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TESTS FOR HIGH-DIMENSIONAL DATA BASED ON MEANS,
SPATIAL SIGNS AND SPATIAL RANKS

BY ANIRVAN CHAKRABORTY AND PROBAL CHAUDHURI

Indian Statistical Institute

Tests based on mean vectors and spatial signs and ranks for a zero mean
in one-sample problems and for the equality of means in two-sample prob-
lems have been studied in the recent literature for high-dimensional data with
the dimension larger than the sample size. For the above testing problems, we
show that under suitable sequences of alternatives, the powers of the mean-
based tests and the tests based on spatial signs and ranks tend to be same as
the data dimension tends to infinity for any sample size when the coordinate
variables satisfy appropriate mixing conditions. Further, their limiting pow-
ers do not depend on the heaviness of the tails of the distributions. This is
in striking contrast to the asymptotic results obtained in the classical multi-
variate setting. On the other hand, we show that in the presence of stronger
dependence among the coordinate variables, the spatial-sign- and rank-based
tests for high-dimensional data can be asymptotically more powerful than the
mean-based tests if, in addition to the data dimension, the sample size also
tends to infinity. The sizes of some mean-based tests for high-dimensional
data studied in the recent literature are observed to be significantly different
from their nominal levels. This is due to the inadequacy of the asymptotic ap-
proximations used for the distributions of those test statistics. However, our
asymptotic approximations for the tests based on spatial signs and ranks are
observed to work well when the tests are applied on a variety of simulated
and real datasets.

1. Introduction. Let X = μ1 + V and Y = μ2 + W be independent ran-
dom variables with E(V ) = E(W) = 0. Tests based on sample means like the
t-test for testing the one-sample and the two-sample hypotheses H0 : μ1 = 0 and
H0 : μ1 = μ2, respectively, assume that V and W have Gaussian distributions.
Nonparametric competitors of the t-test for the same hypotheses that are based on
signs and ranks do not require the assumption of Gaussianity and can be carried out
if V and W are assumed to have only symmetric distributions. These nonparamet-
ric tests have the distribution-free property and they are asymptotically more effi-
cient than the mean-based tests for non-Gaussian distributions having heavy tails.
Although various extensions of these nonparametric tests have been proposed for
multivariate data [see, e.g., Puri and Sen (1971), Oja (2010) and Hettmansperger
and McKean (2011)], they do not have the distribution-free property in general
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and they are often implemented using their permutation distributions. However,
like their univariate counterparts, they are usually asymptotically more efficient
than the mean-based Hotelling’s T 2 test for multivariate non-Gaussian distribu-
tions with heavy tails [see Choi and Marden (1997), Möttönen, Oja and Tienari
(1997), Marden (1999) and Oja (2010)].

For high-dimensional data, where the data dimension is larger than the sample
size, Hotelling’s T 2 test is not applicable due to the singularity of the sample dis-
persion matrix. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be i.i.d. copies of indepen-
dent random vectors X and Y in Rd with μ1 = E(X) and μ2 = E(Y). For testing
H0 : μ1 = μ2 against the alternative HA : μ1 �= μ2 for two high-dimensional ob-
servations X and Y, Bai and Saranadasa (1996) proposed a test based on ‖X−Y‖2,
where X and Y are the sample means of the two samples. Chen and Qin (2010)
proposed a test statistic after removing the terms

∑m
i=1 ‖Xi‖2 and

∑n
j=1 ‖Yj‖2

appearing in the expansion of ‖X−Y‖2, which makes the resulting statistic an un-
biased estimator of ‖E(X − Y)‖2. The one-sample and the two-sample statistics
of Chen and Qin (2010) based on sample means are

T
(1)
CQ = 1

(m)2

m∑
i1,i2=1,

i1 �=i2

X′
i1

Xi2 and(1.1)

T
(2)
CQ = 1

(m)2(n)2

m∑
i1,i2=1,

i1 �=i2

n∑
j1,j2=1,

j1 �=j2

(Xi1 − Yj1)
′(Xi2 − Yj2),(1.2)

respectively, where (p)q = p(p − 1) · · · (p − q + 1) for 1 ≤ q < p.
Multivariate spatial-sign- and rank-based tests [see, e.g., Möttönen and Oja

