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In regression analysis with repeated measurements, such as longitudinal
data and panel data, structured covariance matrices characterized by a small
number of parameters have been widely used and play an important role in
parameter estimation and statistical inference. To assess the adequacy of a
specified covariance structure, one often adopts the classical likelihood-ratio
test when the dimension of the repeated measurements (p) is smaller than the
sample size (n). However, this assessment becomes quite challenging when
p is bigger than n, since the classical likelihood-ratio test is no longer ap-
plicable. This paper proposes an adjusted goodness-of-fit test to examine a
broad range of covariance structures under the scenario of “large p, small
n.” Analytical examples are presented to illustrate the effectiveness of the
adjustment. In addition, large sample properties of the proposed test are es-
tablished. Moreover, simulation studies and a real data example are provided
to demonstrate the finite sample performance and the practical utility of the
test.

1. Introduction. In the broad sense of repeated measures such as panel data
and longitudinal data, the covariance matrix of repeated measurements plays an
important role for statistical inference [see Davis (2002), Diggle et al. (2002)
and Frees (2004)]. Since technological advances have led to increasingly high-
dimensional data sets in various fields such as biological science, engineering,
medicine and social science, among others, there is a practical need to model the
dependence among repeated measurements to improve the estimation efficiency
and prediction accuracy. In general, there are two types of covariance matrix to
consider; one is structured covariance and the other is unstructured covariance
(i.e., no assumption, except for symmetry, is made on the pattern of covariance).
To estimate a high-dimensional unstructured covariance matrix, one can employ
the shrinking, factoring, banding, tapering or thresholding approach to obtain a
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desirable sparse estimator. In contrast to the unstructured setting, researchers have
considered several structured covariance matrices, such as autoregressive (AR),
moving average (MA) and compound symmetry (CS) [e.g., see Zhao et al. (2007),
Pourahmadi (2013), and Wiesel, Bibi and Globerson (2013)]. The number of un-
known parameters in a structured covariance matrix can be significantly reduced
so that computation is much easier than using regularization methods; this is par-
ticularly true for data with a small sample size and a large number of variables.
However, an incorrectly specified covariance structure could lead to inaccurate
predictions and misleading inferences. This motivates us to develop a test to as-
sess the appropriateness of a structured covariance specification.

In this paper, our focus is on the development of a testing procedure for a va-
riety of covariance structures in the context of repeated measurements with high-
dimensional data. Let (Yi ,Xi), i = 1, . . . , n, be independent and identically dis-
tributed (IID) samples, where Yi = (Yi1, . . . , Yip)� is the response vector of the
p-dimensional repeated measurements and Xi = (Xi1, . . . ,Xid) is the p × d ma-
trix of predictors collected from the ith sample. We then consider the following
repeated-measures model:

(1.1) Yi = μ + Xiβ + εi , i = 1, . . . , n,

where μ is a p-dimensional intercept, β = (β1, . . . , βd)� is a d-dimensional
(d < ∞) vector of unknown regression coefficients and the errors εi are IID nor-
mally distributed random vectors with mean E(εi ) = 0 and covariance Var(εi ) =
� = σ 2R, where R is the p × p correlation matrix and σ 2 is the scale parame-
ter. Note that high-dimensionality in this paper refers to the dimension of repeated
measurements and not to the dimension of β . Furthermore, Xi and εi are assumed
to be independent. To examine the covariance structure of �, we test the following
hypotheses:

(1.2) H0 : � ∈ C vs. Ha : � /∈ C ,

where C = {�(θ) = σ 2R(θ) : θ ∈ �,σ 2 > 0} is a family of covariance matri-
ces parameterized by the parameters σ 2 and θ = (θ1, . . . , θq)

� ∈ � ⊂ R
q for

q < ∞. When q = 1, we denote θ = θ1. For example, the AR(1) structure,
�(θ) = σ 2R(θ) = σ 2(ρ|i−j |)pi,j=1, is parameterized by σ 2 and the autocorrela-
tion coefficient θ = ρ. With a slight abuse of notation, the sphericity covariance
structure is denoted as �(θ) = θIp throughout the paper where Ip is the p × p

identity matrix. In addition, the parametric structure �(θ) is parameterized in a
meaningful way so that �(θ1) = �(θ2) if and only if θ1 = θ2, that is, θ is iden-
tifiable. The null hypothesis � ∈ C represents that there exists some unique true
θ0 ∈ � for which � = �(θ0).

When the dimension p is less than the sample size n and the likelihood is avail-
able, the covariance structure in model (1.1) can be assessed via the likelihood ratio
test by comparing the likelihood of the parameterized covariance with that of the
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unstructured covariance. Unfortunately, the likelihood ratio test is invalid when the
dimension p is larger than the sample size n or p/n → 1 [see, e.g., Cui, Zheng and
Li (2013)]. To overcome this problem, several methods have been proposed in the
nonregression setting, and they can mainly be classified into two types of methods.
One is the so-called adjusted likelihood ratio test based on the large dimensional
random matrix theory [see, e.g., Bai et al. (2009) and Li and Qin (2014)], while
the other type is built upon a consistent estimator of the distance (in Frobenius or
maximum norm) between the unstructured and parameterized covariances. Using
the second type of method, Ledoit and Wolf (2002) modified two tests proposed by
John (1971, 1972) to allow the data dimension p to increase in a polynomial order
of the sample size n for normally distributed data. Later, Chen, Zhang and Zhong
(2010) and Zou et al. (2014) proposed more robust methods that preclude the nor-
mality assumption and allow the data dimension p to be much larger than the
sample size n. However, the extant methods mainly focused on testing relatively
simple covariance structures, such as sphericity, under nonregression settings.

Despite this encouraging progress, it remains unclear how to test general co-
variance structures for high-dimensional data, since existing literature considers
different tests for different covariance structures. After studying this issue thor-
oughly, we have found that the major challenge pertains to the effect induced by
the estimation of the parameters β and θ . It is worth noting that the estimators of β
and θ will usually not affect the asymptotic distribution of the covariance test in the
fixed dimensional case. However, a great challenge arises in high-dimensional data
due to the accumulation of errors from estimating parameters, which can impair
the classical approach for obtaining the large sample properties of the covariance
test. For example, Baltagi, Kao and Peng (2015) found that the estimation of fixed
effect parameters results in bias for testing sphericity proposed by John (1971).
Recently, Zou et al. (2014) showed that the estimation of the location parame-
ter can affect the sign-based test for sphericity. Because they mainly focused on
testing sphericity, the impact from estimating θ on testing the general covariance
structures has not been well studied yet. To address this major challenge, we de-
velop a unified approach to analyze and accommodate this impact on test statistics.
Accordingly, we find that, depending on the type of covariance structure, the esti-
mator of the variance component θ can result in a significant leading order effect
on the asymptotic distribution of test statistics, whereas the estimation error of β̂
does not have such a leading order effect, under some mild assumptions.

The aim of this paper is to propose an adjusted goodness-of-fit test (namely
the adjusted test hereafter) for assessing general covariance structures with high-
dimensional repeated measurements. The proposed method analytically mitigates
the detrimental influence of the plug-in estimator of the variance component θ

on the large sample properties of the test statistic. More importantly, the pro-
posed method relaxes some restrictive assumptions on the underlying covariance
structures that have previously limited the scope of application. For example, our
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method does not assume that tr(�4) = o{tr2(�2)} or � is sparse, which are ex-
tensively used in the existing literature [see, e.g., Chen, Zhang and Zhong (2010);
Li and Chen (2012); Cai, Liu and Xia (2013)]. Although these assumptions ap-
pear reasonable in many applications such as the sphericity test, they may not be
satisfied by some practically important covariance structures such as compound
symmetry, that is, � = Ip + θ(11� − Ip) with 1 = (1, . . . ,1)� ∈ R

p being a p-
element vector of ones. Consequently, our method relaxes these assumptions and
can be applied to a wide range of covariance structures, including sphericity, auto-
regression, moving average, compound symmetry and so on. Furthermore, the pro-
posed method generalizes the high-dimensional covariance testing procedure to the
regression model setting, which is of great importance in many practical applica-
tions.

The rest of the paper is organized as follows. Section 2 introduces two tests, the
goodness-of-fit test T̂n and an adjusted test, with two numerical examples. Then
the main theoretical properties related to the two tests are presented in Section 3.
Extensive simulation studies are reported in Section 4 and a real data example
is illustrated in Section 5. The article concludes with a short discussion. All the
technical details and additional simulation results are relegated to an associated
supplemental material [Zhong et al. (2016)].

2. Test statistics. Let δ(θ) = tr{(� − �(θ))2} be the Frobenius distance be-
tween � and �(θ) for some θ . Let θ0 be the minimizer of δ(θ) for θ ∈ �. In other
words, θ0 = arg minθ∈� δ(θ) where � is the region of θ such that �(θ) > 0. Under
the null hypothesis of (1.2), � belongs to the family of C . Thus, θ0 is the unique
true value of θ such that � = �(θ0). In contrast, under the alternative hypothesis,
� does not belong to the family of �(θ). In this case, θ0 is the value of θ ∈ �

that minimizes the Frobenius distance between � and the parametric family C .
Accordingly, the hypotheses (1.2) are equivalent to

(2.1) H0 : δ(θ0) = 0 vs. Ha : δ(θ0) > 0.

