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RARE-EVENT ANALYSIS FOR EXTREMAL EIGENVALUES
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In this paper, we consider the extreme behavior of the extremal eigenval-
ues of white Wishart matrices, which plays an important role in multivariate
analysis. In particular, we focus on the case when the dimension of the fea-
ture p is much larger than or comparable to the number of observations n,
a common situation in modern data analysis. We provide asymptotic approx-
imations and bounds for the tail probabilities of the extremal eigenvalues.
Moreover, we construct efficient Monte Carlo simulation algorithms to com-
pute the tail probabilities. Simulation results show that our method has the
best performance among known approximation approaches, and furthermore
provides an efficient and accurate way for evaluating the tail probabilities in
practice.

1. Introduction. In many modern scientific settings, data sets are generated
where the dimension of the samples is comparable or even larger than the sample
size. Analysis on such multidimensional data frequently involves estimating rare-
event probabilities, such as small tail probabilities of test statistics. For instance,
in statistical hypothesis testing, consider multiple comparisons with relatively few
signals of interest among a large number of null statistics. In order to control the
overall false-positive error rate at a certain level, we may need to evaluate a very
small marginal p-value for each individual test statistic.

This paper focus on the tail probabilities of extremal eigenvalues of white
Wishart matrices, which play an important role in multivariate statistical analysis
and have wide applications in many fields, such as image analysis, signal process-
ing, and functional data analysis. A white Wishart matrix with parameters � = Ip

(the p × p identity matrix), n and β = 1 is the sample covariance matrix X∗X
where X = (xij )n×p and xij are i.i.d. N(0,1) random variables. The most natural
alternative values of β are β = 2 for xij complex valued and β = 4 for xij quater-
nion valued. Most data analysis in statistics focuses on the case when β = 1. In
engineering and applied science applications, such as signal processing, oceanog-
raphy and atmospheric sciences, it is common to use complex valued variables
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to study two-dimensional signals. In these settings, the use of β = 2 is useful for
the understanding of statistical properties of the data set. In physics, for quantum
systems with a time reversal symmetry T , where either T 2 = 1 or T 2 = −1, the
former leads to symmetric matrices (β = 1,2) and the latter leads to symplectic
matrices (β = 4).

The largest eigenvalue of a sample covariance matrix gives useful information
for distinguishing a “signal subspace” of higher variance from the background
noise variables [Johnstone (2001)]. In particular, for n i.i.d. p dimensional Gaus-
sian observations following N(0,�), consider testing the null hypothesis that
� = Ip , where Ip is the identity matrix. Following Roy’s union intersection prin-
ciple [Roy (1953)], one can take the largest eigenvalue of the sample covariance
matrix as the test statistics and reject the null hypothesis for large values. Then
the corresponding p-value is the tail probability of the largest eigenvalue under
� = Ip . For example, see Patterson, Price and Reich (2006) for applications in
SNP (single nucleotide polymorphism) data, Bianchi et al. (2011) for applications
in detecting single-source with a sensor array, and Kwapień, Drożdż and Speth
(2003) for applications in financial market analysis. Accurate evaluations of such
tail probabilities are needed in performing the corresponding statistical analysis
and this motivates our study.

1.1. Problem setting and related studies. For a white Wishart matrix, it is in
fact possible to consider arbitrary values of β > 0. This more general class of ma-
trices is referred to in the literature as the β-Laguerre ensemble. In this work, we
primarily focus on the largest eigenvalues of the β-Laguerre ensemble in the set-
ting of p ≥ n, � = Ip and arbitrary β > 0. For this setting, the n positive eigenval-
ues of the β-Laguerre ensemble λ1, . . . , λn are distributed with probability density
function

fn,p,β(λ1, . . . , λn)
(1)

= cn,p,β

∏
1≤i<j≤n

|λi − λj |β ·
n∏

i=1

λ
β(p−n+1)

2 −1
i · e− 1

2
∑n

i=1 λi ,

where cn,p,β is a normalizing constant taking the form of

(2) cn,p,β = 2− βnp
2

n∏
j=1

�(1 + β
2 )

�(1 + β
2 j)�(

β
2 (p − n + j))

.

In particular, when β = 1,2 and 4, the function fn,p,β(λ1, . . . , λn) in (1) is the
density function of the n positive eigenvalues of Wishart matrix X∗X, where
X = (xij )n×p and xij ’s are i.i.d. standard (β = 1), complex (β = 2) or quater-
nion (β = 4) Gaussian random variables (r.v.’s). See, for example, James (1964)
and Muirhead (1982) for the cases of β = 1 and 2, and Macdonald (1995) and
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Edelman and Rao (2005) for β = 4. See also Anderson, Guionnet and Zeitouni
(2010) for further discussion and applications.

Let λ(1) > · · · > λ(n) be the order statistics of λ1, . . . , λn. The joint density func-
tion of the order statistics is

(3) gn,p,β(λ1, . . . , λn) = n!fn,p,β(λ1, . . . , λn) × I(λ1>···>λn),

where I(·) is the indicator function. In this paper, we focus on the asymptotic ap-
proximation and efficient simulation of tail probabilities

P(λ(1) > px) as p → ∞
for any β > 0 and x > β . In particular, we consider the high-dimensional settings
where p/n → γ ∈ [1,∞) or p/n → ∞.

Large sample properties of the largest eigenvalue have been extensively stud-
ied in the literature, most of which focus on the asymptotic distribution of λ(1)

and its large deviation principle. For the asymptotic distribution of λ(1), Johansson
(2000) and Johnstone (2001) studied the cases when p/n → γ ∈ (0,∞) and β = 2
and 1, and showed that the largest eigenvalue (with proper recentering and rescal-
ing) follows the Tracy–Widom distribution as appeared in the study of the Gaus-
sian unitary ensemble. El Karoui (2003) extended the asymptotic regime to the
case when p/n → ∞. For general β > 0, the limiting distribution of λ(1) is ob-
tained by Ramírez, Rider and Virág (2011) for the β-Laguerre ensemble when
p/n → γ ∈ [1,∞). Recently, Jiang and Li (2014) studied the distribution of λ(1)

when p/n3 → ∞. The large deviation principle for λ(1) has also been studied in
the literature; see, for example, Chapter 2.6 in Anderson, Guionnet and Zeitouni
(2010). Maïda (2007) investigated the large deviations for λ(1) of rank one de-
formations of Gaussian ensembles when p/n → γ ∈ [1,∞), corresponding to
the β-Laguerre ensemble with β = 2. Jiang and Li (2014) studied the case when
p/n → ∞ and derived the closed form of the large deviation rate function.

In practice, however, to estimate the tail probabilities of λ(1), especially when
the probabilities are small, that is, rare events occur, approximations based on the
large sample distribution and large deviation results may not be directly applicable
or sufficiently precise. In particular, to our knowledge efficient estimation methods
for the tail probabilities of λ(1) as well as sharp asymptotic approximations are still
lacking in the literature.

1.2. Our contributions. The current paper deals with the efficient estimation
of tail probabilities of λ(1). To do so, we study the extreme behaviors of the largest
eigenvalue and describe the conditional distribution of λ(1) given the occurrence
of the event {λ(1) > px}. In particular, we use a so-called “three-step peeling”
technique to approximate the tail probability (see the proofs of Theorem 1 and
Lemma 7 in the Supplementary Material [Jiang, Leder and Xu (2017)]) and give
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asymptotic approximations of P(λ(1) > px), which provides the necessary techni-
cal tools for the development and theoretical analysis of Monte Carlo based com-
putational algorithms.

More importantly, from a computational point of view, we utilize the tech-
nique of importance sampling to develop an efficient Monte Carlo estimator of
P(λ(1) > px). Importance sampling is commonly used as a numerical tool for es-
timating rare event probabilities in a wide variety of stochastic systems [see, e.g.,
Asmussen and Glynn (2007), Asmussen and Kroese (2006), Blanchet and Glynn
(2008), Dupuis, Leder and Wang (2007), Liu and Xu (2014a), Siegmund (1976),
Xu, Lin and Liu (2014)]. However, to the best of the authors’ knowledge, this is
the first use of this technique for estimating rare event probabilities in the spectrum
of random matrices. In order to implement an importance sampling algorithm, it
is necessary to construct an alternative sampling measure (or change of measure)
under which the eigenvalues of the β-Laguerre ensemble are sampled. Ideally, one
develops a sampling measure so that the event of interest is no longer rare under
the sampling measure. The challenge is of course the construction of an appropri-
ate sampling measure; one common heuristic is to utilize a sampling measure that
approximates the conditional distribution of λ(1) given {λ(1) > px}.