(1995), Möttönen, Oja and Tienari (1997), Choi and Marden (1997), Marden
(1999) and Oja (2010)] also involve inverses of dispersion matrices computed from
the sample which become singular when the data dimension exceeds the sample
size. Wang, Peng and Li (2015) proposed a one-sample test of the mean vector
based on spatial signs given by

TS = 1

(m)2

m∑
i1,i2=1,

i1 �=i2

S(Xi1)
′S(Xi2),

where S(x) = x/‖x‖ denotes the spatial sign of any x ∈ Rd . A natural high-
dimensional version of the one-sample spatial signed rank statistic can be defined
using the idea of Wang, Peng and Li (2015), and it is given by

TSR = 1

(m)4

∑
i1,i2,i3,i4
all distinct

S(Xi1 + Xi2)
′S(Xi3 + Xi4).
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Similarly, a two-sample spatial rank statistic can be defined as

TWMW = 1

(m)2(n)2

m∑
i1,i2=1,

i1 �=i2

n∑
j1,j2=1,

j1 �=j2

S(Yj1 − Xi1)
′S(Yj2 − Xi2).

Note that TS , TSR and TWMW are unbiased estimators of ‖E{S(X1)}‖2, ‖E{S(X1 +
X2)}‖2 and ‖E{S(X − Y)}‖2, respectively.

In this article, we study the behaviours of different one-sample and two-sample
tests for mean(s) based on sample means, spatial signs and ranks under various
probability models for high-dimensional data. In Section 2, we prove that under
appropriate mixing conditions on the coordinate variables and suitable sequences
of alternatives, the limiting powers of the spatial rank-based test and the mean-
based tests are the same as the data dimension tends to infinity. This is true for
all sample sizes and irrespective of the heaviness of the tails of the underlying
distributions. Analogous results hold for the one-sample spatial-sign- and signed-
rank-based tests and the mean-based tests, and those are presented in Section 2.1.
These results are in striking contrast to the asymptotic results obtained in the tra-
ditional multivariate setup, where the data dimension is fixed and the sample sizes
tend to infinity. In such a setup, the multivariate spatial-sign- and rank-based tests
are asymptotically less efficient than Hotelling’s T 2 test for Gaussian distribu-
tions, and they are more efficient than the T 2 test for non-Gaussian distributions
with heavy tails [see Möttönen, Oja and Tienari (1997), Choi and Marden (1997),
Marden (1999) and Oja (2010)]. Recall that for multivariate Gaussian data, the
Hotelling’s T 2 test is actually the likelihood ratio test and the most powerful invari-
ant test. In Section 3, we prove that in the presence of some stronger dependence
among the coordinate variables, the limiting powers of the spatial-sign- and rank-
based tests can be more than those of their competitors based on sample means
if we first let the data dimension and then the sample size tend to infinity. Thus,
it follows from Sections 2 and 3 that for a large class of well-known and widely
used models for high-dimensional data, the tests based on spatial signs and ranks
are either asymptotically as powerful or more powerful compared to some of the
mean-based tests studied in the literature. In Section 4, we demonstrate the fi-
nite sample performances of these tests using some real datasets. It is found that
the above mentioned superiority of the spatial-sign- and rank-based tests over the
mean-based tests also holds for those datasets. In Section 5, we discuss the perfor-
mances of these tests in comparison with some other mean-based tests for high-
dimensional data available in the recent literature. It is found that the sizes of some
of the mean-based tests are significantly different from their nominal sizes due to
the inadequacy of the asymptotic approximations used for the distributions of the
corresponding test statistics. The proofs of all the theorems are presented in the
Appendix.
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2. Asymptotic behaviours of different tests under ρ-mixing. Let X =
(X1,X2, . . .) be an infinite sequence of random variables defined over a proba-
bility space (�,A,P ).

DEFINITION 2.1 [Kolmogorov and Rozanov (1960)]. A sequence X is said to
be ρ-mixing if ρ(r) = supk≥1 sup{|Corr(f, g)| : f ∈ Fk

1 , g ∈ F∞
r+k} converges to

zero as r → ∞. Here, ρ(·) is called the ρ-mixing coefficient of X and Fb
a denotes

the σ -field generated by measurable square integrable functions of (Xs : a ≤ s ≤
b, s ∈N) for 1 ≤ a ≤ b ≤ ∞.