For the ease of presentation, we assume μ = 0, E(Xi ) = 0 and Var(Xij ) = �Xj

for j = 1, . . . , d in model (1.1). The general case with μ �= 0 and E(Xi ) �= 0 will
be discussed at the end of the paper. When the parameters β and θ0 are known, we
follow the spirit of Chen, Zhang and Zhong (2010) to obtain an unbiased estimator
of δ(θ0), which is

Tn(θ0,β) = 1

C2
n

∑
i<j

{
ε�

i (β)εj (β)
}2 − 2

n

n∑
i=1

ε�
i (β)�(θ0)εi (β) + tr

{
�(θ0)

2}
,

where εi (β) = Yi − Xiβ and Ck
n = n!/{(n − k)!k!} (k ≤ n) is the binomial co-

efficient. We denote Tn(θ0,β) as Tn. In practice, however, β and θ0 are often
unknown. We replace them by their corresponding consistent estimators β̂ and θ̂0
defined below, and this yields an estimator of δ(θ0), which we name T̂n. For the
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sake of convenience, we denote εi (β) and εi (β̂) as εi and ε̂i , respectively, in the
rest of paper. The test statistic Tn can also be used to test the correlation matrix R
by replacing its εi and �(θ0) with σ−1εi and R(θ0), respectively. These replace-
ments lead to a test statistic that is a scalar transformation of Tn (i.e., Tn/σ

4). It is
worth noting that our proposed tests are based on the standardized test statistics.
Accordingly, the standardized versions of Tn and Tn/σ

4 are exactly the same, and
do not depend on σ 2. Consequently, Tn is applicable for testing correlation struc-
tures. Similar explanations are applicable to other test statistics presented later.
Hereafter, without loss of generality, assume that σ 2 is known.

To obtain an unbiased and consistent estimator of β , we adopt the ordinary
least squares method, which yields β̂ = {∑n

i=1 X�
i Xi}−1 ∑n

i=1 X�
i Yi . For a given

β̂ , θ0 is subsequently estimated by minimizing the following least squares distance
between �̂

β̂
and �(θ) [Browne (1974) and Bentler and Bonett (1980)]:

(2.2) θ̂0 = θ̂0(β̂) = arg min
θ∈�

tr
{(

�̂
β̂

− �(θ)
)2}

,

where �̂
β̂

= n−1 ∑n
i=1 ε̂i ε̂

�
i . Then θ̂0 is a consistent estimator of θ0, and a

goodness-of-fit test for testing (1.2) takes the form T̂n := Tn(θ̂0, β̂). However, as
we will illustrate below and again in Section 3.1, the asymptotic distribution of T̂n

can be substantially affected by the underlying structure of �(θ0), which causes a
deficiency in this test.

We first define some notation before introducing the adjusted test statistic. Let
θ0j be the j th (j = 1, . . . , q) component of the q-dimensional vector θ0. For
u = 0,1,2, define Bj,u = (∂�(θ0)/∂θ0j )�

u and let Vu = (vij ) be a q × q ma-
trix whose (i, j)th component is vij = tr(Bi,uBj,u). In addition, let �0 = V−1

0 =
(wij (θ0)) be the inverse of the matrix V0, which can be estimated consistently.
Note that q is the dimension of the parameters in θ0, and hence V0 is a fixed
dimensional matrix. Let ei,k = ε�

i Bk,0εi and ei = (ei,1, . . . , ei,q)
� be a q-dim

vector. Note that ei,k is a random variable associated with the estimating equa-
tion for estimating θ0 in (2.2). Moreover, define Qk(εi ) = ei,k − tr(Bk,0�) as the
centralized ei,k and Q(εi ) = {Q1(εi ), . . . ,Qq(εi )}�. The corresponding estimated
version will be denoted with hats. For example, êi,k = ε̂�

i B̂k,0ε̂i is the estimated
version of ei,k , where B̂k,0 = ∂�(θ̂0)/∂θ0k , and ŵij = wij (θ̂0) is the estimate of
wij = wij (θ0). We then propose the following adjusted test statistic:

(2.3) 	n = T̂n − Ĵn3,

where Ĵn3 = n−1{(C2
n)−1 ∑n

i<j ê�
i �̂0êj − n−1 ∑n

i=1 ê�
i �̂0êi}. This adjustment

term is associated with the bias due to the Taylor series expansion of T̂n at θ0,
and more specific reasons for the adjustment are given in the rest of this section
and Section 3.1.
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FIG. 1. Histograms of the standardized T̂n (left panel) and the standardized 	n (right panel) for
testing the sphericity under H0. The curves in both panels are the density of the standard normal
distribution.

Two examples are given below to illustrate the difference between the test statis-
tic T̂n and its adjusted version 	n. For the sake of simplicity, we sometimes use T̂n

and 	n to represent the standardized version of these tests, such as in numerical
studies.

EXAMPLE 2.1 (Sphericity). Consider testing H0 : � ∈ CSP vs. Ha : � /∈ CSP

where CSP is the sphericity family defined by CSP = {θ > 0 : �(θ) = θIp}. In this
case, the adjustment term is given by

Ĵn3 = (np)−1

{
1

C2
n

n∑
i<j

ε̂�
i ε̂i ε̂

�
j ε̂j − 1

n

n∑
i=1

ε̂�
i ε̂i ε̂

�
i ε̂i

}
.

Figure 1 displays the histograms of the standardized test statistics T̂n and 	n in
1000 realizations under the null hypothesis H0 by using the simulation setting
in Example 4.1 of Section 4 with p = 360 and n = 60. It is worth noting that
both tests are standardized by the mean and standard error of Tn under H0. The
result shows that T̂n and 	n are very similar, and the adjustment term Ĵn3 has little
effect on T̂n. In addition, the standard normal curve (the solid curve) matches both
histograms well.

EXAMPLE 2.2 (Compound symmetry). Consider testing H0 : � ∈ CCS versus
Ha : � /∈ CCS where CCS is the collection of compound symmetry matrices defined
by CCS = {�(θ) : �(θ) = Ip + θ(11� − Ip) with θ ∈ (0,1)}. After some algebraic
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FIG. 2. Histograms of the standardized T̂n (left panel) and the standardized 	n (right panel) for
testing the compound symmetry under H0. The curves in both panels are the density of the standard
normal distribution.

simplification, we obtain that

Ĵn3 = {
np(p − 1)

}−1

{
1

C2
n

n∑
i<j

êi,1êj,1 − 1

n

n∑
i=1

ê2
i,1

}
,

where êi,1 = ε̂�
i (11� − Ip)ε̂i . Figure 2 depicts the histograms of the standardized

test statistics T̂n and 	n in 1000 realizations under the null hypothesis H0 using the
simulation setting in Example 4.4 of Section 4 with p = 360 and n = 60. Clearly,
their distributions look quite different, and from these figures we obtain three im-
portant observations. (i) The standardized T̂n has a larger dispersion than the stan-
dard normal. This suggests that the variance of Tn underestimates the variance of
T̂n. (ii) The center of the standardized T̂n shifted from 0 to a negative number. This
implies that the asymptotic mean of T̂n is not 0 under the null hypothesis. (iii) The
standard normal curve matches the histogram of 	n very well. These observations
imply that the adjustment term Ĵn3 plays a critical role in making T̂n perform prop-
erly, which cannot be ignored. A detailed theoretical explanation for the use of this
adjustment Ĵn3 is given in Section 3.1.

3. Main results. In this section, we present theoretical properties of the test
statistics, Tn, T̂n and 	n, introduced in Section 2.

3.1. Moments of Tn and T̂n. Suppose that β and θ0 are known a priori. The
following theorem presents the mean and variance of the test statistic Tn, which is
the estimator of δ(θ0).
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THEOREM 1. The mean and variance of Tn are, respectively, E(Tn) = δ(θ0)

and

Var(Tn) = 4(n − 2)
(
C2

n

)−1 tr
[{

�
(
� − �(θ0)

)}2]
+ 2

(
C2

n

)−1(
tr2(

�2) + tr
(
�4) + 2 tr

[{
�

(
� − �(θ0)

)}2])
.

In practice, β and θ0 in Tn are often unknown. Hence, we need to employ the
estimator T̂n to assess the goodness-of-fit. To understand the asymptotic behavior
of T̂n, we present the following two theorems in this subsection. Throughout the
paper, we assume p → ∞ as n → ∞ for asymptotic analysis. We do not require
explicit conditions on the data dimension p and sample size n. As long as the
conditions and assumptions given in the paper are satisfied, the proposed method
can be applied regardless of the relationship between p and n.

Let rn = max1≤j≤d tr(�2
Xj

)/ tr2(�Xj
), an = n−3/2 tr(�2)r

1/2
n and bn = n−1/2 ×

tr1/2[{�(� − �(θ0))}2]. Then the following theorem provides an asymptotic con-
nection between T̂n = Tn(θ̂0, β̂) and Tn = Tn(θ0,β).

THEOREM 2. Under conditions (C1) in Appendix, if rn → 0, then we have

(3.1) T̂n = {
Tn(θ0,β) − u�(θ0)�0u(θ0)

}{
1 + op(1)

} + Op(an) + op(bn),

where u(θ0) = (tr[B1,0{Sn − �(θ0)}], . . . , tr[Bq,0{Sn − �(θ0)}])� ∈ R
q and Sn =

n−1 ∑n
i=1 εiε

�
i .

REMARK 1. Theorem 2 indicates that the asymptotic behavior of T̂n is not
only determined by Tn but also affected by the other three terms on the right-hand
side of (3.1). The second term is induced by the estimator θ̂0, while the third term
Op(an) and the fourth term op(bn) are due to the estimation of β . By Theorem 1,
b2
n is no greater than Var(Tn). Hence, the order of the fourth term in (3.1) is smaller

than that of Tn. In fact, bn ≡ 0 under H0. In addition, the third term in (3.1) can be
ignored if the order of an is smaller than those of the first two terms in (3.1). This
is a mild condition, which will be discussed before Theorem 5. Consequently, we
ignore the last two terms in (3.1) in the evaluation of the asymptotic behavior of
T̂n and 	n.

