respect to orthogonal rotations
and scaling. It is reasonable to consider tests based on the set of standardized eigen-
values λi/σ̂

2 of the sample covariance matrix, with σ̂ 2 = σ̂ 2
p = p−1 tr �̂. With

Gaussian data, and when H = δ1, G0 = δ1, they form a set of maximal invari-
ants with respect to rotations and scaling. Moreover, the standardized eigenvalues
are distribution-free—or pivotal—under the null. Therefore, we consider linear
standardized spectral statistics (LS3), which we define as Sp(ϕ) = tr(ϕ(�̂/σ̂ 2)) =∑p

i=1 ϕ(λi/σ̂
2).

Our goal will be to find the optimal LS3. We first establish their asymptotic
distribution. We assume the same model as in Section 2.1. We consider smooth
functions ϕ ∈ H(I/m1), where m1 = ∫

x dH(x). This is because the eigenvalues
λi still belong to the compact interval I almost surely and—as we will see in
the proofs—σ̂ 2 → m1 > 0 almost surely. We will use the notation Fγp(g(x)) =∫

g(x) dFγp(x) for the integral of a function g under Fγp(H).

LEMMA 2.6 (CLT for LS3). For ϕ ∈ H(I/m1), under the null and alterna-
tive (9), (10) the linear standardized spectral statistics Sp(ϕ) are asymptotically
normal. There is a sequence of constants cp such that under Hp,0, Sp(ϕ) − cp ⇒
N (0, σ 2

ϕ,s), while under Hp,1, Sp(ϕ) − cp ⇒ N (μϕ,s, σ
2
ϕ,s), for a mean shift μϕ,s

and variance σ 2
ϕ,s . The mean shift and variance are the same as those in the asymp-

totic distribution of the LSS Tp(j), where j ∈ H(I) is defined by

(11) j (x) = ϕ

(
x

m1

)
− x

m1
Fγ

(
x

m1
ϕ′

(
x

m1

))
.

The lemma, proved in Section A.8, states that the LS3 for ϕ and the LSS for j

are asymptotically equivalent. Hence, we will find the optimal LS3 by optimizing
over LSS of the form (11). By scale invariance, we can restrict to working with
σ 2 = 1, which implies m1 = 1.

First, we characterize the LSS that are of the required form j (x) = ϕ(x) −
xFγ (xϕ′(x)). We claim that a function j ∈ H(I) is of this form if and only
if Fγ (xj ′(x)) = 0. Indeed, if j has this form, then Fγ (xj ′(x)) = Fγ [xϕ′(x) −
Fγ (xϕ′(x))] = 0. On the other hand, if Fγ (xj ′(x)) = 0, then by taking f = j ,
clearly j is of the required form, as the second term cancels.

Therefore, we optimize the efficacy from (7) over the function class H0(I) =
{ϕ ∈ H(I) : Fγ (xϕ′(x)) = 0}. The constraint Fγ (xϕ′(x)) = 0 is a linear equation
〈g,D〉 = 0 for the derivative g = ϕ′, with D = x dFγ (x) ∈ L2(I). D is an L2

function, because Fγ has a continuous density except at 0, while the x term is null
at 0. From the previous sections, it follows that the efficacy optimization over a
space X can be written in terms of g = ϕ′ as

sup
g∈X

−h
〈g,�〉

〈g,Kg〉1/2 s.t. 〈g,D〉 = 0.
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As in the previous section, at first we will optimize over g ∈ L2(I), and then extend
to analytic functions. Consider the projection operator P into the orthogonal com-
plement of the one-dimensional space spanned by D: Pg = g − D〈g,D〉/‖D‖2.
Optimizing subject to the linear constraint is equivalent to optimizing over the set
g ∈ Im(P )—or with g = P l to solving the problem

sup
l∈L2(I)

−h
〈P l,�〉

〈P l,KP l〉1/2 .

Denoting �1 = PL and K1 = PKP , this reduces to the type of optimization
problem solved previously [see (7)]. Putting this together with Lemma 2.6 and the
analogue of Theorem 4.3 for LS3—whose statement and proof is omitted due to
its similarity to Theorem 4.3—we obtain the power of LS3.

