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ON COVERAGE AND LOCAL RADIAL RATES
OF CREDIBLE SETS

BY EDUARD BELITSER

VU Amsterdam

In the mildly ill-posed inverse signal-in-white-noise model, we construct
confidence sets as credible balls with respect to the empirical Bayes poste-
rior resulting from a certain two-level hierarchical prior. The quality of the
posterior is characterized by the contraction rate which we allow to be local,
that is, depending on the parameter. The issue of optimality of the constructed
confidence sets is addressed via a trade-off between its “size” (the local ra-
dial rate) and its coverage probability. We introduce excessive bias restriction
(EBR), more general than self-similarity and polished tail condition recently
studied in the literature. Under EBR, we establish the confidence optimality
of our credible set with some local (oracle) radial rate. We also derive the
oracle estimation inequality and the oracle posterior contraction rate. The ob-
tained local results are more powerful than global: adaptive minimax results
for a number of smoothness scales follow as consequence, in particular, the
ones considered by Szabó et al. [Ann. Statist. 43 (2015) 1391–1428].

1. Introduction. Let N = {1,2, . . .} and σ = (σi, i ∈ N) be a positive nonde-
creasing sequence. We observe

X = X(ε) = (Xi, i ∈ N) ∼ Pθ = P(ε)
θ = ⊗

i∈N
N

(
θi, σ

2
i

)
,(1)

that is, Xi
ind∼ N(θi, σ

2
i ), i ∈ N. Here, θ = (θi, i ∈ N) ∈ � = �2 is an unknown

parameter of interest. The general goal is make inference on θ by using a Bayesian
approach. Without loss of generality, we set

ε2 = min
i∈N σ 2

i = σ 2
1 and κi = σi

ε
≥ 1 so that σ 2

i = ε2κ2
i .

The parameter ε is the noise intensity describing the information increase in
the data X(ε) as ε → 0. The nondecreasing sequence {κ2

i , i ∈ N} reflects the ill-
posedness of the model. Later, we put certain conditions on this sequence, essen-
tially making it of a polynomial type. To avoid overloaded notation, we often drop
the dependence on ε; for example, X = X(ε) etc.

In this paper, we consider nonasymptotic results (for a fixed ε > 0), implying
asymptotic assertions if needed and allowing to measure precisely the effect of
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the different quantities involved in the problem. However, the obtained nonasymp-
totic bounds are usually useful only for sufficiently small ε, making the setting
essentially asymptotic as ε → 0.

The model (1) is known to be the sequence version of the inverse signal-in-
white-noise model. There is now a vast literature about this model (cf. [10, 11,
20]), especially for the direct case: κ2

i = 1, i ∈ N (cf. [5, 9, 25]). This model is of
a canonical type and serves as a purified approximation to some other statistical
models.

The main aim is to construct an optimal (to be defined later) confidence set
for the parameter θ0 ∈ � on the basis of observation X ∼ Pθ0 , with a prescribed
coverage probability. We measure the size of a set by the smallest possible radius
of an �2-ball containing that set. It is thus sufficient to consider only confidence
balls as confidence sets. A general confidence ball for the parameter θ is of the
form B(θ̂, r̂) = {θ ∈ �2 : ‖θ − θ̂‖ ≤ r̂}, where ‖θ‖ = (

∑∞
i=1 θ2

i )1/2 is the usual �2-
norm, θ̂ = θ̂ (X) = θ̂ (X, ε) ∈ �2 is some data dependent center (DD-center) and
r̂ = r̂(X) = r̂(X, ε) ∈ R+ = {a ∈ R : a ≥ 0} is some data dependent radius (DD-
radius). The quantities θ̂ and r̂ are measurable functions of the data.

Let us specify the optimality framework for confidence sets. We would like to
construct a confidence ball B(θ̂,Cr̂) such that for any α1, α2 ∈ (0,1] and some
functional r(θ) = rε(θ), rε : � → R+, there exist positive C = C(�cov, α1), c =
c(�size, α2) such that for all ε ∈ (0, ε0] with some ε0 > 0,

sup
θ∈�cov

Pθ

(
θ /∈ B(θ̂,Cr̂)

) ≤ α1, sup
θ∈�size

Pθ

(
r̂ ≥ crε(θ)

) ≤ α2,(2)

where �cov,�size ⊆ �. In some papers, a confidence set satisfying the first relation
in (2) is called honest over �cov. The quantity rε(θ) has the meaning of the effec-
tive radius of the confidence ball B(θ̂,Cr̂). We call rε(θ) radial rate. Clearly, there
are many possible radial rates, but it is desirable to find the “fastest” (i.e., smallest)
radial rate rε(θ), for which the relations (2) hold for “massive” �cov,�size ⊆ �,
ideally for �cov = �size = �. The two relations in (2) are called coverage and
size properties. An asymptotic formulation is also possible: lim supε→0 should be
taken, constants α1, α2, C, c (possibly also �cov,�size) can be allowed to depend
on ε.

Thus, the following optimality aspects are involved in the framework (2): the
coverage, the radial rate and the uniformity subsets �cov,�size. The optimality is
basically a trade-off between these complementary aspects pushed to the utmost
limits, when further improving upon one aspect leads to a deterioration in another
aspect. For example, the smaller the local radial rate rε(θ) in (2), the better. But
if it is too small, the size requirement in (2) may hold uniformly only over some
“thin” set �size ⊂ �. On the other hand, if one insists on �cov = �size = �, then
it may be impossible to establish (2) for interesting (relatively small) radial rates
rε(θ).
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One approach to optimality is via the minimax estimation framework. It is as-
sumed that θ ∈ �β ⊆ � for some “smoothness” parameter β ∈ B, which may be
known or unknown (nonadaptive or adaptive formulation). The key notion here is
the so-called minimax rate Rε(�β), the formal definition is given in the supple-
ment [3]. The radial rate is taken to be rε(θ) = Rε(�β), which is a global quantity
as it is constant for all θ ∈ �β .

An adaptation problem arises when, for a given family of models {�β,β ∈ B}
(called scale), we only know that θ ∈ �β for some unknown β ∈ B. In fact, θ ∈⋃

β∈B �β ⊆ � and the problem becomes in general more difficult. For a �′
cov ⊆ �,

we want to construct a confidence ball B(θ̂,Cr̂) such that

sup
θ∈�′

cov

Pθ

(
θ /∈ B(θ̂,Cr̂)

) ≤ α1,

(3)
sup

θ∈�β

Pθ

(
r̂ ≥ cRε(�β)

) ≤ α2 ∀β ∈ B,

possibly in asymptotic setting: put lim supε→0 in front of both sup in (3). Ideally,
B is “massive” and �′

cov ⊇ �β . However, in general it is impossible to construct
optimal (fully) adaptive confidence set in the minimax sense: the coverage require-
ment in (3) does not hold even for �′

cov = �β . For the classical many normal
means model, there are negative results in [1, 8, 12, 13, 18, 21]; this is also dis-
cussed in [26]. A way to achieve adaptivity is to remove the so-called deceptive
parameters (in [29] they are called inconvenient truths) from �, that is, consider a
strictly smaller set �′

cov ⊂ �. Examples are: �′
cov = �ss, the so-called self-similar

parameters (related to Sobolev/Besov scales) introduced in [24] and later studied
in [6, 7, 23, 27, 29]; and �′

cov = �pt, a more general class of polished tail param-
eters introduced in [29]. More literature on adaptive minimax confidence sets: [4,
6, 7, 14, 16, 17, 19, 22–24, 28, 29].

In all, the above mentioned papers global minimax radial rates Rε(�β) [as
in (3)] were studied. In this paper, we allow local radial rates as in the frame-
work (2). When applied appropriately, the local approach is more powerful than
global. Namely, suppose that a local radial rate rε(θ) is such that, for some uniform
c > 0,

rε(θ) ≤ cRε(�β) for all θ ∈ �β,β ∈ B.(4)

If in addition �′
cov ⊆ �cov and �β ⊆ �size for all β ∈ B, then the results of type (2)

imply the results of type (3), simultaneously for all scales {�β,β ∈ B} for which
(4) is satisfied. We say that the local radial rate rε(θ) covers these scales; more
details are in the supplement [3].

In this paper, we apply a Bayesian methodology: namely, we first construct an
empirical Bayes posterior resulting from a certain two-level hierarchical prior, then
construct a DD-center by using this posterior, and finally construct a credible ball
(with respect to the posterior) around this DD-center as a confidence set. For this
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credible ball to be also a “good” confidence set, the posterior must possess cer-
tain frequentist properties. These are the upper and lower bounds on the posterior
contraction rate in terms of a given local radial rate rε(θ0). The upper bound result
means that the posterior contracts at θ0 with the local rate at least rε(θ0), from
the Pθ0 -perspective [then one can also construct a DD-center θ̂ , an estimator of θ0
with the rate rε(θ0)]. The lower bound result means that the posterior concentrates
around the DD-center θ̂ at a rate that is not faster than rε(θ0).

As is discussed in [2], the method of constructing confidence sets as credible
balls can actually be extended to the so-called data dependent measures (DDMs).
Namely, one can construct an appropriate DDM and then construct confidence
sets as DDM-credible sets. Posteriors and empirical Bayes posteriors are particular
(natural) examples of DDMs, but in general DDM does not have to originate from
a Bayesian approach.