REMARK 2. Note that the assumption rn → 0 in Theorem 2 does not hold
when p is a fixed number. However, in the case of fixed p, an is of order n−3/2

and bn is of order n−1/2 under the alternative H1 with � �= �(θ0). Note that bn

is 0 under H0. Therefore, the estimation error due to estimating β can be ignored
when p is fixed.

To explore the asymptotic properties of T̂n, we define

(3.2) Jn(θ0,β) := Tn(θ0,β) − u�(θ0)�0u(θ0) − δ(θ0),
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where δ(θ0) = tr{(� −�(θ0))
2}, as previously defined in Section 2. Based on Re-

mark 1, we have Jn(θ0,β) = T̂n − δ(θ0) asymptotically. As a result, studying the
asymptotic behavior of T̂n is equivalent to studying that of Jn(θ0,β). For conve-
nience, hereafter, we sometimes denote Jn(θ0,β) by Jn. After reformulation, Jn

can be decomposed as a sum of three terms, namely, Jn = Jn1 + Jn2 + Jn3, where

Jn1 = (
C2

n

)−1
n∑

i<j

{(
ε�

i εj

)2 − ε�
i �εi − ε�

j �εj + tr
(
�2) − Q�(εi )�0Q(εj )

}
,

Jn2 = 2

n

n∑
i=1

(
ε�

i

{
� − �(θ0)

}
εi − tr

[
�

{
� − �(θ0)

}])
and

Jn3 = n−1

{(
C2

n

)−1
n∑

i<j

e�
i �0ej − n−1

n∑
i=1

e�
i �0ei

}
.

The term Jn3 has a nonzero mean and is induced from the second term of (3.2). In
addition, the terms Jn1 and Jn2 come from a recombination of the three terms of
(3.2) after removing Jn3. It can be checked that Jn1 is a degenerate U-statistic of
order 2, Jn2 is a U-statistic of order 1, and they are uncorrelated with means equal
to zero. These facts allow us to effectively study the asymptotic behavior of the
statistic Jn − Jn3 = Jn1 + Jn2, which is associated with the test statistic 	n.

To evaluate the mean and variance of Jn, we define the following notation:

ξ2
1 = tr2(

�2) + tr
(
�4) + 2 tr

{
(�0V1)

2} − 4 tr(�0V2),

ξ2
3 = tr

{
(�0V1)

2} + 4 tr
(
W2

B

) + 2
q∑

k,l,s,t

wklwst tr(Bk,1Bt,1Bl,1Bs,1),

ξ2
2 = tr

[{
�

(
� − �(θ0)

)}2]
, ξ13 = tr(�0V2) − tr2{

(�0V1)
2}

,

ξ23 = tr
{(

� − �(θ0)
)
�WB

}
, where WB =

q∑
k,l=1

wklBk,1Bl,1.

The following theorem presents the mean and variance of Jn.

THEOREM 3. Under model (1.1), E(Jn) = E(Jn3) = −2 tr(WB)/n and
Var(Jn) = Vn1 + Vn2 + Vn3 + Cn13 + Cn23, where Vn1 := Var(Jn1) = 2ξ2

1 /C2
n ,

Vn2 := Var(Jn2) = 8ξ2
2 /n, Vn3 := Var(Jn3) = 8ξ2

3 /n3, Cn13 := 2 Cov(Jn1, Jn3) =
8ξ13/{nC2

n} and Cn23 := 2 Cov(Jn2, Jn3) = −32ξ23/n
2.

The above theorem shows that the mean of Jn is a negative number. Thus, the
test statistic T̂n has a smaller mean than the adjusted test 	n, which explains the
location shift in Figure 2. To gain more insight about Theorem 3, we consider the
following several analytical examples for five commonly used covariance struc-
tures C , which include the sphericity family (SP), CSP defined in Example 2.1;
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compound symmetry family (CS), CCS defined in Example 2.2; polynomial decay
family (PN), CPN, defined in Example 3.4; autoregressive with order 1 [AR(1)]
defined by

CAR(1) = {
σ 2R(θ) = σ 2(

Rij (θ)
)
p×p : Rij (θ) = θ |i−j | and θ ∈ (0,1)

};
and moving average model with order q [MA(q)] defined by

CMA(q) =
{
σ 2R(θ) = σ 2(

Rij (θ)
) : Rij (θ) = γ (h)

γ (0)
if |i − j | = h ≤ q

and Rij (θ) = 0 if |i − j | > q

}
,

where γ (h) = ∑q−h
i=0 θiθi+h with θ0 = 1 and θ = (θ1, . . . , θq)

�. In particular,
CMA(1) is

CMA(1) =
{
σ 2R(θ) = σ 2(

Rij (θ)
) : Rii(θ) = 1,Rij (θ) = θ

1 + θ2 if |i − j | = 1

and Rij (θ) = 0 if |i − j | > 1
}
.

Note that, under H0, Jn2 = 0, and hence Vn2 = Cn23 = 0. Then by Theorem 3,
we have Var(Jn) = Vn1 +Vn3 +Cn13. Let a ∼ b denote that quantities a and b have
the same order such that a/b is bounded below and above by some finite positive
constants. We next present four examples to illustrate the asymptotic orders of
Jn, Jn1 and Jn3.

EXAMPLE 3.1 (Sphericity). Consider � ∈ CSP. Then � = �(θ0) = θ0Ip . It
can be checked that Vn1 ∼ p2/n2, Vn3 ∼ 1/n3 and Cn13 ∼ 1/n3. Therefore, Vn1 �
Vn3, which leads to

Var(Jn) = Vn1
{
1 + o(1)

} = 1

C2
n

{
2 tr2(

�2) + 2 tr
(
�4)}{

1 + o(1)
}
.

EXAMPLE 3.2 (Autoregressive and moving average). For � ∈ CAR(1) or � ∈
CMA(q), we can show that Vn1 ∼ p2/n2, Vn3 ∼ 1/n3 and Cn13 ∼ 1/n3. It follows
that Vn1 � Vn3. This yields

Var(Jn) = Vn1
{
1 + o(1)

} = 1

C2
n

{
2 tr2(

�2) + 2 tr
(
�4)}{

1 + o(1)
}
.

EXAMPLE 3.3 (Compound symmetry). For � ∈ CCS, � = �(θ0) = Ip +
θ0(11� − Ip) with θ0 ∈ (0,1). It can be shown that, up to a factor of {1 + o(1)},

Vn1 = 1

C2
n

{
2 tr2(

�2) + 2 tr
(
�4) + 4p−4(

1��1
)4 − 8p−2(

1��21
)2} ∼ p3/n2
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and Vn3 = 56(1��1)4/(p4n3){1 + o(1)} ∼ p4/n3. Consequently, if p/n → ∞,
then Vn3 � Vn1 and Var(Jn) = Vn3{1 + o(1)}; in contrast, if p/n → 0, then
Vn1 � Vn3 and Var(Jn) = Vn1{1 + o(1)}. In addition, under the null hypothesis
H0, the mean of Jn in Example 3.3 is E(Jn) = −2(1��1)2/(p2n) ∼ p2/n, which
is negative and cannot be ignored in comparison to the standard error of Tn with
order p2/n. These analytic findings are supported by the numerical evidence given
in Example 2.2 of Section 2.

EXAMPLE 3.4 (Polynomial decay). Let CPN = {�(θ) : �(θ) = (σij (θ))
p
i,j=1:

σij (θ) = (1 + |i − j |)−θ } for some θ ∈ (0,0.5). It can be shown that, Vn1 ∼
p(4−4θ)/n2 and Vn3 ∼ p(4−4θ)/n3. Accordingly, Var(Jn) = Vn1{1 + o(1)} ∼
p(4−4θ)/n2. It can also be verified that E(Jn3) ∼ p(2−2θ)/n, which has the same
order as the standard deviation of Jn. Thus, the effect of Jn3 cannot be ignored.

Examples 3.1–3.4 above reveal an important analytical insight about Jn. In Ex-
amples 3.1–3.2, Jn1 is the dominant term, while in Examples 3.3 and 3.4, Jn3 has
a leading order impact if p � n. In other words, the estimation of θ0 does not
incur any leading order effects in the asymptotic variances and means in Examples
3.1–3.2, but such an effect becomes nonnegligible in Examples 3.3 and 3.4. We
propose an adjusted test statistic 	n which was given in (2.3) that removes the ef-
fect of Jn3 from the statistic T̂n by subtracting out the estimator of Jn3. As a result,
Jn1 is guaranteed to be the leading order term in the proposed test 	n across all
four Examples 3.1–3.4. In the next subsections, we present details regarding the
asymptotic behavior of 	n.

3.2. Asymptotic distribution of 	n. In this subsection, we study the asymp-
totic normality of 	n under general conditions on � and �(θ). Assume that
(
√

nαp)−1 is the convergence rate of θ̂0 to θ0. It can be verified that αp = √
p for

the sphericity, AR(1), and moving average structures and αp = 1 for the compound
symmetry structure. In addition, αp = log(p) for the polynomial decay structure
given in Example 3.4. We next postulate the following two assumptions:

(A1) tr{(
��)2} = o(ξ2
1 ), where 
� = � − ∑q

k,l wkl tr(Bk,1){∂�(θ0)/∂θ0l}.
(A2) (i) maxk,l,m{∂wkl(θ0)/∂θ0m}{tr(B2

k,1) tr(B2
l,1)}1/2 = O(αpξ1) and

(ii) maxk,l,m wkl[tr{[{∂2�(θ0)/∂θ0l∂θ0m}�]2} tr(B2
k,1)]1/2 = O(αpξ1).