We consider tests that reject the null if Sp(ϕ) − cp /∈ [t−ϕ , t+ϕ ] for some function-
dependent constants t−ϕ , t+ϕ . By scale-invariance it is enough to consider σ 2 = 1.
In this case, we denote the pth null and alternative distribution as Hp,0 and Hp,1,
respectively. The maximal asymptotic power of LS3 is

βs = sup
ϕ∈H(I),t−ϕ <t+ϕ

lim
p→∞PHp,1

(
Sp(ϕ) /∈ [

t−ϕ , t+ϕ
])

.

THEOREM 2.7 (Asymptotic power of LS3). Consider scale-invariant tests for
detecting weak PCs based on linear standardized spectral statistics Sp(ϕ). Sup-
pose ϕ ∈ H(I) and the tests have asymptotic level α ∈ (0,1). The maximal asymp-
totic power is

βs =
{
�

(
zα + h

〈
K+

1 �1,�1
〉1/2)

, if �1 ∈ Im(K1),

1, if �1 /∈ Im(K1).

This result quantifies the loss of power due to restricting to scale-invariant LS3

from LSS. If �,D ∈ Im(K), it can be checked that �1 ∈ Im(K1). Moreover, the
efficacy is θs = h[〈K+L,�〉 − 〈K+L,D〉2/〈K+D,D〉]1/2. This shows that the
efficacy is reduced from θ = h〈K+L,�〉1/2, and the power loss depends on the
“correlation” between � and D with respect to K .

3. Computation. We now explain the computational details of our method.
A MATLAB implementation, and the code to reproduce our computational exper-
iments, is available at github.com/dobriban/eigenedge. Appendix B has additional
details.

The computational problem is the following: Given a null distribution H =
d−1 ∑d

i=1 δti , spikes Gi = h−1∑h
j=1 δsi

j
, i = 0,1, and an aspect ratio γ , compute

the optimal LSS. For simplicity, we take all spikes in G0 subcritical—which is
the only case we need in simulations—but the general case is similar. We will
outline the needed steps, giving parameter choices (Table 2) and pseudocode in
Appendix B.

http://github.com/dobriban/eigenedge
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3.1. Computing v and the support. First, we compute the companion Stielt-
jes transform v(x) of the limit ESD Fγ (H) on a dense grid {xm} on the real line
(see Algorithm 1). We use the SPECTRODE method [Dobriban (2015)], which pro-
duces an approximation ṽ(x) that depends on a user-specified accuracy parame-
ter ε > 0, and converges to v(x) as ε → 0. In Dobriban (2015), we showed that
π−1�(ṽ(x)) converges to the density π−1�(v(x)) of the limit ESD. An analogous
argument shows that ṽ(x) converges to v(x). SPECTRODE also produces a con-
verging approximation to the support S of Fγ (H) as a union of closed intervals
S̃ = ⋃

j [l̃j , ũj ], j = 1, . . . , J .
There are two cases—below and above the PT—which depend on whether or

not � ∈ Im(K). As a proxy to this abstract statement, we check if the sample
spikes corresponding to s1

j belong to the support, as in Section 2.5. We have shown
that � /∈ Im(K) if some sample spikes are outside the limit ESD. This is the first
case that we handle (Algorithm 2). Second, if all sample spikes are in the support,
we directly attempt to solve a discretized version of the optimal LSS equation
(Algorithm 3).

3.2. Above the PT. From ṽ(x) and the support, we check if there are any spikes
above the phase transition by verifying if any sample spike ψ(s1

j ) falls outside

the support: ψ(s1
j ) /∈ S̃ for any j . Recall here that ψ is the spike forward map

from Section 2.5, and equals ψ(s) = s[1 + γ d−1 ∑d
i=1 ti/(s − ti)], see Yao, Zheng

and Bai (2015), Chapter 11, equation 11.15]. If there are spikes above the PT, by
Theorem 2.2, the asymptotic power is unity. As candidate optimal LSS, inspired
by the second part of Theorem 2.2, we consider smooth functions ϕ that equal
unity in a small neighborhood of the sample spike, and zero on S̃.