We first derive the upper bound local result, uniform in θ0 ∈ �2. Namely, we
establish that the posterior contracts, from the Pθ0 -perspective, to θ0 with the lo-
cal rate rε(θ0), which is the best (fastest) contraction rate over some family of
rates (therefore also called oracle rate). The local radial rate rε(θ0) satisfies (4) for
typical smoothness scales such as Sobolev and analytic ellipsoids, Sobolev hyper-
rectangles, tail classes, certain scales of Besov classes and �p-bodies. This means
that we obtained, as a consequence of our local result, the adaptive minimax con-
traction rate results over all these scales. An accompanying result is that, by using
our posterior, a DD-center θ̂ can be constructed that converges to θ0 with the local
rate rε(θ0), thus also yielding the panorama of the minimax adaptive estimation
results over all these scales simultaneously.

Although the upper bound results are of interest on their own, our main purpose
is to construct an optimal [according to the framework (2)] confidence set. Recall
that we use credible balls as confidence sets. To this end, the established upper
bound results imply only the size relation for an appropriately constructed credi-
ble ball B(θ̂,Cr̂) in (2) with the local radial rate rε(θ0), uniformly over �size = �2.
For the coverage relation in (2) to hold, we also need the lower bound results. It
turns out that the lower bound result can be established uniformly only over some
�cov ⊂ �2, which forms an actual restriction. This is in accordance with the above
mentioned fact that it is impossible to construct optimal (fully) adaptive confidence
set in the minimax sense. We propose a set �cov = �eb of (nondeceptive) param-
eters satisfying the so-called excessive bias restriction and derive the lower bound
uniformly over this set. Combining the obtained upper and lower bounds, we estab-
lish the optimality (2) of the credible ball B(θ̂,Cr̂) with �cov = �eb, �size = �2
and the local radial rate rε(θ0). The class �eb is more general than the earlier
mentioned self-similar and polished tail parameters, namely, �ss ⊆ �pt ⊆ �eb and
�eb ��pt (see Section 4.3 for exact definitions). Moreover, the established (local)
optimality (2) implies the global optimality (3) in the sense of adaptive minimax-
ity over all scales for which (4) is fulfilled, in particular for the ones considered by
in [29].
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The paper is organized as follows. Section 2 provides preliminaries, Section 3
contains the main results, some discussion and concluding remarks are in Sec-
tion 4, and all the proofs are collected in Section 5. The elaboration on some points
and some background information related to the paper are provided in the supple-
ment [3].

2. Preliminaries.

2.1. Some notation and conditions on ill-posedness. By default, all summa-
tions and products are over N, unless otherwise specified, for example,

∑
i =∑

i∈N. Introduce some notation: for a, b ∈ R, �a� = max{z ∈ Z : z ≤ a}, 
(a) =∑
i≤a σ 2

i , a ∨ b = max{a, b}, a ∧ b = min{a, b}; ϕ(x,μ,σ 2) is the N(μ,σ 2)-
density at x, N(μ,0) means a Dirac measure at μ; the indicator function 1{E} = 1
if the event E occurs and is zero, otherwise. Let

∑n
i=k ai = 0 if n < k and∑A

i=k ai = ∑�A�
i=k ai for A > 0. If random quantities appear in a relation, then this

relation should be understood in Pθ0 -almost sure sense, for the “true” θ0 ∈ �. For
aε, bε > 0, aε � bε means that aε

bε
is bounded away from 0 and infinity as ε → 0,

� means “equals by definition.”
We complete this subsection with conditions on σ 2

i ’s (or, equivalently, on κ2
i ’s):

for any ρ, τ0 ≥ 1, γ > 0, there exist some positive K1, K2 = K2(ρ), K3 = K3(γ ),
K4 ∈ (0,1), τ > 2 and K5 = K5(τ0) such that the relations

(i) nσ 2
n ≤ K1
(n), (ii) 
(ρn) ≤ K2(ρ)
(n),

(iii)
∑
n

e−γ n
(n) ≤ K3(γ )σ 2
1 ,

(5)
(iv) 


(�m/τ�) ≤ (1 − K4)
(m),

(v) lσ 2�l/τ0� ≥ K5(τ0)

l∑
i=�l/τ0�+1

σ 2
i ,

hold for all n ∈ N, all m ≥ τ and all l ≥ τ0.
Although there is in principle some freedom in choosing sequence κi describing

the ill-posedness of the problem, to avoid unnecessary technical complications,
from now on we assume the so-called mildly ill-posed case: κ2

i = i2p , i ∈ N, for
some p ≥ 0. The mildly ill-posed case κ2

i = i2p satisfies (5) with K1 = 2p + 1,

K2 = (ρ + 1)2p+1, K3 = 4(8p+4)2p

(eγ )2p+1(eγ/2−1)
(a rough bound), K4 = 1

2 , τ can be any

number satisfying τ ≥ 21+1/(2p+1) and K5 = (2τ0)
−2p; see the supplement [3] for

the calculations.

2.2. Constructing an empirical Bayes posterior. Introduce the two-level hier-
archical prior �: for some fixed α > 0, K ≥ 1.87 (see Theorem 1),

(6) θ |(I = I ) ∼ �I,μ(I) = ⊗
i

N
(
μi(I ), τ 2

i (I )
)
, P(I = I ) = λI ,
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where μ(I) = (μi(I ), i ∈ N) with μi(I ) = μI,i1{i ≤ I },
τ 2
i (I ) = Kσ 2

i 1{i ≤ I }, λI = Cαe−αI , i, I ∈N,(7)

Cα = eα − 1 (so that
∑

I λI = 1). The idea of introducing the truncating parameter
I in the prior is to model the “effective” dimension of θ . The model (1) and the
prior (6) lead to the corresponding marginal

PX,μ(X) = ∑
I

λI PX,I,μ(I)(X)

= ∑
I

λI

∏
i

ϕ
(
Xi,μi(I ), τ 2

i (I ) + σ 2
i

)

and the posterior �μ(·|X) = ∑
I �μ(·|X,I = I )�μ(I = I |X), where

�μ(·|X,I = I ) = ⊗
i

N

(
τ 2
i (I )X2

i + σ 2
i μi(I )

σ 2
i + τ 2

i (I )
,

σ 2
i τ 2

i (I )

σ 2
i + τ 2

i (I )

)
,

�μ(I = I |X) = λI

∏
i ϕ(Xi,μi(I ), τ 2

i (I ) + σ 2
i )∑

J λJ

∏
i ϕ(Xi,μi(J ), τ 2

i (J ) + σ 2
i )

.

It is easy to obtain the estimator of the parameter μ = (μ(I), I ∈ N) by max-
imizing the marginal PX,μ(X) with respect to μ: μ̂ = (μ̂(I ), I ∈ N), μ̂i(I ) =
Xi1{i ≤ I }, i ∈ N. Now we introduce P(·|X) = �μ̂(·|X), PI (·|X) = �μ̂(·|X,I =
I ) and P(I = I |X) = �μ̂(I = I |X), the empirical Bayes counterparts of
the posteriors �μ(·|X), �μ(·|X,I = I ) and �μ(I = I |X), respectively. Pre-
cisely,

(8) P(·|X) = PK,α(·|X) = ∑
I

PI (·|X)P(I = I |X),

where

PI (·|X) = ⊗
i

N
(
Xi(I ),Lσ 2

i 1{i ≤ I }), L = K

K + 1
,(9)

P(I = I |X) = λI

∏
i ϕ(Xi,Xi(I ), τ 2

i (I ) + σ 2
i )∑

J λJ

∏
i ϕ(Xi,Xi(J ), τ 2

i (J ) + σ 2
i )

,(10)

Xi(I ) = Xi1{i ≤ I }, i, I ∈ N, τ 2
i (I ) and λI are defined by (7). The quantity (10)

exists as Pθ0 -almost sure limit of

Pn(I = I |X) = λI

∏n
i=1 ϕ(Xi,Xi(I ), τ 2

i (I ) + σ 2
i )∑

J λJ

∏n
i=1 ϕ(Xi,Xi(J ), τ 2

i (J ) + σ 2
i )

.
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3. Main results.

3.1. Local contraction rate: Upper bound. First, we introduce the notion of lo-
cal posterior contraction rate. Notice that P(·|X) defined in (8) is a random mixture
over posteriors PI (·|X), I ∈ N. From the Pθ0 -perspective, each PI (·|X) contracts
to the true θ0 with the local rate r(I, θ0):

(11) r2(I, θ0) = r2
ε (I, θ0) = ∑

i≤I

σ 2
i + ∑

i>I

θ2
0,i , I ∈ N.

Indeed, recalling that X(I) = (Xi1{i ≤ I }, i ∈ N), we evaluate

Eθ0PI

(‖θ − θ0‖ ≥ Mr(I, θ0)|X) ≤ Eθ0[‖X(I) − θ0‖2 + L
∑

i≤I σ 2
i ]

M2r2(I, θ0)
(12)

= 2
∑

i≤I σ 2
i + ∑∞

i>I θ2
0,i

M2r2(I, θ0)
≤ 2

M2 .

Thus, we have the family of local rates P = P(N) = {r(I, θ0), I ∈ N}. For each
θ0 ∈ �2, there is the best choice Io = Io(θ0) = Io(θ0, ε) = min{J : r(J, θ0) =
minI∈N r(I, θ0)} of parameter I , called the oracle, corresponding to the smallest
possible rate r(Io, θ0) called the oracle rate given by

r2(θ0) = r2(Io, θ0) = min
I∈N r2(I, θ0) = ∑

i≤Io

σ 2
i + ∑

i>Io

θ2
0,i .(13)

Notice r2(θ0) ≥ σ 2
1 = ε2 and Io(θ0) ≥ 1 for any θ0 ∈ �2, because we minimize

over N. This is not restrictive since if the minimum were taken over I ∈ N ∪ {0},
all the below results would hold only for the oracle rate with an additive penalty
term, a multiple of ε2. This would boil down to the same resulting local rate as (13).