Assumption (A1) is satisfied by most of the commonly used covariance struc-
tures. This assumption is similar to the condition tr(�4) = o{tr2(�2)} given in
Chen, Zhang and Zhong (2010), and it is mainly used for showing the asymptotic
normality of 	n. However, assumption (A1) is weaker than that of Chen, Zhang
and Zhong (2010), and it can be satisfied by more general covariance structures
such as compound symmetry and polynomial decay. Assumption (A2) ensures that
the adjustment of T̂n satisfies Ĵn3 − Jn3 = op(Jn1). Both assumptions are satisfied
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for the five types of covariance structures discussed in Examples 3.5–3.8 given
below.

EXAMPLE 3.5 (Sphericity). Under H0, let � = �(θ0) = θ0Ip . Then follow-
ing from Example 3.1, ξ2

1 = 2θ4
0 p2{1 + o(1)} and 
� = θ0Ip − p−1(θ0p)Ip = 0.

Thus, tr{(
��)2} = 0. Hence, assumption (A1) is satisfied. Recall that αp = √
p.

In addition, since ∂2�(θ0)/∂θ2
0 = 0, assumption (A2)(ii) holds. One can further

verify that ∂w11(θ0)/∂θ0 = 0, thus, assumption (A2)(i) holds.

EXAMPLE 3.6 (Autoregressive and moving average). We first consider the
AR(1) covariance matrix under H0, that is, � = �(θ0) = (θ

|i−j |
0 )p×p with

θ0 ∈ (0,1). It follows from Example 3.2 that ξ2
1 ∼ p2 and tr{(
��)2} =

O(p). Accordingly, (A1) is satisfied. Recall that αp = √
p. Also, note that

tr[{(∂2�(θ0)/∂θ2
0 )�}2] = O(p), tr(B2

1,1) = O(p), ∂w11(θ0)/∂θ0 = O(1/p) and
w11 = O(1/p). Thus, assumption (A2) holds. By a similar argument, one can
verify that assumptions (A1) and (A2) hold for the MA(q) covariance structure.

EXAMPLE 3.7 (Compound symmetry). Under H0, � = �(θ0) = Ip +
θ0(11� − Ip), where θ0 ∈ (0,1). It follows from Example 3.3 that ξ2

1 ∼ p3 and

� = Ip . Then

tr
{
(
��)2} = tr

(
�2) = θ2

0
(
p2 − p

) + p.

We then have tr{(
��)2} ∼ p2, which is a small order of ξ2
1 . Hence, assumption

(A1) is satisfied. Recall that αp = 1. In addition, we know that ∂w11(θ0)/∂θ0 = 0
and ∂2�(θ0)/∂θ2

0 = 0, which together imply that assumption (A2) holds.

EXAMPLE 3.8 (Polynomial decay). Under H0, � ∈ CPN for θ ∈ (0,0.5),
where CPN has been defined in Example 3.4. It follows from Example 3.4 that
ξ2

1 ∼ p4−4θ . After algebraic simplification, we obtain the leading order terms of
w11 and tr(B1,1) as w11 = (1 − 2θ)(2 − 2θ)p2θ−2/ log2(p) and tr(B1,1) = {(1 −
2θ)(2 − 2θ)}−1p2−2θ log(p). Then w11 tr(B1,1) ∼ 1/ log(p) and tr{(
��)2} ≤
tr(�2
2

�) ≤ tr(�2) tr(
2
�) ∼ p2−2θ tr(
2

�). In addition, it can be shown that
tr(
2

�) is of smaller order than p2−2θ . In sum, tr{(
��)2} is of smaller order
than ξ2

1 . Thus, assumption (A1) is satisfied. As a result, it can be demonstrated
that ∂w11(θ)/∂θ ∼ p2θ−2/ log2(p), tr(B2

1,1) ∼ log2(p)p4−4θ and tr{[{∂2�(θ)/

∂θ2}�]2} ∼ log4(p)p4−4θ . Furthermore, we can show that the convergence rate
of θ̂0 is 1/{√n log(p)}. Accordingly, αp = log(p). Combining the above results
together, assumption (A2) holds.

We next establish the asymptotic normality of 	n under assumptions (A1) and
(A2).
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THEOREM 4. Assume that assumptions (A1)–(A2) and condition (C1) in Ap-
pendix hold. If nan = o(ξ1) and rn → 0, then we have

(3.3) σ−1
	n,1

{
	n − δ(θ0)

} d→ N(0,1),

where δ(θ0) = tr{(� − �(θ0))
2}, an and rn are defined above Theorem 2 and

σ 2
	n,1 = Vn1 + Vn2 = 2ξ2

1 /C2
n + 8ξ2

2 /n with ξ2
1 and ξ2

2 given in Theorem 3.

In order to understand the connection between 	n and T̂n, we further consider
the asymptotic behavior of 	n under more restrictive assumptions for � given
below:

(A3) tr(�4) = o{tr2(�2)}.
(A4) Assume that wkl ∼ Lp such that Lp tr(B2

k,u) = o{tr(�2)} for k, l =
1, . . . , q and u = 1, 2.

Assumption (A3) is the same as that considered in Chen and Qin (2010) and
Chen, Zhang and Zhong (2010). Assumption (A4) is a mild assumption such that
the estimator of θ0 does not yield the leading order effect on the asymptotic vari-
ance of Tn. It is easy to show that sphericity, autoregressive and moving average
covariance matrices satisfy (A3) and (A4), but compound symmetry and polyno-
mial decay structure given in Example 3.4 do not. It is also worth noting that (A3)
and (A4) guarantee that the condition nan = o(ξ1), used in Theorem 4, holds. For
example, in Examples 3.1–3.2, we have ξ1 ∼ tr(�2), and this together with the
fact of rn < 1 leads to nan = n−1/2r

1/2
n tr(�2) = o(ξ1). Moreover, under (A3) and

(A4), the following theorem demonstrates that the asymptotic distribution of 	n is
the same as that of T̂n.

THEOREM 5. Under assumptions (A3)–(A4) and condition (C1) in the
Appendix, we have that σ−1

	n,1Ĵn3 = σ−1
	n,1(	n − T̂n) = op(1), where σ 2

	n,1 =
2 tr2(�2)/C2

n + 8ξ2
2 /n.

Theorem 5 provides the theoretical basis for the phenomenon observed in the
histograms of T̂n and 	n in Figure 1; namely that they are asymptotically equiv-
alent under the sphericity covariance structure. In contrast, Figure 2, under the
compound symmetry covariance structure, exhibits a considerable discrepancy be-
tween the histograms of T̂n and 	n, since (A3) and (A4) are not satisfied.

REMARK 3. To simplify the expression of Var(	n), we imposed the normal-
ity assumption on the error terms εi in model (1.1). This allows us to avoid the
evaluation of the remainder terms of Var(	n) due to nonnormality. However, this
normality condition can be relaxed for Theorem 5, since (A3) and (A4) ensure
that the remainder terms of Var(	n) associated with nonnormality are of smaller
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orders than tr2(�2)/n2 + ξ2
2 /n. Based on these findings, one can show that the

asymptotic normality of 	n in Theorem 4 holds for nonnormal errors εi under as-
sumptions (A3)–(A4) and condition (C1). A detailed discussion of nonnormality
is given in Section 3 of the supplemental material.

REMARK 4. In the fixed p case, under H0, T̂n − E(Jn) and 	n are de-
generate U-statistics that follow a weighted chi-square distribution rather than
a normal distribution [see Serfling (1980), page 194]. Specifically, under H0,
both n{T̂n − E(Jn)} and n	n converge to a weighted chi-square distribution∑∞

k=1 λk(χ
2
1,k − 1), where the λj ’s are eigenvalues of the kernel h(εi ,εj ) =

(ε�
i εj )

2 − ε�
i �εi − ε�

j �εj + tr(�2) − Q�(εi )�0Q(εj ) and the χ2
1,ks are in-

dependent chi-square random variables with one degree of freedom. However, the
weighted chi-square distribution is not easy to use in practice. Hence, we apply
the Satterthwaite’s method to approximate the weighted chi-square distribution by
g1χ

2
g2

− g3, where g1 = ∑
k λ2

k/
∑

k λk , g2 = (
∑

k λk)
2/

∑
k λ2

k and g3 = ∑
k λk .

It can be shown that E{h(ε1,ε1)} = ∑
k λk = tr2(�) + tr(�2) − 2 tr(�0V1) and

E{h2(ε1,ε2)} = ∑
k λ2

k = 2ξ2
1 , where ξ2

1 was defined directly above Theorem 3.
Plugging in the estimators of �,�0,V1 and V2 in E{h(ε1,ε1)} and E{h2(ε1,ε2)},
we then obtain the estimators for g1, g2 and g3. For more details, see Section 4.2
of the supplemental material.

3.3. Asymptotic null distributions. In this subsection, we consider the asymp-
totic null distributions of 	n for testing five commonly used covariance structures;
namely, sphericity (SP) CSP, autoregressive (AR) CAR(1), moving average (MA)
CMA(q), compound symmetry (CS) CCS and polynomial decay CPN. Corollary 1
establishes the asymptotic normality of 	n under H0 for testing the above five
covariance matrices.

COROLLARY 1. Let C be one of the covariance structures among CSP,
CAR(1), CMA(q), CCS and CPN. Assume that rn → 0. Under the null hypothesis
that H0 : � ∈ C , we have

(3.4) σ−1
	n,0	n

d→ N(0,1),

where σ 2
	n,0 = 2ξ2

1 /C2
n .

