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ASYMPTOTICS OF EMPIRICAL EIGENSTRUCTURE FOR HIGH
DIMENSIONAL SPIKED COVARIANCE

BY WEICHEN WANG∗ AND JIANQING FAN1,∗,†

Princeton University∗ and Fudan University†

We derive the asymptotic distributions of the spiked eigenvalues and
eigenvectors under a generalized and unified asymptotic regime, which takes
into account the magnitude of spiked eigenvalues, sample size and dimen-
sionality. This regime allows high dimensionality and diverging eigenvalues
and provides new insights into the roles that the leading eigenvalues, sam-
ple size and dimensionality play in principal component analysis. Our results
are a natural extension of those in [Statist. Sinica 17 (2007) 1617–1642] to a
more general setting and solve the rates of convergence problems in [Statist.
Sinica 26 (2016) 1747–1770]. They also reveal the biases of estimating lead-
ing eigenvalues and eigenvectors by using principal component analysis, and
lead to a new covariance estimator for the approximate factor model, called
Shrinkage Principal Orthogonal complEment Thresholding (S-POET), that
corrects the biases. Our results are successfully applied to outstanding prob-
lems in estimation of risks for large portfolios and false discovery proportions
for dependent test statistics and are illustrated by simulation studies.

1. Introduction. Principal Component Analysis (PCA) is a powerful tool for
dimension reduction and data visualization. Its theoretical properties such as con-
sistency and asymptotic distributions of the empirical eigenvalues and eigenvec-
tors are challenging especially in high dimensional regime. For the past half cen-
tury, substantial amount of efforts have been devoted to understanding empirical
eigenstructure. An early effort came from Anderson (1963) who established the
asymptotic normality of sample eigenvalues and eigenvectors under the classical
regime with large sample size n and fixed dimensionality p. However, when di-
mensionality diverges at the same rate as the sample size, sample covariance ma-
trix is a notoriously bad estimator with dramatically different eigenstructure from
the population covariance. A lot of recent literature makes the endeavor to under-
stand the behavior of the empirical eigenvalues and eigenvectors under high di-
mensional regime where both n and p go to infinity. See, for example, Bai (1999),
Baik, Ben Arous and Péché (2005), Johnstone and Lu (2009), Onatski (2012), Paul
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(2007), Shen et al. (2016) and many related papers. For additional developments
and references, see Bai and Silverstein (2010).

Among different structures of population covariance, the spiked covariance
model is of great interest. It typically assumes several eigenvalues larger than the
remaining, and focuses on recovering only these leading eigenvalues and their as-
sociated eigenvectors. The spiked part is of importance, as we are usually inter-
ested in the directions that explain the most variations of the data. In this paper, we
consider a high dimensional spiked covariance model with the leading eigenvalues
larger than the rest. We provide new understanding on how the spiked empirical
eigenvalues and eigenvectors fluctuate around their theoretical counterparts and
what their asymptotic biases are. Three quantities play an essential role in deter-
mining the asymptotic behavior of empirical eigenstructure: the sample size n, the
dimensionality p and the magnitude of leading eigenvalues {λj }mj=1. The natural
question to ask is how the asymptotics of empirical engen-structure depends on
the interplay of those quantities. We will give a unified answer to this important
question in the principal component analysis. Theoretical properties of PCA have
been investigated from three different perspectives: (i) random matrix theories,
(ii) sparse PCA and (iii) approximate factor model.

The first angle to analyze PCA is through random matrix theories, where it is
typically assumed p/n → γ ∈ (0,∞) with bounded spike sizes. It is well known
that if the true covariance matrix is identity, the empirical spectral distribution con-
verges almost surely to the Marcenko–Pastur distribution [Bai (1999)] and when
γ < 1 the largest and smallest eigenvalues converge almost surely to (1 + √

γ )2

and (1 − √
γ )2, respectively [Bai and Yin (1993), Johnstone (2001)]. If the true

covariance structure takes the form of a spiked matrix, Baik, Ben Arous and Péché
(2005) showed that the asymptotic distribution of the top empirical eigenvalue ex-
hibits an n2/3 scaling when the eigenvalue lies below a threshold 1 + √

γ , and an
n1/2 scaling when it is above the threshold (named BBP phase transition after the
authors). The phase transition is further studied by Benaych-Georges and Nadaku-
diti (2011) and Bai and Yao (2012) under more general assumptions. For the case
where we have the regular scaling, Paul (2007) investigated the asymptotic behav-
ior of the corresponding empirical eigenvectors and showed that the major part
of an eigenvector is normally distributed with a regular scaling n1/2. The conver-
gence of principal component scores under this regime was considered by Lee,
Zou and Wright (2010). The same random matrix regime has also been consid-
ered by Onatski (2012) in studying the principal component estimator for high-
dimensional factor models. More recently, Koltchinskii and Lounici (2014, 2017)
revealed a profound link of concentration bounds of empirical eigenstructure with
the effective rank defined as r̄ = tr(�)/λ1 [Vershynin (2010)]. Their results extend
the regime of bounded eigenvalues to a more general setting, although the asymp-
totic results in most cases still rely on the assumption r̄ = o(n), which essentially
requires a low dimensionality, that is, p/n → 0, if λ1 is bounded. In this paper,
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we consider the general regime of bounded p/(nλ1), which implies r̄ = O(n) and
allows diverging λ1. More discussions will be given in Section 3.

A second line of efforts is through sparse PCA. According to Johnstone and Lu
(2009), PCA does not generate consistent estimators for leading eigenvectors if
p/n → γ ∈ (0,1) with bounded eigenvalues. This motivates the development of
sparse PCA, which leverages the extra assumption on the sparsity of eigenvectors.
A large amount of literature has contributed to the topic of sparse PCA, for exam-
ple, Amini and Wainwright (2008), Berthet and Rigollet (2013), Birnbaum et al.
(2013), Ma (2013), Vu and Lei (2012). Specifically, Vu and Lei (2012) derived
optimal bound for the minimax estimation error of the first sparse leading eigen-
vector, while Cai, Ma and Wu (2015) conducted a more thorough study on the
minimax optimal rates for estimating top eigenvalues and eigenvectors of spiked
covariance matrices with jointly k-sparse eigenvectors. This type of work typically
assumes bounded eigenvalues, which ignore the contributions of the strong signals
from the data in many real applications. To make the problem solvable, sparsity
assumptions on the eigenvectors are imposed. In contrast, driven by applications
such as genomics, economics and finance, this paper studies the contributions of
the diverging eigenvalues (signals) to the estimation of their associated eigenvec-
tors, without relying on sparsity assumptions on the eigenvectors.

In order to illustrate the third perspective, let us briefly review the approximate
factor model [Bai (2003), Fan, Liao and Mincheva (2013)] and see how the spiked
eigenvalues arise naturally from the model. Consider the following data generating
model:

yt = Bft + εt for t = 1, . . . , T ,

where yt is a p-dimensional vector observed at time t , ft ∈ R
m is the vector of

latent factors that drive the cross-sectional dependence at time t , B is the matrix
of the corresponding factor loading coefficients, and εt is the idiosyncratic part
that cannot be explained by the factors. Assume without loss of generality that
var(ft ) = Im, the m × m identity matrix. Then the model implies � = var(yt ) =
BB′ +�ε , where �ε = var(ε). It admits a low-rank plus sparse structure when �ε

is assumed to be sparse [Fan, Fan and Lv (2008), Fan, Liao and Mincheva (2013)].
The recovery of the low-rank and sparse matrices was considered thoroughly by
Candès et al. (2011) and Chandrasekaran et al. (2011) under the incoherence con-
dition in the noiseless setting and by Agarwal, Negahban and Wainwright (2012)
in the noisy case. If the factor loadings {bi}i≤p (the transpose of rows of B) are
i.i.d. samples from a population with mean zero and covariance �b (this is a per-
vasive assumption commonly used in the factor models [Fan, Liao and Mincheva
(2013)]), then by the law of large numbers, p−1B′B = p−1 ∑p

i=1 bib′
i → �b, as

p → ∞. In other words, the eigenvalues of BB′ are approximately

pλ1(�b)
(
1 + o(1)

)
, . . . , pλm(�b)

(
1 + o(1)

)
,0, . . . ,0,
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where λj (�b) is the j th largest eigenvalue of �b. Then, by Weyl’s theorem, we
conclude that the eigenvalues of �

(1.1) λj = pλj (�b)
(
1 + o(1)

)
, for j = 1, . . . ,m,

and the remaining are bounded, if ‖�ε‖ is bounded. Therefore, the factor model
implies a spiked covariance with diverging leading eigenvalues. Fan, Liao and
Mincheva (2013) showed that if the leading eigenvalues grow linearly with the
dimension, then the corresponding eigenvectors can be consistently estimated as
long as sample size goes to infinity. See Section 4 for more details.

Deviating from the classical random matrix and sparse PCA literature, we con-
sider the high dimensional regime, allowing p/n → ∞. To take into account the
contributions of the signals for PCA, we also allow λj → ∞ for the first m leading
eigenvalues. This leads to the third perspective for understanding PCA from this
high dimensional setting. Shen et al. (2016) adopted this point of view and consid-
ered the regime of p/(nλj ) → γj where 0 ≤ γj < ∞ for leading eigenvalues. This
is more general than the bounded eigenvalue condition. Specifically if eigenvalues
are bounded, we require the ratio p/n converges to a bounded constant as in the
random matrix regime. On the other hand, if the dimension is much larger than the
sample size, we offset the dimensionality by assuming increased signals or sample
size, without additional sparse eigenvector assumption as in sparse PCA regime.
In particular, as shown in (1.1), the strong (or pervasive) factors considered in fi-
nancial applications corresponds to γj = 0 with the leading eigenvalues λj 
 p;
see, for example, Bai (2003), Bai and Ng (2002), Fan, Liao and Mincheva (2013),
Fan, Liao and Wang (2016), Stock and Watson (2002). The weak or semistrong
factors considered by De Mol, Giannone and Reichlin (2008) and Onatski (2012)
also imply bounded p/(nλ1), with p/n bounded and λj 
 pθ for some θ ∈ [0,1).