We refer to Lin and Lu (1996) and Bradley (2005) for further details about
ρ-mixing sequences. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be i.i.d. copies of
independent random vectors X and Y in Rd . We assume the following conditions.

(C1) X = μ1 + V and Y = μ2 + W for some μ1,μ2 ∈ Rd , where V and
W are vectors formed by the first d coordinates of mutually independent zero
mean, strictly stationary, and ρ-mixing sequences V = (V1,V2, . . .) and W =
(W1,W2, . . .) satisfying E(V 4

1 ) < ∞ and E(W 4
1 ) < ∞.

(C2) The ρ-mixing coefficients ρ1(·) and ρ2(·) of V and W satisfy∑∞
k=1 ρ1(2k) < ∞ and

∑∞
k=1 ρ2(2k) < ∞, respectively.

Let μ = μ2 − μ1, σ 2
1 = Var(X1) > 0, σ 2

2 = Var(Y1) > 0, �1 = Disp(X), and
�2 = Disp(Y), where X = (X1,X2, . . . ,Xd) and Y = (Y1, Y2, . . . , Yd).

(C3) ‖μ‖2/d1/2+ε → 0 for some ε > 0 and μ′(�1 + �2)μ = o(tr(�1 + �2)
2)

as d → ∞.

Examples of ρ-mixing sequences are m-dependent sequences, stationary
ARMA(p, q) processes with a white noise innovation process [see Lin and Lu
(1996), Theorem 1.1.2], and hidden Markov models whose underlying genera-
tor sequences are stationary, Gaussian and geometrically ergodic Markov chains
[see Bradley (2005), Theorem 3.7]. Stationary ARMA processes are well-known
models for time series data, and hidden Markov models are used in varied fields
like computational biology, econometrics, speech recognition, etc. [see Cappé,
Moulines and Rydén (2005) for an exposition]. For all of the above models,
condition (C2) holds. Condition (C3) is trivially true under the null hypothe-
sis H0 : μ = 0. Note that when �1 and �2 are identity matrices, the second
part of condition (C3) is automatically true if its first part holds. In general,
the second part of condition (C3) holds if in addition to the first part, we have
λ−1

d

∑d
k=1 λ2

k = O(d1/2+ε) as d → ∞ for some ε > 0, where λ1 < λ2 < · · · < λd

are the eigenvalues of �1 + �2.
Chen and Qin (2010) worked in a setup where X and Y are affine transfor-

mations of certain zero mean random vectors whose coordinates are “pseudo-
independent” [see (3.2) in page 811 in that paper]. The distributional assumptions
in (C1) and (C2) cover many distributions that satisfy the model assumptions stated
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in (3.1) in Chen and Qin (2010), page 811, for example, distributions with inde-
pendent coordinates, moving average processes and more generally m-dependent
sequences as well as stationary autoregressive processes. Fan and Lin (1998) con-
sidered the problem of testing equality of two mean curves for functional data,
and they modelled the data as a finite-dimensional one, where the data dimen-
sion is larger than the sample size. A class of probability models considered by
them are stationary linear Gaussian processes, many of which satisfy the model
assumptions considered above. Srivastava, Katayama and Kano (2013) studied
a two-sample test based on the sum of squares of the coordinatewise t-statistics
and studied its properties assuming multivariate Gaussianity of the data, which in-
cludes many distributions satisfying Assumptions (C1) and (C2). A closely related
test was proposed by Gregory et al. (2015), and they studied its properties under
α-mixing [see Lin and Lu (1996)] conditions on the data, which is weaker than the
ρ-mixing setup considered above. However, these authors required the existence
of sixteenth-order moments. Cai, Liu and Xia (2014) proposed a mean-based test
for detecting sparse alternatives and studied its properties primarily under the as-
sumption of multivariate Gaussianity of the data. Feng et al. (2015) proposed a
modification of the test in Srivastava, Katayama and Kano (2013) and they worked
in a setup similar to that considered by Chen and Qin (2010). Thus, as in the case
of the latter paper, many probability distributions included in the setup considered
by Feng et al. (2015) satisfy the ρ-mixing assumptions described here. Wei et al.
(2016) studied the properties of their test under spherical Gaussian distributions,
which are special cases of the ρ-mixing models considered in this paper.