In this paper, we propose a change of measure denoted by Q that approximates
the conditional measure P(· | λ(1) > px) in total variation when p is much larger
than n. The proposed change of measure is not of a classical exponential-tilting
form commonly used in light-tailed stochastic systems [e.g., Asmussen and Glynn
(2007), Siegmund (1976)] and it has features that are appealing both theoretically
and computationally. Our proposed estimators are asymptotically efficient for all
p/n → γ ∈ [1,∞], that is, the second moments of estimators decay at the same
exponential rate as the square of the first moments; see Section 2.2 for more details.
Simulation studies in Section 3 show that the proposed method has the best per-
formance among existing approximation approaches, especially when estimating
probabilities of rare-events.

The proposed method can be easily generalized to the estimation of the smallest
eigenvalue λ(n). With completely analogous analysis, we provide approximations
of the tail probability of λ(n), that is,

P(λ(n) < py) as p → ∞
for any β > 0 and 0 < y < β . Moreover, we construct the corresponding efficient
simulation algorithms as shown in Section 2.4.

The rest of the paper is organized as follows. In Section 2, we present the main
results, including asymptotic approximations of P(λ(1) > px) as well as efficient
simulation algorithms. In Section 3, we illustrate the theoretical results through a
simulation study and a real data example. Detailed proofs of main theorems and
supporting lemmas are presented in Section 4 and the Supplementary Material,
respectively.
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Throughout this paper, we write an = O(bn) if lim supn→∞ |an|/|bn| < ∞,
an = �(bn) if 0 < lim infn→∞ |an|/|bn| ≤ lim supn→∞ |an|/|bn| < ∞, an =
o(bn) if limn→∞ |an|/|bn| = 0, an ∼ bn if limn→∞ |an|/|bn| = 1, an � bn if
lim supn→∞ |an|/|bn| ≤ 1, an = Op(bn) if an = O(bn) in probability, and an =
op(bn) if an = o(bn) in probability.

2. Main results. We are interested in efficiently estimating P(λ(1) > px),
which converges to 0 as p → ∞. In Section 2.1, we introduce some commonly
used efficiency criteria in the literature; in Sections 2.2–2.4, we present the main
asymptotic approximation results and the efficient simulation algorithms.

2.1. Efficiency criteria in rare-event simulation. In the context of rare-event
simulations [e.g., Asmussen and Glynn (2007), Siegmund (1976)], it is neces-
sary to consider the relative computational error with respect to the rare-event
probability of interest. In particular, a Monte Carlo estimator Lp is said to be
asymptotically efficient in estimating the rare-event probability P(λ(1) > px) if
E[Lp] = P(λ(1) > px) and

(4) lim
p→∞

logE[L2
p]

2 logP(λ(1) > px)
= 1.

Moreover, Lp is said to be strongly efficient if E[Lp] = P(λ(1) > px) and

(5) lim sup
p→∞

E[L2
p]

P(λ(1) > px)2 < ∞.

There is a rich rare-event simulation literature. An incomplete list of recent works
includes Adler, Blanchet and Liu (2012), Asmussen and Kroese (2006), Blanchet
and Glynn (2008), Blanchet, Glynn and Leder (2012), Blanchet and Liu (2008),
Dupuis, Leder and Wang (2007), Liu and Xu (2014a, 2014b), Xu, Lin and Liu
(2014). It is interesting to note that the importance sampling measure we construct
in this work has a similar structure to that used in Asmussen and Kroese (2006)
where they were studying rare events for sums of i.i.d. heavy-tailed random vari-
ables.

REMARK 1. Suppose we plan to estimate P(λ(1) > px) with a given relative
accuracy, that is, to compute an estimator Zp such that

(6) P
(∣∣Zp/P (λ(1) > px) − 1

∣∣> ε
)
< δ

for some prescribed ε, δ > 0. For an estimator Lp , we can simulate N i.i.d. copies

of Lp , {L(j)
p : j = 1, . . . ,N} and obtain the final estimator Zp = 1

N

∑N
j=1 L

(j)
p .

Then the estimation error is |Zp − P(λ(1) > px)|. When Lp is a strongly effi-
cient estimator as defined in (5), the averaged estimator Zp has a relative mean
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squared error equal to Var1/2(Lp)/[N1/2P(λ(1) > px)]. A simple application of
Chebyshev’s inequality yields that it suffices to simulate N = �(ε−2δ−1) i.i.d.
replicates of Lp to achieve the accuracy in (6). When Lp is an asymptotically ef-
ficient estimator, it suffices to sample N = �(ε−2δ−1P(λ(1) > px)−η), for any
η > 0, i.i.d. replicates of Lp . Compared with the crude Monte Carlo simulation,
which requires N = �(ε−2δ−1P(λ(1) > px)−1) i.i.d. replicates, the efficient esti-
mators substantially reduce the computational cost. See Section 3 for a simulation
study and further discussion.

Importance sampling is one of the most widely used methods for variance re-
duction of Monte Carlo estimators. For ease of notation, we use P to denote the
probability measure of the vector (λ1, . . . , λn). The importance sampling estimator
is constructed based on the following identity:

P(λ(1) > px) = E[1(λ(1)>px)] = EQ

[
1(λ(1)>px)

dP

dQ

]
,

where Q is a probability measure such that the Radon–Nikodym derivative
dP/dQ is well defined on the set {λ(1) > px}, and we use E and EQ to denote the
expectations under the measures P and Q, respectively. Then the random variable
defined by

(7) Lp = dP

dQ
1(λ(1)>px)

is an unbiased estimator of P(λ(1) > px) under the measure Q. Note that when
generating the estimator (7) we sample λ(1) according to the new measure Q.

If we choose Q(·) to be P ∗
px(·) := P(· | λ(1) > px), the conditional probabil-

ity measure given λ(1) > px, then the corresponding likelihood ratio dP/dQ is
exactly P(λ(1) > px) on the set {λ(1) > px} and it has zero variance under Q.
However, this change of measure is of no practical use since it needs the value
of the target probability P(λ(1) > px). Nonetheless, this conditional measure P ∗

px

provides a guideline for constructing an efficient change of measure. If we can
find a measure Q that is a good approximation of P ∗

px , we would expect the corre-
sponding estimator Lp defined in (7) to be efficient.

In the following, we design such change of measures for two different cases:
p/n → ∞ in Section 2.2 and p/n → γ ∈ [1,∞) in Section 2.3. An analogous
analysis of the smallest eigenvalue λ(n) is provided in Section 2.4.

2.2. Efficient simulation for P(λ(1) > px) when p/n → ∞. To achieve ef-
ficient estimates as defined above, we need to approximate and bound the tail
probability P(λ(1) > px) as well as the second moment of the estimator. In Sec-
tion 2.2.1, we derive asymptotic approximations and bounds of P(λ(1) > px) un-
der different conditions. We design efficient simulation algorithms in Section 2.2.2
and show that the estimate is efficient in the sense of (4) and (5).
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2.2.1. Tail probability approximation of λ(1). We have the following approx-
imations for P(λ(1) > px) when p is large. An exact approximation is given in
Theorem 1 when p/n5/3 → ∞. For the general case when p/n → ∞, exact ap-
proximations are difficult to obtain and we provide tail approximation bounds,
which are good enough to establish the efficiency of the simulation algorithm.

THEOREM 1. Let x > β . When p/n5/3 → ∞ as n → ∞,

P(λ(1) > px) ∼ exp
(
Bn,p,β(x)

)
,(8)

where Bn,p,β(x) is defined by

Bn,p,β(x) = p

(
β

2
− β

2
logβ − x

2
+ β

2
logx

)
+ βn

2
log

p

n
− β + 1

2
logp

+ βn

(
− logx

2
+ log(x − β) − logβ

2
+ 1

2

)
+ 1

2
logn − β3n2

2(x − β)2p

− (β + 1) log(x − β) + β

2
log(2x) − log(π) + log�

(
1 + β

2

)
.

More generally, if n → ∞ and p/n → ∞ we have

(9) logP(λ(1) > px) = Bn,p,β(x) + O(1)
n5/2

p3/2 .