Specifically, we take an LSS that has a small Epanechnikov kernel centered at
each sample spike ψ(s1

j ), and zero elsewhere (see Algorithm 2). Since the fluc-
tuations of the spikes are asymptotically normal above the phase transition, we
choose the width of the kernel as nSD · n−1/2σ̂j . Here, nSD is a constant given in
Table 2, n is the sample size (provided as an optional input), and σ̂j is the asymp-
totic standard deviation of the sample spike, σ̂ 2

j = 2[s1
j ]2ψ ′(s1j); see Yao, Zheng

and Bai (2015), Theorem 11.11, and also Onatski (2012), Theorem 2 for closely
related earlier results. Moreover, we extend the LSS as a constant equal to unity
in the direction pointing away from the support S, for any extremal spikes that
fall above max(S), or below min(S). If the optional input n is not provided, we set
n = (d +h)/γ , which is equivalent to assuming that p = d +h. A small refinement
of this approach is described in the Appendix B.1.

3.3. Below the PT. If there are no spikes above the PT, we proceed to solve
the optimal LSS equation (see Algorithm 3). The LSS is well defined only within
the support S of the bulk Fγ (H), so we restrict to that subset of the grid. First, the
kernel k is evaluated pointwise using ṽ.
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Next, we compute the difference � of the weak derivatives (Algorithm 4). As
explained in Dobriban (2015), v′(z) can be expressed in closed form as a function
of v(z). Hence, using equation (13) we can approximate the Stieltjes transforms of
δFγ (H,Gi). We find their density from the inversion formula for Stieltjes trans-
forms, and their distribution by integrating the density numerically.

Finally, we need to solve the optimal LSS equation Kg = −η� (where we
set the constant η to 1 without loss of generality); see Algorithm 5. This is a
Fredholm integral equation of the first kind with a logarithmically weakly sin-
gular kernel. There are many methods for solving such equations numerically [see
Kress (2014)]. We implement two methods: A fast heuristic diagonal regulariza-
tion method, and a slower but potentially more accurate collocation method. The
details are given in Appendix B.2. Finally, Appendix B.4 reports the results of unit
tests to verify the accuracy of the methods.

4. Proofs.

4.1. Main steps of the proofs.

4.1.1. Weak derivative of the Marchenko–Pastur map. We start by explaining
the main steps in proving Theorems 2.1 (asymptotically normal equivalent) and
2.2 (optimal LSS equation). These lead to the proof of Theorem 2.3 (asymptotic
power). Starting with Theorem 2.1, our assumptions imply that the Bai–Silverstein
CLT for linear spectral statistics [Bai and Silverstein (2004), Theorem 1.1] applies
both under the sequences of null and alternative hypotheses. Denoting—perhaps
with a slight abuse of notation—by Hp,i the spectral distributions under null (i =
0) and alternative (i = 1), this shows that

under H0 : Tp(ϕ) − p

∫
I
ϕ(x)dFγp(Hp,0) ⇒ N

(
mϕ,σ 2

ϕ

)
, while

under H1 : Tp(ϕ) − p

∫
I
ϕ(x)dFγp(Hp,1) ⇒ N

(
mϕ,σ 2

ϕ

)
.

Here, mϕ,σ 2
ϕ are certain constants that are the same under the null and the

alternative. Indeed, in Theorem 1.1 of Bai and Silverstein (2004), these limiting
parameters are given by certain contour integrals that only depend on the weak
limit of the PSD, and in our case these weak limits are both equal to H . The explicit
form of these constants will only matter later. The important part is the difference
in the centering terms, that is, the change from the argument of Fγp from Hp,0 to
Hp,1. Therefore, the mean shift between the two hypotheses ought to equal

μϕ = lim
p→∞p

∫
I
ϕ(x)d

[
Fγp(Hp,1) −Fγp(Hp,0)

]
,

provided this limit is well defined. It is natural to conjecture that the signed mea-
sures Dp = p[Fγp(Hp,1) − Fγp(Hp,0)] have a weak limit—and we will in fact
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prove this. We can write

Dp = p
[
Fγp(Hp,1) −Fγ (Hp,1)

] − p
[
Fγp(Hp,0) −Fγ (Hp,0)

]
+ p

[
Fγ (Hp,1) −Fγ (H)

] − p
[
Fγ (Hp,0) −Fγ (H)

]
.

Since γp = γ , the first two terms are 0; if we relaxed the assumptions to γp →
γ , these limits would need to be evaluated. Therefore, by the definition of the
weak derivative of the Marchenko–Pastur map (4), and by the definition of Hp,i =
(1 − hp−1)H + hp−1Gi the limit of Dp will be h · [δFγ (H,G1) − δFγ (H,G0)].
Further, ϕ is continuous and bounded on I , since by assumption ϕ′ exists on I .
Therefore, by the definition of weak convergence of signed measures [see, e.g.,
Bogachev (2007), Chapter 8], the mean shift will be

(12) μϕ = h

∫
I
ϕ(x)d

[
δFγ (H,G1) − δFγ (H,G0)

]
(x).