We now state our main results. To proceed further, define

(2.1) 	1 = 2 tr
(
�2

1
)
/(m)2 + 2 tr

(
�2

2
)
/(n)2 + 4 tr(�1�2)/(mn).

THEOREM 2.1. Suppose that conditions (C1)–(C3) are satisfied. Then each
of [d(σ 2

1 + σ 2
2 )TWMW − ‖μ‖2]/	

1/2
1 and (T

(2)
CQ − ‖μ‖2)/	

1/2
1 converges weakly

to a standard Gaussian variable as d → ∞ for every fixed m,n ≥ 2.

When the null hypothesis H0 : μ = 0 is true, the above theorem yields the
asymptotic null distributions of TWMW and T

(2)
CQ as d → ∞ while m and n are

held fixed.
Chen and Qin (2010) obtained the asymptotic distribution of T

(2)
CQ under a differ-

ent set of conditions and when both d and n tend to infinity. However, the asymp-
totic distribution derived by them is the same as that obtained in Theorem 2.1.

When the alternative hypothesis HA : μ �= 0 is true, the next theorem compares
the asymptotic powers of the tests based on TWMW and T

(2)
CQ for high-dimensional

data. Let βTWMW(μ) and β
T

(2)
CQ

(μ) be the powers of these two tests at a given level

of significance.
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THEOREM 2.2. Suppose that the conditions (C1)–(C3) hold and that
limd→∞ ‖μ‖2/	

1/2
1 = c, for some c ∈ [0,∞]. Then limd→∞ βTWMW(μ) =

limd→∞ β
T

(2)
CQ

(μ) = β for every fixed m,n ≥ 2, where β = α, β = 1, or β ∈ (α,1)

according as c = 0, c = ∞, or c ∈ (0,∞), respectively. Here, α is the level of
significance of the test.

The above theorem implies that the asymptotic powers of the mean-based and
the spatial-rank-based tests are the same as d → ∞ for each fixed m,n ≥ 2. If �1
and �2 equal the d × d identity matrix, and d is large, we get different powers
of the tests based on TWMW and T

(2)
CQ according as ‖μ‖/d1/4 converges to zero,

infinity or some c ∈ (0,∞).

2.1. Empirical study using some ρ-mixing models. For implementing the tests
based on TWMW and T

(2)
CQ under the ρ-mixing setup, we can use their limiting null

distributions obtained from Theorem 2.1 after plugging in the following estimators
of the parameters involved.

	̂1 = 2

(m)2
t̂r

(
�2

1

) + 2

(n)2
t̂r

(
�2

2

) + 4

mn
̂tr(�1�2),

where

t̂r
(
�2

1

) = 1

4(m)4

∑
i1,i2,i3,i4
all distinct

[
(Xi1 − Xi2)

′(Xi3 − Xi4)
]2

,

t̂r
(
�2

2

) = 1

4(n)4

∑
j1,j2,j3,j4
all distinct

[
(Yj1 − Yj2)

′(Yj3 − Yj4)
]2 and

̂tr(�1�2) = 1

4(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Xi2)

′(Yj1 − Yj2)
]2

.

Further, we define σ̂ 2
1 = [d(m − 1)]−1 ∑d

k=1
∑m

i=1(Xik − Xk)
2, where Xk =

d−1 ∑m
i=1 Xik with Xi = (Xi1,Xi2, . . . ,Xid), 1 ≤ i ≤ m and σ̂ 2

2 = [d(n −
1)]−1 ∑d

k=1
∑n

j=1(Yjk − Y k)
2, where Y k = d−1 ∑n

j=1 Yjk with Yj = (Yj1, Yj2,
. . . , Yjd), 1 ≤ j ≤ n. Note that 	̂1 is invariant under location transformations and
is also computationally inexpensive unlike the estimator proposed by Chen and
Qin (2010), page 815. Further, it is a U -statistic for estimating 	1 and is an unbi-
ased estimator. Moreover, for all simulated datasets and real datasets considered
later, the empirical sizes and powers of the test based on T

(2)
CQ implemented as

above are similar to those of the original two-sample test in Chen and Qin (2010).
To compare the performances of the tests based on TWMW and T