Hall, Marron and Neeman (2005), Jung and Marron (2009) started the research
of high dimension low sample size (HDLSS) regime. With n fixed, Jung and Mar-
ron (2009) concluded that consistency of leading eigenvalues and eigenvectors is
granted if λj 
 pθ for θ > 1, which also corresponds to γj = 0. Shen et al. (2016)
revealed an interesting fact that when γj �= 0, spiked sample eigenvalues almost
surely converge to a biased quantity of the true eigenvalues; furthermore, the cor-
responding sample eigenvectors show an asymptotic conical structure. However,
their work focuses only on the consistency problem. In this study, we will con-
sider the same regime as theirs, but focus more on the rates of convergence and the
asymptotic distributions of the empirical eigenstructure, and under more relaxed
conditions. Our results can be viewed as a natural extension of Paul (2007) to the
high dimensional setting.

We would like to emphasize more on the scope and importance of our contribu-
tions here. First, the regime we consider in this paper is p/(nλj ) → γj ∈ [0,∞)

for j ≤ m, which permits high dimensionality p/n → ∞ and diverging eigenval-
ues without specifying their divergence rates. As we have argued, this encompasses
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many situations considered in the existing literature. It puts into the same frame-
work of the typical random matrix regime with bounded eigenvalues and HDLSS
analysis with fixed sample size. Second, the contributions of diverging eigenval-
ues are indeed recognized and accounted for in our theoretical developments. This
avoids the restrictive assumptions on sparse eigenvectors. PCA without sparsity
assumptions has been widely used in the diverging fields such as population as-
sociation study [Yamaguchi-Kabata et al. (2008)], genome-wide association study
[Ringnér (2008)], microarray data [Landgrebe, Wurst and Welzl (2002), Price et al.
(2006)], fMRI data [Thomas, Harshman and Menon (2002)] and financial returns
[Chamberlain and Rothschild (1983), Chen and Shimerda (1981)]. Our efforts con-
tribute to theoretical understanding of why such a plain PCA works in these diverse
fields. Finally, by allowing certain generality, we gain theoretical insights into how
n, p and signal strength λj interplay.

The results are useful in two ways. On the one hand, they help quantify the bi-
ases of empirical eigenstructure and explain where they come from. Specifically,
in Theorem 3.1, the bias of the j th sample eigenvalue (j ≤ m) is quantified by
p/(nλj ), which is also showed by Yata and Aoshima (2012, 2013) under different
assumptions of the spiked covariance model. Our novel contribution lies in Theo-
rem 3.2, revealing the bias of the j th sample eigenvector (j ≤ m). In (3.7), we pro-
vide a decomposition of each empirical eigenvector into a spiked part, which con-
verges to the true eigenvector with a deflation factor also quantified by p/(nλj ),
and a nonspiked part, which creates a random bias distributed uniformly on an
ellipse. More details will be presented in Section 3. On the other hand, the the-
oretical results provide new technical tools for analyzing factor models, which
motivate the study. As we have seen, although it is natural to assume eigenvalues
grow linearly with dimension, the assumption imposes a strong signal. Note that
when p/(nλj ) → 0, no biases will occur. So in Section 4, we consider to relax the
order of spikes to slightly faster than

√
p. By correcting the biases, we propose

a new method called Shrinkage Principal Orthogonal complEment Thresholding
(S-POET) and employ it to two applications: risk assessment of large portfolios
[Fan, Liao and Shi (2015), Pesaran and Zaffaroni (2008)] and false discovery pro-
portion estimation for dependent test statistics [Fan, Han and Gu (2012), Leek and
Storey (2008)]. Existing methodologies for those two problems reply on rather
strong signal level, but we are able to relax it with the help of S-POET.

The paper is organized as follows. Section 2 introduces the notation, assump-
tions, and an important fact which serves as basis of our proofs. Sections 3.1
and 3.2 devote to the theoretical results for the sample eigenvalues and eigenvec-
tors of the spiked covariance matrix. In Section 4, we discuss several applications
of the theories in the previous section. Simulations are conducted in Section 5
to demonstrate the theoretical results at the finite sample and the performance of
S-POET. Section 6 provides concluding remarks. The proofs for Section 3 are pro-
vided in the Appendix and those for Section 4 are relegated to the supplementary
material [Wang and Fan (2017)].
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2. Assumptions and a simple fact. Assume that {Yi}ni=1 is a sequence
of i.i.d. random variables with zero mean and covariance matrix �p×p . Let
λ1, . . . , λp be the eigenvalues of � in descending order. We consider the spiked
covariance model as follows.

ASSUMPTION 2.1. λ1 > λ2 > · · · > λm > λm+1 ≥ · · · ≥ λp > 0, where the
nonspiked eigenvalues are bounded, that is, c0 ≤ λj ≤ C0, j > m for constants
c0,C0 > 0 and the spiked eigenvalues are well separated, that is, ∃δ0 > 0 such that
minj≤m(λj − λj+1)/λj ≥ δ0.

The eigenvalues are divided into the spiked ones and bounded nonspiked ones.
We do not need to specify the order of the leading eigenvalues nor require them to
diverge. Thus, our results in Section 3 are applicable to both bounded and diverging
leading eigenvalues. For simplicity, we only consider distinguishable eigenvalues
(multiplicity 1) for the largest m eigenvalues and a fixed number m, independent
of n and p.

The factor model y = Bf + ε with pervasive factors considered in Fan, Liao
and Mincheva (2013) implies a spiked covariance model with λj 
 p in (1.1) and
satisfies the above assumption. For the interplay of the sample size n, dimension p

and the spikes λj ’s, the following relationship is assumed as in Shen et al. (2016).

ASSUMPTION 2.2. Assume p > n. For the spiked part 1 ≤ j ≤ m, cj =
p/(nλj ) is bounded, and for the nonspiked part, (p − m)−1 ∑p

j=m+1 λj = c̄ +
o(n−1/2).

We allow p/n → ∞ in any manner, though λj also needs to grow fast enough to
ensure bounded cj . In particular, cj = o(1) is allowed as in the factor model. We do
not assume the nonspiked eigenvalues are identical, as in most spiked covariance
model literature [e.g., Johnstone and Lu (2009), Paul (2007)].

By spectral decomposition, � = ���′, where the orthonormal matrix � is con-
structed by the eigenvectors of � and � = diag(λ1, . . . , λp). Let Xi = �′Yi . Since
the empirical eigenvalues are invariant and the empirical eigenvectors are equivari-
ant under an orthonormal transformation, we focus the analysis on the transformed
domain of Xi and then translate the results into those of the original data. Note that
var(Xi ) = �. Let Zi = �−1/2Xi be the elementwise standardized random vector.

ASSUMPTION 2.3. {Zi}ni=1 are i.i.d. copies of Z. The standardized random
vector Z = (Z1, . . . ,Zp) is sub-Gaussian with independent entries of mean zero
and variance one. The sub-Gaussian norms of all components are uniformly
bounded: maxj ‖Zj‖ψ2 ≤ C0, where ‖Zj‖ψ2 = supq≥1 q−1/2(E|Zj |q)1/q .

Since Var(Xi ) = diag(λ1, λ2, . . . , λp), the first m population eigenvectors are
simply unit vectors e1, e2, . . . , em with only one nonvanishing element. Denote
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the n by p transformed data matrix by X = (X1,X2, . . . ,Xn)
′. Then the sample

covariance matrix is

�̂p×p = 1

n
X′X = 1

n

n∑
i=1

XiX′
i ,

whose eigenvalues are denoted as λ̂1, λ̂2, . . . , λ̂p (̂λj = 0 for j > n) with corre-
sponding eigenvectors ξ̂1, ξ̂2, . . . , ξ̂p . Note that the empirical eigenvectors of data

Yi’s are ξ̂
(Y )

j = �ξ̂ j .
Let Zj be the j th column of the standardized X. Then each Zj has i.i.d. sub-

Gaussian entries with zero mean and unit variance. Exchanging the roles of rows
and columns, we get the n by n Gram matrix

�̃n×n = 1

n
XX′ = 1

n

p∑
j=1

λj Zj Z′
j ,

with the same nonzero eigenvalues λ̂1, λ̂2, . . . , λ̂n as �̂ and the corresponding
eigenvectors u1,u2, . . . ,un. It is well known that for i = 1,2, . . . , n

(2.1) ξ̂ i = (nλ̂i)
−1/2X′ui and ui = (nλ̂i)

−1/2Xξ̂ i ,

while the other eigenvectors of �̂ constitute a (p − n)-dimensional orthogonal
complement of ξ̂1, . . . , ξ̂n.