Note that assumptions (A1)–(A2) for testing the five covariance structures, un-
der the null hypothesis, are satisfied. In addition, it can be verified that condition
(C1) holds under the null hypothesis. Thus, we do not need include these restric-
tions in Corollary 1.

To conduct the test based on 	n, one needs to estimate σ 2
	n,0 in Corollary 1.

A natural approach is to replace � by �
θ̂0

:= �(θ̂0) in σ 2
	n,0, which leads to
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an estimator σ̂ 2
	n,0 = 2ξ̂2

1 /C2
n with ξ̂2

1 = tr2{�2
θ̂0

} + tr{�4
θ̂0

} + 2 tr{(�̂0V̂1)
2} −

4tr(�̂0V̂2). Here, �̂0, V̂1 and V̂1 are the corresponding estimates of �0,V1 and
V2. In summary, we reject the null hypothesis if σ̂−1

	n,0	n ≥ zα , where zα stands for
the upper αth quantile of a standard normal distribution. Based on Theorem 4 and
Corollary 1, the type I error of the proposed test 	n is P(σ−1

	n,0	n ≥ zα|δ(θ0) = 0).
Accordingly, we only need to evaluate the size at only one point δ(θ0) = 0. Note
that the asymptotic theories developed are point-wise and dependent on the value
of θ0. Consequently, the accuracy of the asymptotic approximation of the proposed
test may vary with the value of θ0.

If assumptions (A3)–(A4) hold, under the null hypothesis H0, Theorem 5 indi-
cates that the resulting variance of 	n is σ 2

	n,0 = 2 tr2(�2)/C2
n . Hence, one can

reject the null hypothesis if σ̂−1
	n,0	n ≥ zα , where σ̂	n,0 = 2 tr(�2

θ̂0
)/n.

Corollary 1 shows that the proposed test statistic 	n is applicable to test for
SP, AR(1), MA(q), CS or polynomial decay covariance structures. However, the
applicability of 	n is not limited to the above five covariance structures. It could
be generalized to many other families if conditions (A1)–(A2) or (A3)–(A4) are
satisfied.

3.4. Asymptotic power. In this subsection, we study the asymptotic power
of the adjusted test 	n. Let �(·) be the cumulative distribution function of the
standard normal distribution and let γn{δ(θ0)} = δ(θ0)/max(σ	n,0, σ	n,1), where
σ	n,0 and σ	n,1 are defined, respectively, in Corollary 1 and Theorem 4.

THEOREM 6. Suppose that assumptions (A1)–(A2) and condition (C1) in Ap-
pendix hold. Then the power function B{δ(θ0)} = PHa(σ

−1
	n,0	n > zα) of the test

	n satisfies

lim
n→∞

∣∣∣∣B{
δ(θ0)

} − �

(
−σ	n,0

σ	n,1
zα + δ(θ0)

σ	n,1

)∣∣∣∣ = 0.

Furthermore, the adjusted test 	n is consistent if γn{δ(θ0)} → ∞.

To illustrate the properties of γn{δ(θ0)} and the consistency of the proposed test,
we present the following two examples.

EXAMPLE 3.9. Consider the test under the scenario that the eigenvalues of �
and �(θ0) are bounded away from both 0 and infinity. In this case, assumptions
(A3)–(A4) hold. Then, applying Theorem 5, we have σ 2

	n,1 = 2(C2
n)−1 tr2(�2) +

8n−1tr[{�(� − �(θ0))}2] and σ 2
	n,0 = 2 tr2(�2)/C2

n . Hence,

max
(
σ 2

	n,0, σ
2
	n,1

) = O
{
n−2 tr2(

�2)} + O
{
n−1δ(θ0)

}
.

Consequently, γn{δ(θ0)} → ∞ as long as nδ(θ0)/ tr(�2) → ∞. For example, the
sphericity covariance structure satisfies assumptions (A3) and (A4), and in order
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to test H0 : �(θ) = θIp , we note that θ0 = tr(�)/p minimizes δ(θ). According to
the above discussion, the test 	n is consistent as long as

nδ(θ0)

tr(�2)
= n tr{(� − p−1 tr(�)Ip)2}

tr(�2)
= n

(
1 − tr2(�)

p tr(�2)

)
→ ∞.

This holds as 1 − tr2(�)/{p tr(�2)} > 0, which measures the departure from the
null sphericity hypothesis. The finding is consistent with the results of Theo-
rem 4(i) given by Chen, Zhang and Zhong (2010).

EXAMPLE 3.10. Consider testing H0 : � ∈ CCS against a sequence of al-
ternatives � satisfying tr(�2) ∼ p2. Following Example 3.3, we have σ 2

	n,0 ≤
n−2 tr2(�2). In addition, tr[{�(� − �(θ0))}2] ≤ tr(�2)δ(θ0) = O{p2δ(θ0)},
which implies that σ 2

	n,1 ≤ 2 tr2(�2)/C2
n + O{n−1p2δ(θ0)} = O{n−2 tr2(�2)} +

O{n−1p2δ(θ0)}. Hence,

max(σ	n,0, σ	n,1) = O
{
n−1tr

(
�2)} + O

{
n−1/2pδ1/2(θ0)

}
.

Note that tr(�2) ∼ p2. Accordingly, γn{δ(θ0)} → ∞ if nδ(θ0)/ tr(�2) → ∞. Us-
ing the fact that θ0 = {1��1− tr(�)}/{p(p − 1)} is the minimizer of δ(θ), the test
	n is consistent if

nδ(θ0)

tr(�2)
= n

{
1 − (

1��1
)2

/
{
p2 tr

(
�2)}}{

1 + o(1)
} → ∞.

The above equation holds when 1 − (1��1)2/{p2 tr(�2)} > 0.

To further study the asymptotic power of 	n for testing sphericity, we next
compare 	n with the test proposed by Ledoit and Wolf (2002), the test proposed by
Chen, Zhang and Zhong (2010) and the Sign test introduced by Zou et al. (2014).
For simplicity, we name the test proposed by Ledoit and Wolf (2002) as the LW
test in the rest of the paper. According to Corollary 2 of Zou et al. (2014), their
Sign test is asymptotically as powerful as that of Chen, Zhang and Zhong (2010).
Thus, we only compare the power of our proposed test 	n with that of Sign test
and the LW test.

Following the setting of Zou et al. (2014), we test for sphericity against a se-
quence of local alternatives

(3.5) Hn,a : � = θ0(Ip + Dn,p),

where Dn,p has zero diagonal elements such that n tr(D2
n,p)/p is a positive

constant and θ0 > 0. Under the above local alternatives, we have δ(θ0) =
tr{(� − θ0Ip)2} = θ2

0 tr(D2
n,p) ∼ p/n, and tr[{�(� − �(θ0))}2] ≤ 2θ4

0 {tr(D2
n,p) +

tr(D4
n,p)} ≤ 2θ4

0 {tr(D2
n,p) + tr2(D2

n,p)} ∼ p/n + (p/n)2. As a result, ξ2
2 /n is of or-

der O(p/n2 + p2/n3), which is a small order of σ 2
	n,0 ∼ p2/n2. Thus, we obtain
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σ 2
	n,1 = σ 2

	n,0{1 + o(1)} = (2pθ2
0 /n)2{1 + o(1)}. Therefore, the asymptotic power

function of 	n given in Theorem 6 for testing sphericity can be simplified to

B
{
δ(θ0)

} = �

(
−zα + n tr(D2

n,p)

2p

)
.

On the other hand, using Theorem 2 of Zou et al. (2014), we obtain the asymp-
totic power function of the Sign test as

BSign{
δ(θ0)

} = �

(
−zα + n tr(D2

n,p)

2p

)
.

Applying Proposition 2 in Ledoit and Wolf (2002), the asymptotic power function
of the LW test is

BLW{
δ(θ0)

} = �

(
−zα + nδ(θ0)

2 tr2(�)/p

)
= �

(
−zα + n tr(D2

n,p)

2 tr2(�)/(pθ2
0 )

)
.

Note that tr(�) = pθ0 under the above local alternatives. By comparing the above
power functions B{δ(θ0)}, BSign{δ(θ0)} and BLW{δ(θ0)}, we have the following
theorem.

THEOREM 7. For testing sphericity under a sequence of alternatives Hn,a

defined in (3.5), the proposed test 	n, the test of Chen, Zhang and Zhong (2010),
the Sign test of Zou et al. (2014) and the LW test of Ledoit and Wolf (2002) have
the same asymptotic power.

For testing sphericity, Theorem 7 shows the asymptotic equivalence of the four
tests in power performance. However, the proposed test 	n is able to test a broad
range of covariance structures (e.g., see Examples 3.2–3.4). It is also worth noting
that all four test statistics considered in Theorem 7 are designed for general alter-
native hypotheses. If we are interested in specific alternatives such as the spiked
covariance structures defined in Onatski, Moreira and Hallin (2013, 2014), then
likelihood-ratio type statistics may be more powerful than the tests considered in
Theorem 7 [see Onatski, Moreira and Hallin (2013, 2014)].