REMARK 2. The tail probability approximation results in Theorem 1 provides
technical support for the theoretical analysis of our importance sampling algo-
rithm, where one needs to ensure that the exponential decay rate of the estima-
tor variance matches that of the target tail probability. Although the term O(1)

in (9) in the general case is not specified, the developed approximations are suf-
ficient enough to guarantee the asymptotical efficiency of the proposed Monte
Carlo methods. Construction of the importance sampling estimator and the cor-
responding approximation results for the estimator variance will be provided in
Section 2.2.2.

When n is fixed with p → ∞, from the proof of Theorem 1, we have the same
approximation results as in Theorem 1. In addition, we believe that it is possible to
extend the proof to the case when p = �(n1+ε) for any ε > 0, and derive sharper
asymptotic approximation results than Theorem 1. However, this involves the cal-
culation of the expectation of exp{−∑n

i=1(λi/p −β)k} for k ≥ 3 (see the proof of
Theorem 1 for more details). These extensions will be considered in future work.

2.2.2. Efficient simulation method. We characterize the proposed measure Q

in (7) through two ways. First, we describe the simulation of the eigenvalues from
Q by following a two-step procedure.

ALGORITHM 1. The algorithm goes as follows.
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Step 1. Generate matrix Ln−1,p−1,β := Bn−1,p−1,βB	
n−1,p−1,β , where

Bn−1,p−1,β is a bidiagonal matrix defined by

Bn−1,p−1,β =

⎛
⎜⎜⎜⎝

χβp−β

χβ(n−2) χβp−2β

. . .
. . .

χβ χβp−β(n−1)

⎞
⎟⎟⎟⎠

(n−1)×(n−1)

.

Here, all of the diagonal and sub diagonal elements are mutually independent with
the distribution of χa , the square-root of the chi-square distribution with degree
of freedom a. Calculate the corresponding eigenvalues (λ2, . . . , λn) of Ln−1,p−1,β

and the order statistics λ(2) > · · · > λ(n).
Step 2. Conditional on (λ(2), . . . , λ(n)), sample λ(1) from the exponential distri-

bution with density

(10) f (λ(1)) := x − β

2x
e− x−β

2x
(λ(1)−px∨λ(2)) · I(λ(1)>px∨λ(2)),

where x > β is the threshold value in P(λ(1) > px).

Let Q be the measure induced by combining the above two-step sampling
procedure on (λ(1), . . . , λ(n)). It is defined on [0,∞)n. We next describe it us-
ing the Radon–Nikodym derivative between Q and the original measure P . From
Dumitriu and Edelman (2002), we know the order statistics of the eigenvalues of
Ln−1,p−1,β has density function

gn−1,p−1,β(λ2, . . . , λn) = (n − 1)!fn−1,p−1,β(λ2, . . . , λn) × I(λ2>···>λn)

as defined in (3). Then the sampled λ(1), . . . , λ(n) under Q has density function

gn−1,p−1,β(λ2, . . . , λn) · x − β

2x
e− x−β

2x
(λ1−px∨λ2)I(λ1>px∨λ2).(11)

The corresponding importance sampling estimator following (7) is

Lp = gn,p,β(λ(1), . . . , λ(n))1(λ(1)>px)

gn−1,p−1,β(λ(2), . . . , λ(n)) · x−β
2x

e− x−β
2x

(λ(1)−px∨λ(2))I(λ(1)>px∨λ(2))

.

The joint density gn,p,β(λ1, . . . , λn) equals

I(λ1>···>λn) × n!fn,p,β(λ1, . . . , λn)

= I(λ1>···>λn) × n!cn,p,β

∏
1≤i<j≤n

|λi − λj |β ·
n∏

i=1

λ
β(p−n+1)

2 −1
i · e− 1

2
∑n

i=1 λi

(12)

= I(λ1>···>λn)nAn

n∏
i=2

(λ1 − λi)
β · λ

β(p−n+1)
2 −1

1 · e− 1
2 λ1

× gn−1,p−1,β(λ2, . . . , λn),
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where

(13) An = cn,p,β/cn−1,p−1,β,

with cn,p,β and cn−1,p−1,β defined as in (2). Therefore, the importance sampling
estimator Lp can be written as

Lp = nAn

∏n
i=2(λ(1) − λ(i))

β · λ
β(p−n+1)

2 −1
(1) · e− 1

2 λ(1)

x−β
2x

e− x−β
2x

(λ(1)−px∨λ(2)) · I(λ(1)>px∨λ(2))

1(λ(1)>px).(14)

Under the measure Q, λ(1) > px ∨ λ(2) and, therefore, Lp is well defined.
The measure Q is constructed such that the behavior of the eigenvalues under

Q mimics the tail behavior given the rare event {λ(1) > px} under P . According
to the proposed simulation procedure, the largest eigenvalue is generated from a
truncated exponential distribution at the level about px while the other eigenvalues
are generated from the original measure. We have the following theorem to show
the efficiency of the proposed measure.

THEOREM 2. (i) If p/n5/3 → ∞, the measure Q approximates P ∗
px , the con-

ditional probability measure given λ(1) > px, in the total variation sense, that is,

lim
n→∞ sup

A∈F
∣∣Q(A) − P ∗

px(A)
∣∣= 0,

where F is the σ -field B([0,∞)n). In addition,

EQ[L2
p

]∼ P(λ(1) > px)2.

(ii) If n5/3/p = O(1), we have

EQ[L2
p

]= O(1)P (λ(1) > px)2,

that is, the importance sampling estimate based on Q is strongly efficient.
(iii) More generally, if p/n → ∞, we have

logEQ[L2
p]

2 logP(λ(1) > px)
→ 1,

that is, the importance sampling estimate is asymptotically efficient.

REMARK 3. Theorem 2 shows that the conditional distribution of (λ1, . . . , λn)

given λ(1) > px essentially behaves like the proposed measure Q. When n is fixed
and p → ∞, a similar argument as in the proof of Theorem 2 gives that EQ[L2

p] ∼
P(λ(1) > px)2 and the importance sampling estimate is strongly efficient.

It is conceived that the total variation distance between the proposed mea-
sure Q and the conditional distribution converges to 0 for the general case when
p = �(n1+ε), ε > 0. As discussed in Remark 2, this needs the calculation of the
expectation of exp{−∑n

i=1(λi/p − β)k} for k ≥ 3, which we would like to inves-
tigate in the future.



1618 T. JIANG, K. LEDER AND G. XU

REMARK 4. From the proof of Theorem 2, we can see that the estimator is
still asymptotically efficient if in the second step of Algorithm 1, we sample λ(1)

from an alternative exponential distribution with density

f (λ(1)) := Jβ,xe
−Jβ,x(λ(1)−px∨λ(2)) · I(λ(1)>px∨λ(2)),

where the rate Jβ,x is some positive constant smaller than (x − β)/x. However,
as shown in Theorem 2, when Jβ,x = (x − β)/(2x), the change of measure ap-
proximates the conditional distribution given λ(1) > px in total variation when p

is large, and it is conceivable that this rate function yields more efficient results
than others.

REMARK 5. The above results show that the estimator Lp is asymptotically

efficient. To estimate P(λ(1) > px), we simulate N i.i.d. copies of Lp , {L(j)
p : j =

1, . . . ,N} and the final estimator is Zp = 1
N

∑N
j=1 L

(j)
p . To achieve the accuracy

in (6), by the above theorem, at most we need N = �(ε−2δ−1) if p/n5/3 → ∞ or
N = �(ε−2δ−1P(λ(1) > px)−η), for any η > 0 and p/n → ∞.

2.3. Efficient simulation for P(λ(1) > px) when p/n → γ ∈ [1,∞). When
p/n → γ ∈ [1,∞), from a direct application of Theorem 2.6.6 [Anderson, Guion-
net and Zeitouni (2010)], λ(1)/n satisfies the large deviation principle in R with
speed n and good rate function

(15) Iβ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−β

∫
R

log |x − y|σβ(dy) + 1

2
x − 1

2
β(γ − 1) logx + αβ,

if x ≥ x∗;
∞, if x < x∗,

where αβ = β
2 [(γ + 1)(logβ − 1) + γ logγ ], and σβ is the Marchenko–Pastur

law [Marčenko and Pastur (1967)] corresponding to the empirical distribution of
eigenvalues (λ1/n, . . . , λn/n) with x∗ = β(

√
γ − 1)2, x∗ = β(

√
γ + 1)2; see also,

for example, Hiai and Petz (1998) and Dumitriu (2003) for more details.
We now consider the tail probability P(λ(1)/p > x) = P(λ(1)/n > (p/n)x)

for γ x > x∗. From the large deviation result, we know P(λ(1) > px) converges
to 0 as n → ∞. To construct an efficient estimator, the proposed algorithm in
Section 2.2.2 cannot be directly applied and we need to modify the change of
measure accordingly.