By using this simple fact, for the specific case with c0 = C0 = 1 in Assump-
tion 2.1, λj = 1 for j > m in Assumption 2.2, and Gaussian data in Assump-
tion 2.3, Shen et al. (2016) showed that

λ̂j

λj

a.s.→ 1 + cj , 1 ≤ j ≤ m,

and ∣∣〈̂ξ j , ej 〉
∣∣ a.s.→ (1 + cj )

− 1
2 ,

where 〈a,b〉 denotes the inner product of two vectors. However, they fail to estab-
lish any results on convergence rates or asymptotic distributions of the empirical
eigenstructure. This motivates the current paper.

The aim of this paper is to establish the asymptotic normality of the empirical
eigenvalues and eigenvectors under more relaxed conditions. Our results are a nat-
ural extension of Paul (2007) to a more general setting with new insights, where
the asymptotic normality of sample eigenvectors is derived using complicated ran-
dom matrix techniques for Gaussian data under the regime of p/n → γ ∈ [0,1).
In comparison, our proof, based on the relationship (2.1), is much simpler and
insightful for understanding the behavior of high dimensional PCA.

Here are some notation that we will use in the paper. For a general matrix M, we
denote its matrix entrywise max norm as ‖M‖max = maxi,j {|Mi,j |} and define the
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quantities ‖M‖ = λ
1/2
max(M′M), ‖M‖F = (

∑
i,j M2

i,j )
1/2, ‖M‖∞ = maxi

∑
j |Mi,j |

to be its spectral, Frobenius and induced �∞ norms. If M is symmetric, we de-
fine λj (M) to be the j th largest eigenvalue of M and λmax(M), λmin(M) to be
the maximal and minimal eigenvalues, respectively. We denote tr(M) as the trace
of M. For any vector v, its �2 norm is represented by ‖v‖ while �1 norm is written
as ‖v‖1. We use diag(v) to denote the diagonal matrix with the same diagonal en-
tries as v. For two random vectors a, b of the same length, we say a = b + OP (δ)

if ‖a − b‖ = OP (δ) and a = b + oP (δ) if ‖a − b‖ = oP (δ). We denote a d⇒ L for
some distribution L if there exists b ∼ L such that a = b + oP (1). Throughout the
paper, C is a generic constant that may differ from line to line.

3. Asymptotic behavior of empirical eigenstructure.

3.1. Asymptotic normality of empirical eigenvalues. Let us first study the be-
havior of the m leading empirical eigenvalues of �̂. Denote by λj (A) the j th
largest eigenvalue of matrix A and recall that λ̂j = λj (�̂). We have the following
asymptotic normality of λ̂j .

THEOREM 3.1. Under Assumptions 2.1–2.3, {̂λj }mj=1’s have independent lim-
iting distributions. In addition,

(3.1)
√

n

{
λ̂j

λj

− (
1 + c̄cj + OP

(
λ−1

j

√
p/n

))} d⇒ N(0, κj − 1),

where κj is the kurtosis of Xj .

The theorem shows that the bias of λ̂j /λj is c̄cj + OP (λ−1
j

√
p/n). The sec-

ond term is dominated by the first term since p > n and it is of order oP (n−1/2)

if
√

p = o(λj ). The latter assumption is satisfied by the strong factor model in
Fan, Liao and Mincheva (2013) and a part of weak or semistrong factor model
in Onatski (2012). The theorem reveals the bias is controlled by a term of rate
p/(nλj ). To get the asymptotically unbiased estimate, it requires cj = p/(nλj ) →
0 for j ≤ m. This result is more general than that of Shen et al. (2016) and
sheds a similar light to that of Koltchinskii and Lounici (2017, 2014), that is,
‖�̂ − �‖/‖�‖ → 0 almost surely if and only if the effective rank r̄ = tr(�)/λ1
is of order o(n), which is true when c1 = o(1). Our result here holds for each in-
dividual spike. Yata and Aoshima (2012, 2013) employed a similar technical trick
and gave a comprehensive study on the asymptotic consistency and distributions
of the eigenvalues. They got similar results under different conditions from ours.
Our framework is more general here. If cj � 0, bias reduction can also be made;
see Section 4.2, where an estimator for c̄ is proposed. Under the bounded spiked
covariance model considered in Baik, Ben Arous and Péché (2005), Johnstone and
Lu (2009) and Paul (2007), it is assumed λj = c0 = C0, j > m so that c̄ = c0,
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the minimum eigenvalue of the population covariance matrix. Our result is also
consistent with Anderson’s (1963) result that

√
n(̂λj − λj )

d⇒ N
(
0,2λ2

j

)
,

for Gaussian data and fixed p and λj ’s, where the nonspiked part does not exist,
and thus the bias OP (λ−1

j

√
p/n) disappears. The proof is relegated to the Ap-

pendix.

3.2. Behavior of empirical eigenvectors. Let us consider the asymptotic dis-
tribution of the empirical eigenvectors ξ̂ j ’s corresponding to λ̂j , j = 1,2, . . . ,m.
As in Paul (2007), each ξ̂ j is divided into two parts corresponding to the spiked

and nonspiked components, that is, ξ̂ j = (̂ξ
′
jA, ξ̂

′
jB)′ where ξ̂ jA is of length m.

THEOREM 3.2. Under Assumptions 2.1–2.3, we have:

(i) For the spiked part, if m = 1,

(3.2)
2(1 + c̄c1)

c̄c1

√
n

(√
1 + c̄c1ξ̂1A − 1 + OP

(√
p

nλ2
1

))
d⇒ N(0, κ1 − 1),

while if m > 1,

(3.3)
√

n

(
ξ̂ jA

‖ξ̂ jA‖ − ejA + OP

(√
p

nλ2
j

))
d⇒ Nm(0,�j),

for j = 1,2, . . . ,m, with

�j = ∑
k∈[m]\j

a2
jkekAe′

kA,

where [m] = {1, . . . ,m}, ekA is the first m elements of the unit vector ek , and
ajk = limλj ,λk

√
λjλk/(λj − λk), which is assumed to exist.

(ii) For the nonspiked part, if we further assume the data is Gaussian, there
exists p − m dimensional vector h0 ∼ Unif(Bp−m(1)) such that

(3.4)
∥∥∥∥D0

ξ̂ jB

‖ξ̂ jB‖ − h0

∥∥∥∥ = OP

(√
n

p

)
+ oP

(
1√
n

)
,

where D0 = diag(
√

c̄/λm+1, . . . ,
√

c̄/λp) is a diagonal matrix and Unif(Bk(r))

denotes the uniform distribution over the centered sphere of radius r . In addition,
the max norm of ξ̂ jB satisfies

(3.5) ‖ξ̂ jB‖max = OP

(
p/

(
nλ

3/2
j

) +
√

logp/(nλj )
)
.
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(iii) Furthermore, ‖ξ̂ jA‖ = (1 + c̄cj )
−1/2 +OP (λ−1

j

√
p/n+p/(n3/2λj )) and

‖ξ̂ jB‖ = (
c̄cj

1+c̄cj
)1/2 +OP (

√
1/λj +

√
p/(n2λj )). Together with (i), this implies the

inner product between empirical eigenvector and the population one converges to
(1 + c̄cj )

−1/2 in probability and

(3.6) 〈̂ξ j , ej 〉 − 1√
1 + c̄cj

= OP

(
λ−1

j

√
p/n + p/

(
n3/2λj

)) + OP

(
n−1)

I{m>1}.

In the above theory, we assume ajk = limλj ,λk

√
λjλk

λj−λk
exists. This is not restric-

tive if eigenvalues are well separated, that is, minj �=k≤m |λj − λk|/λj ≥ δ0 from
Assumption 2.1. The assumption obviously holds for the pervasive factor model,
in which ajk =

√
λj (�b)λk(�b)/(λk(�b) − λj (�b)).

Theorem 3.2 is an extension of random matrix results into high dimensional
regime. Its proof sheds light on how to use the smaller n × n matrix �̃ as a tool
to understand the behavior of the larger p × p covariance matrix �̂. Specifically,
we start from �̃uj = λ̂j uj or identity (A.3) and then use the simple fact (2.1) to
get a relationship (A.4) of eigenvector ξ̂ j . Then (A.4) is rearranged as (A.6) which
gives a clear separation of the dominating term, that is asymptotically normal, and
the error term. This makes the whole proof much simpler in comparison with Paul
(2007) who showed a similar type of result through a complicated representation
of ξ̂ j and λ̂j under more restricted assumptions. From this simple trick, we can
understand deeply how some important high and low dimensional quantities link
together and differ from each other.

Several remarks are in order. First, since ξ̂
(Y)

j = �ξ̂ j is the j th empirical eigen-
vector based on observed data Y, we have decomposition

(3.7) ξ̂
(Y)

j = �Aξ̂ jA + �B ξ̂ jB,

where � = (�A,�B). Note that �Aξ̂ jA converges to the true eigenvector deflated

by a factor of
√

1 + c̄cj with the convergence rate OP (
√

p/(nλ2
j ) + p/(n3/2λj ) +

n−1/2) while �B ξ̂ jB creates a random bias, which is distributed uniformly on an
ellipse of (p − m) dimension and projected into the p dimensional space spanned
by �B . The two parts intertwine in such a way that correction for the biases of
estimating eigenvectors is almost impossible. More details are discussed in Sec-
tion 4 for the factor models. Second, it is clearly as in the eigenvalue case, the bias
term λ−1

j

√
p/n in (i) of Theorem 3.2 disappears when

√
p = o(λj ). In particu-

lar, for the stronger factor given by (1.1), ξ̂
(Y)

j is a consistent estimator. Third, the
situations m = 1 and m > 1 have slight difference in that multiple spikes could
interact with each other. Especially this is reflected in the convergence of the angle
between the empirical eigenvector and its population counterpart: the angle con-
verges to (1 + c̄cj )

−1/2 with an extra rate OP (1/n) which stems from estimating
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ξ̂jk for j �= k ≤ m [see proof of Theorem 3.2(iii)]. The difference will only be
seen when the spike magnitude is higher than the order

√
pn ∨ pn−1/2. We will

verify this by a simple simulation in Section 5. Finally, it is the first time that the
max norm bound of the nonspiked part is derived. This bound will be useful for
analyzing factor models in Section 4.