We are therefore naturally lead to the study of the weak derivative. We will study
it in a slightly more general setting than above, allowing for arbitrary compactly
supported probability distributions H and G.

For any signed measure μ, it will be convenient to define the companion mea-
sure μ = (1 − γ )μ + γ δ0. The companion Stieltjes transform of a measure μ is
then the Stieltjes transform of its companion μ. This terminology is consistent
with the limit companion ESD, which we already used. Let Pc be the set of com-
pactly supported probability measures on ([0,∞),B([0,∞))). It is known that for
H ∈ Pc, one has Fγ (H) ∈ Pc [Bai and Silverstein (2009)]. Our main result on the
derivative of the Marchenko–Pastur map is the following.

THEOREM 4.1 (Weak derivative of the Marchenko–Pastur map). Let Fγ :
Pc → Pc be the forward Marchenko–Pastur map, which takes the population spec-
tral distribution H to the limit empirical spectral distribution Fγ (H). Then Fγ has
a well-defined weak derivative δFγ (·, ·), that is, for any H,G ∈ Pc, the following
weak limit exists as ε → 0:

Fγ ((1 − ε)H + εG) −Fγ (H)

ε
⇒ δFγ (H,G).

The limit δFγ is a compactly supported signed measure with finite total variation,
and has zero total mass: δFγ (R) = 0. Furthermore:

1. The companion Stieltjes transform s(z) of the weak derivative can be ex-
pressed as

(13) s(z) = −γ v′(z)
∫

t

1 + tv(z)
dν(t),

where ν = G − H , and v(z) is the companion Stieltjes transform of the limit em-
pirical spectral distribution Fγ (H).
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2. Therefore, the weak derivative is linear in the second argument: δFγ (H,

aP + bQ) = aδFγ (H,P ) + bδFγ (H,Q) for all P,Q ∈ Pc, and a, b > 0 with
a + b = 1.

3. The distribution function of the weak derivative belongs to L2(I).

The proof of this result is given later in Section A.1.

4.1.2. Completing the proof. We now have the tools to complete the proof of
Theorems 2.1 and 2.2.

PROOF OF THEOREM 2.1 (CONTINUED). In Section 4.1.1, we showed that
under the null Tp(ϕ) − cp ⇒ N (0, σ 2

ϕ ), while under the alternative Tp(ϕ) − cp ⇒
N (μϕ,σ 2

ϕ ), for constants cp . It follows from equation (1.17) on page 564 of Bai
and Silverstein (2004) that the variance σ 2

ϕ has the form stated in Theorem 2.1 [see
(6)], while we showed that μϕ has the form in (12).

Recall that the distribution function of the weak derivative was defined by
�(x) = D((−∞, x]), where D = δFγ (H,G1) − δFγ (H,G0). Since H and Gi

are compactly supported, from Theorem 4.1 it follows that the δFγ —and D—are
also compactly supported. The compact interval I = [a, b] is such that it includes
this support. Since D has zero total mass, �(x) = 0 for x ≤ a and for x ≥ b. Using
the integration by parts formula for the Lebesgue–Stieltjes integral, which is valid
since ϕ is absolutely continuous, and D is a bounded Borel measure on I = [a, b]
with �(a) = �(b) = 0 [see, e.g., Bogachev (2007), Example 5.8.112], we thus
have

μϕ = h

∫
I
ϕ(x)d

[
δFγ (H,G1) − δFγ (H,G0)

]
(x) = −h

∫
I
ϕ′(x)�(x)dx.

This shows the asymptotic equivalence to the normal problem stated in Theo-
rem 2.1 and completes its proof. �

We will now proceed to prove Theorem 2.2.

PROOF OF THEOREM 2.2. To optimize over ϕ, we will use properties of the
Hilbert space L2(I) and its inner product 〈g, j 〉 = ∫

I g(x)j (x) dx. Let us write
g = ϕ′ ∈ L2(I). We are optimizing over ϕ ∈ W(I), which by the definition of
W(I) is equivalent to optimizing over ϕ′ = g ∈ L2(I). The mean and variance are
μ = −h〈g,�〉, and σ 2 = 〈g,Kg〉. The expression μ = −h〈g,�〉 is valid because
� ∈ L2(I) by Theorem 4.1.