(2)
CQ , we have

considered the following models. Let X = (X1,X2, . . . ,Xd) be such that the Xk’s
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FIG. 1. Powers of the tests at nominal 5% level based on TWMW (- + - curves) and T
(2)
CQ (- ◦ -

curves) for the AR(1) model with Gaussian innovation (left panel) and t (5) innovation (right panel).
The two power curves are overlaid on each other in both the plots.

are consecutive random observations from a stationary AR(1) model with cor-
relation 0.7, i.e., Xk = 0.7Xk−1 + εk . We have considered both Gaussian and
t (5) distributions for the innovation process {εk}. For simulating from the dis-
tribution of X, we used the in-built code “arima.sim” in the R software. It gen-
erates a stationary time series by allowing the process to evolve over a suffi-
ciently large number of time points after the initialization with random observa-
tions from the innovation distribution. Let Y = μ + X̃, where X̃ has the same
distribution as that of X, and μ = (c,0,0, . . . ,0) with c = 1.5,3,4.5,6,7.5 for
d = 100,200,400,800,1600, respectively. The sample sizes chosen are m = n =
20, and the sizes and the powers of the tests based on TWMW and T

(2)
CQ are averaged

over 1000 Monte Carlo simulations. We found that the sizes of the tests are not
significantly different from the nominal 5% level for both of the models. It is seen
from Figure 1 that the powers of these two tests are similar for all data dimensions
considered under both of the models. The power curves are so close that they are
overlaid on each other.

2.2. Asymptotic behaviours of one-sample tests under ρ-mixing. Let X1,
X2, . . . ,Xn be i.i.d. copies of a random vector X ∈ Rd . The following theorem
gives the asymptotic distributions of TS , TSR and T

(1)
CQ and compares their asymp-

totic powers when the data dimension is large. Denote as βTS
(μ), βTSR(μ) and

β
T

(1)
CQ

(μ) the powers of the tests based on TS , TSR and T
(1)
CQ at a given level of sig-

nificance when the alternative hypothesis HA : μ �= 0 is true. Let us assume the
following condition, which is the one-sample version of condition (C3).

(C4) ‖μ‖2/d1/2+ε → 0 for some ε > 0 and μ′�μ = o(tr(�2)) as d → ∞,
where � = Disp(X).

Define σ 2 = Var(X1), where X = (X1,X2, . . . ,Xd), and define

(2.2) 	2 = 2 tr
(
�2)

/(n)2.
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THEOREM 2.3. Let X = μ + V, where V is the vector formed by the first d

coordinates of the infinite sequence V satisfying conditions (C1) and (C2) and μ

satisfies condition (C4).

(a) Each of (dσ 2TS − ‖μ‖2)/	
1/2
2 , (dσ 2TSR − 2‖μ‖2)/(2	

1/2
2 ) and (T

(1)
CQ −

‖μ‖2)/	
1/2
2 converges weakly to a standard Gaussian variable as d → ∞ for

every fixed n ≥ 4.
(b) Assume limd→∞ ‖μ‖2/	

1/2
2 = c for some c ∈ [0,∞]. Then

limd→∞ βTS
(μ) = limd→∞ βTSR(μ) = limd→∞ β

T
(1)
CQ

(μ) = β for every fixed n ≥
4, where β = α or β = 1 or β ∈ (α,1) according as c = 0 or c = ∞ or c ∈ (0,∞).

We get the limiting null distributions of TS , TSR and T
(1)

CQ when μ = 0 in the
above theorem. When both the data dimension and the sample size tend to infinity,
Wang, Peng and Li (2015) proved that the test based on TS is asymptotically (when
both n,d → ∞) as powerful as the test based on T

(1)
CQ for spherical Gaussian dis-

tributions, which is a distribution included in our ρ-mixing model. The equality of
the asymptotic powers of the tests based on TS and T

(1)
CQ stated in part (b) of our

Theorem 2.3 holds for any sample size and for many nonspherical distributions.

REMARK 2.1. In both the one- and the two-sample problems, under the ρ-
mixing model, the equality of the limiting powers of the tests based on sample
means and the tests based on spatial signs and ranks holds when the data dimension
is large. This is true for any sample size and irrespective of whether the coordinate
variables have Gaussian or some other heavy tailed distributions.