4. Simulation results. We consider five simulation examples to evaluate the
finite sample performance of the goodness-of-fit test T̂n and the adjusted test 	n.
In all simulation experiments, the following model is considered:

Yi = Xiβ + εi for i = 1, . . . , n,

where β = (0.5,1)� and Xi = (Xi1,Xi2) is a p × 2 matrix, and Xi1 and Xi2 are
independently generated from the p-dimensional multivariate normal distribution
with mean 0 and covariance (0.6|j−k|)p×p (j, k = 1, . . . , p). The dimensions p of
the response vector are chosen to be 270, 385, 500, 625, 670, 785, 900 and 1025.
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The sample sizes n are chosen as n = 60,80,100 and 120. Based on 1000 re-
alizations, five covariance structures of εi (i.e., sphericity, autoregressive, moving
average, compound symmetry and polynomial decay) are examined by the tests T̂n

and 	n. Empirical sizes and powers are reported with the nominal level α = 0.05.
In testing sphericity, we also compare T̂n and 	n with the Sign test introduced by
Zou et al. (2014) and the LW test proposed by Ledoit and Wolf (2002).

EXAMPLE 4.1 (Sphericity). Consider the following null and alternative hy-
potheses:

H0 : � ∈ CSP versus Ha : � /∈ CSP.

To evaluate the performance of the tests, the j th component of the random error
εi is generated independently according to εij = ui + zij for i = 1, . . . , n and
j = 1, . . . , p, where ui ∼ N(0, ν2), zij ∼ N(0,1), ui and zij are independent, ν is
a nonnegative constant and ui = 0 as ν = 0. To study the size of the test, the data
set is simulated by setting ν = 0. In contrast, the data sets are generated by setting
ν = 0.08 and 0.10, respectively, for assessing the power of the test. Tables 1 and 2,
respectively, report empirical sizes and powers of 	n, T̂n, the Sign test and the LW
test.

TABLE 1
Empirical sizes of 	n, T̂n, the Sign test introduced by Zou et al. (2014) and the LW test proposed by

Ledoit and Wolf (2002) for testing sphericity in Example 4.1

p

ν n 270 385 500 625 670 785 900 1025

0 (size) 60 	n 0.048 0.047 0.040 0.037 0.045 0.046 0.050 0.044
T̂n 0.047 0.047 0.040 0.037 0.045 0.046 0.050 0.044

Sign 0.061 0.055 0.049 0.046 0.056 0.048 0.064 0.051
LW 0.060 0.047 0.053 0.047 0.058 0.050 0.065 0.058

80 	n 0.044 0.059 0.044 0.040 0.052 0.044 0.054 0.040
T̂n 0.044 0.059 0.044 0.040 0.052 0.044 0.054 0.040

Sign 0.046 0.068 0.053 0.056 0.056 0.041 0.063 0.045
LW 0.051 0.060 0.054 0.055 0.060 0.042 0.059 0.049

100 	n 0.045 0.049 0.048 0.042 0.049 0.043 0.033 0.048
T̂n 0.045 0.049 0.048 0.042 0.049 0.043 0.032 0.048

Sign 0.045 0.053 0.051 0.050 0.057 0.050 0.043 0.057
LW 0.047 0.053 0.056 0.047 0.053 0.050 0.044 0.052

120 	n 0.049 0.050 0.051 0.042 0.056 0.055 0.040 0.042
T̂n 0.049 0.050 0.051 0.042 0.056 0.055 0.040 0.042

Sign 0.045 0.057 0.057 0.046 0.062 0.054 0.042 0.038
LW 0.048 0.052 0.059 0.047 0.060 0.055 0.042 0.042
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TABLE 2
Empirical powers of 	n, T̂n, the Sign test introduced by Zou et al. (2014) and the LW test proposed

by Ledoit and Wolf (2002) for testing sphericity in Example 4.1

p

ν n 270 385 500 625 670 785 900 1025

0.08 60 	n 0.077 0.125 0.142 0.194 0.213 0.237 0.281 0.318
T̂n 0.076 0.125 0.142 0.194 0.213 0.236 0.281 0.316

Sign 0.086 0.137 0.151 0.210 0.222 0.250 0.300 0.323
LW 0.083 0.135 0.160 0.210 0.226 0.265 0.314 0.346

80 	n 0.099 0.130 0.219 0.261 0.281 0.346 0.417 0.457
T̂n 0.099 0.129 0.219 0.260 0.281 0.346 0.417 0.457

Sign 0.110 0.142 0.239 0.273 0.291 0.354 0.419 0.468
LW 0.116 0.143 0.241 0.297 0.293 0.373 0.440 0.476

100 	n 0.139 0.201 0.253 0.368 0.375 0.423 0.514 0.598
T̂n 0.139 0.199 0.253 0.367 0.375 0.422 0.514 0.597

Sign 0.136 0.207 0.273 0.361 0.382 0.413 0.513 0.585
LW 0.142 0.217 0.269 0.375 0.381 0.449 0.539 0.610

120 	n 0.170 0.255 0.334 0.407 0.463 0.568 0.641 0.710
T̂n 0.170 0.253 0.333 0.407 0.463 0.567 0.641 0.710

Sign 0.172 0.255 0.335 0.411 0.458 0.555 0.624 0.713
LW 0.181 0.262 0.342 0.412 0.473 0.578 0.656 0.728

0.10 60 	n 0.190 0.307 0.408 0.518 0.527 0.645 0.686 0.773
T̂n 0.188 0.306 0.406 0.517 0.525 0.645 0.686 0.773

Sign 0.198 0.317 0.416 0.521 0.523 0.631 0.674 0.769
LW 0.221 0.326 0.429 0.557 0.548 0.656 0.703 0.793

80 	n 0.293 0.420 0.555 0.703 0.735 0.814 0.877 0.892
T̂n 0.292 0.419 0.555 0.703 0.734 0.814 0.877 0.892

Sign 0.297 0.412 0.546 0.701 0.723 0.795 0.866 0.891
LW 0.302 0.442 0.571 0.719 0.743 0.821 0.882 0.905

100 	n 0.377 0.542 0.704 0.842 0.856 0.910 0.951 0.981
T̂n 0.375 0.541 0.704 0.841 0.856 0.910 0.951 0.981

Sign 0.371 0.526 0.687 0.831 0.858 0.902 0.953 0.976
LW 0.375 0.558 0.708 0.845 0.865 0.917 0.959 0.975

120 	n 0.431 0.645 0.823 0.903 0.944 0.971 0.980 0.994
T̂n 0.430 0.644 0.822 0.903 0.943 0.971 0.980 0.994

Sign 0.413 0.636 0.807 0.890 0.939 0.968 0.979 0.996
LW 0.447 0.660 0.830 0.904 0.946 0.976 0.985 0.997

EXAMPLE 4.2 (Autoregressive). Consider the hypotheses

H0 : � ∈ CAR(1) vs. Ha : � /∈ CAR(1).
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TABLE 3
Empirical size and power of 	n for testing autoregressive covariance structure in Example 4.2

p

ν n 270 385 500 625 670 785 900 1025

0 (size) 60 0.045 0.043 0.036 0.050 0.027 0.048 0.033 0.050
80 0.033 0.059 0.047 0.044 0.045 0.033 0.057 0.050

100 0.042 0.046 0.056 0.048 0.044 0.050 0.041 0.049
120 0.049 0.049 0.047 0.055 0.046 0.056 0.056 0.033

0.10 60 0.124 0.171 0.211 0.287 0.315 0.368 0.441 0.474
80 0.154 0.221 0.304 0.414 0.453 0.536 0.624 0.678

100 0.207 0.304 0.396 0.515 0.553 0.635 0.721 0.795
120 0.257 0.390 0.500 0.632 0.677 0.747 0.840 0.882

0.15 60 0.593 0.782 0.892 0.942 0.953 0.979 0.988 0.994
80 0.759 0.919 0.963 0.989 0.989 0.999 1.000 0.999

100 0.874 0.970 0.999 0.999 0.999 1.000 1.000 1.000
120 0.929 0.989 0.998 1.000 1.000 1.000 1.000 1.000

0.20 60 0.978 0.998 1.000 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

To study the performance of the adjusted test 	n, each j th component of the ran-
dom error εi is generated from the following model:

εij = 0.5εi(j−1) + uij + ηi for j = 1, . . . , p and i = 1, . . . , n,

where εi0 ∼ N(0,1 − ν2), uij ∼ N(0,0.75(1 − ν2)), ηi ∼ N(0, ν2), 1 − ν2 > 0, ν

is a nonnegative number and obviously ηi = 0 when ν = 0. In addition, uij , ηi and
εi0 are independent. To examine the size of the test, the data set is simulated by
setting ν = 0. In contrast, the data sets are generated by setting ν = 0.1,0.15 and
0.2, respectively, to evaluate the power of the test. Simulation results of the test 	n

are reported in Table 3.

EXAMPLE 4.3 (Moving average). Consider the hypotheses

H0 : � ∈ CMA(1) versus Ha : � /∈ CMA(1),

where CMA(1) is defined in Section 3.1. To investigate the performance of test 	n,
the random errors εi are generated from the following model:

εij = uij + ρui(j−1) + ηi for j = 1, . . . , p and i = 1, . . . , n,

where uij ∼ N{0, (1 − ν2)/(1 + ρ2)} for j = 0, . . . , p, ηi ∼ N(0, ν2), ρ ∈ (0,1),
1 − ν2 > 0, ν is a nonnegative constant, and clearly ηi = 0 when ν = 0. Further-
more, uij , ui0 and ηi are mutually independent. To study the size of the test, the
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TABLE 4
Empirical size and power of 	n for testing moving average covariance structure in Example 4.3

p

ν n 270 385 500 625 670 785 900 1025

0 (size) 60 0.057 0.060 0.052 0.059 0.038 0.050 0.037 0.053
80 0.046 0.041 0.052 0.051 0.050 0.050 0.049 0.047

100 0.056 0.044 0.043 0.049 0.039 0.058 0.048 0.049
120 0.049 0.045 0.047 0.057 0.054 0.040 0.044 0.050

0.10 60 0.173 0.225 0.342 0.427 0.430 0.537 0.625 0.756
80 0.230 0.327 0.473 0.569 0.637 0.736 0.851 0.910

100 0.273 0.437 0.584 0.748 0.777 0.894 0.939 0.967
120 0.375 0.578 0.722 0.827 0.885 0.967 0.984 0.996

0.15 60 0.880 0.975 0.999 1.000 1.000 1.000 1.000 1.000
80 0.965 0.999 1.000 1.000 1.000 1.000 1.000 1.000

100 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000
120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.20 60 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

data set is simulated by setting ρ = 0.5 and ν = 0. In contrast, the data sets are
generated by setting ρ = 0.5 and ν = 0.1,0.15 and 0.2, respectively, to evaluate
the power of the test. Simulation results of the test 	n are presented in Table 4.