Therefore, the efficacy optimization is equivalent to the problem of maximizing
θ(g) = −h〈g,�〉/〈g,Kg〉1/2 over g ∈ L2(I). The following lemma, proved in
Section A.5, gives the desired answer.
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LEMMA 4.2. Consider maximizing θ(g) over g ∈ L2(I). If � /∈ Im(K), the
supremum is +∞. Moreover, if � /∈ Im(K), the supremum is achieved for g such
that Kg = 0 and 〈g,�〉 < 0. If � ∈ Im(K), the maximum is h〈�,K+�〉1/2, and
is achieved for g such that Kg = −η�, for some η > 0.

The conclusion of Theorem 2.2 follows immediately from the above lemma and
completes the proof. �

Finally, we can prove Theorem 2.3.

PROOF OF THEOREM 2.3. Consider first the choice of the critical values
t−ϕ , t+ϕ for a fixed ϕ. From Theorem 2.1, under the null Tp(ϕ)−cp(ϕ) ⇒ N (0, σ 2

ϕ ),
while under the alternative Tp(ϕ) − cp(ϕ) ⇒ N (μϕ,σ 2

ϕ ). If the effect size of ϕ is
0, μϕ = 0, then using ϕ leads to trivial power, so we will examine μϕ < 0 in the
remainder; the case μϕ > 0 is analogous.

If σϕ > 0, the asymptotically optimal choices are t−ϕ = mϕ + σϕzα and t+ϕ =
+∞; while the asymptotic power equals �(zα + |μϕ|/σϕ). If σϕ = 0, then we can
take t±ϕ = mϕ ± ε for any ε > 0, and still have asymptotic level α. Moreover, the
test statistic converges in probability two different values—0 and μϕ—under the
null and the alternative. Therefore, the power of such a test is asymptotically unity
for small ε. We conclude that the maximal power over analytic functions is β =
supϕ∈H(I) �(zα + |μϕ|/σϕ) = �(zα + θ∗(H(I))). Here, we used the convention
of defining μϕ/σϕ as 0 or +∞ in corner cases.

We now show that the efficacy over the set of analytic functions H(I) equals
the efficacy over W(I), because the optimal LSS can be approximated arbitrarily
well—in an L2 sense—by analytic functions.

LEMMA 4.3 [Optimal Linear Spectral Statistics over H(I)]. The efficacy over
the set of analytic functions H(I) equals that over W(I): θ∗(H(I)) = θ∗(W(I)).
There is a sequence ϕn ∈ H(I) such that θ(ϕn) ↑ θ∗(W(I)).

The proof is in Section A.6. From Lemma 4.3, we conclude that β = �(zα +
θ∗(W(I))). Now Theorem 2.2 shows that θ∗(W(I)) has the desired form, com-
pleting the proof. �

5. Discussion. An interesting set of questions would be to extend the results
of the spiked model, and in particular our investigation, to the case of “mesoscopic
perturbations” where the number of spikes can grow with n. The probabilistic
foundations of these models are only beginning to be worked out. For instance,
Huang (2014) shows concentration inequalities for the individual spikes above the
phase transition. Using this and extensions of other results, such as the CLT for the
individual spikes, in future work it may be possible to answer many questions for
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growing number of spikes, such as convergence rates and simultaneous confidence
intervals.

Another question of interest is to develop a better understanding of the optimal
LSS functions. For instance, are they unique up affine scaling? Can we find explicit
expressions for them in certain cases? Is it possible to show that they are smooth—
and thus optimal over function classes possessing more derivatives? Answering
these questions will lead to a more complete picture about optimal testing in high-
dimensional PCA.

Acknowledgments. We are grateful to David Donoho and Iain Johnstone for
helpful discussion. We thank Marc Hallin and Alexei Onatski for comments on an
earlier version of the manuscript. We thank the Associate Editor and the referees
for remarks, and for suggestions for future research, that helped improve the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Sharp detection in PCA under correlations: All eigenvalues
matter” (DOI: 10.1214/16-AOS1514SUPP; .pdf). In the supplementary material,
we give the remaining details of the proofs, algorithms implementing our method
and further simulations.
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