The new algorithm is given as follows: keep Step 1 in the algorithm from Sec-
tion 2.2.2. In Step 2, we sample λ(1) from the exponential distribution with density

f (λ(1)) =Jβ,xe
−Jβ,x×(λ(1)−px∨λ(2)) · I(λ(1)>px∨λ(2)),

where the rate Jβ,x > 0 is chosen such that

(16) Jβ,x < 1 − 2β

∫ 1

γ x − y
σβ(dy) − β

γ − 1

γ x
.
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The quantity in the right-hand side of (16) is the derivative of the rate function
2Iβ at γ x > x∗. It is positive on (x∗,∞) due to the fact that the rate function Iβ(x)

is a convex function with positive second derivative on set (x∗,∞) and it achieves
the minimum 0 at x∗ [Theorem 2.6.6, Anderson, Guionnet and Zeitouni (2010)].
Therefore, the constant Jβ,x is well defined.

Let Q̃ be the measure induced by combining the above two-step sampling pro-
cedure on (λ(1), . . . , λ(n)). It is defined on [0,∞)n. By the same argument as in that
between (10) and (12), we know the corresponding importance sampling estimate
L̃p := dP

dQ̃
is given by

L̃p = nAn

∏n
i=2(λ(1) − λ(i))

β · λ
β(p−n+1)

2 −1
(1) · e− 1

2 λ(1)

Jβ,xe
−Jβ,x(λ(1)−px∨λ(2)) · I(λ(1)>px∨λ(2))

1(λ(1)>px).(17)

We have the following efficiency result for L̃p .

THEOREM 3. If p/n → γ ∈ [1,∞), then the importance sampling estimate
L̃p is asymptotically efficient.

REMARK 6. To achieve strong efficiency results as in Theorem 2, we need to
derive a more accurate approximation of the tail probability P(λ(1) > px) as in
Theorem 1. However, the techniques developed in this paper may not be directly
applicable, though some of the derived approximation bounds in the auxiliary lem-
mas (such as bounds in the proof of Lemma 5) can be generalized to the case of
p/n → γ ∈ [1,∞). We leave this as a future work.

2.4. Efficient simulation for λ(n). Recall that λ(n) is the smallest eigenvalue
of the β-Laguerre ensemble defined as in (3). In this section, we focus on the
probability P(λ(n) < py) as p → ∞ for any β > 0 and 0 < y < β . We have the
following approximation results similar to Theorem 1. Their proofs follow from
analogous arguments as in those for λ(1) and, therefore, are omitted.

THEOREM 4. For 0 < y < β the following hold as n → ∞:

(1) If p/n → ∞, logP(λ(n) < py) = Bn,p,β(y) + O(1)n5/2p−3/2, where
Bn,p,β(y) is defined as in Theorem 1.

(2) If p/n5/3 = �(1), logP(λ(n) < py) = Bn,p,β(y) + O(1).
(3) If p/n5/3 → ∞, P(λ(n) < py) ∼ exp(Bn,p,β(y)).

Since λmax/p and λmin/p are all positive, it can be seen from Theorems 1 and
4 that the two rate functions on (0,∞) look “symmetric” with respect to the line
x = β . The dominant term in the above expression of Bn,p,β(y) is p(

β
2 − β

2 logβ −
y
2 + β

2 logy), which is negative if 0 < y < β , and thus exp(Bn,p,β(y)) is no more
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than 1. In addition, this gives the same exponential decay rate for λ(n) as found in
Jiang and Li (2014).

To obtain an efficient Monte Carlo estimator of P(λ(n) < py), we propose an
importance sampling procedure similar to that for the largest eigenvalue λ(1).

Step 1. Generate matrix Ln−1,p−1,β . Calculate the corresponding eigenvalues
(λ1, . . . , λn−1) of Ln−1,p−1,β and the order statistics λ(1) > · · · > λ(n−1).

Step 2. Conditional on (λ(1), . . . , λ(n−1)), sample λ(n) from the distribution
with density

f (λ(n)) := β − y

2y
e

β−y
2y

(λ(n)−py∧λ(n−1)) · I(λ(n)<py∧λ(n−1)).

The importance sampling estimator Lp can be written as

Lp = nAn

∏
1≤i<n(λ(i) − λ(n))

β · λ
β(p−n+1)

2 −1
(n) · e− 1

2 λ(n)

β−y
2y

e
β−y
2y

(λ(n)−py∧λ(n−1)) · I(λ(n)<py∧λ(n−1))

I(λ(n)<py).

The efficiency of the above importance sampling estimator is stated in the next
theorem.

THEOREM 5. Assume 0 < y < β and n → ∞. We have:

(1) if p/n5/3 → ∞, EQ[L2
p] ∼ P(λ(n) < py)2;

(2) if p/n5/3 = �(1), EQ[L2
p] = O(1)P (λ(n) < py)2;

(3) if p/n → ∞, Lp is asymptotically efficient.

3. Numerical study.

3.1. Simulation study. In order to evaluate the actual performance of our al-
gorithms, we conduct a numerical study over different p and n values. We take
β = 1 and choose six combinations of n and p: (n,p) = (10,102), (10,103),
(10,104), (50,102), (50,103) and (50,104). We follow Algorithm 1 to estimate
P(λ(1) > px) for different values of x’s. For (n,p) = (10,100) and (50,100),
the algorithm in Section 2.3 gives similar results and, therefore, are not presented.
Based on the simulation results, we would suggest use Algorithm 1 in practice for
p/n → γ ∈ [1,∞].

Tables 1 and 2 show estimated tail probabilities (column “Est”) along with the

estimated standard deviations Std(Lp) =
√

VarQ(Lp) (column “Std”). The sim-

ulation results are based on 104 independent simulations and it takes just a few
seconds in the statistical software “R” for each case. Note that the standard devia-
tion of the final estimate (in the column “Est.”) is the reported standard deviation
(in the column of “Std.”) divided by

√
104 = 100.
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TABLE 1
Estimates of P(λ(1) > px) for n = 10 and p = 100, 1000, 10,000. The standard deviation of the

estimate “Est.” is Std./100

x Est. Std. Std./Est. TA TW DMC

n = 10,p = 100
1.9 1.01e–02 6.91e–03 0.69 5.89e–03 1.34e–02 (1.06e–02) 1.00e–02
2.0 1.71e–03 9.95e–04 0.58 1.07e–03 2.20e–03 (1.68e–03) 1.74e–03
2.1 2.31e–04 1.14e–04 0.49 1.55e–04 2.79e–04 (2.06e–04) 2.41e–04
2.5 1.64e–08 5.43e–09 0.33 1.29e–08 – –
3 9.24e–15 2.16e–15 0.23 7.91e–15 – –
4 2.21e–29 3.33e–30 0.15 2.03e–29 – –

n = 10,p = 1000
1.25 1.16e–02 9.08e–03 0.78 6.81e–03 1.75e–02 (1.28e–02) 1.16e–02
1.28 1.19e–03 7.65e–04 0.64 7.70e–04 2.04e–03 (1.42e–03) 1.22e–03
1.3 2.07e–04 1.22e–04 0.59 1.43e–04 3.93e–04 (2.66e–04) 2.02e–04
1.4 3.88e–09 1.50e–09 0.39 3.11e–09 – –
1.5 3.26e–15 9.56e–16 0.29 2.82e–15 – –
2.0 1.88e–59 2.59e–60 0.14 1.81e–59 – –

n = 10,p = 10,000
1.07 4.26e–02 4.17e–02 0.97 2.32e–02 6.18e–02 (4.58e–02) 4.29e–02
1.08 4.05e–03 3.03e–03 0.75 2.52e–03 6.98e–03 (4.84e–03) 4.02e–03
1.09 2.15e–04 1.26e–04 0.59 1.45e–04 4.69e–04 (3.10e–04) 2.18e–04
1.10 6.49e–06 3.41e–06 0.52 4.76e–06 1.84e–05 (1.11e–05) 5e–06
1.15 1.36e–16 4.19e–17 0.31 1.18e–16 – –
1.20 8.15e–32 1.81e–32 0.22 7.49e–32 – –