Theorem 3.2 again implies the results of Shen et al. (2016). It also generalizes
the asymptotic distribution of nonspiked part from pure orthogonal invariant case
of Paul (2007) to a more general setting. In particular, when p/n → ∞, the asymp-
totic distribution of the normalized nonspiked component is not uniform over a
sphere any more, but over an ellipse. In addition, our result can be compared with
the low dimensional case, where Anderson (1963) showed that

(3.8)
√

n(̂ξ j − ej )
d⇒ Np

(
0,

∑
k∈[m]\j

λjλk

(λj − λk)2 eke′
k

)
,

for fixed p and λj ’s. Under our assumptions, since the spiked eigenvalues may go
to infinity, the constants in the asymptotic covariance matrix are replaced by the
limits ajk’s. Similar to the behavior of eigenvalues, the spiked part ξ̂ jA preserves
the normality property except for a bias factor 1/(1 + c̄cj ) caused by the high
dimensionality. Also, recent work of Koltchinskii and Lounici (2014) provides
general asymptotic results for the empirical eigenvectors from a spectral projector
point of view, but they mainly focus on the regime of p/nλj → 0 or r̄ = o(n). Last
but not least, it has been shown by Johnstone and Lu (2009) that PCA generates
consistent eigenvector estimation if and only if p/n → 0 when the spike sizes
are fixed. This motivates the study of sparse PCA. We take the spike magnitude
into account and provide additional insights by showing that PCA consistently
estimate eigenvalues and eigenvectors if and only if p/(nλj ) → 0. This explains
why Fan, Liao and Mincheva (2013) can consistently estimate the eigenvalues and
eigenvectors while Johnstone and Lu (2009) cannot.

4. Applications to factor models. In this section, we propose a method
named Shrinkage Principal Orthogonal complEment Thresholding (S-POET) for
estimating large covariance matrices induced by the approximate factor models.
The estimator is based on correction of the bias of the empirical eigenvalues as
specified in (3.1). We derive for the first time the bound for the relative estimation
errors of covariance matrices under the spectral norm. The results are then applied
to assessing large portfolio risks and estimating false discovery proportions, where
the conditions in existing literature are significantly relaxed.

4.1. Approximate factor models. Factor models have been widely used in var-
ious disciplines. For example, it is used to extract information from financial mar-
ket for sufficient forecasting of other time series [Fan, Xue and Yao (2015), Stock
and Watson (2002)] and to adjust heterogeneity for biological data aggregation of
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multiple sources [Fan et al. (2016), Leek et al. (2010)]. Consider the approximate
factor model

(4.1) yit = b′
ift + uit ,

where yit is the observed data for the ith (i = 1, . . . , p) individual (e.g., returns
of stocks) or component (e.g., expressions of genes) at time t = 1, . . . , T ; ft is
an m × 1 vector of latent common factors and bi is the factor loadings for the
ith individual or component; uit is the idiosyncratic error, uncorrelated with the
common factors. In genomics application, t can also index repeated experiments.
For simplicity, we assume there is no time dependency.

The factor model can be written into a matrix form as follows:

(4.2) Y = BF′ + U,

where Yp×T , Bp×m, FT ×m, Up×T are respectively the matrix form of the observed
data, the factor loading matrix, the factor matrix, and the error matrix. For identi-
fiability, we impose the condition that cov(ft ) = I. Thus, the covariance matrix is
given by

(4.3) � = BB′ + �u,

where �u is the covariance matrix of the idiosyncratic error at any time t .
Under the assumption that �u = (σu,ij )i,j≤p is sparse with its eigenvalues

bounded away from zero and infinity, the population covariance exhibits a low-
rank plus sparse structure. The sparsity is measured by the following quantity:

mp = max
i≤p

∑
j≤p

|σu,ij |q,

for some q ∈ [0,1] [Bickel and Levina (2008)]. In particular, with q = 0, mp

equals the maximum number of nonzero elements in each row of �u.
In order to estimate the true covariance matrix with the above factor structure,

Fan, Liao and Mincheva (2013) proposed a method called “POET” to recover the
unknown factor matrix as well as the factor loadings. The idea is simply to first
decompose the sample covariance matrix into the spiked and nonspiked part and
estimate them separately. Specifically, define �̂ = T −1YY′ using the observed
data and let {̂λj } and {̂ξ j } be its corresponding eigenvalues and eigenvectors. They
define

(4.4) �̂
� =

m∑
j=1

λ̂j ξ̂ j ξ̂
′
j + �̂

�
u ,

where �̂
�
u is the matrix after applying thresholding method [Bickel and Levina

(2008)] to �̂u = �̂ − ∑m
j=1 λ̂j ξ̂ j ξ̂

′
j .
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They showed that the above estimation procedure is equivalent to the least
square approach that minimizes

(4.5) (B̂, F̂) = arg min
B,F

∥∥Y − BF′∥∥2
F s.t.

1

T
F′F = Im,B′B is diagonal.

The columns of F̂/
√

T are the eigenvectors corresponding to the m largest eigen-
values of the T ×T matrix T −1Y′Y and B̂ = T −1YF̂. After B and F are estimated,
the sample covariance of Û = Y − B̂F̂′ can be formed: �̂u = T −1ÛÛ′. Finally,
thresholding is applied to �̂u to generate �̂

�
u = (σ̂�

u,ij )p×p , where

(4.6) σ̂�
u,ij =

{
σ̂u,ij , i = j,

sij (σ̂u,ij )I
(|σ̂u,ij | ≥ τij

)
, i �= j.

Here, sij (·) is the generalized shrinkage function [Antoniadis and Fan (2001),
Rothman, Levina and Zhu (2009)] and τij = τ(σ̂u,ii σ̂u,jj )

1/2 is the entry-
dependent threshold. The above adaptive threshold corresponds to applying thresh-
olding with parameter τ to the correlation matrix of �̂u. The positive parameter τ

will be determined later.
Fan, Liao and Mincheva (2013) showed that under Assumptions B.1–B.4 listed

in Appendix B in the supplementary material [Wang and Fan (2017)],

(4.7)
∥∥�̂� − �

∥∥

,F = OP

(√
p logp

T
+ mp

(
logp

T
+ 1

p

)(1−q)/2)
,

where ‖A‖
,F = p−1/2‖�−1/2A�−1/2‖F and ‖ · ‖F is the Frobenius norm. Note
that ∥∥�̂� − �

∥∥

,F = p−1/2∥∥�−1/2�̂

�
�−1/2 − Ip

∥∥
F ,

which measures the relative error in Frobenius norm. A more natural metric is
relative error under the spectral norm ‖A‖
 = ‖�−1/2A�−1/2‖, which cannot be
obtained by using the technical device of Fan, Liao and Mincheva (2013). Note
‖A‖
,F ≤ ‖A‖
 . Via our new results in the last section, we will establish a result
under those two relative norms, under weaker conditions than their pervasiveness
assumption. Note that the relative error convergence is particularly meaningful for
spiked covariance matrix, as eigenvalues are in different scales.

4.2. Shrinkage POET under relative spectral norm. The discussion above re-
veals several drawbacks of POET. First, the spike size has to be of order p which
rules out relatively weak factors. Second, it is well known that the empirical eigen-
values are inconsistent if the spiked eigenvalues do not significantly dominate the
nonspiked part. Therefore, a proper correction or shrinkage is needed. See Donoho,
Gavish and Johnstone (2014) for optimal shrinkage of empirical eigenvalues.

Regarding to the first drawback, we relax the assumption ‖p−1B′B − �0‖ =
o(1) in Assumption B.1 to the following weaker assumption.
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ASSUMPTION 4.1. ‖�−1/2
A B′B�

−1/2
A − �0‖ = o(1) for some �0 with eigen-

values bounded from above and below, where �A = diag(λ1, . . . , λm). In addition,
we assume λm → ∞, λ1/λm is bounded from above and below.

This assumption does not require the first m eigenvalues of � to take on any
specific rate. They can still be much smaller than p, although for simplicity we
require them to diverge and share the same diverging rate. Since ‖�u‖ is assumed
to be bounded, the assumption λm → ∞ is also imposed to avoid the issue of
identifiability. When λm does not diverge, more sophisticated condition is needed
for identifiability [Chandrasekaran et al. (2011)].

In order to handle the second drawback, we propose the Shrinkage POET (S-
POET) method. Inspired by (3.1), the shrinkage POET modifies the first part in
POET estimator (4.4) as follows:

(4.8) �̂
S =

m∑
j=1

λ̂S
j ξ̂ j ξ̂

′
j + �̂

�
u ,

where λ̂S
j = max{̂λj − c̄p/n,0}, a simple soft thresholding correction. Obviously

if λ̂j is sufficiently large, λ̂S
j /λj = λ̂j /λj − c̄cj = 1 + oP (1). Since c̄ is unknown,

a natural estimator ĉ is such that the total of the eigenvalues remains unchanged:

tr(�̂) =
m∑

j=1

(̂λj − ĉp/n) + (p − m)ĉ

or ĉ = (tr(�̂) − ∑m
j=1 λ̂j )/(p − m − pm/n). It has been shown by Lemma 7 of

Yata and Aoshima (2012) that

(ĉ − c̄)
p

nλj

= OP

( tr(�̂) − ∑m
j=1 λ̂j

(n − m)λm

− c̄p

nλm

)
= OP

(
n−1)

.