The following theorem establishes a nonasymptotic local upper bound for the
contraction rate of the empirical Bayes posterior (8), uniformly over �2-space.

THEOREM 1 (Upper bound). Let the posterior P(·|X) and the local rate r(θ)

be defined by (8) and (13), respectively, with K ≥ 1.87, α > 0. Then there exists a
constant Cor = Cor(K,α) such that, for any θ0 ∈ �2 and M > 0,

Eθ0P
(‖θ − θ0‖ ≥ Mr(θ0)|X) ≤ Cor

M2 .

The proof of the theorem is in Section 5. Among other implications, this upper
bound result ensures the size property in (2) for the confidence ball (20) with the
radial rate r(θ0) defined by (13) and �size = �2. We will come back to this when
proving the main result, Theorem 4.

Besides being an essential ingredient for establishing the confidence optimal-
ity (2), the above theorem is of its own interest. The results on local contrac-
tion rates are intrinsically adaptive in the sense that the oracle contraction rate
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r(θ0) is fast for “smooth” θ0’s and slow for “rough” ones. This is a stronger and
more refined property than being globally adaptive. Theorem 1 implies the whole
panorama of the minimax adaptive results on posterior contraction rates, simulta-
neously over all scales for which (4) is fulfilled; in particular, the ones considered
in [29]. An elaborate discussion on this issue is provided in Section 4.1.

We can use the posterior P(·|X) defined by (8) also for estimating the parameter
θ0; namely, define the estimator

(14) θ̂ = E(θ |X) = ∑
I

X(I)P(I = I |X), X(I) = (
Xi1{i ≤ I }, i ∈ N

)
,

which is just the P(·|X)-expectation. This estimator satisfies the following oracle
inequality (the upper bound local result for the estimation problem).

THEOREM 2 (Oracle inequality). Let the conditions of Theorem 1 be fulfilled,
θ̂ be defined by (14) and the oracle rate r(θ0) be defined by (13). Then there exists
a constant Cest = Cest(K,α) such that, for any θ0 ∈ �2,

Eθ0‖θ̂ − θ0‖2 ≤ Cestr
2(θ0).

The proof of this theorem is essentially contained in the proof of Theorem 1, but
it is provided for completeness in Section 5. Like Theorem 1, Theorem 2 is again
of a local type (now for the estimation problem) and yields therefore the whole
panorama of the global (minimax) adaptive estimation results in the mildly ill-
posed inverse setting, simultaneously over all scales for which (4) is fulfilled; see
Section 4.1. Besides, Theorem 2 (together with Corollary 1) is used for deriving
the coverage property in (2).

The local rate r(I, θ0) defined by (11) is also the �2-risk of the projection
estimator θ̌ (I ) = X(I): Eθ0‖θ̌ (I ) − θ0‖2 = r2(I, θ0). One can regard the ora-
cle rate (13) as the smallest possible risk over the family of (projection) estima-
tors �̌(N) = {θ̌ (I ), I ∈ N}, namely r2(θ0) = infI∈N Eθ0‖θ̌ (I ) − θ0‖2. Theorem 2
claims basically that the estimator θ̂ given by (14) mimics the oracle estimator
θ̌ (Io), which is, strictly speaking, not an estimator as it depends on the true θ0
through Io = Io(θ0).

3.2. Local contraction rate: Lower bound under EBR. Recall that our main
goal is to construct a confidence set as credible ball with respect to the posterior
P(·|X) defined by (8) and establish the size and coverage properties (2) for this set.
The first ingredient for achieving this goal is the local upper bound (Theorems 1
and 2) for the posterior contraction rate. Basically, the upper bound implies the size
property in (2), with �size = �2 and the local radial rate r(θ0) given by (13). To
establish the coverage property in (2), we also need the second ingredient which
is a lower bound [in terms of the local rate r(θ0)] for posterior contraction rate
around the DD-center θ̂ .
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First, we derive a lower bound for the contraction rate in terms of the so-called
surrogate oracle rate r(Īo, θ0), where the local rate r(I, θ0) is defined by (11) and
the surrogate oracle Īo is defined as follows:

Īo = arg min
I

R2(I, θ0), R2(I, θ0) = R2
σ (I, θ0) = Iε2 + ∑

i>I

θ2
0,i

κ2
i

,(15)

for I ∈ N. The surrogate oracle rate R(Īo, θ0) is in fact the oracle rate for the
parameter θ̄0 = (θ0,i/κi, i ∈ N) in the “direct” model X̃ = (Xi/κi, i ∈ N) ∼⊗

i N(θ̄0,i , ε
2). Note that in the direct case κ2

i = 1 the surrogate oracle coincides
with the usual oracle: Īo = Io.

THEOREM 3 (Small ball posterior probability). Let the DDM P(·|X) =
PK,α(·|X) be given by (8), with parameters K,α > 0 such that

(16) α < a(K) � 1

4
− 1

2
log

(
K + 1

2

)
.

Then there exists Csb = Csb(K,α) > 0 such that, for any θ0 ∈ �2, any DD-center

θ̃ = θ̃ (X) and any δ ∈ (0, δsb] with δsb = 1 ∧ (
√

K(2p+1)
K+1 (a(K)−α

4ea(K)
)p+ 1

2 ),

Eθ0P
(‖θ − θ̃‖ ≤ δ
1/2(Īo)|X) ≤ Csbδ

[
log

(
δ−1)]p+1/2

,(17)

where 
(Īo) = ∑
i≤Īo

σ 2
i and Īo = Īo(θ0) is defined by (15).

Notice that although the above lower bound holds uniformly in θ0 ∈ �2 and the
right-hand side of (17) does not depend on θ0, the effective lower bound for the
contraction rate is the quantity 
1/2(Īo) [the variance related term of the surrogate
oracle rate r(Īo, θ0)], and not the oracle rate r(θ0) as we would like to have. We
can formally apply this theorem with the oracle surrogate rate r(Īo, θ0) instead of

1/2(Īo): for any δ ∈ (0, δsb(1 + t (θ0))

−1/2],
Eθ0P

(‖θ − θ̃‖ ≤ δr(Īo, θ0)|X) ≤ Csb(1 + t (θ0)
1/2δ

[
log

(
δ−1)]p+1/2

,

where t (θ0) =
∑

i>Īo
θ2

0,i∑
i≤Īo

σ 2
i

is the ratio of the bias term of the surrogate oracle rate to

the variance term. But then the right-hand side of the last relation is uniform only
over the set on which the ratio t (θ0) is bounded, and this is where a condition on
parameter θ0 comes into play.

This motivates introducing the excessive bias restriction (EBR): θ0 ∈ �eb(τ )

for τ > 0, where, with Īo = Īo(θ) defined by (15),

�eb = �eb(τ ) = �eb(τ, ε) =
{
θ ∈ �2 : ∑

i>Īo

θ2
i ≤ τ

∑
i≤Īo

σ 2
i

}
.(18)
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An elaborate discussion on EBR is provided in Section 4.3. Here, we just mention
that EBR describes a more general set of nondeceptive parameters than the earlier
mentioned sets of self-similar and polished tail parameters.

If θ0 ∈ �eb(τ ), then r2(θ0) = r2(Io, θ0) ≤ r2(Īo, θ0) ≤ (1 + τ)
(Īo). This
yields the corollary describing the lower bound for the posterior contraction rate,
now in terms of the oracle rate r(θ0) and uniformly over �eb.

COROLLARY 1 (Lower bound under EBR). Let the conditions of Theorem 3
be satisfied. Then for any DD-center θ̃ = θ̃ (X), any τ > 0 and any δ ∈ (0, δeb] with
δeb = δsb(1 + τ)−1/2,

sup
θ0∈�eb(τ )

Eθ0P
(‖θ − θ̃‖ ≤ δr(θ0)|X) ≤ Cebδ

[
log

(
δ−1)]p+1/2

,

where Ceb = Ceb(K,α, τ ) = Csb
√

1 + τ , δsb and Csb are from Theorem 3.

This lower bound, together with Theorem 2, ensures the coverage relation in (2)
uniformly over �cov = �eb, see the next subsection.

3.3. The main result: Confidence ball under EBR. In this subsection, we es-
tablish the main result of the paper. Let the posterior P(·|X) = PK,α(·|X) be given
by (8), with some constants K,α > 0 (fixed throughout this subsection) such that
the conditions of Theorem 1 and 3 are fulfilled.

For some fixed κ ∈ (0,1) (e.g., fix κ = 1
2 ) and the DD-center θ̂ = θ̂ (X) given

by (14), define the DD-radius

r̂ = r̂(κ,X, θ̂) = inf
{
r : P

(‖θ − θ̂‖ ≤ r|X) ≥ 1 − κ
}

(19)

and then, for M > 0, construct the confidence ball

B(θ̂,Mr̂) = {
θ ∈ �2 : ‖θ − θ̂‖ ≤ Mr̂

}
.(20)

For M = 1, (20) is the smallest credible ball around θ̂ of level 1 − κ .
The obtained upper and lower bounds for the posterior contraction rate, The-

orems 1, 2 and Corollary 1, can now be used to establish the coverage and size
properties (2) for the ball B(θ̂,Mr̂) defined by (20) with �cov = �eb, �size = �2
and the radial rate r(θ0) defined by (13). The inflating factor M (not depending
on θ0) is intended to provide the coverage property. This is exactly what the next
theorem, the main result of the paper, claims.