EXAMPLE 4.4 (Compound symmetry). Consider the following hypotheses:

H0 : � ∈ CCS vs. Ha : � /∈ CCS.

To evaluate the performance of both tests 	n and T̂n, the random errors εi are
generated from the following model:

εij = νεi(j−1) + ηi + uij for j = 1, . . . , p and i = 1, . . . , n,

where εi0 ∼ N(0,1 − ρ2), uij ∼ N(0, (1 − ν2)(1 − ρ2)) and ηi ∼ N(0, ρ2) with
ρ2 < 1 and ν2 < 1. In addition, uij , ηi and εi0 are mutually independent. To check
the size of the test, the data set is simulated by setting ρ = 0.5 and ν = 0. In
contrast, the data sets are generated by setting ρ = 0.5 and ν = 0.5,0.7 and 0.8,
respectively, for examining the power of the test. Simulation results of the tests 	n

and T̂n are reported in Table 5.

EXAMPLE 4.5 (Polynomial decay). Consider the hypotheses

H0 : � ∈ CPN versus Ha : � /∈ CPN.
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TABLE 5
Empirical size and power of 	n and empirical size of T̂n for testing compound symmetry

covariance structure in Example 4.4

p

ν n 270 385 500 625 670 785 900 1025

0 (size) 60 	n 0.051 0.053 0.043 0.035 0.053 0.058 0.049 0.055
T̂n 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.000

80 	n 0.044 0.040 0.049 0.050 0.052 0.047 0.041 0.058
T̂n 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000

100 	n 0.050 0.052 0.038 0.041 0.051 0.043 0.052 0.046
T̂n 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

120 	n 0.061 0.049 0.049 0.037 0.050 0.041 0.051 0.042
T̂n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.5 60 	n 0.492 0.391 0.284 0.231 0.210 0.181 0.176 0.153
80 	n 0.785 0.639 0.483 0.412 0.406 0.343 0.308 0.270

100 	n 0.928 0.818 0.738 0.622 0.593 0.523 0.498 0.424
120 	n 0.990 0.941 0.873 0.791 0.763 0.679 0.649 0.564

0.7 60 	n 0.989 0.959 0.912 0.875 0.869 0.787 0.753 0.721
80 	n 1.000 0.998 0.991 0.976 0.968 0.953 0.918 0.900

100 	n 1.000 1.000 1.000 0.999 0.996 0.995 0.990 0.978
120 	n 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994

0.8 60 	n 1.000 0.999 0.996 0.982 0.993 0.982 0.965 0.965
80 	n 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.997

100 	n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
120 	n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

To evaluate the performance of both tests 	n and T̂n, the random errors εi are
generated from a multivariate normal distribution with mean zero and covariance
� = (σjl)

p
j,l=1, where

σjl = (1 − ν)
(
1 + |j − l|)−θ + ν0.5|j−l|,

0 ≤ ν < 1 and θ = 0.2. We set ν = 0 to examine the size of the test, and we set
ν = 0.4,0.5 and 0.6 to evaluate the power of the test. Simulation results of the tests
	n and T̂n are presented in Table 6.

In Tables 1 and 2, the results for testing sphericity indicate that all four tests
control the size well, and their powers increase when either n or p gets larger.
The powers of 	n and T̂n are comparable to those of the Sign test but slightly
less than those of the LW test. However, the LW test does not perform well under
nonnormality (see Table 1 in the supplemental material). It is worth noting that
the proposed tests are not restricted to testing sphericity, and they are applicable
for testing other covariance structures given in Examples 4.2–4.5. Furthermore,
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TABLE 6
Empirical size and power of 	n and empirical size of T̂n for testing polynomial decay covariance

structure in Example 4.5

p

ν n 270 385 500 625 670 785 900 1025

0 (size) 60 	n 0.045 0.047 0.051 0.035 0.044 0.042 0.049 0.045
T̂n 0.009 0.010 0.006 0.013 0.012 0.006 0.014 0.003

80 	n 0.052 0.052 0.037 0.047 0.034 0.033 0.044 0.046
T̂n 0.007 0.005 0.010 0.008 0.010 0.009 0.007 0.008

100 	n 0.044 0.035 0.034 0.047 0.050 0.044 0.046 0.042
T̂n 0.007 0.005 0.004 0.005 0.002 0.007 0.008 0.008

120 	n 0.052 0.040 0.048 0.037 0.044 0.038 0.047 0.057
T̂n 0.000 0.004 0.004 0.004 0.004 0.003 0.004 0.001

0.4 60 	n 0.099 0.095 0.096 0.091 0.064 0.094 0.083 0.072
80 	n 0.170 0.188 0.174 0.175 0.185 0.157 0.158 0.197

100 	n 0.306 0.319 0.302 0.319 0.306 0.307 0.304 0.289
120 	n 0.424 0.472 0.480 0.466 0.452 0.484 0.475 0.451

0.5 60 	n 0.251 0.263 0.268 0.274 0.285 0.267 0.262 0.261
80 	n 0.472 0.497 0.553 0.551 0.525 0.572 0.568 0.559

100 	n 0.703 0.778 0.800 0.788 0.817 0.815 0.819 0.817
120 	n 0.868 0.908 0.927 0.933 0.945 0.948 0.952 0.945

0.6 60 	n 0.536 0.583 0.657 0.692 0.698 0.698 0.733 0.723
80 	n 0.827 0.911 0.924 0.953 0.947 0.959 0.958 0.964

100 	n 0.962 0.989 0.990 0.999 0.997 0.998 0.997 0.997
120 	n 0.998 0.999 1.000 1.000 1.000 0.999 1.000 1.000

following an anonymous referee’s suggestion, we have compared 	n with the cor-
rected likelihood ratio (CLR) test proposed by Cui, Zheng and Li (2013) for testing
sphericity and compound symmetry when p < n; see Tables 5 and 6 in the supple-
mental material. The results show that the proposed tests are either slightly better
than or comparable to the CLR test. Per an anonymous referee’s suggestion, we
have also compared the four tests when � − �(θ0) is sparse. The simulation re-
sults indicate that these tests are comparable, and they are not presented here due
to space limitations.

From the results of Tables 1–6, we have the following findings for 	n. (i) Un-
der the null hypothesis, the test 	n controls the size well at the nominal level
0.05, across five commonly used covariance structures. (ii) Under the alternative
hypothesis, the power rises as the sample size increases. (iii) The power also rises
toward 1 when ν increases, which implies that the test 	n is consistent. The above
findings corroborate theoretical results in Theorems 4–6.

Tables 1 and 2 present the results for testing the sphericity structure in Exam-
ple 4.1 via the adjusted test 	n and the test T̂n, respectively. We find that the
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discrepancy between these two tests is very small. In addition, we compare 	n

and T̂n for testing the covariance structures in Examples 4.2 and 4.3. The results
show that these two tests perform very similarly. Therefore, we do not present the
results of T̂n. The above findings are supported by the theoretical result in Theo-
rem 5, since the covariance structures in Examples 4.1 to 4.3 satisfy assumptions
(A3) and (A4). However, the covariance structure with the compound symmetry
in Example 4.4 and the polynomial decay structure in Example 4.5 only satisfy
assumptions (A1) and (A2), but not (A3) and (A4). Hence, Tables 5 and 6 show
the different performances for 	n and T̂n in accordance with Theorems 4 and 5.
Specifically, 	n controls the size well, while T̂n has an extremely small size.

To examine the robustness of the adjusted test 	n against the normality assump-
tion of random errors, we have conducted Monte Carlo studies via various nonnor-
mally distributed errors. The results show that 	n maintains the size reasonably
well and is a consistent test (see Section 3 in the supplemental material). Based on
our simulation studies, we conclude that 	n is a reliable and powerful test and it
can be used for testing a broad range of covariance structures in repeated-measures
models.

5. Real data analysis. In this section, we apply the adjusted test to analyze
Canadian weather data, collected from 35 weather stations [see Ramsay and Sil-
verman (2005)]. The data set contains daily temperature and precipitation averaged
across the period from 1960 to 1994 for each of 35 weather stations. In addition,
these 35 weather stations are located in 4 different climate zones: Atlantic, Pacific,
Continental and Arctic.