Thus, replacing c̄ by ĉ, we have λ̂S
j /λj − 1 = OP (λ−1

j

√
p/n + n−1/2), that is,

the estimation error in ĉ is negligible. From Lemma 3.1, we can easily obtain the

asymptotic normality,
√

n(̂λS
j /λj − 1)

d⇒ N(0, κj − 1) if
√

p = o(λj ).
To get the convergence of relative errors under the spectral norm, we also need

the following additional assumptions.

ASSUMPTION 4.2. (i) {ut , ft }t≥1 are independently and identically distributed
with E[uit ] = E[uitfjt ] = 0 for all i ≤ p, j ≤ m and t ≤ T .

(ii) There exist positive constants c1 and c2 such that λmin(�u) > c1, ‖�u‖∞ <

c2, and mini,j Var(uitujt ) > c1.
(iii) There exist positive constants r1, r2, b1 and b2 such that for s > 0, i ≤

p, j ≤ m,

P
(|uit | > s

) ≤ exp
(−(s/b1)

r1
)

and P
(|fjt | > s

) ≤ exp
(−(s/b2)

r2
)
.
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(iv) There exists M > 0 such that for all i ≤ p, j ≤ m, |bij | ≤ M
√

λj/p.
(v)

√
p(logT )1/r2 = o(λm).

The first three conditions are common in factor model literature. If we write
B = (̃b1, . . . , b̃m), by Weyl’s inequality we have max1≤j≤m ‖b̃j‖2/λj ≤ 1 +
‖�u‖/λj = 1+o(1). Thus, it is reasonable to assume the magnitude |bij | of factor
loadings is of order

√
λj/p in the fourth condition. The last condition is imposed

to ease technical presentation.
Now we are ready to investigate ‖�̂S − �‖
 . Suppose the SVD decomposition

of �,

� = (
�p×m �p×(p−m)

)(
�m×m

�(p−m)×(p−m)

)(
�′
�′

)
.

Then obviously∥∥�̂S − �
∥∥



≤ ∥∥�− 1
2
(
�̂�̂

S
�̂

′ − BB′)�− 1
2
∥∥ + ∥∥�− 1

2
(
�̂

�
u − �u

)
�− 1

2
∥∥(4.9)

=: �L + �S

and

(4.10) �S ≤ ∥∥�−1∥∥∥∥�̂�
u − �u

∥∥ ≤ C
∥∥�̂�

u − �u

∥∥.
It can be shown

(4.11)
�L =

∥∥∥∥
(

�− 1
2 �′

�− 1
2 �′

)(
�̂�̂

S
�̂

′ − BB′) (
��− 1

2 ��− 1
2

)∥∥∥∥
≤ �L1 + �L2 + 2�L3,

where �L1 = ‖�− 1
2 �′(�̂�̂

S
�̂

′ − BB′)��− 1
2 ‖, �L2 = ‖�− 1

2 �′(�̂�̂
S
�̂

′ −
BB′)��− 1

2 ‖ and �L3 = ‖�− 1
2 �′(�̂�̂

S
�̂

′ − BB′)��− 1
2 ‖. Thus, in order to find

the convergence rate of relative spectral norm, we need to consider the terms
�L1, �L2, �L3 and �S separately. Notice that �L1 measures the relative error
of the estimated spiked eigenvalues, �L2 reflects the goodness of the estimated
eigenvectors, �L3 is the cross term and �S controls the error of estimating the
sparse idiosyncratic covariance matrix. To bound the relative Frobenius norm
‖�̂S − �‖
,F , we define similar quantities �̃L1, �̃L2, �̃L3, �̃S which replace
the spectral norm by Frobenius norm multiplied by p−1/2. Note that (4.9)–(4.11)
also hold for relative Frobenius norm with �̃L1, �̃L2, �̃L3, �̃S . The following
theorem reveals the rate of each term. Its proof will be provided in Appendix C of
the supplementary material [Wang and Fan (2017)].
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THEOREM 4.1. Under Assumptions 2.1, 2.2, 2.3, 4.1 and 4.2, if p logp >

max{T (logT )4/r2, T (log(pT ))2/r1}, we have

�̃L1 ≤ �L1 = OP

(
T −1/2)

,

�L2 + �L3 = OP

(
p

T

)
, �̃L2 + �̃L3 = OP

(√
p

T

)
,

and by the applying adaptive thresholding estimator (4.6) with

τij = CωT (σ̂u,ii σ̂u,jj )
1/2, and ωT =

√
logp/T +

√
1/p,

we have

�̃S ≤ �S = OP

(
mpω

1−q
T

)
.

Combining the three terms, ‖�̂S − �‖
 = OP (p/T + mpω
1−q
T ) and ‖�̂S −

�‖
,F = OP (
√

p/T + mpω
1−q
T ).

The relative error convergence characterizes the accuracy of estimation for the
spiked covariance matrix. Comparing the rate with (4.7), we are able to improve
the relative Frobenius error rate by a logp term, thanks to the new asymptotic re-
sults. Additionally, this is the first time that the relative rate under spectral norm is
derived. As long as λm grows slightly faster than

√
p, we obtain the same conver-

gence rate for relative Frobenius norm as in the literature. Therefore, we conclude
S-POET is effective even under a much weaker signal level.

4.3. Portfolio risk management. The risk of a given portfolio with allocation
weight w is conventionally measured by its variance w′�w, where � is the volatil-
ity (covariance) matrix of the returns of underlying assets. To evaluate portfolio
risks, it is necessary to estimate a large covariance matrix � and factor models are
frequently used to reduce the dimensionality. This was the idea of Fan, Liao and
Shi (2015) in which they used POET estimator to estimate �. However, the basic
method for bounding the risk error |w′�̂w − w′�w| in their paper is∣∣w′�̂w − w′�w

∣∣ ≤ ‖w‖2
1‖�̂ − �‖max.

They assumed that the gross exposure of the portfolio is bounded, that is, ‖w‖1 =
O(1). Technically, when p is large, w′�w can be small. What an investor cares
mostly is the relative risk error RE(w) = |w′�̂w/w′�w − 1|. Often w is a data-
driven investment strategy, which depends on the past data. Regardless of what w
is

max
w

RE(w) = ‖�̂ − �‖�,

which does not converge by Theorem 4.1 for p > T . Thus, the question of interest
is what kind of portfolio w will make the relative error converge. Decompose w
as a linear combination of the eigenvectors of �, namely w = (�,�)η and η =
(η′

A,η′
B)′. We have the following useful result for risk management.
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THEOREM 4.2. Under Assumptions 2.1, 2.2, 4.1, 4.2 and the factor model
(4.1) with Gaussian noises and factors, if there exists C1 > 0 such that ‖ηB‖1 ≤
C1, and assume λj ∝ pα for j = 1, . . . ,m and T ≥ Cpβ for α > 1/2,0 < β <

1, α + β > 1, then the relative risk error is of order

RE(w) =
∣∣∣∣w′�̂Sw

w′�w
− 1

∣∣∣∣ = OP

(
T

−min{ 2(α+β−1)
β

, 1
2 } + mpw

1−q
T

)
,

for α < 1. If α ≥ 1 or there exists C2 > 0 such that ‖ηA‖ ≥ C2, RE(w) =
OP (mpw

1−q
T ).

The condition ‖ηB‖1 ≤ C1 is generally weaker than ‖w‖1 = O(1). It does not
limit the total exposure of investor’s position, but only put constraint on invest-
ment of the nonspiked section. Note that under the conditions of Theorem 4.2,
p/(T λj ) → 0, so S-POET and POET are approximately the same. Hence, the
stated result is valid for POET, also.

4.4. Estimation of false discovery proportion. Another important application
of the factor model is the estimation of false discovery proportion. For simplicity,
we assume Gaussian data Xi ∼ N(μ,�) with an unknown correlation matrix �
and wish to test which coordinates of μ are nonvanishing. Consider the test statistic
Z = √

nX̄ where X̄ is the sample mean of all data. Then Z ∼ N(μ∗,�) with μ∗ =√
nμ. The problem is to test

H0j : μ∗
j = 0 v.s. H1j : μ∗

j �= 0.

Define the number of discoveries R(t) = #{j : Pj ≤ t} and the number of false
discoveries V (t) = #{true null : Pj ≤ t}, where Pj is the p-value associated with
the j th test. Note that R(t) is observable while V (t) needs to be estimated. The
false discovery proportion (FDP) is defined as FDP(t) = V (t)/R(t).

Fan and Han (2013) proposed to employ the factor structure

(4.12) � = BB′ + A,

where B = (
√

λ1ξ1, . . . ,
√

λmξm). λj and ξ j are respectively the j th eigenvalue
and eigenvector of � as before. Then Z can be stochastically decomposed as

Z = μ∗ + BW + K,

where W ∼ N(0, Im) are m common factors and K ∼ N(0,A), independent of W,
are the idiosyncratic errors. For simplicity, assume the maximal number of nonzero
elements of each row of A is bounded. In Fan and Han (2013), they argued that the
asymptotic upper bound

(4.13) FDPA(t) =
p∑

i=1

[
�

(
ai(zt/2 + ηi)

) + �
(
ai(zt/2 − ηi)

)]
/R(t)
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of FDP(t) should be a realistic target to estimate for dependence tests, where zt/2
is the t/2-quantile of the standard normal distribution, ai = (1 − ‖bi‖2)−1/2, ηi =
b′

iW and b′
i is the ith row of B.