THEOREM 4 (Confidence optimality under EBR). Let the confidence ball
B(θ̂,Mr̂) be defined by (20) and the local radial rate r(θ0) be defined by (13).
Then for any τ > 0 there exist M0 = M0(τ ) > 0 and c0 > 0 such that

sup
θ0∈�eb(τ )

Pθ0

(
θ0 /∈ B(θ̂,Mr̂)

) ≤ ϕ1(M), sup
θ0∈�2

Pθ0

(
r̂ ≥ cr(θ0)

) ≤ ϕ2(c),

where ϕ1(M) and ϕ2(c) are some monotonically decreasing to zero functions
(given in the proof of the theorem) as M,c → ∞, for M ≥ M0 and c ≥ c0.
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For any α1, α2 ∈ (0,1), by taking large enough M0 = M0(α1, τ ) and c0 =
c0(α2), we can ensure that ϕ1(M) ≤ α1 and ϕ2(c) ≤ α2 for all M ≥ M0 and c ≥ c0.

4. Discussion and concluding remarks.

4.1. Local results versus global ones. Let us elucidate the potential strength
of local results as compared to global ones.

We start with the posterior contraction rate. To characterize the quality of
Bayesian procedures, the notion of posterior contraction rate was first introduced
and studied in [15]. Typically in the literature, contraction rate is related to the
(global) minimax rate R(�β) = Rε(�β) over a certain set �β . The optimality of
Bayesian procedures is then understood in the sense of adaptive minimax poste-
rior contraction rate: given a prior (knowledge of β is not used in the prior), the
resulting posterior contracts, from the Pθ0 -perspective, to the “true” θ0 ∈ �β with
the minimax rate R(�β).

For a scale �(B) = {�β,β ∈ B}, let {R(�β),β ∈ B} be the family of the per-
taining minimax rates. Suppose (4) is fulfilled for the local rate r(θ0) defined by
(13) and {R(�β),β ∈ B}. Then, in view of (4), Theorem 1 entails that the posterior
P(·|X) must also contract to θ0 with (at least) the minimax rate R(�β) uniformly
in θ0 ∈ �β for each β ∈ B. Thus, the adaptive [over the scale �(B)] minimax
contraction rate result for P(·|X) follows immediately. Foremost, Theorem 1 im-
plies adaptive minimax results on the posterior contraction rates, simultaneously
for all scales for which (4) is fulfilled. Theorem 2 does the same for the estimation
problem, and Theorem 4 for the uncertainty quantification problem (3).

Let us consider general ellipsoids and hyperrectangles

E(a) =
{
θ ∈ �2 : ∑

i

(
θi

ai

)2
≤ 1

}
, H(a) = {

θ ∈ �2 : |θi | ≤ ai, i ∈ N
}
,

(21)

where a = (ai, i ∈ N) is a nonincreasing sequence of numbers in [0,+∞] which
converge to 0 as i → ∞, a1 ≥ c1ε for some c1 > 0. Here, we adopt the conventions
0/0 = 0 and x/(+∞) = 0 for x ∈R. Let R2(�) = inf

θ̂
supθ∈� Eθ‖θ̂ − θ‖2 denote

the (quadratic) minimax rate over a set �, where the infimum is taken over all
possible estimators θ̂ = θ̂ (X), measurable functions of the data X. One can show
(see the supplement [3]) that

(22)

sup
θ0∈E(a)

r2(θ0) ≤ inf
I

{∑
i≤I

σ 2
i + a2

I+1

}
≤ (2π)2R2(

E(a)
)
,

sup
θ0∈H(a)

r2(θ0) ≤ inf
I

{∑
i≤I

σ 2
i + ∑

i>I

a2
i

}
≤ 5

2
R2(

H(a)
)
.

In (22), one can put a tighter constant 4.44 instead of (2π)2 in the direct case,
which possibly holds for the ill-posed case as well; see the supplement [3].
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In view of (22) and since R2(E(a)) ≤ infI supθ∈E(a) Eθ‖X(I) − θ‖2 =
infI {∑i≤I σ 2

i + a2
I+1} and R2(H(a)) ≤ infI supθ∈H(a) Eθ‖X(I) − θ‖2 =

infI {∑i≤I σ 2
i + ∑

i>I a2
i }, we derive the minimax rates for E(a) and H(a):

(23) R2(
E(a)

) � inf
I

{∑
i≤I

σ 2
i + a2

I+1

}
, R2(

H(a)
) � inf

I

{∑
i≤I

σ 2
i + ∑

i>I

a2
i

}
.

Let the constants K,α be fixed and satisfy the conditions of Theorems 1 and 4.
In view of (22), the ellipsoids E(a) and hyperrectangles H(a) are particular exam-
ples of scales for which (4) holds. Hence, Theorems 1, 2 and 4 imply that for some
Cor, Cest, C = C(α1, τ ) and c = c(α2),

sup
θ0∈�(a)

Eθ0P
(‖θ − θ0‖ ≥ MR

(
�(a)

)|X) ≤ Cor

M2 ,(24)

sup
θ0∈�(a)

Eθ0‖θ̂ − θ0‖2 ≤ CestR
2(

�(a)
)
,(25)

sup
θ0∈�eb(τ )

Pθ0

(
θ0 /∈ B(θ̂,Cr̂)

) ≤ α1,

(26)
sup

θ0∈�(a)

Pθ0

(
r̂ ≥ cRε

(
�(a)

)) ≤ α2,

where the DD-center θ̂ is defined by (14), the DD-radius r̂ is defined by (19), and
�(a) is either E(a) or H(a), for any unknown a.

In particular, we obtain the adaptive minimax results (for all the three problems:
posterior contraction, estimation and uncertainty quantification) for the four par-
ticular scales considered in [29]: (for Q,β, c, d > 0, N0 ∈ N) Sobolev ellipsoids
ES = ES(β,Q), Sobolev hyperrectangles HS = HS(β,Q), and the two so-called
supersmooth scales of analytic ellipsoids EA = EA(c, d,Q) and parametric hyper-
rectangles HP = HP (N0,Q). These scales are defined as follows: with E(a) and
H(a) given by (21),

(27)

HS = H(a) with a2
i = Qi−(2β+1),

ES = E(a) with a2
i = Qi−2β,

EA = E(a) with a2
i = Qe−cid ,

HP = H(a) with a2
i = Q1{i ≤ N0}.

By using (23), it is easy to compute the corresponding minimax rates under the
asymptotic regime ε → 0 (or, as in [29], n → ∞ with n = ε−2):

R2(ES) � ε
4β

2β+2p+1 = n
− 2β

2β+2p+1 , R2(HS) � ε
4β

2β+2p+1 = n
− 2β

2β+2p+1 ,(28)

R2(EA) � ε2(
log ε−1) 2p+1

d = n−1(logn)
2p+1

d , R2(HP ) � ε2 = n−1.(29)

The relation to the results of [29] is discussed in Section 4.2.
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We emphasize that the scope of our local results, Theorems 1, 2 and 4, extends
further than just these four specific scales, in fact even beyond general ellipsoids
E(a) and hyperrectangles H(a). Basically, our local results imply adaptive mini-
max results simultaneously for all scales for which (4) is fulfilled. Besides ellip-
soids and hyperrectangles, (4) is satisfied also for certain scales of Besov classes,
�p-bodies, tail classes. In the supplement [3], we also consider the more general
situation when the local oracle results over one family of rates imply the local
oracle results over another family of rates.

4.2. Relation to the minimax results of [29]. For the mildly ill-posed inverse
signal-in-white-noise model (1), an intriguing paper [29] deals with a certain
Sobolev type family of priors, indexed by a smoothness parameter. A certain
empirical Bayes posterior with respect to the smoothness parameter is proposed
in [29]. This posterior is then used to construct a credible ball whose coverage and
size properties are studied.

The main results of [29] are the asymptotic (in our notation: as ε = n−1/2 → 0)
versions of the minimax framework (3) with �′

cov = �pt (the polished tail class
�pt defined in Section 4.3), and the four scales: the two Sobolev type scales of
ellipsoids ES and hyperrectangles HS , and the two so-called supersmooth scales
of analytic ellipsoids EA and parametric hyperrectangles HP defined by (27).

The posterior proposed in [29] is well suited to model Sobolev type scales as
it delivers the optimal rates R(ES) and R(HS) [given by (28)] for Sobolev hyper-
rectangles and ellipsoids. But for the two supersmooth scales EA and HP , only
suboptimal rates Rsub(EA) and Rsub(HP ) are derived in [29]:

R2
sub(EA) = n−1(logn)(p+1/2)

√
logn � R2(EA) = n−1(logn)(2p+1)/d,

R2
sub(HP ) = n−1e(3p+3/2)

√
logN0

√
logn � R2(HP ) = n−1,

where R2(EA) and R2(HP ) are given by (29).
If we relate the global results of [29] to our local results for the posterior P(·|X)

defined by (8), we see that, according to (27), the four above mentioned scales from
[29] are particular examples of ellipsoids E(a) and hyperrectangles H(a), with
specific choices of sequence a. Hence, the adaptive minimax results (for all the
three problems: posterior contraction, estimation and uncertainty quantification)
for all the four scales follow immediately from (24)–(26), by taking �(a) to be
equal to ES , HS , EA, HP .

Notice that we improve on the results of [29] for the supersmooth scales EA and
HP as we derive the optimal rates R(EA) and R(HP ), in contrast to the suboptimal
rates Rsub(EA) and Rsub(HP ) obtained in [29]. Besides, the coverage relation in
(26) is slightly stronger than the corresponding claim from [29] because �pt ⊆
�eb as we show in the next subsection. Notice also that the parametric class HP

automatically satisfies EBR, that is, HP ⊆ �eb.