3. Asymptotic behaviours of different tests under stronger dependence.
We now consider another class of probability models for high-dimensional data
under which there is stronger dependence among the coordinate variables than
what we have considered in the previous section.

DEFINITION 3.1. Consider an infinite sequence X defined over a probability
space (�,A,P ). We say that X is a randomly scaled ρ-mixing sequence (RSRM
sequence, say) if there exist a zero mean ρ-mixing sequence R and a positive
nondegenerate random variable U defined on (�,A,P ) such that X = R/U .

The RSRM property is satisfied by many important probability models for high-
dimensional data. It follows from Theorem 1.31 in Kallenberg (2005) that any
rotatable or spherically symmetric sequence X , that is, a sequence for which all
finite-dimensional marginals are spherically symmetric, can be viewed as a RSRM
sequence. Here, R can be taken as a sequence of i.i.d. standard Gaussian variables
and U as a nonnegative random variable independent of R. An example of a ro-
tatable sequence is the infinite sequence of random variables associated with the
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multivariate spherical t distribution. More generally, if every finite dimensional
marginal of a sequence X is elliptically symmetric, then X = R/U with proba-
bility one, where R is a sequence of zero-mean Gaussian variables, and U is a
nonnegative random variable independent of R. In this case, X has the RSRM
property if the Gaussian sequence R is a ρ-mixing sequence. Let us mention here
that Wang, Peng and Li (2015) primarily worked under the setup of elliptically
symmetric models, and from the above discussion it follows that this class in-
cludes many distributions that have the RSRM property. Cai, Liu and Xia (2014)
also considered different classes of non-Gaussian models, and many of them have
the RSRM property.

For deriving the asymptotic distributions of TWMW and T
(2)

CQ under the RSRM
model, we assume the following.

(C5) X = μ1 + Ṽ and Y = μ2 + W̃ for some μ1,μ2 ∈ Rd , where Ṽ and W̃
are vectors formed by the first d coordinates of RSRM sequences Ṽ and W̃ . Let
Ṽ = V/P and W̃ = W/Q, where V and W are independent ρ-mixing sequences
satisfying (C1) and (C2) and P and Q are independent positive random variables.

As earlier, let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be i.i.d. copies of indepen-
dent random vectors X and Y in Rd . Then we can write Xi = μ1 + Vi/Pi ,
1 ≤ i ≤ m, and Yj = μ2 + Wj /Qj , 1 ≤ j ≤ n.

THEOREM 3.1. Assume that (C5) holds and μ = μ2 − μ1 satisfies condition
(C3) with �1 and �2 in that condition replaced by Disp(V) and Disp(W), respec-
tively.

(a) There exist random variables S1, S2 and S3 that are functions of the Pi ’s
and the Qj ’s such that each of (dTWMW −‖μ‖2S1)/S

1/2
2 and (T

(2)
CQ −‖μ‖2)/S

1/2
3

converges weakly to a standard Gaussian variable as d → ∞ for every m,n ≥ 2.
Consequently, for every fixed m,n ≥ 2, the distributions of TWMW and T

(2)
CQ can be

approximated by location and scale mixtures of Gaussian distributions when the
data dimension is large.

(b) Assume further that all of E(P ),E(Q),E(P −2) and E(Q−2) are finite.
Suppose that ‖μ‖2/d1/2 tends to a finite nonnegative limit b2

m,n as d → ∞, where
b2
m,n = o((m+n)−1/2) and m/(m+n) → γ ∈ (0,1) as m,n → ∞. Then there ex-

ist ψ1,ψ2 ∈R such that limm,n→∞ limd→∞ P {(dTWMW −‖μ‖2ψ1)/ψ
1/2
2 ≤ x} =

limm,n→∞ limd→∞ P {(T (2)
CQ − ‖μ‖2)/	

1/2
1 ≤ x} = �(x) for all x ∈R. Here, � is

the cumulative distribution function of standard Gaussian distribution, and 	1 is
as defined in Theorem 2.1.