Realized factors W and the loading matrix B are typically unknown. If a generic
estimator �̂ is provided, then we are able to estimate B, and thus bi from its empir-
ical eigenvalues and eigenvectors λ̂j ’s and ξ̂ j ’s. W can be estimated by the least-
squares estimate Ŵ = (B̂′B̂)−1B̂′Z. Fan and Han (2013) proposed the following
estimator for FDPA(t):

(4.14) F̂DPU(t) =
p∑

i=1

[
�

(
âi (zt/2 + η̂i)

) + �
(
âi(zt/2 − η̂i)

)]
/R(t),

where âi = (1 −‖b̂i‖2)−1/2 and η̂i = b̂′
iŴ. The following assumptions are in their

paper.

ASSUMPTION 4.3. There exists a constant h > 0 such that (i) R(t)/p > hp−θ

for h > 0 and θ ≥ 0 as p → ∞ and (ii) âi ≤ h, ai ≤ h for all i = 1, . . . , p.

They showed that if �̂ is based on the POET estimator with a spike size λm 
 p,
under Assumptions B.1–B.4, on the event that Assumption 4.3 holds:

(4.15)
∣∣F̂DPU,POET(t) − FDPA(t)

∣∣ = OP

(
pθ

(√
logp

T
+ ‖μ∗‖√

p

))
.

Again we can relax the assumption on the spike magnitude from order p to much
weaker Assumption 4.1. Since � is a correlation matrix, λ1 ≤ tr(�) = p. This,
together with Assumption 4.1, leads us to consider leading eigenvalues of order
pα for 1/2 < α ≤ 1.

Now we apply the proposed S-POET method to obtain �̂
S and use it for FDP

estimation. The following theorem shows the estimation error.

THEOREM 4.3. If Assumptions 2.1, 2.2, 4.1 and 4.2 are applied to Gaussian
independent data Xi ∼ N(μ,�), and λj ∝ pα for j = 1, . . . ,m, T ≥ Cpβ for
1/2 < α ≤ 1,0 < β < 1, α + β > 1, on the event that Assumption 4.3 holds, we
have ∣∣F̂DPU,SPOET(t) − FDPA(t)

∣∣ = OP

(
pθ (∥∥μ∗∥∥p− 1

2 + T
−min{ α+β−1

β
, 1

2 }))
.

Comparing the result with (4.15), this convergence rate attained by S-POET
is more general than the rate achieved before. The only difference is the second
term, which is O(T −1/2) if α + 1

2β ≥ 1 and T −(α+β−1)/β otherwise. So we relax
the condition from α = 1 in Fan and Han (2013) to α ∈ (1/2,1]. This means a
weaker signal than order p is actually allowed to obtain a consistent estimate of
false discovery proportion.
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FIG. 1. Behavior of empirical eigenvalues. The empirical distributions of
√

n/2(̂λj /λj − 1 − cj )

for j = 1,2,3 are compared with their asymptotic distributions N(0,1).

5. Simulations. We conducted simulations to demonstrate the finite sample
behavior of empirical eigenstructure, the performance of S-POET, and validity of
applying it to estimate false discovery proportion.

5.1. Eigenstructure. In this simulation, we set n = 50, p = 500 and � =
diag(50,20,10,1, . . . ,1), which has three spiked eigenvalues (m = 3) λ1 =
50, λ2 = 20, λ3 = 10 and correspondingly c1 = 0.2, c2 = 0.5, c3 = 1. Data are
generated from multivariate Gaussian. The number of simulations is 1000. The
histograms of the standardized empirical eigenvalues

√
n/2(̂λj /λj − 1 − cj ), and

their associated asymptotic distributions (standard normal) are plotted in Figure 1.
The approximations are very good even for this low sample size n = 50.

Figure 2 shows the histograms of
√

n(̂ξ jA/‖ξ̂ jA‖ − ejA) for the first three ele-
ments (the spiked part) of the first three eigenvectors. On the one hand, according
to the asymptotic results, the values in the diagonal position should stochastically
converge to 0 as observed. On the other hand, plots in the off-diagonal positions
should converge in distribution to N(0,1) after standardization, which is indeed
the case. We also report the correlations between the first three elements for the
three eigenvectors based on those 1000 repetitions in Table 1. The correlations are
all quite close to 0, which is consistent with the theory.

For the normalized nonspiked part ξ̂ jB/‖ξ̂ jB‖, it should be distributed uni-
formly over the unit sphere. This can be tested by the results of Cai, Fan and
Jiang (2013). For any n data points X1, . . . ,Xn on a p-dimensional sphere, define
the normalized empirical distribution of angles of each pair of vectors as

μn,p = 1(n
2

) ∑
1≤i<j≤n

δ√
p−2(π/2−�ij ),

where �ij ∈ [0, π] is the angle between vectors Xi and Xj . When the data are
generated uniformly from a sphere, μn,p converges to the standard normal distri-
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FIG. 2. Behavior of empirical eigenvectors. The histogram of the kth element of the j th em-
pirical vector is depicted in the location (k, j) for k, j ≤ 3. Off-diagonal plots of values√

nξ̂jk/‖ξ̂ jA‖/
√

cj ck

(cj −ck)
2 are compared to their asymptotic distributions N(0,1) for k �= j while

diagonal plots of values
√

n(̂ξjj /‖ξ̂ jA‖ − 1) are compared to stochastically 0.

TABLE 1
The correlations between the first three elements for each of the three empirical eigenvectors based

on 1000 repetitions

1st & 2nd elements 1st & 3rd elements 2nd & 3rd elements

1st Eigenvector 0.00156 −0.00192 −0.04112
2nd Eigenvector −0.02318 −0.00403 0.01483
3rd Eigenvector −0.02529 −0.04004 0.12524
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FIG. 3. The empirical distributions of all pairwise angles of the 1000 realized ξ̂ jB/‖ξ̂ jB‖
(j = 1,2,3) compared with their asymptotic distributions N(0,1).

bution with probability 1. Figure 3 shows the empirical distributions of all pairwise
angles of the realized ξ̂ jB/‖ξ̂ jB‖ (j = 1,2,3) in 1000 simulations. Since number

of such pairwise angels is
(1000

2

)
, the empirical distributions and the asymptotic

distributions N(0,1) are almost identical. The normality holds even for a small
subset of the angles.

Lastly, we did simulations to verify the rate difference of 〈̂ξ j , ej 〉 for m = 1 and
m > 1, revealed in Theorem 3.2(iii). We choose n = [10 × 1.2l] for l = 0, . . . ,9,
p = [n3/100], where [·] represents rounding. We set λj = 1 for j ≥ 3 and consider
two situations: (1) λ1 = p,λ2 = 1, (2) λ1 = 2λ2 = p. Under both cases, simula-
tions were carried out 500 times and the corresponding angles of the empirical
eigenvector and its truth were calculated for each simulation. The logarithm of the
median absolute error of 〈̂ξ1, e1〉 − 1/

√
1 + c1 was plotted against log(n). Under

the two situations, the rates of convergence are OP (n−3/2) and OP (n−1) respec-
tively. Thus the slope of the curves should be −3/2 for a single spike and −1 for
two spikes, which is indeed the case as shown in Figure 4.

In short, all the simulation results match well with the theoretical results for the
high dimensional regime.

5.2. Performance of S-POET. We demonstrate the effectiveness of S-POET
in comparison with POET. A similar setting to the last section is used, i.e. m = 3
and c1 = 0.2, c2 = 0.5, c3 = 1. The sample size T ranges from 50 to 150 and p =
[T 3/2]. Note that when T = 150, p ≈ 1800. The spiked eigenvalues are determined
from p/(T λj ) = cj so that λj is of order

√
T , which is much smaller than p. For

each pair of T and p, the following steps are used to generate observed data from
the factor model for 200 times:

(1) Each row of B is simulated from the standard multivariate normal distribu-
tion and the j th column is normalized to have norm λj for j = 1,2,3.

(2) Each row of F is simulated from standard multivariate normal distribution.
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FIG. 4. Difference of convergence rate of 〈̂ξ1, e1〉 − 1/
√

1 + c1 for models with a single spike and
two spikes. The error should be expected to decrease at the rate of n−3/2 and n−1, respectively.

(3) Set �u = diag(σ 2
1 , . . . , σ 2

p) where σi ’s are generated from Gamma(α, β)
with α = β = 100 (mean 1, standard deviation 0.1). The idiosyncratic error U is
simulated from N(0,�u).

(4) Compute the observed data Y = BF′ + U.

Both S-POET and POET are applied to estimate the covariance matrix � =
BB′ + �u. Their mean estimation errors over 200 simulations, measured in rela-
tive spectral norm ‖�̂ −�‖� , relative Frobenius norm ‖�̂ −�‖�,F , spectral norm
‖�̂ −�‖ and max norm ‖�̂ −�‖max, are reported in Figure 5. The errors for sam-
ple covariance matrix are also depicted for comparison. First notice that no matter
in what norm, S-POET uniformly outperforms POET and the sample covariance.
It affirms the claim that shrinkage of spiked eigenvalues is necessary to maintain
good performance when the spikes are not sufficiently large. Since the low rank
part is not shrunk for POET, its error under the spectral norm is comparable and
even slightly larger than that of the sample covariance matrix. The errors under
max norm and relative Frobenius norm as expected decrease as T and p increase.
However, the error under the relative spectral norm does not converge: our theory
shows it should increase in the order p/T = √

T .