4.3. Excessive bias restriction (EBR). Unlike the size property, the coverage
property in Theorem 4 does not hold uniformly over �2, but only over �eb. This
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is in agreement with the fact mentioned in the Introduction that in general it is
impossible to construct optimal fully adaptive confidence set with a prescribed
high coverage probability. The intuition is that there are the so-called “deceptive”
parameters θ0 that “trick” the posterior P(·|X) in the sense that the DD-radius of
a P(·|X)-credible ball becomes overoptimistic, that is of a smaller order than the
oracle radial rate r(θ0). Then the resulting credible ball misses the true θ0 with a
high Pθ0 -probability, that is, the coverage probability is too small.

A way to fix this problem is to remove a set (preferably, minimal) of the decep-
tive parameters and derive the coverage relation in (2) for the remaining set �cov of
the nondeceptive parameters. In this paper, such a set �cov = �eb defined by (18)
emerged formally from the technical condition EBR for obtaining a uniform lower
bound for the posterior contraction rate. An informal intuition behind the EBR can
be as follows: the posterior P(·|X) can extract information about the variance term
of the oracle rate from the data, but not about the bias term, and the EBR allows to
control the bias term via the variance term.

As is mentioned in the Introduction, the first example of nondeceptive param-
eters is the set �ss of the so-called self-similar (SS) parameters, studied by many
authors in various settings and models. A somewhat restrictive feature of the self-
similarity property is that it is linked to the Sobolev (Besov) smoothness scale.
In [29], a more general condition is introduced that is not linked to particular
smoothness scales, the polished tail (PT) condition: for some L0 > 0 (L0 ≥ 1 for
�pt to be not empty), N0 ∈N and ρ0 ≥ 2,

�pt = �pt(L0,N0, ρ0) =
{
θ ∈ �2 :

∞∑
i=N

θ2
i ≤ L0

ρ0N∑
i=N

θ2
i ,∀N ≥ N0

}
.

In [29], it is shown that �ss ⊆ �pt, that is, PT is more general than SS.
Let us show that EBR is in turn more general than PT: �pt ⊆ �eb, which

means that for any L0 ≥ 1, N0 ∈ N and ρ0 ≥ 2, there exists a τ > 0 such that

�pt(L0,N0, ρ0) ⊆ �eb(τ ). From (15), it follows that for any I > Īo,
∑I

i=Īo+1
θ2
i

σ 2
i

≤
I − Īo. Besides, by condition (i) in (5), (n − l)σ 2

n ≤ K1
∑n

i=1 σ 2
i for all n ≥ l ≥ 1.

Using the last two relations and property (ii) from (5), we obtain for any θ ∈
�pt(L0,N0, ρ0) that

∑
i>Īo

θ2
i =

N0Īo−1∑
i=Īo+1

θ2
i +

∞∑
i=N0Īo

θ2
i ≤

N0Īo−1∑
i=Īo+1

θ2
i + L0

ρ0N0Īo∑
i=N0Īo

θ2
i

≤ L0σ
2
ρ0N0Īo

ρ0N0Īo∑
i=Īo+1

θ2
i

σ 2
i

≤ L0σ
2
ρ0N0Īo

(ρ0N0Īo − Īo)

≤ L0K1

ρ0N0Īo∑
i=1

σ 2
i ≤ L0K1K2(ρ0N0)

Īo∑
i=1

σ 2
i ,
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so that �pt(L0,N0, ρ0) ⊆ �eb(L0K1K2(ρ0N0)) for any N0 ≥ 1.
Note that in principle �eb also depends on ε. We can introduce the uniform

(in ε) version of EBR:

�̄eb(τ, ε0) = {
θ ∈ �eb(τ, ε) for all ε ∈ (0, ε0]} = ⋂

ε∈(0,ε0]
�eb(τ, ε).

This set is still large enough to contain �pt as �pt(L0,N0, ρ0) ⊆
�eb(L0K1K2(ρ0N0), ε) for any ε > 0. We do not consider �̄eb(τ, ε0) and
�eb(τ, ε) separately and always use the latter notation �eb(τ ) for both, with the
understanding that whenever one needs the uniform version, one can think of
�eb(τ ) as �̄eb(τ, ε0), as all the assertions in this paper hold also for the uniform
version of EBR.

Summarizing the relations between three types of conditions describing the non-
deceptive parameters introduced above, �ss ⊆ �pt ⊆ �eb. Besides, it is easy to
show that �eb � �pt, which (being the negation of �eb ⊆ �pt) exactly means
that there exists a τ > 0 such that for any L0 ≥ 1, N0 ∈ N and ρ0 ≥ 2, �eb(τ ) �
�pt(L0,N0, ρ0).

In fact, even a stronger property holds, namely,

�eb(1) �
⋃

(L0,N0,ρ0)∈S̄

�pt(L0,N0, ρ0), S̄ = [1,+∞) ×N× [2,+∞).

Indeed, assume the direct case κi = 1, i ∈ N, so that σ 2
i = ε2 and Īo = Io. Let

ε ∈ (0,1]. Next, let (ρj , j ∈ N) and (nj , j ∈ N) be such that 1 ≤ ρj ↑ ∞ (i.e.
monotonically increasing to infinity as j → ∞), n1 ≥ 2 and nj+1 ≥ ρ2

j nj for all

j ∈ N. Consider θ̄ = (θ̄i , i ∈ N), where θ̄2
1 = 2, and for i ≥ 2

θ̄2
i =

{
0, nj ≤ i ≤ ρjnj , j ∈ N,

ε22−i , otherwise.

The idea to insert expanding zero “gaps” in the sequence θ̄ is borrowed from the
example of Theorem 3.1 in [29]. Notice that there is enough room for infinitely
many nonzero coordinates θ̄i ’s: θ̄2

i > 0 for ρjnj < i < ρ2
j nj , j ∈ N. Because of

the expanding gaps, θ̄ does not satisfy the PT condition for any (L0,N0, ρ0) ∈ S̄.
On the other hand, it is easy to see that Io(θ̄) = 1 and

∑
i>Io

θ̂2
i ≤ ε2 ∑

i 2−i ≤ ε2 =
Ioε

2, that is, θ̄ ∈ �eb(1). It follows that �eb(1)�
⋃

(L0,N0,ρ0)∈S̄ �pt(L0,N0, ρ0).
Thus, the EBR is the most general condition among �ss, �pt and �eb. As to the

question how big (or “typical”) that set �eb is, [29] gives three types of arguments
for the PT-parameters: topological, minimax and Bayesian. Since �pt ⊆ �eb, the
same arguments certainly apply to �eb; see [29] for more details on this.

4.4. Concluding remarks. Data dependent measures. We construct confidence
sets as credible balls with respect to the obtained empirical Bayes posterior P(·|X)
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defined by (8). However, we can look at this method from a broader perspec-
tive. Namely, we can construct a so-called data dependent measure (DDM), and
then construct confidence sets as DDM-credible sets. This notion is properly in-
troduced and discussed in [2]. The DDM-framework gives more modeling flexi-
bility as one can use different ingredient in constructing DDMs. Different choices
for PI (·|X) and P(I = I |X) in (8) are possible, not necessarily coming from the
(same) Bayesian approach.

For example, if in (8) instead of P(I = I |X) given by (10) we use

�′(I = I |X) = λI

∏
i ϕ(Xi,0, τ 2

i (I ) + σ 2
i )∑

J λJ

∏
i ϕ(Xi,0, τ 2

i (J ) + σ 2
i )

, I ∈ N,

the main results will still hold, with slightly different constants in the proof. More
on this can be found in [2] and in the supplement [3].

Alternative empirical Bayes posterior. We can apply empirical Bayes approach
to the parameter I , leading to yet another empirical Bayes posterior

P̂(·|X) = P
Î
(·|X) with Î = min

{
arg max

I∈N P(I = I |X)
}
,(30)

where PI (·|X) and P(I = I |X) are defined by respectively (9) and (10).
For P̂(·|X) exactly the same results hold as for P(·|X) defined by (8). Even the

proofs are almost identical. Indeed, by the definition of Î , we derive that, for any
I, I0 ∈ N and any h ∈ [0,1],

Pθ0(Î = I ) ≤ Pθ0

(
P(I = I |X)

P(I = I0|X)
≥ 1

)
≤ Eθ0

[
P(I = I |X)

P(I = I0|X)

]h

,

which yields the analogue of (31). From this point on, the proof of the properties of
the posterior P̂(·|X) proceeds exactly in the same way as the proof for the posterior
P(·|X) defined by (8), with the only difference that everywhere (in the claims and
in the proofs), 1{Î = I } is substituted instead of P(I = I |X) and Pθ0(Î = I ) is
substituted instead of Eθ0P(I = I |X).

A connection of the posterior P̂(·|X) to penalized estimators is discussed in the
supplement [3].

Range for constant K . The condition α < a(K) in Theorem 3 limits room for
choosing constants K,α > 0, because a(K) > 0 only for K ∈ (0,2e1/2 − 1). One
can choose, for example, K = 2 and α = 0.04. Theorem 1 requires the condition
K ≥ 1.87. Formally, the final range of allowable K’s for the main result, Theo-
rem 4, is K ∈ [1.87,2.29] ⊂ [1.87,2e1/2 − 1).

The condition K ≥ 1.87 can slightly be relaxed, but some positive lower bound
is unavoidable. One can interpret this as a requirement for sufficient prior variabil-
ity in (7) of nonzero coordinates when putting a prior on θ . Interestingly, this lower
bound requirement on K corresponds to the condition on the penalty constant in
the penalization method; see the supplement [3].

The condition α < a(K) in Theorem 3 is, however, an artifact of the proof
technique; actually, the results hold for any α > 0. We leave the results in their
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present form as the accurate proof for general α > 0 will become significantly
longer whereas we want to keep the proof as concise as possible.