To validate our importance sampling results, we compute direct Monte Carlo
estimates based on 106 independent simulations (column “DMC”). Note that this
validation is not feasible for all probabilities considered. We also present the results
from asymptotic approximation methods. The tail probability approximations from
Theorem 1 are presented in the column “TA” and the approximation results based
on the Tracy–Widom distribution are given in the column “TW.” The tail probabil-
ities of the Tracy–Widom distribution are calculated using R package “RMTstat”
[Johnstone et al. (2010)]. In particular, it is known that when β = 1

λ(1) − μn,p

σn,p

converges to the Tracy–Widom law [El Karoui (2003), Johnstone (2001)], where

μn,p = (
√

n +
√

p − 1)2,

σn,p = (
√

n +
√

p − 1)

(
1√
n

+ 1√
p − 1

)1/3
.
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TABLE 2
Estimates of P(λ(1) > px) for n = 50 and p = 100, 1000, 10,000

x Est. Std. Std./Est. TA TW DMC

n = 50,p = 100
3 4.74e–02 1.16e–01 2.46 4.57e–02 5.07e–02 (4.84e–02) 4.77e–02
3.25 9.15e–04 1.44e–03 1.58 7.22e–04 8.94e–04 (8.36e–04) 9.01e–04
3.5 6.02e–06 5.56e–06 0.92 4.47e–06 2.38e–06 (2.03e–06) -
4 3.09e–11 1.94e–11 0.63 2.18e–11 – –
5 3.05e–24 1.17e–24 0.39 2.27e–24 – –

n = 50,p = 1000
1.55 3.51e–03 6.57e–03 1.87 4.43e–03 4.30e–03 (3.60e–03) 3.46e–03
1.57 5.81e–04 8.43e–04 1.45 6.60e–04 7.20e–04 (5.91e–04) 5.77e–04
1.6 2.74e–05 3.14e–05 1.15 2.79e–05 3.25e–05 (2.56e–05) 2.0e–05
1.7 8.52e–11 6.63e–11 0.78 7.31e–11 – –
2.0 2.32e–34 8.90e–35 0.38 1.91e–34 – –

n = 50,p = 10,000
1.155 1.75e–02 3.68e–02 2.11 3.21e–02 2.25e–02 (1.86e–02) 1.77e–02
1.16 3.99e–03 7.37e–03 1.84 6.09e–03 5.22e–03 (4.20e–03) 3.87e–03
1.17 1.06e–04 1.50e–04 1.41 1.33e–04 1.57e–04 (1.20e–04) 1.02e–04
1.20 4.22e–11 3.62e–11 0.86 3.95e–11 – –
1.25 2.75e–26 1.47e–26 0.53 2.36e–26 – –

A more accurate approximation has been proposed in Johnstone and Ma (2012)
and Ma (2012), where

μn,p =
(√

n − 1

2
+
√

p − 1

2

)2
,

σn,p =
(√

n − 1

2
+
√

p − 1

2

)(
1√

n − 1
2

+ 1√
p − 1

2

)1/3
.

We report both approximation results in the column “TW” with the second in the
parentheses.

From Tables 1 and 2, we can see that the proposed importance sampling es-
timates (“Est”) are consistent with those from direct Monte Carlo simulation
(“DMC”). The ratios between the estimated standard deviations of Lp and the
estimated tail probabilities (“Std/Est”) stay reasonably small, indicating the effi-
ciency of the algorithm [see equations (4) and (5)]. The ratio becomes smaller as
x increases. This implies that the algorithm is more efficient for larger x’s values.
Moreover, the proposed method provides an efficient way to evaluate the perfor-
mance of the theoretical approximation methods. In particular, we can see that
the approximations based on the Tracy–Widom distribution (“TW”) overestimate
the tail probabilities, especially for larger x’s values. In addition, larger estimation
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(relative) errors can be observed for n = 10 than for n = 50. For the tail approxima-
tions (“TA”), we can see they do not give accurate estimates for smaller x’s values
while the performance gets better as x increases. Overall, the importance sam-
pling method outperforms results based on the Tracy–Widom distribution and the
tail probability approximations. Lastly, it should be noted that the approximations
based on Tracy–Widom distribution and the direct Monte Carlo approach are not
suitable for estimating the probability of extremely rare events. For these events the
only possibility is to use the methods developed in the current work, that is, impor-
tance sampling or the the tail approximation. R code of the proposed importance
sampling algorithm can be found at http://users.stat.umn.edu/~xuxxx360/IS.R.

3.2. Non-Gaussian matrices. We next investigate the behavior of the algo-
rithm and approximations in the non-Gaussian setting. In particular, we generate
the matrix X∗X where X = (xij )n×p with n = 10, p = 100,1000 and 10,000, and
xij are i.i.d. random variables following a standardized Binomial or t-distribution
with mean zero and variance one. Table 3 presents the simulation results, where
columns “Est” is the importance sampling estimates under the Gaussian assump-
tion as in Table 1, “TW” is the Tracy–Widom estimates, and the last five columns
are direct Monte Carlo results under different standardized distributions with 105

replications. Table 3 shows that the importance sampling estimators are generally
comparable to Tracy–Widom estimators. Moreover, as the distribution of x1,1 be-
comes more like the normal distribution (such as when the number of trials of a
Binomial distribution increases or the degrees of freedom of a t-distribution in-
creases), the importance sampling estimators become more accurate and outper-
form Tracy–Widom estimators.

Bordenave and Caputo (2014) studied the large deviations properties of the
spectrum of Wigner matrices whose entries were random variables with density
proportional to e−|x|α for all x ∈ R with parameter α ∈ (0,2). Interestingly, they

TABLE 3
Estimates of P(λ(1) > px) for n = 10 and p = 100, 1000, 10,000

x Est. TW B(5,0.5) B(10,0.5) B(20,0.5) t50 t100

n = 10, p = 100
1.9 1.01e–2 1.34 (1.06)e–2 0.57e–2 0.81e–2 0.88e–2 1.15e–2 1.08e–2
2.0 1.71e–3 2.20 (1.68)e–3 0.72e–3 1.27e–3 1.45e–3 1.93e–3 1.76e–3

n = 10, p = 1000
1.25 1.16e–2 1.75 (1.28)e–2 0.72e–2 1.00e–2 1.10e–2 1.36e–2 1.22e–2
1.28 1.19e–3 2.04 (1.42)e–3 0.55e–3 0.94e–3 1.13e–3 1.61e–3 1.20e–3

n = 10, p = 10,000
1.07 4.26e–2 6.18 (4.58)e–2 3.04e–2 3.65e–2 3.96e–2 4.85e–2 4.49e–2
1.08 4.05e–3 6.98 (4.84)e–3 2.16e–3 3.20e–3 3.61e–3 4.77e–2 4.25e–3

http://users.stat.umn.edu/~xuxxx360/IS.R
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observed that both the speed and the rate function of the large deviations principle
depends on the parameter α. Although the Wigner matrices and the Wishart ma-
trices belong to different ensembles, their large deviation principles are of similar
structures; see, for examples, Anderson, Guionnet and Zeitouni (2010). Therefore,
we do not expect a big universality family for our theoretical approximation re-
sults. However, as illustrated in the above simulation, the importance sampling
estimator based on the Gaussian assumption will provide an adequate approxima-
tion for many cases.

3.3. Dengue virus example. To illustrate the use of our algorithm, we con-
sider a real data set of immunity to the Dengue virus (DENV). The data set con-
tains the innate immune response to DENV infection in whole blood samples of
acutely infected humans in Bangkok, Thailand during the season of 2009 [Kwissa
et al. (2014)]. The data set can be downloaded from http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE51808. Whole blood samples were analyzed from 18
dengue fever patients and 10 dengue hemorrhagic fever patients hospitalized at
the Siriraj Hospital in Bangkok, Thailand, and the samples were obtained between
days 2 and 9 after onset of symptoms. Blood samples from 19 convalescence pa-
tients were also obtained at 4 weeks or later after discharge. In addition, there is a
control group of 9 healthy donors, and their blood was also sampled.