Unlike the setup considered in Section 2, where the coordinate variables are
ρ-mixing, here the distributions of TWMW and T

(2)
CQ cannot be approximated by

Gaussian distributions when m and n are small even if d is large. However, if
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the sample sizes are also large in addition to the data dimension, we can approxi-
mate the distributions of these statistics by Gaussian distributions. It is easy to see
that many probability models with the RSRM property do not satisfy the model
assumptions in (3.1) in Chen and Qin (2010). Nevertheless, the asymptotic distri-
bution of T

(2)
CQ obtained from part (b) of Theorem 3.1 coincides with that obtained

in Theorem 1 in Chen and Qin (2010). Further, it also coincides with the Gaussian
distribution obtained under the ρ-mixing model in Theorem 2.1.

Let βTWMW(μ) and β
T

(2)
CQ

(μ) denote the powers of the tests based on TWMW and

T
(2)
CQ under the alternative hypothesis HA : μ �= 0 at a given level of significance.

The next theorem gives a comparison of the asymptotic powers of these tests.

THEOREM 3.2. Assume that Y has the same distribution as X + μ. Suppose
that all the conditions assumed in Theorem 3.1 hold. Also, assume
that limm,n→∞ limd→∞ ‖μ‖2/	

1/2
1 = c for some c ∈ (0,∞). Then

limm,n→∞ limd→∞ βTWMW(μ) > limm,n→∞ limd→∞ β
T

(2)
CQ

(μ).

If limm,n→∞ limd→∞ ‖μ‖2/	
1/2
1 equals zero (resp., infinity), then the asymp-

totic powers of the tests based on TWMW and T
(2)
CQ in the setup of Theorem 3.2

coincide, and they are both equal to the nominal level (resp., equal to one). The-
orem 3.2 shows that for appropriate sequences of alternatives, the test based on
TWMW is more powerful than the test based on T

(2)
CQ for a large class of distribu-

tions including many spherical non-Gaussian distributions when the data dimen-
sion as well as the sample sizes are large. Note that if X and Y have spherically
symmetric distributions, then the conditions on μ in Theorems 3.1 and 3.2 hold if
limm,n→∞ limd→∞(m+n)‖μ‖2/d1/2 = c′ ∈ (0,∞) and limm,n→∞ m/(m+n) =
γ ∈ (0,1).

3.1. Empirical study using some RSRM models. The limiting null distribu-
tion of TWMW obtainable from Theorem 3.1 cannot be used to implement this
test because the parameters appearing in its limiting distribution cannot be esti-
mated from the data. To compare the performances of the tests based on TWMW

and T
(2)

CQ for data from the spherical t (5) distribution, we implemented these tests
using their permutation distributions. Such an implementation has also been used
by Wei et al. (2016) for their test. Though it is not possible to implement the test
based on TWMW using its true asymptotic distribution in practice, we can do it for a
simulation study, where the distributions and the associated parameters are known.
On the other hand, since the true asymptotic null distribution of T

(2)
CQ for RSRM

models coincides with its asymptotic null distribution in the ρ-mixing setup, the
implementation of this test can be done in the same way as described in Section 2.1.
We have chosen m = n = 20 and μ = (c,0,0, . . . ,0) with c = 1,1.5,2,2.5,3 for
d = 100,200,400,800,1600, respectively. Figure 2 shows that the sizes and the
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FIG. 2. Empirical sizes and powers of the tests based on TWMW (+) and T
(2)
CQ (◦) at nominal 5%

level for the spherical t (5) distribution using the permutation implementation (solid curves) and the
true implementation (dashed curves).

powers of these tests obtained by using the permutation implementation are not
significantly different from the sizes and the powers of the tests implemented us-
ing their true asymptotic distributions. The permutation distributions of TWMW and
T

(2)
CQ adequately approximate their true distributions. Also, the test based on TWMW

significantly outperforms the test based on T
(2)
CQ , which conforms with the result in

Theorem 3.2.

3.2. Asymptotic behaviours of one-sample tests under stronger dependence.
We now study the asymptotic distributions of the one-sample tests considered in
Section 2.1 under the RSRM model. Let X1,X2, . . . ,Xn be i.i.d. copies of a ran-
dom vector X ∈ Rd . The following theorem summarizes the asymptotic distribu-
tions of TS , TSR and T

(1)
CQ and yields their asymptotic powers. As earlier, we can

write Xi = μ + Vi/Pi , 1 ≤ i ≤ n. Also, βTS
(μ), βTSR(μ) and β

T
(1)
CQ

(μ) denote the

powers of the tests based on TS , TSR and T
(1)

CQ at a given level of significance when
the alternative hypothesis HA : μ �= 0 is true.