Alternative DD-center and confidence ball. Instead of the DD-center θ̃ = θ̃ (X)

given by (14), we can actually use any other estimator that satisfy the oracle in-
equality in Theorem 2. For example, similar oracle inequality result has been ob-
tained in [11] for the estimator based on the risk hull minimization method. In that
paper, the oracle rate has an extra penalty term but the multiplicative constant is
very tight.

Here, we construct yet another alternative DD-center by using the posterior
P(·|X). For a κ∗ ∈ (0,1/2), define first

r̂∗ = r̂∗(
κ∗) = inf

{
r : P

(∥∥θ − θ ′∥∥ ≤ r|X) ≥ 1 − κ∗ for some θ ′ ∈ �
}
.

This is the smallest possible radius of credible ball of level 1 − κ∗. Next, for some
ς > 0, take any (measurable function of data X) θ̌ ∈ � that satisfies

P
(
θ : ‖θ − θ̌‖ ≤ (1 + ς)r̂∗|X) ≥ 1 − κ∗.

In words, θ̌ = θ̌ (κ∗, ς) is the center of the ball of nearly the smallest radius subject
to the constraint that its P(·|X)-mass is at least 1 − κ∗.

One can show that Theorem 4 holds also for the confidence ball B(θ̌,Mř), with
this new DD-center θ̌ , where ř = r̂(1/2,X, θ̌) and r̂ is defined by (19).

5. Proofs of theorems.

5.1. Proof of Theorem 1. We prove Theorem 1 in several steps.
Step 1: Bounds for Eθ0P(I = I |X). For any I, I0 ∈ N and any h ∈ [0,1], we

have

Eθ0P(I = I |X) ≤ Eθ0

[
λI

∏
i ϕ(Xi,Xi(I ), τ 2

i (I ) + σ 2
i )

λI0

∏
i ϕ(Xi,Xi(I0), τ

2
i (I0) + σ 2

i )

]h

.(31)

Recall the elementary identity: for Y ∼ N(μ,σ 2) and b > −σ−2,

(32) E
(
exp

{−bY 2/2
}) = exp

{
− μ2b

2(1 + bσ 2)
− 1

2
log

(
1 + bσ 2)}

.

Using (31) and (32) with h = 1, we derive that, for any I, I0 ∈ N such that I < I0,

Eθ0P(I = I |X) ≤ Eθ0

λI (K + 1)−I/2 exp{−∑∞
i=I+1

X2
i

2σ 2
i

}
λI0(K + 1)−I0/2 exp{−∑∞

i=I0+1
X2

i

2σ 2
i

}

= eα(I0−I )(K + 1)(I0−I )/2Eθ0 exp

{
−1

2

I0∑
I+1

X2
i

σ 2
i

}
(33)

= e−(α+ak)I exp

{
(α + aK)I0 − 1

4

I0∑
I+1

θ2
0,i

σ 2
i

}
,
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where aK = 1
2 log(K+1

2 ). Next, apply (31) and (32) to the case I > I0: for any
h ∈ [0,1),

Eθ0P(I = I |X)

≤ eαh(I0−I )(K + 1)(I0−I )h/2Eθ0 exp

{
h

2

I∑
i=I0+1

X2
i

σ 2
i

}
(34)

= e−αhI/2 exp

{
−αhI

2
+ αhI0 − bK,h(I − I0) + h

2(1 − h)

I∑
i=I0+1

θ2
0,i

σ 2
i

}
,

where bK,h = h
2 log(K +1)+ 1

2 log(1−h). Clearly, bK,h > 0 if K > (1−h)−1/h −
1. Now take h = 0.1 in (34), then bK,0.1 = 1

20 log(K + 1) + 1
2 log(0.9) > 0 since

K ≥ 1.87 > (10/9)10 − 1 by the condition of the theorem. Thus, for any I, I0 ∈ N
such that I > I0, we obtain

Eθ0P(I = I |X) ≤ e−αI/20 exp

{
− α

20

(
I − 2I0 − 10

9α

I∑
i=I0+1

θ2
0,i

σ 2
i

)}
.(35)

Step 2: A bound by the sum of three terms. Recall r2(I, θ0) = ∑
i≤I σ 2

i +∑
i>I θ2

0,i and r2(θ0) = r2(Io, θ0) = minI r2(I, θ0). Notice that

r2(I, θ0) ≤ r2(θ0) + 1{I ≤ Io}
Io∑

i=I+1

θ2
0,i + 1{I > Io}

I∑
i=Io+1

σ 2
i .(36)

Next, as PI (·|X) = ⊗
i N(Xi1{i ≤ I },Lσ 2

i 1{i ≤ I }) with L = K
K+1 ≤ 1, we obtain

by applying the Markov inequality that

PI

(‖θ − θ0‖ ≥ Mr(θ0)|X) ≤ EI (‖θ − θ0‖2|X)

M2r2(θ0)

= L
∑

i≤I σ 2
i + ∑

i>I θ2
0,i + ∑

i≤I (Xi − θ0,i)
2

M2r2(θ0)
(37)

≤ r2(I, θ0) + ∑
i≤I σ 2

i ξ2
i

M2r2(θ0)
� υI ,

where ξi = σ−1
i (Xi −θ0,i )

ind∼ N(0,1) from the Pθ0 -perspective. Denote for brevity
pI = P(I = I |X), so that pI ∈ [0,1] and

∑
I pI = 1. In view of (8) and (37),

P
(‖θ − θ0‖ ≥ Mr(θ0)|X) ≤ ∑

I

υIpI = T1 + T2 + T3,(38)

where T1 = ∑
I≤Io

υIpI , T2 = ∑
Io<I≤τIo

υIpI , T3 = ∑
I>τIo

υIpI , and τ > 2 is
from property (iv) of (5).



1142 E. BELITSER

Step 3: Handling the term T1. For τ1 > 0 to be chosen later, introduce the sets

O− =O−(τ1, θ0) =
{
I ∈ N : I ≤ Io,

Io∑
i=I+1

θ2
0,i ≤ τ1

Io∑
i=1

σ 2
i

}
,

N− =N−(τ1, θ0) =
{
I ∈ N : I ≤ Io,

Io∑
i=I+1

θ2
0,i > τ1

Io∑
i=1

σ 2
i

}
.

By (36), maxI∈O− r2(I, θ0) ≤ (1 + τ1)r
2(θ0). This and (37) imply

Eθ0

∑
I∈O−

υIpI ≤ Eθ0 max
I∈O− υI ≤ 1 + τ1

M2 + Eθ0

∑
i≤Io

σ 2
i ξ2

i

M2r2(θ0)
≤ 2 + τ1

M2 .(39)

The property (i) from (5) yields Io ≤ K1
σ 2

Io

∑Io

i=1 σ 2
i . Besides, for each I ∈ N−,∑Io

i=1 σ 2
i < 1

τ1

∑Io

i=I+1 θ2
0,i . Set τ1 = 8(α + aK)K1, with aK = 1

2 log(K+1
2 ) > 0.

The last two relations and (33) imply that, for each I ∈ N−,

Eθ0pI = Eθ0P(I = I |X) ≤ e−(α+aK)I exp

{
(α + aK)Io − 1

4

I0∑
I+1

θ2
0,i

σ 2
i

}

≤ e−(α+aK)I exp

{
(α + aK)K1

σ 2
Io

Io∑
i=1

σ 2
i − 1

4σ 2
Io

Io∑
i=I+1

θ2
i,0

}
(40)

≤ e−(α+aK)I exp

{
− 1

8σ 2
Io

Io∑
i=I+1

θ2
0,i

}
.

Using (36), (37), (40) and the fact that maxx≥0{xe−cx} ≤ (ce)−1 for c > 0, we
obtain

Eθ0

∑
I∈N−

υIpI

≤ Eθ0

∑
I∈N−

r2(θ0) + ∑Io

i=I+1 θ2
0,i + ∑

i≤I σ 2
i ξ2

i

M2r2(θ0)
pI

≤ 1

M2 + Eθ0

∑
i≤Io

σ 2
i ξ2

i

M2r2(θ0)
+ ∑

I∈N−

(
∑Io

i=I+1 θ2
0,i)Eθ0pI

M2r2(θ0)

≤ 2

M2 + ∑
I∈N−

(
∑Io

i=I+1 θ2
0,i) exp{−(8σ 2

Io
)−1 ∑Io

i=I+1 θ2
0,i}e−(α+aK)I

M2r2(θ0)

≤ 2

M2 + ∑
I∈N−

8e−1σ 2
Io

e−(α+aK)I

M2r2(θ0)
≤ 2

M2 + 8e−1

M2

∑
I

e−(α+aK)I = C1

M2 ,
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where C1 = 2 + 8e−(1+α+aK )

1−e−(α+aK ) . The last relation and (39) give

Eθ0T1 = Eθ0

∑
I∈O−(τ1,θ0)

υIpI + Eθ0

∑
I∈N−(τ1,θ0)

υIpI ≤ C2

M2 ,(41)

where C2 = 2 + τ1 + C1 = 4 + 8(α + aK)K1 + 8e−(1+α+aK )

1−e−(α+aK ) .
Step 4: Handling the term T2. Since pI ∈ [0,1] and

∑
I pI = 1, Eθ0T2 =

Eθ0

∑
Io<I≤τIo

υIpI ≤ Eθ0[maxIo<I≤τIo υI ]. Using this, (36), (37), (38) and prop-
erty (ii) from (5), we get [with τ > 2 from property (iv) of (5)]

Eθ0T2 ≤ Eθ0 max
Io<I≤τIo

υI ≤ maxIo<I≤τIo r2(I, θ0) + Eθ0

∑
i≤τIo

σ 2
i ξ2

i

M2r2(θ0)
(42)

≤ 1

M2 + 2
∑

i≤τIo
σ 2

i

M2r2(θ0)
≤ 1

M2 + 2K2(τ )
∑Io

i=1 σ 2
i

M2r2(θ0)
≤ 1 + 2K2(τ )

M2 .