5.3. FDP estimation. In this section, we report simulation results on FDP es-
timation by using both POET and S-POET. The data are simulated in a similar
way as in Section 5.2 with p = 1000 and n = 100. The first m = 3 eigenvalues
have spike sizes proportional to p/

√
n which corresponds to α = β = 2/3 in The-

orem 4.3. The true FDP is calculated by using FDP(t) = V (t)/R(t) with t = 0.01.
The approximate FDP, FDPA(t), is calculated as in (4.13) with known B but esti-
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FIG. 5. Estimation errors of covariance matrix under relative spectral, relative Frobenius, spectral
and max norms using S-POET (red), POET (black) and sample covariance (blue).

mated W given by Ŵ = (BB′)−1B′Z. This FDPA(t) based on a known covariance
matrix serves as a benchmark for our estimated covariance matrix to compare with.
We employed POET and S-POET to get F̂DPU,POET(t) and F̂DPU,SPOET(t).

In Figure 6, three scatter plots are drawn to compare FDPA(t), F̂DPU,POET(t)

and F̂DPU,SPOET(t) with the true FDP(t). The points are basically aligned along
the 45 degree line, meaning that all of them are quite close to the true FDP. With
the semistrong signal λ ∝ p/

√
n, although much weaker than order p, POET ac-

complishes the task as well as S-POET. Both estimators perform as well as if we
know the covariance matrix �, the benchmark.
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FIG. 6. Comparison of estimated FDP’s with true values. The left plot assumes knowledge of B,
the middle and right ones are corresponding to POET and S-POET methods, respectively. The results
are aligned along the 45-degree line, indicating the accuracy of the estimated FDP.

6. Conclusions. In this paper, we studied two closely related problems: the
asymptotic behavior of empirical eigenvalues and eigenvectors under a general
regime of bounded p/(nλj ) and the large covariance estimation for factor models
with relaxed signal level of

√
p = o(λj ).

The first study provides new technical tools for the derivation of error bounds
for large covariance estimation under relative Frobenius norm (with better rate) and
relative spectral norm (for the first time). The results motivate the newly proposed
covariance estimator S-POET for the second problem by correcting biases of the
estimated leading eigenvalues. S-POET is demonstrated to have better sampling
properties than POET, and this is convincingly verified in the simulation study. In
addition, we are able to apply S-POET to two important applications, risk man-
agement and false discovery control, and relax the required signal to

√
p. Those

conclusions shed new lights for applications of factor models.
On the other hand, the second problem is a key motivation for us to study the

empirical engen-structure in a more general high dimensional regime. We aim to
understand why PCA works for pervasive factor models but fails classical random
matrix problems, without sparsity assumptions. What are the fundamental limit for
PCA in high dimensions? We clearly showed that for both empirical eigenvalues
and vectors, consistency is granted once p/(nλj ) → 0. Furthermore, our theories
give a fine-grained characterization of the asymptotic behavior under the gener-
alized and unified regime, which includes the situation of bounded eigenvalues,
HDLSS and pervasive factor models, especially for empirical eigenvectors. The
asymptotic rate of convergence is obtained as long as p/(nλj ) is bounded, while
the asymptotic distribution is fully described when

√
p = o(λj ). Some interesting

phenomena, such as interaction between multiple spikes, are also revealed in our
results. Our proofs are novel in that we clearly identify terms that keep the low-
dimensional asymptotic normality and terms that generate the random biases. In
sum, our results serve as a necessary complement of the random matrix literature
when the signal diverges with dimensionality.
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APPENDIX A: PROOFS FOR SECTION 3

A.1. Proof of Theorem 3.1. We first provide three useful lemmas for the
proof. Lemma A.1 provides nonasymptotic upper and lower bound for the eigen-
values of weighted Wishart matrix for sub-Gaussian distributions.

LEMMA A.1. Let A1, . . . ,An’s be n independent p dimensional sub-Gaussian
random vectors with zero mean and identity variance, and the sub-Gaussian
norms bounded by a constant C0. Then for every t ≥ 0, with probability at least
1 − 2 exp(−ct2), one has

w̄ − max
{
δ, δ2} ≤ λp

(
1

n

n∑
i=1

wiAiA′
i

)
≤ λ1

(
1

n

n∑
i=1

wiAiA′
i

)

≤ w̄ + max
{
δ, δ2}

,

where δ = C
√

p/n + t/
√

n for constants C,c > 0, depending on C0. Here, |wi |’s
is bounded for all i and w̄ = n−1 ∑n

i=1 wi .

The above lemma is the extension of the classical Davidson–Szarek bound [The-
orem II.7 of Davidson and Szarek (2001)] to the weighted sample covariance
with sub-Gaussian distribution. It was shown by Vershynin (2010) that the con-
clusion holds with wi = 1 for all i. With similar techniques to those developed in
Vershynin (2010), we can obtain the above lemma for general bounded weights.
The details are omitted.

Now in order to prove the theorem, let us define two quantities and treat them
separately in the following two lemmas. Let

A = n−1
m∑

j=1

λj Zj Z′
j and B = n−1

p∑
j=m+1

λj Zj Z′
j ,

where Zj is columns of X�− 1
2 . Then

(A.1) �̃ = 1

n

p∑
j=1

λj Zj Z′
j = A + B.

LEMMA A.2. Under Assumptions 2.1–2.3, as n → ∞,
√

n
(
λj (A)/λj − 1

) d⇒ N(0, κj − 1) for j = 1, . . . ,m.

In addition, they are asymptotically independent.

LEMMA A.3. Under Assumptions 2.1–2.3, for j = 1, . . . ,m, we have

λk(B)/λj = c̄cj + OP

(
λ−1

j

√
p/n

) + oP

(
cjn

− 1
2
)

for k = 1,2, . . . , n.
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The proofs of the above two lemmas will be given in Appendix A in the supple-
mentary material [Wang and Fan (2017)].

PROOF OF THEOREM 3.1. By Wely’s theorem, λj (A) + λn(B) ≤ λ̂j ≤
λj (A) + λ1(B). Therefore, from Lemma A.3,

λ̂j

λj

= λj (A)

λj

+ c̄cj + OP

(
λ−1

j

√
p

n

)
+ oP

(
cjn

−1/2)
.

By Lemma A.2 and Slutsky’s theorem, we conclude that
√

n(̂λj /λj − (1 + c̄cj +
OP (λ−1

j

√
p/n))) converges in distribution to N(0, κj − 1) and the limiting distri-

butions of the first m eigenvalues are independent. �

A.2. Proofs of Theorem 3.2. The proof of Theorem 3.2 is mathematically
involved. The basic idea for proving part (i) is outlined in Section 2. We relegate
less important technical Lemmas A.4–A.6 to Appendix A in the supplementary
material [Wang and Fan (2017)] in order not to distract the readers. The proof of
part (ii) utilizes the invariance of standard Gaussian distribution under orthogonal
transformations.

PROOF OF THEOREM 3.2. (i) Let us start by proving the asymptotic normal-
ity of ξ̂ jA for the case m > 1. Write

X = (
ZA�

1
2
A,ZB�

1
2
B

) = (
√

λ1Z1, . . . ,
√

λmZm,
√

λm+1Zm+1, . . . ,
√

λpZp),

where each Zj follows a sub-Gaussian distribution with mean 0 and identity vari-
ance In. Then by the eigenvalue relationship of equation (2.1), we have

(A.2) ξ̂ jA = �
1
2
AZ′

Auj√
nλ̂j

and uj = Xξ̂ j√
nλ̂j

= ZA�
1
2
Aξ̂ jA√

nλ̂j

+ ZB�
1
2
B ξ̂ jB√

nλ̂j

.

Recall uj is the eigenvector of the matrix �̃, that is, 1
n

XX′uj = λ̂j uj . Using X =
(ZA�

1
2
A,ZB�

1
2
B), we obtain

(A.3)
(

In − 1

n
ZA

�A

λj

Z′
A

)
uj = Duj − �uj ,

where we denote D = (nλj )
−1ZB�BZ′

B − c̄cj In, � = λ̂j /λj − (1 + c̄cj ). We

then left-multiply equation (A.3) by �
1
2
AZ′

A/
√

nλ̂j and employ relationship (A.2)
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to replace uj by ξ̂ jA and ξ̂ jB as follows:

(A.4)

(
Im − �A

λj

)
ξ̂ jA = �

1
2
A( 1

n
Z′

AZA − Im)�
1
2
A

λj

ξ̂ jA + �
1
2
AZ′

ADZA�
1
2
A

nλ̂j

ξ̂ jA

+ �
1
2
AZ′

ADZB�
1
2
B

nλ̂j

ξ̂ jB − �ξ̂ jA.

Further, define

R = ∑
k∈[m]\j

λj

λj − λk

ekAe′
kA.