We consider data from four groups: 18 dengue fever patients; 10 dengue hem-
orrhagic fever patients; 19 convalescence patients; and 9 healthy control pa-
tients. Each individual has p = 54,715 covariates and Robust Multi-array Average
(RMA) normalization was performed using Expression Console software [Kwissa
et al. (2014)]. We further standardize each group by their global mean and standard
deviation. For each group, we consider the null hypothesis that their covariance
matrix is a white Wishart matrix. We calculate the largest eigenvalues from the
four groups’ covariance matrices as our test statistics. The eigenvalues of the ma-
trix X∗X/p of each group is given in the Figure 1. We compute the corresponding
p-values of the four test statistics to be 10−10 and, therefore, we reject all four
null hypotheses.

4. Proof of theorems. In this section, we present the proofs of main theorems.
Technical lemmas and their proofs are provided in the Supplementary Material
[Jiang, Leder and Xu (2017)].

Outline of proofs. In our analysis of the tail probability P(λ(1) > px) as well
as the variance of the Monte Carlo estimator, we frequently use the following
factorization of the joint probability density function (p.d.f.) in (3):

gn,p,β(λ1, . . . , λn)

= nAn

n∏
i=2

(λ1 − λi)λ
β(p−n+1)

2 −1
1 e−λ1/2gn−1,p−1,β(λ2, . . . , λn),

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51808
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51808
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FIG. 1. Plot of eigenvalues.

where An is defined as in (13). Some key lemmas are developed to show that in the
case p/n → ∞ we can find a positive sequence δn converging to zero (in certain
rate) such that we can focus on the event

(18)
{
p(x + δn) > λ(1) > px,λ(2) < p(β + δn), λ(n) > p(β − δn)

}
instead of {λ(1) > px}. Roughly speaking, we can think of this as the following: If
λ(1) > px, then (i) λ(1) ≈ px and (ii) the remaining eigenvalues are approximately
pβ; see Lemmas 6 and 7 [Jiang, Leder and Xu (2017)] for further details. With the
result in (18), we can approximate

∏n
i=2(λ1 − λi) by

ψn,p,β(λ1, . . . , λn) = (px − pβ)β(n−1)e
(n+o(n))

λ1−px

px−pβ
−∑n

i=2
λi−pβ

px−pβ
−α

∑n
i=2(

λi−pβ

px−pβ
)2

,
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with α being approximately equal to 1/2. Consider then approximating gn,p,β with

nAnψn,p,β(λ1, . . . , λn)λ
β(p−n+1)

2 −1
1 e−λ1/2gn−1,p−1,β(λ2, . . . , λn).

The benefit of working with the approximation in the previous display is that when
integrating we can factor our integrand into the product of terms involving λ1 and
terms involving λi for i ∈ {2, . . . , n − 1}. The term involving λ1 are quite simple,
basically boiling down to the p.d.f. of a gamma distributed random variable. The
term with λi for i > 1 requires the approximation of

E exp

[
−

n∑
i=2

λi − pβ

px − pβ
− α

n∑
i=2

(
λi − pβ

px − pβ

)2
]
.(19)

We achieve this through using a matrix representation of the β-Laguerre ensemble
by Dumitriu and Edelman (2002) to express

∑n
i=2 λi and

∑n
i=2(λi −pβ)2 as sums

of independent random variables. We are then able to develop approximations to
the expected value in (19); see Lemma 3 in the Supplementary Material [Jiang,
Leder and Xu (2017)].

PROOF OF THEOREM 1. We first focus on the case when p/n5/3 → ∞. Set

an =
√

np−1 + p−1 and bn = pn−2. Choose δn = min{√an,
√

anbn}. From the

assumption p/n5/3 → ∞, it is trivial to check that

δn → 0, pδn → ∞,
δ2
np

n
→ ∞, and

δnn
2

p
→ 0.(20)

In the discussion below, whenever we need a restriction about δn we can always
get it from the above limits.

To prove (8), we first show that

P(λ(1) > px)
(21)

� 2x

x − β
nAn(px − pβ)β(n−1)(px)

β(p−n+1)
2 −1e

−px
2 − β3n2

2(x−β)2p ;
P(λ(1) > px)

(22)

� 2x

x − β
nAn(px − pβ)β(n−1)(px)

β(p−n+1)
2 −1e

−px
2 − β3n2

2(x−β)2p .

We prove them separately.

Proof of (21). By Lemmas 6 and 7 in the Supplementary Material [Jiang, Leder
and Xu (2017)],

P
(
λ(1) > p(x + δn)

)= o(1)P (λ(1) > px),

P
(
λ(1) > px,λ(2) > p(β + δn)

)= o(1)P (λ(1) > px),

P
(
λ(1) > px,λ(n) < p(β − δn)

)= o(1)P (λ(1) > px).
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Therefore, P(λ(1) > px) is asymptotically equivalent to the probability of {px <

λ(1) < p(x + δn), λ(2) < p(β + δn), and λ(n) > p(β − δn)}. That is,

P(λ(1) > px)

∼
∫

λ1>···>λn,px<λ1<p(x+δn),

λ2<p(β+δn),λn>p(β−δn)

n!fn,p,β(λ1, . . . , λn) dλ1 · · ·dλn

=
∫

λ1>···>λn,px<λ1<p(x+δn),

λ2<p(β+δn),λn>p(β−δn)

nAn

n∏
i=2

(λ1 − λi)
β · λ

β(p−n+1)
2 −1

1 · e− 1
2 λ1

× gn−1,p−1,β(λ2, . . . , λn) dλ1 · · ·dλn

=
∫

λ1>···>λn,px<λ1<p(x+δn),

λ2<p(β+δn),λn>p(β−δn)

nAn(px − pβ)β(n−1)

×
n∏

i=2

(
1 + λ1 − px

px − pβ
− λi − pβ

px − pβ

)β

× λ
β(p−n+1)

2 −1
1 e− 1

2 λ1gn−1,p−1,β(λ2, . . . , λn) dλ1 · · ·dλn.

Take z and a2 in Lemma 1 such that

z = λ1 − px

px − pβ
− λi − pβ

px − pβ
and α2 = 1

2
− δn

x − β
,

then α2 < 1
2 as n is sufficiently large (we will have similar situations in the rest

of the paper, the same interpretation “as n is sufficiently large” applies unless oth-
erwise specified). Consequently, for px < λ1 < p(x + δn) and p(β − δn) < λn ≤
· · · ≤ λ2 < p(β + δn)

n∏
i=2

(
1 + λ1 − px

px − pβ
− λi − pβ

px − pβ

)

= e
∑n

i=2 log(1+ λ1−px

px−pβ
− λi−pβ

px−pβ
)

(23)

≤ e
∑n

i=2(
λ1−px

px−pβ
− λi−pβ

px−pβ
)−α2

∑n
i=2(

λ1−px

px−pβ
− λi−pβ

px−pβ
)2

≤ e
(n+o(n))

λ1−px

px−pβ
−∑n

i=2
λi−pβ

px−pβ
−α2

∑n
i=2(

λi−pβ

px−pβ
)2

,

where in the last step we used e
−(n−1)α2(

λ1−px

px−pβ
)2 ≤ 1 and α2

λ1−px
px−pβ

∑n
i=2

λi−pβ
px−pβ

=
o(n)

λ1−px
px−pβ

since λi−pβ
px−pβ

≤ O(δn) = o(1) uniformly for all 2 ≤ i ≤ n. Then we
have the following upper bound:

P(λ(1) > px)

� nAn(px − pβ)β(n−1)
∫ p(x+δn)

px
λ

β(p−n+1)
2 −1

1 e
(βn+o(n))

λ1−px

px−pβ
− λ1

2 dλ1
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×
∫

λ2>···>λn
λ2<p(β+δn),λn>p(β−δn)

e
−β

∑n
i=2

λi−pβ

p(x−β)
−βα2

∑n
i=2(

λi−pβ

px−pβ
)2

(24)
× gn−1,p−1,β(λ2, . . . , λn) dλ2 · · ·dλn

≤ nAn(px − pβ)β(n−1)
∫ p(x+δn)

px
λ

β(p−n+1)
2 −1

1 e
(βn+o(n))

λ1−px

px−pβ
− λ1

2 dλ1

× E
[
e
−β

∑n
i=2

(λi−βp)

p(x−β)
−βα2

∑n
i=2

(λi−βp)2

p2(x−β)2
]
.