Step 5: Handling the term T3. For some τ2 > 0 to be chosen later, introduce

O+ =O+(τ, τ2, θ0) =
{
I ∈N : I > τIo,

I∑
i=Io+1

σ 2
i ≤ τ2

∑
i>Io

θ2
0,i

}
,

N+ =N+(τ, τ2, θ0) =
{
I ∈ N : I > τIo,

I∑
i=Io+1

σ 2
i > τ2

∑
i>Io

θ2
0,i

}
.

By (36), maxI∈O+ r2(I, θ0) ≤ (1 + τ2)r
2(θ0). Let I+ = max{O+}, then∑

i≤I+ σ 2
i ≤ ∑Io

i=1 σ 2
i + τ2

∑
i>Io

θ2
0,i ≤ (1 ∨ τ2)r

2(θ0). In view of (37), the last
two relations entail that

Eθ0

∑
I∈O+

υIpI ≤ Eθ0 max
I∈O+ υI ≤ 1 + τ2

M2 + Eθ0

∑
i≤I+ σ 2

i ξ2
i

M2r2(θ0)

(43)

≤ 2(1 + τ2)

M2 .

For K4 and τ > 2 from property (iv) of (5), we have that 
(m) − 
(�m/τ�) ≥
K4
(m) for any m ≥ τ . This entails that, for each I ∈ N+,

I∑
i=�I/τ�+1

σ 2
i ≥ K4

I∑
i=1

σ 2
i ≥ K4

I∑
i=Io+1

σ 2
i ≥ K4τ2

I∑
i=Io+1

θ2
0,i

≥ K4τ2

I∑
i=�I/τ�+1

θ2
0,i .
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For each I ∈ N+, take I0 = I0(I ) = �I/τ�, then apply the property (v) of (5) and
the last inequality with τ2 = 10τ

9α(τ−2)K4K5(τ )
to derive

I − 2I0 − 10

9α

I∑
i=I0+1

θ2
0,i

σ 2
i

≥
(

1 − 2

τ

)
I − 10

9α

I∑
i=I0+1

θ2
0,i

σ 2
i

≥
(

1 − 2

τ

)
K5

I∑
i=I0+1

σ 2
i

σ 2
I0

− 10

9α

I∑
i=I0+1

θ2
0,i

σ 2
I0

≥ (τ − 2)K5(τ )K4τ2

τ

I∑
i=I0+1

θ2
0,i

σ 2
I0

− 10

9α

I∑
i=I0+1

θ2
0,i

σ 2
I0

= 0.

The last relation and the bound (35) with I0 = �I/τ� imply that

Eθ0pI = Eθ0P(I = I |X) ≤ e−γ I , I ∈ N+, γ = α

20
.(44)

Since pI ∈ [0,1] and E[∑m
i=1 σ 2

i ξ2
i ]2 ≤ 3[∑m

i=1 σ 2
i ]2 for any m ∈ N, we obtain

by the Cauchy–Schwarz inequality that

Eθ0

[
pI

∑
i≤I

σ 2
i ξ2

i

]
≤ (

Eθ0p
2
I

)1/2√3
∑
i≤I

σ 2
i ≤ √

3(Eθ0pI )
1/2

∑
i≤I

σ 2
i .(45)

Combining (36), (37), (44), (45), the property (iii) of (5) and the fact that σ 2
1 ≤

r2(θ0), we derive

Eθ0

∑
I∈N+

pIυI = ∑
I∈N+(τ,τ2)

r2(I, θ0)Eθ0pI + Eθ0[pI

∑
i≤I σ 2

i ξ2
i ]

M2r2(θ0)

≤ 1

M2 + ∑
I∈N+

(
∑I

i=Io+1 σ 2
i )Eθ0pI + √

3(
∑

i≤I σ 2
i )(Eθ0pI )

1/2

M2r2(θ0)

≤ 1

M2 + ∑
I∈N+

(
∑I

i=Io+1 σ 2
i )e−γ I + √

3(
∑

i≤I σ 2
i )e−γ I/2

M2r2(θ0)

≤ 1 + K3(γ ) + √
3K3(γ /2)

M2 .

Finally, the last relation and (43) entail the bound

Eθ0T3 = Eθ0

∑
I∈O+(τ,τ2,θ0)

υIpI + Eθ0

∑
I∈N+(τ,τ2,θ0)

υIpI ≤ C3

M2 ,(46)

where C3 = 2(1 + τ2) + 1 + K3(γ ) + √
3K3(γ /2).
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Step 6: Finalizing the proof. Piecing together the relations (38), (41), (42) and
(46), we finally obtain

Eθ0P
(‖θ − θ0‖ ≥ Mr(θ0)|X) ≤ Eθ0(T1 + T2 + T3) ≤ Cor

M2 .

The constant Cor = Cor(K,α) is as follows:

Cor = C2 + 1 + 2K2(τ ) + 2(1 + τ2) + 1 + K3(γ ) + √
3K3(γ /2),

where C2 = 4 + 8(α + aK)K1 + 8e−(1+α+aK )

1−e−(α+aK ) , aK = 1
2 log(K+1

2 ), τ2 =
10τ

9α(τ−2)K4K5(τ )
, γ = α

20 , the constants τ,K1,K2,K3,K4,K5 are from (5).

5.2. Proof of Theorem 2. The proof of this theorem is essentially contained in
the proof of Theorem 1. Only a finishing argument is needed. According to (14),
θ̂ = E(θ |X) = ∑

I X(I)pI , with X(I) = {Xi(I ), i ∈ N} = {Xi1{i ≤ I }, i ∈ N} and
pI = P(I = I |X). By the Fubini theorem and the fact that p2

I ≤ pI , we derive

Eθ0‖θ̂ − θ0‖2 = Eθ0

∑
i

(∑
I

Xi(I )pI − θ0,i

)2

≤ Eθ0

∑
i

∑
I

(
Xi(I ) − θ0,i

)2
pI = Eθ0

∑
I

∥∥X(I) − θ0
∥∥2

pI

= Eθ0

∑
I

(∑
i≤I

σ 2
i ξ2

i + ∑
i>I

θ2
0,i

)
pI ≤ M2r2(θ0)Eθ0(T1 + T2 + T3),

where T1, T2, T3 are defined in (37) and (38). In the last step of the proof of The-
orem 1, it is established that Eθ0(T1 + T2 + T3) ≤ Cor

M2 . The theorem follows with
the constant Cest = Cor.

5.3. Proof of Theorem 3. We prove Theorem 3 in several steps.
Step 1: First technical lemma.

LEMMA 1. Let DDM PK,α(I = I |X) be given by (10) with parameters
K,α > 0 chosen in such a way that a(K) > α, with a(K) defined by (16). Let
κ0 = κ0(K,α) = a(K)−α

a(K)
. Then for any θ0 ∈ �2 and any κ ∈ [0,κ0)

Eθ0P(I ≤ κĪo|X) ≤ C exp{−cĪo},(47)

where c = a(K)(1 − κ) − α > 0, C = C−1
α = (eα − 1)−1, and Īo = Īo(θ0) is de-

fined by (15).

PROOF. By the definition (15) of the surrogate oracle, R2(I, θ0) ≥ R2(Īo, θ0)

for any θ0 ∈ �2. For I < Īo, this implies that
∑Īo

i=I+1
θ2

0,i

σ 2
i

≥ Īo − I . Using this, we
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obtain that for I ≤ κĪo

1

4

Īo∑
i=I+1

θ2
0,i

σ 2
i

− 1

2
log

(
K + 1

2

)
(Īo − I ) ≥

(
1

4
− 1

2
log

(
K + 1

2

))
(Īo − I )

= a(K)(Īo − I ) ≥ a(K)(1 −κ)Īo.

The lemma follows from the last relation, (33) and the fact that
∑

I λI = 1:

Eθ0P(I ≤ κĪo|X)

≤ ∑
I≤κIo

λI

λĪo

exp

{
−1

4

Īo∑
i=I+1

θ2
0,i

σ 2
i

− 1

2
log

(
K + 1

2

)
(Īo − I )

}

≤ ∑
I≤κĪo

λI

λĪo

exp
{−(

a(K)(1 −κ)
)
Īo

}

≤ C−1
α exp

{−(
a(K)(1 −κ) − α

)
Īo

}
. �

Step 2: Second technical lemma.

LEMMA 2. Let �(S) be the Lebesgue measure (or volume) of a bounded set
S ⊂ Rk , k ∈ N, and Bk(r) = {x ∈ Rk : ‖x‖ ≤ r} (here ‖ · ‖ is the usual Euclidean
norm in Rk) be the Euclidean ball of radius r in space Rk . Then

�
(
Bk(r)

) ≤ eπ−1/2rkk−(k+1)/2(2πe)k/2.