Let Yi(tk) and Vi(tk) be, respectively, precipitation (in log 10 scale) and temper-
ature on day tk (k = 1, . . . ,365) at the ith (i = 1, . . . ,35) station, where t1 was set
to be day 100 in the original data set. Furthermore, let u(i) be the climate zone of
the ith station with values 1, . . . ,4 corresponding to Atlantic, Pacific, Continental
and Arctic, respectively. To establish the relationship between precipitation and
temperature, we consider the following functional linear model [see Ramsay and
Silverman (2005)]:

Yi(tk) = ηu(i)(tk) + Zi(tk)β(tk) + εi(tk), i = 1, . . . ,35, k = 1, . . . ,365,(5.1)

where ηu(tk) (u = 1,2,3,4) represent the climate zone effects, Zi(tk) are zone-
adjusted temperatures, β(tk) are unknown coefficients and εi(tk) are random errors
with the homogeneous variance across tk . It is worth noting that both temperature
and precipitation are affected by climate zones. Hence, we employ the following
method to remove the climate zone effects from the temperature and obtain Zi(tk).
Specifically, consider Vi(tk) = α(tk) + θu(i)(tk) + Zi(tk), where θu(t) represents
the climate zone effect satisfying

∑4
i=1 θu(t) = 0. Then apply Fourier series ex-

pansions and obtain α(t) = ∑5
m=1 cα,mφl(t) and θu(t) = ∑5

m=1 cθ,umφm(t), where
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φm(t) are Fourier basis functions for m = 1, . . . ,5. The resulting least squares es-
timates ĉα,um and ĉθ,um of the coefficients cα,m and cθ,um yield the zone-adjusted
temperature Zi(tk) = Vi(tk) − ∑M

m=1 ĉα,mφm(tk) − ∑M
m=1 ĉθ,u(i)mφm(tk).

Using the Fourier series approximation, we can represent model (5.1) as
an approximate repeated-measures model. Let B(t) = (B1(t), . . . ,B5(t))

T be
a set of Fourier basis functions. Then ηu(tk) = ∑5

s=1 b0,usBs(tk) and β(tk) =∑5
s=1 b1,sBs(tk). In addition, let Du be a 4-dimensional row vector, where the

uth component is 1 and the rest of the components are zero. For example, if
u = 1, then D1 = (1,0,0,0). Moreover, let B be a p × 5 matrix such that
B = (B(t1), . . . ,B(tp))�, where p = 365. It follows that model (5.1) can be ap-
proximated as

(5.2) Yi = (Du(i) ⊗ B)β0 + Wiβ1 + ε̃i = Xiβ + εi ,

where Yi = (Yi(t1), . . . , Yi(tp))� is a p × 1 vector, Xi = (Du(i) ⊗ B,Wi),
⊗ represents the Kronecker product, Du(i) ⊗ B is a p × 20 matrix, Wi =
(Zi(t1)B(t1), . . . ,Zi(tp)B(tp))� is a p × 5 matrix, β = (β�

0 ,β�
1 )�, β0 = (b0,11,

. . . , b0,15, . . . , b0,41, . . . , b0,45)
� is a 20 × 1 vector and β1 = (b1,1, . . . , b1,5)

� is a
5 × 1 vector and εi = (εi (t1), . . . ,εi (tp))� is a p × 1 vector. Furthermore, assume
that εi are IID random vectors with mean 0 and covariance �.

The goal of this study is to predict precipitation via model (5.2). Specifically, we
predict Y(2)

i = (Yi(t336), . . . , Yi(t365))
� by using Y(1)

i = (Yi(t1), . . . , Yi(t335))
�.

To this end, we correspondingly partition Xi , εi and � as follows:

Xi =
(

X(1)
i

X(2)
i

)
, εi =

(
ε

(1)
i

ε
(2)
i

)
and � =

(
�11 �12
�21 �22

)
.

Accordingly, the best linear unbiased predictor (BLUP) of Y(2)
i given Y(1)

i is

(5.3) Ŷ(2)
i = X(2)

i β̂ + �21(θ̂0)�
−1
11 (θ̂0)

(
Y(1)

i − X(1)
i β̂

)
,

where β̂ is the least squares estimate of β and θ̂0 is the least squares estimate of
θ0, and both of them are calculated via the first 335 observations.

Since the accuracy of prediction relies on the covariance structure, we next em-
ploy the adjusted test 	n to identify the best �(θ0) from the four covariance struc-
tures: sphericity, MA(1), AR(1) and compound symmetry presented in Examples
3.1 to 3.3. The resulting test statistics and their associated p-values in the paren-
theses are 17.09 (<0.0001), 6.85 (<0.0001), 4.43 (<0.0001) and 0.29 (0.38), re-
spectively. In sum, the compound symmetry is likely to be the most appropriate
covariance for predictions.

To assess the efficacy of the covariance structure determined by 	n, we investi-
gate the performance of predictions obtained from the four covariance structures.
We follow the approach of out-of-sample forecasting by randomly partitioning the
data into a training set of 30 stations and a validation (or test) set of 5 stations. For
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FIG. 3. Average (left panel) and standard errors (right panel) of absolute prediction errors ob-
tained from four types of covariance structures: sphericity, MA(1), AR(1) and compound symmetry.

each training data set, we use the first 335 repeated measurements to estimate the
unknown parameters. For each test data set T

(j)
S (j = 1, . . . ,30), the performance

of the prediction at date tk is measured by the following absolute prediction error:

AE(j)
k = 1

5

∑
i∈T

(j)
S

∣∣Ŷi(tk) − Yi(tk)
∣∣ for k = 336, . . . ,365.

Subsequently, based on the four types of covariance structures, we employ the
BLUP (5.3) to make predictions and then calculate their absolute prediction errors.
The averages and standard errors of AE(j)

k from 30 replicates at each date tk are
plotted in Figure 3. They clearly show that the predictions using the compound
symmetry covariance exhibit the smallest average prediction errors and almost the
smallest standard errors across all 30 validation days, followed by AR(1), MA(1)

and Sphericity. This finding indicates that 	n is a reliable test for determining an
adequate covariance and for making forecasts.

6. Discussion. In regression analysis, assessing the appropriateness of the co-
variance model assumption plays an important role in making valid inferences
and desirable predictions. This paper considers the regression model with high di-
mensional repeated measurements and proposes an adjusted test that enables us to
examine a wide range of covariance structures. The proposed test can be applied
or extended to test whether the covariance can be approximated by a linear combi-
nation of several types of covariance structures [see, e.g., Anderson (1973)]. This
warrants further investigation.

For the ease of presentation, we have assumed μ = 0 and E(Xi ) = 0 in this
paper. In general, if we relax these assumptions, we could construct a test statis-
tic as follows. Let X̃i = Xi − X̄ and Ỹi = Yi − Ȳ, where Ȳ and X̄ are sam-
ple means. Let β̃ = (

∑n
i=1 X̃T

i X̃i)
−1 ∑n

i=1 X̃T
i Ỹi and ε̃i = Ỹi − X̃i β̃ . Define
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θ̃0 = argminθ tr{(�̃β̃ − �(θ))2}, where �̃β̃ = n−1 ∑n
i=1 ε̃i ε̃

�
i . In addition, define

T̃n1 and J̃n3 as the statistics T̂n1 and Ĵn3, respectively, except replacing ε̂i with ε̃i

and θ̂0 with θ̃0. Moreover, define

T̃n2 = 1

3!C3
n

∑
i �=j �=k

ε̃T
i

{
ε̃j ε̃

T
j − �(θ̃0)

}
ε̃k and T̃n3 = 1

4!C4
n

∑
i �=j �=k �=l

ε̃T
i ε̃j ε̃

T
k ε̃l .

Then the test statistic 	̃n = T̃n1 − 2T̃n2 + T̃n3 − J̃n3 can be used to test the null
hypothesis of H0 in the paper. The asymptotic distribution of 	̃n is the same as
that of 	n, since T̃n2 and T̃n3 have no leading order effects. A detailed proof can
be found in Section 5 of the supplemental material.

APPENDIX

Technical conditions. To facilitate the theoretical proof, the following tech-
nical conditions are considered:

(C1) Assume that θ̃0 is in a small neighborhood of θ0. (i) For any i, j ∈
{1, . . . , q},

tr
{

∂2�(θ̃0)

∂θ0i∂θ0j

(
�(θ0) − �

)} = o

{
tr

(
∂�(θ0)

∂θ0i

∂�(θ0)

∂θ0j

)}
;

tr
{(

∂2�(θ0)

∂θ0i∂θ0j

(
�(θ0) − �

))2}
= O

{
tr2

(
∂�(θ0)

∂θ0i

∂�(θ0)

∂θ0j

)}
.

(ii) For any i, j, k ∈ {1, . . . , q},

tr
{(

∂3�(θ̃0)

∂θ0i∂θ0j ∂θ0k

�

)u}
= O

{
tr

{(
∂2�(θ0)

∂θ0i∂θ0j

�

)u}}
for u = 1,2;

tr
{(

∂2�(θ0)

∂θ0i∂θ0j

�(θ0)

)2}
= O

{
tr2

(
∂�(θ0)

∂θ0i

∂�(θ0)

∂θ0j

)}
.

Condition (C1)(i) is not needed under H0: � = �(θ0). This condition speci-
fies that � is not too far away from C . Otherwise, distinguishing � and �(θ0)

becomes trivial since the distance between � and �(θ0) is so large. (C1)(ii) ex-
tends condition (a) in Browne (1974) to accommodate the high-dimensional setup,
which is used to obtain the asymptotic expression of θ̂0.

Acknowledgments. We are grateful to the Editors, Associate Editor and three
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SUPPLEMENTARY MATERIAL

Supplement to “Tests for covariance structures with high-dimensional re-
peated measurements” (DOI: 10.1214/16-AOS1481SUPP; .pdf). This supple-
mental material provides technical proofs of the main results in Section 3, some
asymptotic results on the proposed test statistics for nonnormally distributed ran-
dom vectors, and the proof of the asymptotic normality of the test statistic given in
Section 6. We also provide the proof of Remark 4 and present additional numerical
simulation experiments to compare our proposed test statistics with some existing
methods.
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