Trivially, n2

p
− (n−1)2

p−1 = o(1) since n/p → 0. We then have from Lemma 3 that

E
[
e
−β

∑n
i=2

(λi−βp)

p(x−β)
−βα2

∑n
i=2

(λi−βp)2

p2(x−β)2
]= e

− α2β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
.(25)

This implies that

P(λ(1) > px)

� nAn(px − pβ)β(n−1)e
− α2β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]

×
∫ p(x+δn)

px
λ

β(p−n+1)
2 −1

1 e
(βn+o(n))

λ1−px

px−pβ
− λ1

2 dλ1

= nAn(px − pβ)β(n−1)e
− α2β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
(26)

×
∫ pδn

0
(λ1 + px)

β(p−n+1)
2 −1e

(βn+o(n))
λ1

px−pβ
− λ1+px

2 dλ1

≤ nAn(px − pβ)β(n−1)e
−px

2 − α2β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
(px)

β(p−n+1)
2 −1

×
∫ pδn

0
e
{ β(p−n+1)

2 −1} λ1
px

+(βn+o(n))
λ1

px−pβ
− λ1

2 dλ1

∼ 2x

x − β
nAn(px − pβ)β(n−1)(px)

β(p−n+1)
2 −1e

−px
2 − α2β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
,

where in the second step we changed the variable λ1 to λ1 + px; in the third step
we used (λ1 + px) ≤ (px) exp{λ1/(px)}; the last step follows from the fact that
{β(p−n+1)

2 −1} λ1
px

+(βn+o(n)) λ1
px−pβ

− λ1
2 ∼ β−x

2x
λ1 by using the facts pδn → ∞

and n/p → 0.

Finally, noticing that α2β
3

(x−β)2 [n2

p
− O(1)n3

3p2 ]− β3n2

2(x−β)2p
→ 0 due to the fact δnn2

p
→

0 and n5/3

p
→ 0, we obtain (21).
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Proof of (22). By the same argument as in the above derivation, take α1 =
1/2 + δn/(x − β) in Lemma 1 to have

n∑
i=2

log
(

1 + λ1 − px

px − pβ
− λi − pβ

px − pβ

)

≥
n∑

i=2

log
(

1 − λi − pβ

px − pβ

)

≥ −
n∑

i=2

λi − pβ

px − pβ
− α1

n∑
i=2

(λi − pβ)2

(px − pβ)2

under the restriction px < λ1 < p(x + δn), λ2 < p(β + δn), and λn > p(β − δn).
Therefore,

P(λ(1) > px) ≥
∫

λ1>···>λn,λ1>px,

λ2<p(β+δn),λn>p(β−δn)

n!fn,p,β(λ1, . . . , λn) dλ1 · · ·dλn

≥ nAn(px − pβ)β(n−1)

×
∫

λ2>···>λn
λ2<p(β+δn),λn>p(β−δn)

∫ p(x+δn)

px
e
−β

∑n
i=2

λi−pβ

p(x−β)
−βα1

∑n
i=2

(λi−pβ)2

p2(x−β)2

(27)

× λ
β(p−n+1)

2 −1
1 e− λ1

2 × gn−1,p−1,β(λ2, . . . , λn) dλ1 dλ2 · · ·dλn

= nAn(px − pβ)β(n−1) ×
∫ p(x+δn)

px
λ

β(p−n+1)
2 −1

1 e− λ1
2 dλ1

×
∫

λ2>···>λn,

λ2<p(β+δn),λn>p(β−δn)

e
−β

∑n
i=2

λi−pβ

p(x−β)
−βα1

∑n
i=2

(λi−pβ)2

p2(x−β)2

× gn−1,p−1,β(λ2, . . . , λn) dλ2 · · ·dλn.

By Lemmas 3 and 8, we have the second integral in (27) is e
− α1β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]

since δnn2

p
→ 0 and pδn → ∞. It follows that

P(λ(1) > px)

� nAn(px − pβ)β(n−1)e
− α1β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ] ∫ p(x+δn)

px
λ

β(p−n+1)
2 −1

1 e− λ1
2 dλ1(28)

∼ 2x

x − β
nAn(px − pβ)β(n−1)(px)

β(p−n+1)
2 −1e

−px
2 − α1β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
,

where the last step follows the same argument as in (26) due to the fact pδn → ∞.

This yields (22) by noticing that α1β
3

(x−β)2 [n2

p
− O(1)n3

3p2 ] − β3n2

2(x−β)2p
→ 0.
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Next, we prove the result (8). By the above derivations,

logP(λ(1) > px)

= logn + logAn + log
2x

x − β
+ β(n − 1) log(px − pβ)(29)

+
[
β(p − n + 1)

2
− 1

]
log(px) − px

2
− β3n2

2(x − β)2p
+ o(1).

From the Stirling formula,

log�(z) = z log z − z − (log z)/2 + log
√

2π + o(1)

for large |z|; we know

logAn = log
2− β(n+p−1)

2 �(1 + β
2 )

�(1 + βn
2 )�(

βp
2 )

= log
2− β(n+p−1)

2 �(1 + β
2 )

βn
2 �(

βn
2 )�(

βp
2 )

= −β

2
(n + p − 1) log 2 + log�

(
1 + β

2

)
− βn

2
log

βn

2
− βp

2
log

βp

2

+ βn

2
+ βp

2
+ 1

2
log

βp

2
− 1

2
log

βn

2
− 2 log

√
2π + o(1)

(30)

= −βp

2
logp − βp

2
(logβ − 1) − βn

2
logn − βn

2
(logβ − 1)

+ 1

2
log

βp

2
− 1

2
log

βn

2
+ β

2
log 2 − 2 log

√
2π + log�

(
1 + β

2

)

+ o(1).

Therefore, plugging in the above expansion of logAn into equation (29), we obtain

logP(λ(1) > px)

= logn − βp

2
logp − βp

2
(logβ − 1) − βn

2
logn − βn

2
(logβ − 1)

+ 1

2
log

βp

2
− 1

2
log

βn

2
+β

2
log 2 − 2 log

√
2π + log�

(
1 + β

2

)

+ log
2x

x − β
+ β(n − 1) log(px − pβ)

+
[
β(p − n + 1)

2
− 1

]
log(px) − px

2
− β3n2

2(x − β)2p
+ o(1)

= p

(
β

2
− β

2
logβ − x

2
+ β

2
logx

)
+ βn

2
log

p

n
− β + 1

2
logp
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+ βn

(
− logx

2
+ log(x − β) − logβ

2
+ 1

2

)
+ 1

2
logn − β3n2

2(x − β)2p

− (β + 1) log(x − β) + β

2
log(2x) − log(π) + log�

(
1 + β

2

)
+ o(1).

This completes the proof of (8).
Next, we prove the result (9) when p/n → ∞. For any ln > 0 such that ln → ∞

and
√

np−1ln → 0, take δn =
√

np−1ln. Then δn → 0 and δ2
n

np−1 → ∞. Reviewing
the proof of the asymptotic upper bound (26) and the lower bound (28), we only

use the three conditions: δn → 0, δ2
n

np−1 → ∞ and p/n → ∞. Consequently,

Bn,p,β(x) +
(

1

2
− α1

)
β3n2

(x − β)2p
+ α1

β3O(1)n3

3(x − β)2p2

≤ logP(λ(1) > px)

≤ Bn,p,β(x) +
(

1

2
− α2

)
β3n2

(x − β)2p
+ α2

β3O(1)n3

3(x − β)2p2 ,

where Bn,p,β(x) is defined as in Theorem 1, α1 = 1
2 + δn

x−β
and α2 = 1

2 − δn

x−β
.