Then we have R(I − �A/λj ) = Im − ejAe′
jA. Note that R is only well defined if

m > 1. Therefore, by left multiplying R to equation (A.4),

(A.5)

ξ̂ jA − 〈̂ξ jA, ejA〉ejA = R
(

�A

λj

) 1
2
K

(
�A

λj

) 1
2
ξ̂ jA

+ R
�

1
2
AZ′

ADZB�
1
2
B

nλ̂j

ξ̂ jB − �Rξ̂ jA,

where K = n−1Z′
AZA − In +λj (nλ̂j )

−1Z′
ADZA. Dividing both side by ‖ξ̂ jA‖, we

are able to write

(A.6)
ξ̂ jA

‖ξ̂ jA‖ − ejA = R
(

�A

λj

) 1
2
K

(
�A

λj

) 1
2
ejA + rn,

where

(A.7)

rn =
(〈

ξ̂ jA

‖ξ̂ jA‖ , ejA

〉
− 1

)
ejA + R

(
�A

λj

) 1
2
K

(
�A

λj

) 1
2
(

ξ̂ jA

‖ξ̂ jA‖ − ejA

)

+ R
�

1
2
AZ′

ADZB�
1
2
B

nλ̂j

ξ̂ jB

‖ξ̂ jA‖ − �R
(

ξ̂ jA

‖ξ̂ jA‖ − ejA

)
.

LEMMA A.4. As n → ∞, ‖rn‖ = OP (λ−1
j

√
p/n + 1/n).

By Lemma A.4, rn is a smaller order term. Together with (�A/λj )
1
2 ejA = ejA,

we have

(A.8)
√

n

(
ξ̂ jA

‖ξ̂ jA‖ − ejA + OP

(√
p

nλ2
j

))
= √

nR
(

�A

λj

) 1
2
KejA + oP (1).
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Now let us derive normality of the right hand side of (A.2). According to the defi-
nition of R,

(A.9) R
(

�A

λj

) 1
2 = ∑

k∈[m]\j

√
λjλk

λj − λk

ekAe′
kA → ∑

k∈[m]\j
ajkekAe′

kA.

Let W = √
nKejA = (W1, . . . ,Wm) and W(−j) be the (m − 1)-dimensional vec-

tor without the j th element in W. Since the j th diagonal element of R is zero,

R(�A/λj )
1
2 W depends only on W(−j).

LEMMA A.5. W(−j) + OP (λ−1
j

√
p/n)

d⇒ N(0, Im−1).

Therefore, by Lemma A.5 and Slutsky’s theorem,

√
nR

(
�A

λj

) 1
2
KejA + OP

(√
p

nλ2
j

)
d⇒ Nm

(
0,

∑
k∈[m]\j

a2
jkekAe′

kA

)
.

Together with (A.2), we concludes (3.3) for the case m > 1.
Now let us turn to the case of m = 1. Since R is not defined for m = 1, we need

to find a different derivation. Equivalently, (A.3) can be written as

1

n
Z1Z′

1u1 + 1

nλ1
ZB�BZ′

Bu1 = λ̂1

λ1
u1.

Left-multiplying u′
1 and using relationship (A.2), we obtain easily

ξ̂2
1A = 1 − c̄c1

λ̂1/λ1
− λ1

λ̂1
u′

1Du1 = 1 − c̄c1

λ̂1/λ1
+ OP

(
λ−1

1

√
p/n

)
,

where D is defined as before and ‖D‖ = OP (λ−1
1

√
p/n) according to the proof of

Lemma A.4. Expanding
√

1 − c̄c1/x at the point of (1 + c̄c1), we have

ξ̂1A = 1√
1 + c̄c1

+ c̄c1

2(1 + c̄c1)3/2

(
λ̂1

λ1
− (1 + c̄c1)

)
+ OP

(√
p

nλ2
1

+ c1n
−1

)
.

Note that from Lemmas A.2 and A.3, λ̂1/λ1 − (1 + c̄c1) = (‖Z1‖2/n − 1) +
OP (λ−1

1 (p/n)1/2) + oP (cjn
−1/2). Therefore, due to the fact

√
n(‖Z1‖2/n − 1)

is asymptotically N(0, κ1 − 1), we conclude

2(1 + c̄c1)
3/2

c̄c1

√
n

(
ξ̂1A − 1√

1 + c̄c1
+ OP

(√
p

nλ2
1

))
d⇒ N(0, κ1 − 1).

This completes the first part of the proof.
(ii) We now prove the conclusion for the nonspiked part ξ̂ jB . Recall that Xi

follows N(0,�). Consider XR
i = diag(Im,D0)Xi where as defined in the theorem
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D0 = diag(
√

c̄/λm+1, . . . ,
√

c̄/λp). Here, the superscript R indicates rescaled data
by diag(Im,D0). After rescaling, we have XR

i ∼ N(0,diag(�A, c̄Ip−m)). Corre-
spondingly, the n × p data matrix XR = X diag(Im,D0) = (XA,XBD0) where

XA = ZA�
1
2
A and XB = ZB�

1
2
B as the notation before. Assume ξ̂

R

j and uR
j are

eigenvectors given by �̂
R and �̃

R of the rescaled data XR and ξ̂
R

j = (̂ξ
R

jA, ξ̂
R

jB)′.
It has been proved by Paul (2007) that h0 := ξ̂

R

jB/‖ξ̂R

jB‖ is distributed uniformly

over the unit sphere and is independent of ‖ξ̂R

jB‖ due to the orthogonal invariance

of the nonspiked part of ξ̂
R

jB . Hence, it only remains to link ξ̂ jB/‖ξ̂ jB‖ with h0.

Note that �̃ = n−1XX′ and �̃
R = n−1XRXR ′

, so

∥∥�̃ − �̃
R∥∥ =

∥∥∥∥1

n
XB

(
I − D2

0
)
X′

B

∥∥∥∥ =
∥∥∥∥∥1

n

p∑
j=m+1

(λj − c̄)Zj Zj

∥∥∥∥∥,
where the last term is of order OP (

√
p/n) by Lemma A.1. Thus, by the sin θ the-

orem of Davis and Kahan (1970), ‖uj − uR
j ‖ = OP (λ−1

j

√
p/n). Next, we convert

from uj to ξ̂ jB using the basic relationship (2.1). We have

∥∥∥∥D0
ξ̂ jB

‖ξ̂ jB‖ − ξ̂
R

jB

‖ξ̂R

jB‖

∥∥∥∥
=

∥∥∥∥ D0X′
Buj√

nλ̂j‖ξ̂ jB‖
− D0XB

′uR
j√

nλ̂R
j ‖ξ̂R

jB‖

∥∥∥∥
≤

∥∥∥∥D0X′
Buj√

nλj

∥∥∥∥∣∣∣∣
√√√√ λj

λ̂j‖ξ̂ jB‖2
−

√√√√ λj

λ̂R
j ‖ξ̂R

jB‖2

∣∣∣∣ + ∥∥∥∥ D0X′
B√

nλ̂R
j ‖ξ̂R

jB‖

∥∥∥∥∥∥uj − uR
j

∥∥
=: I + II.

First, it is not hard to see II = OP (λ−1
j

√
p/n) since ‖uj −uR

j ‖ = OP (λ−1
j

√
p/n),

‖X′
B/

√
nλj‖ = OP (

√
cj ), λj /̂λ

R
j = OP (1) and 1/‖ξ̂R

jB‖ = OP (1/
√

cj ). The last
result is due to the following lemma.

LEMMA A.6. ‖ξ̂ jA‖ = (1 + c̄cj )
−1/2 + OP (λ−1

j

√
p/n + cjn

−1/2) and

‖ξ̂ jB‖ = (
c̄cj

1+c̄cj
)1/2 + OP (

√
1/λj + √

cjn
−1/2).

We claim I = OP (
√

n/p)+oP (n−1/2). Actually from the proof of Lemma A.6,
we have

λ̂j‖ξ̂ jB‖2/λj = c̄cj + OP

(
λ−1

j

√
p/n

) + oP

(
cjn

−1/2)
.
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Then some elementary calculation gives the rate of I . Therefore, ‖D0ξ̂ jB/‖ξ̂ jB‖−
h0‖ = OP (

√
n/p) + oP (n−1/2). The conclusion (3.4) follows.

To prove the max norm bound (3.5) of ‖ξ̂ jB‖max, we first show ‖h0‖max =
OP (

√
logp/p). Recall that h0 is uniformly distributed on the unit sphere of di-

mension p − m. This follows easily from its normal representation. Let G to be

(p − m)-dimensional multivariate standard normal distributed, then h0
d= G/‖G‖.

It then follows

‖h0‖max = max
i≤p−m

|Gi |/‖G‖ = OP (
√

logp/p).

From the derivation above,

‖ξ̂ jB‖max ≤
√

λ̂R
j /̂λj

∥∥D−1
0

∥∥∥∥ξ̂R

jB

∥∥(
II + ‖h0‖max

)
,

which gives OP (
√

cj (
√

p/(nλ2
j ) + √

logp/p)) = OP (p/(nλ
3/2
j ) +√

logp/(nλj )), given the fact that ‖ξ̂R

jB‖ = OP (
√

cj ) by Lemma A.6. Thus, we
are done with the second part of the proof.

(iii) The proof for the convergence of ‖ξ̂ jA‖ and ‖ξ̂ jB‖ has been given in
Lemma A.6. If m = 1, the result for ‖ξ̂ jA‖ directly gives (3.6) with the same
rate. For m > 1, from Lemma A.6 we have

‖ξ̂ jA‖2 = (1 + c̄cj )
−1 + OP

(√
p/

(
nλ2

j

) + cjn
−1/2

)
.

On the other hand, from Theorem 3.2(i), ξ̂2
jk = OP (p/(nλ2

j )+1/n) for k �= j ≤ m.

So ξ̂2
j1 = (1+ c̄cj )

−1 +OP (
√

p/(nλ2
j )+cjn

−1/2 +1/n), which implies (3.6). �
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SUPPLEMENTARY MATERIAL
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of assumptions and theoretical proofs for Section 4.
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