PROOF. By using Stirling’s approximation for the Gamma function �(x) =√
2πxx−1/2e−x+ς/(12x) for all x ≥ 1 and some 0 ≤ ς ≤ C, we derive

�

(
1 + k

2

)
= √

2π

(
1 + k

2

) k+1
2

e−1− k
2 + ς

6k+12

= (1 + 2
k
)(k+1)/2√π

e1−ς/(6k+12)
k

k+1
2 (2e)−

k
2

= ckk
(k+1)/2(2e)−k/2 ≥ e−1π1/2k(k+1)/2(2e)−k/2,

since ck = (1+2/k)(k+1)/2√π

e1−ς/(6k+12) >
√

π
e

. Combining the last relation with the fact that

�(Bk(r)) = rk�(Bk(1)) = rkπk/2

�(1+k/2)
completes the proof. �

Step 3: Small ball bound for PI (·|X). Recall that, with L = K/(K + 1),

PI (θ |X) = ⊗
i

N
(
Xi1{i ≤ I },Lσ 2

i 1{i ≤ I }), I ∈ N.
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We have that 
(I) = ∑I
i=1 σ 2

i ≤ ε2 (2I )2p+1

2p+1 . By Stirling’s bound,
∏I

i=1 κi =
(I !)p ≥ ((I/e)I

√
2πI)p . Let Z1, . . . ,ZI be independent N(0,1) random vari-

ables. Using these relations, Anderson’s inequality and Lemma 2, we obtain that,
Pθ0 -almost surely,

PI

(‖θ − θ̃‖ ≤ δ
1/2(Īo)|X)
= PI

(‖θ − θ̃‖2 ≤ δ2
(Īo)|X)
= P

(∑
i≤I

(Xi + σi

√
LZi − θ̃i)

2 + ∑
i>I

θ̃2
i ≤ δ2
(Īo)

∣∣∣X)
(48)

≤ P
(
L

∑
i≤I

σ 2
i Z2

i ≤ δ2
(Īo)

)
= P

(∑
i≤I

σ 2
i Z2

i ≤ δ2
(Īo)

L

)

≤ �(BI (δ

√

(Īo)/L))∏I

i=1(2πσ 2
i )1/2

≤ (2π)−I/2∏I
i=1 εκi

e√
π

(
δ2
(Īo)

L

)I/2
I− I+1

2 (2πe)I/2

≤ eI−(p+1)/2

(2π)p/2
√

π

[(
2eĪo

I

)p+1/2(
δ√

L(2p + 1)

)]I

.

Step 4: Applying Lemma 1. Denote for brevity � = a(K) − α. By (16), � > 0.
Applying Lemma 1 with κ = κ0

2 = a(K)−α
2a(K)

[so that a(K)(1 −κ) − α = a(K)−α
2 =

�
2 ], we obtain

(49) Eθ0P(I < κĪo|X) ≤ C−1
α e−�Īo/2

for every θ0 ∈ �2. Consider the two cases: e−�Īo/2 ≤ δ and e−�Īo/2 > δ.
Step 5: The case e−�Īo/2 > δ. If e−�Īo/2 > δ, then Īo < 2�−1 log(δ−1). By using

this, (8), (48) and the notation pI = P(I = I |X), we derive that, for e−�Īo/2 > δ,

Eθ0P
(‖θ − θ̃‖ ≤ δ
1/2(Īo)|X)
= Eθ0

∑
I

PI

(‖θ − θ̃‖2 ≤ δ2
(Īo)|X)
pI

≤ ∑
I

eI−(p+1)/2

(2π)p/2
√

π

[(
2eĪo

I

)p+1/2(
δ√

L(2p + 1)

)]I

Eθ0pI(50)

≤ C2δ
[
log

(
δ−1)]p+1/2 ∑

I

(C1δ[log(δ−1)]p+1/2)I−1

I I (p+1/2)+(p+1)/2 Eθ0pI

≤ C3δ
[
log

(
δ−1)]p+1/2

,

with C1 = C1(K,α) = (4e/�)p+1/2

(L(2p+1))1/2 , C2 = C2(K,α) = C1e

π1/2(2π)p/2 , � = a(K) − α,

L = K
K+1 and C3 = C3(K,α). Let us evaluate C3. Since maxu>0(

c
u
)u = ec/e for
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c > 0,

C3 = C2 max
I≥1

(C1a)I−1

I I (p+1/2)
≤ C2

C1a

[
max
u>0

(b/u)u
]p+1/2 = C2

C1a
eb(p+1/2)/e,

where a = a(p) = max0≤δ≤1(δ[log(δ−1)]p+1/2) and b = (C1a)1/(p+1/2).
Step 6: The case e−�Īo/2 ≤ δ. Now consider the case e−�Īo/2 ≤ δ. Clearly,∑
I<κĪo

pI = P(I < κĪo|X). In view of this, (48) and (49),

Eθ0P
(‖θ − θ̃‖ ≤ δ
1/2(Īo)|X)
= Eθ0

∑
I

PI

(‖θ − θ̃‖2 ≤ δ2
(Īo)|X)
pI

≤ ∑
I≥κĪo

eI−p+1
2

(2π)
p
2
√

π

[(
2eĪo

I

)p+ 1
2
(

δ√
L(2p + 1)

)]I

Eθ0pI

+ Eθ0P(I < κĪo|X)

≤ C4δ
∑
I

[(2e
κ )p+ 1

2 δ√
L(2p+1)

]I−1

I (p+1)/2 Eθ0pI + e−�Īo/2

Cα

≤ (
C4 + C−1

α

)
δ

if e−�Īo/2 ≤ δ and (2e
κ )p+ 1

2 δ√
L(2p+1)

≤ 1. Here, C4 = e

(2π)
p
2
√

πL(2p+1)
(2e
κ )p+ 1

2 .

Step 7: Finalizing the proof of Theorem 3. The last relation holds if e−�Īo/2 ≤
δ ≤ √

L(2p + 1)( κ
2e

)p+1/2 =
√

K(2p+1)
K+1 ( κ

2e
)p+1/2 = δ̄sb and the relation (50) holds

if e−�Īo/2 > δ. Combining these two relations concludes the proof of the theorem:
for 0 < δ ≤ (1 ∧ δ̄sb) = δsb,

Eθ0P
(‖θ − θ̃‖ ≤ δ
1/2(Īo)|X) ≤ max

{
C3,C4 + C−1

α

}
δ
[
log

(
δ−1)]p+ 1

2 .

5.4. Proof of Theorem 4. First, we bound the coverage probability of the con-
fidence ball (20). Corollary 1 yields that for any δ ∈ (0, δeb] with δeb = δeb(τ ) =
(1 + τ)−1/2δsb,

sup
θ0∈�eb(τ )

Eθ0P
(‖θ − θ̂‖ ≤ δr(θ0)|X) ≤ Cebδ

[
log

(
δ−1)]p+1/2

,(51)

where Ceb = Csb
√

1 + τ , and δsb and Csb are some absolute constants (since
K,α,p are fixed) from Theorem 3. By using the Markov inequality, (19) with
κ = 1

2 and Theorem 2, we obtain

Pθ0

(
θ0 /∈ B(θ̂,Mr̂)

)
≤ Pθ0

(‖θ0 − θ̂‖ > Mr̂, r̂ ≥ δr(θ0)
) + Pθ0

(
r̂ < δr(θ0)

)
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≤ Pθ0

(‖θ0 − θ̂‖ > Mδr(θ0)
) + Pθ0

(
P
(‖θ − θ̂‖ ≤ δr(θ0)|X) ≥ 1

2

)

≤ Cest

M2δ2 + 2Eθ0P
(‖θ − θ̂‖ ≤ δr(θ0)|X)

.

From the last relation and (51), it follows that, for any M > 0, δ ∈ (0, δeb],

sup
θ0∈�eb(τ )

Pθ0

(
θ0 /∈ B(θ̂,Mr̂)

) ≤ Cest

M2δ2 + 2Cebδ
[
log

(
δ−1)]p+1/2

.(52)

Let M1 = M1(τ ) � δ
−3/2
eb . For any M ≥ M1, take δ = M−2/3 in (52) to get

sup
θ0∈�eb(τ )

Pθ0

(
θ0 /∈ B(θ̂,Mr̂)

) ≤ Cest + 2Ceb(
2
3 logM)p+1/2

M2/3 � ϕ1(M).

The function ϕ1(M) is decreasing to zero for M ≥ M2, with some M2 > 0. Then
for all M ≥ M0 = M0(τ ) � M1 ∨ M2,

sup
θ0∈�eb(τ )

Pθ0

(
θ0 /∈ B(θ̂,Mr̂)

) ≤ ϕ1(M).(53)

Next, we verify the size property. By using the (conditional) Markov inequality,
(19), Theorems 1 and 2, we derive that, for any θ0 ∈ �2,

Pθ0

(
r̂ ≥ cr(θ0)

)
≤ Pθ0

(
P
(‖θ − θ̂‖ ≤ cr(θ0)|X) ≤ 1

2

)

= Pθ0

(
P
(‖θ − θ̂‖ > cr(θ0)|X)

> γ
) ≤ 2Eθ0

(
P
(‖θ − θ̂‖ > cr(θ0)|X))

≤ 2Eθ0

[
P
(
‖θ − θ0‖ ≥ cr(θ0)

2

∣∣∣X)]
+ 2Eθ0

[
P
(
‖θ0 − θ̂‖ ≥ cr(θ0)

2

∣∣∣X)]

≤ 8Cor

c2 + 8Eθ0‖θ0 − θ̂‖2

c2r2(θ0)
≤ 8(Cor + Cest)

c2 � ϕ2(c).

Thus,

sup
θ0∈�2

Pθ0

(
r̂ ≥ cr(θ0)

) ≤ ϕ2(c).(54)

The proof is complete as we established (53) and (54).

SUPPLEMENTARY MATERIAL

Supplement to “On coverage and local radial rates of credible sets” (DOI:
10.1214/16-AOS1477SUPP; .pdf). The elaboration on some points and some
background information related to the paper are provided in the supplement [3].

http://dx.doi.org/10.1214/16-AOS1477SUPP
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