Replace δn with
√

np−1ln and we have

Bn,p,β(x) − �(1)
lnn

5/2

p3/2 ≤ logP(λ(1) > px) ≤ Bn,p,β(x) + �(1)
lnn

5/2

p3/2 ,

or equivalently,

∣∣logP(λ(1) > px) − Bn,p,β(x)
∣∣ · p3/2

n5/2 ≤ �(ln)

for any ln satisfying ln → ∞ and ln = o(
p
n
). Observe that the left-hand side of the

above does not depend on ln, we conclude

lim sup
n→∞

∣∣logP(λ(1) > px) − Bn,p,β(x)
∣∣ · p3/2

n5/2 < ∞
by using a trivial argument of contradiction. This completes the proof. �

PROOF OF THEOREM 2. First consider (i). Since p/n5/3 → ∞, we are able
to pick δn > 0 satisfying δn → 0, δ2

nn
−1p → ∞ and δnn

2/p → 0. To show
EQ[L2

p] = EQ[L2
p;λ(1) > px] ∼ P(λ(1) > px)2, by Lemma 9 in the Supplemen-

tary Material [Jiang, Leder and Xu (2017)], it suffices to show that

EQ[L2
p;λ(1) > px,p(β + δn) > λ(2) > · · · > λ(n) > p(β − δn)

]
(31)

∼ P(λ(1) > px)2.
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Following (11) and (14),

and the left-hand side of (31),

= EQ

[(
nAn ×∏n

i=2(λ1 − λi)
β · λ

β(p−n+1)
2 −1

1 · e− 1
2 λ1

x−β
2x

e− x−β
2x

(λ1−px) · I(λ1>px)

)2
;

λ1 > px,p(β + δn) > λ2 > · · · > λn > p(β − δn)

]

= 2x(x − β)−1n2A2
ne

− x−β
2x

px

×
∫

λ1>px,

p(β+δn)>λ2>···>λn>p(β−δn)

n∏
i=2

(λ1 − λi)
2β · λβ(p−n+1)−2

1 · e−(1− x−β
2x

)λ1 dλ1

(32)
× gn−1,p−1,β(λ2, . . . , λn) dλ2 · · ·dλn

= 2x(x − β)−1n2A2
ne

− x−β
2x

px(px − pβ)2β(n−1)

×
∫

λ2>···>λn
λ2<p(β+δn),λn>p(β−δn)

∫ ∞
px

λ
β(p−n+1)−2
1 · e−(1− x−β

2x
)λ1 dλ1

×
n∏

i=2

(
1 + λ1 − px

px − pβ
− λi − pβ

px − pβ

)2β

× gn−1,p−1,β(λ2, . . . , λn) dλ2 · · ·dλn.

Using the upper bound as in (23) and part of the arguments in (24) and (25), we
have

Display (32)

� 2x(x − β)−1n2A2
ne

− x−β
2x

px(px − pβ)2β(n−1)

×
∫ ∞
px

e
(2βn+o(n))

λ1−px

px−pβ
−2β(n−1)α2(

λ1−px

px−pβ
)2 · λβ(p−n+1)−2

1

× e−(1− x−β
2x

)λ1 dλ1

×
∫

λ2>···>λn
λ2<p(β+δn),λn>p(β−δn)

e
−2β

∑n
i=2

λi−pβ

p(x−β)
−2βα2

∑n
i=2(

λi−pβ

px−pβ
)2

× gn−1,p−1,β(λ2, . . . , λn) dλ2 · · ·dλn

∼ 2x(x − β)−1n2A2
ne

− x−β
2x

px−2α2
β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
(px − pβ)2β(n−1)

(33)

×
∫ ∞
px

e
(2βn+o(n))

λ1−px

px−pβ
−2β(n−1)α2(

λ1−px

px−pβ
)2 · λβ(p−n+1)−2

1
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× e−(1− x−β
2x

)λ1 dλ1

= 2x(x − β)−1n2A2
ne

− x−β
2x

px−2α2
β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
(px − pβ)2β(n−1)

×
∫ ∞

0
e

(2βn+o(n))λ1
px−pβ

−2β(n−1)α2(
λ1

px−pβ
)2−(1− x−β

2x
)(λ1+px)

× (λ1 + px)β(p−n+1)−2 dλ1

� (2x)2(x − β)−2n2A2
ne

−px−2α2
β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]
(px − pβ)2β(n−1)

× (px)β(p−n+1)−2,

where α2 = 1
2 − δn

x−β
; in the third step we changed variable λ1 to λ1 + px for the

integral; the last step follows from the inequality that∫ ∞
0

e
(2βn+o(n))λ1

px−pβ
−2β(n−1)α2(

λ1
px−pβ

)2−(1− x−β
2x

)(λ1+px) · (λ1 + px)β(p−n+1)−2 dλ1

≤ (px)β(p−n+1)−2e−(1− x−β
2x

)px

×
∫ ∞

0
e

(2βn+o(n))λ1
px−pβ

−(1− x−β
2x

)λ1e
[β(p−n+1)−2] λ1

px dλ1

∼ (px)β(p−n+1)−2e−(1− x−β
2x

)px 2x

x − β
,

where in the first step we used (λ + px)β(p−n+1)−2 ≤ (px)β(p−n+1)−2 exp(λ1/

(px)) and the second step we used (2βn+o(n))λ1
px−pβ

− (1 − x−β
2x

)λ1 + [β(p − n + 1) −
2] λ1

px
∼ −x−β

2x
λ1. Easily, α2[n2

p
− O(1)n3

3p2 ]− n2

2p
→ 0. Based on (33) and Theorem 1,

we know that

EQ[( dP
dQ

)2;λ(1) > px]
P(λ(1) > px)2 � 1

provided p/n5/3 → ∞. Since

(34) EQ

[(
dP

dQ

)2
;λ(1) > px

]
≥
{
EQ

[(
dP

dQ

)
;λ(1) > px

]}2
= P(λ(1) > px)2

by Hölder’s inequality, we have

EQ[( dP
dQ

)2;λ(1) > px]
P(λ(1) > px)2 ∼ 1.(35)

So the second statement of the theorem is obtained.
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Now we prove the first one. Recall P ∗
px = P(· | λ(1) > px) as described in the

paragraph following (7). It is easy to check that

dP ∗
px

dQ
= dP

dQ
· I (λ(1) > px)

P (λ(1) > px)

a.s. with respect to Q defined on B([0,∞)n). For any A ⊂ B([0,∞)n),

∣∣Q(A) − P ∗
px(A)

∣∣= ∣∣∣∣
∫
A

(
dP ∗

px

dQ
− 1

)
dQ

∣∣∣∣
≤
{
EQ

(
dP

dQ
· I (λ(1) > px)

P (λ(1) > px)
− 1

)2}1/2

=
(EQ[( dP

dQ
)2;λ(1) > px]

P(λ(1) > px)2 − 1
)1/2

→ 0

by Hölder’s inequality and (35). Thus,

lim
n→∞ sup

A∈F
∣∣Q(A) − P ∗

px(A)
∣∣= 0

as p/n5/3 → ∞. This gives the first conclusion of part (i).
We next prove the conclusion in (ii) and (iii). For general p/n → ∞, by

Lemma 9, we have

EQ[L2
p;λ(1) > px

]
∼ EQ[L2

p;λ(1) > px,p(β + δn) > λ(2) > · · · > λ(n) > p(β − δn)
]

+ o(1)P (λ(1) > px)2.

Note that P(λ(1) > px)2 ≤ EQ[L2
p;λ(1) > px]. Then we have

EQ[L2
p;λ(1) > px

]
∼ EQ[L2

p;λ(1) > px,p(β + δn) > λ(2) > · · · > λ(n) > p(β − δn)
]
.

Then following exactly the same argument as in (32) and (33), which requires the
assumption that p/n → ∞ only, we have

EQ[L2
p;λ(1) > px

]

� (2x)2(x − β)−2n2A2
ne

−px−2α2
β3

(x−β)2
[ n2

p
−O(1)n3

3p2 ]

× (px − pβ)2β(n−1)(px)β(p−n+1)−2.

Similar to the proof of Theorem 1, this implies that

(36) EQ[L2
p;λ(1) > px

]≤ exp
{

2Bn,p,β(x) + O(1)
n5/2

p3/2

}
.
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Recall that Lp = dP
dQ

1{λ(1) > px}. Then the ratio

EQ[L2
p;λ(1) > px

]
/P (λ(1) > px)2 = O(1)

provided n5/3/p = O(1); (36) together with (34) further imply that

lim
n→∞

logEQ[( dP
dQ

)2;λ(1) > px]
2 logP(λ(1) > px)

= 1

as p/n → ∞. The proof is complete. �
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SUPPLEMENTARY MATERIAL

Supplement to “Rare-event analysis for extremal eigenvalues of white
Wishart matrices.” (DOI: 10.1214/16-AOS1502SUPP; .pdf). The online Supple-
mentary Material contains proofs of technical lemmas (Lemmas 1–9) and Theo-
rem 3.
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