THEOREM 3.3. Let X = μ + Ṽ, where Ṽ is the vector formed by the first d

coordinates of the sequence Ṽ satisfying condition (C5), and μ satisfies condition
(C4) with � in that condition replaced by Disp(V).

(a) There exist 	3 > 0 and random variables Zk , 1 ≤ k ≤ 4, which are functions
of the Pi ’s, such that each of (dTS − ‖μ‖2Z1)/	

1/2
3 , (dTSR − 2‖μ‖2Z2)/(2Z

1/2
3 )

and (T
(1)

CQ − ‖μ‖2)/Z
1/2
4 converges weakly to a standard Gaussian variable as

d → ∞ for each n ≥ 4. Consequently, for each fixed n ≥ 4, the distributions of TS ,
TSR and T

(1)
CQ are given by location and scale mixtures of Gaussian distributions

when the data dimension is large.
(b) Also, assume that both E(P ) and E(P −2) are finite and ‖μ‖2/d1/2

tends to a finite nonnegative limit c2
n as d → ∞, where c2

n = o(n−1/2) as
n → ∞. There exist θ1, θ2, θ3 ∈ R such that limn→∞ limd→∞ P {(dσ 2TS −
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‖μ‖2θ1)/	
1/2
2 ≤ x} = limn→∞ limd→∞ P {(dσ 2TSR − 2‖μ‖2θ2)/(2θ

1/2
3 ) ≤ x} =

limn→∞ limd→∞ P {(T (1)
CQ − ‖μ‖2)/	

1/2
2 ≤ x} = �(x) for all x ∈ R. Here, σ 2 =

Var(X1), � denotes the cumulative distribution function of a standard Gaussian
distribution, and 	2 is as defined in Theorem 2.3.

(c) Further, if we let limn→∞ limd→∞ ‖μ‖2/	
1/2
2 = c, where c ∈ (0,∞),

we have limn→∞ limd→∞ βTS
(μ) > limn→∞ limd→∞ β

T
(1)
CQ

(μ). We also have

limn→∞ limd→∞ βTSR(μ) > limn→∞ limd→∞ β
T

(1)
CQ

(μ).

It is seen from the proof of part (a) of Theorem 3.3 that if E(P −2) < ∞, we
have 	3 = σ−4	2. In this case, we get the same limiting null distributions of TS

from parts (a) and (b), that is, its limiting null distribution is Gaussian irrespective
of whether the sample size tends to infinity or not. Further, this limiting null dis-
tribution under the RSRM model is the same as that obtained under the ρ-mixing
model in part (a) of Theorem 3.1. This is because the spatial sign S(x) = x/‖x‖,
and thus TS , remain invariant under homogeneous positive scale transformations
of the coordinate variables.

Note that the asymptotic distribution of T
(1)
CQ is the same as that obtained in

Theorem 3.2 under the ρ-mixing setup and it coincides with the asymptotic distri-
bution of T

(1)
CQ obtained by Chen and Qin (2010). For the spherical t distribution,

which is a distribution included in our RSRM models, Wang, Peng and Li (2015)
derived the asymptotic distribution of T

(1)
CQ and proved that the test based on TS is

asymptotically more powerful than the former test. In the setup of Theorem 3.3,
if limn→∞ limd→∞ ‖μ‖2/	

1/2
2 equals zero (resp., infinity), then the asymptotic

powers of the tests based on TS , TSR and T
(1)

CQ coincide and they are all equal to the
nominal level (resp., equal to one).

REMARK 3.1. Suppose that in a two-sample problem, Y is distributed as
X + μ, where X is the vector formed by the first d coordinates of a zero
mean spherically symmetric or rotatable infinite sequence X . Then it follows
from Theorem 1.31 in Kallenberg (2005) that X = V/P , where V is a stan-
dard spherical Gaussian vector and P is a nonnegative random variable indepen-
dent of V. Suppose that limm,n→∞ limd→∞(m + n)‖μ‖2/d1/2 = c′ ∈ (0,∞) and
limm,n→∞ m/(m+n) = γ ∈ (0,1). Also, assume that both E(P ) and E(P −2) are
finite and positive. Then it follows from Theorems 2.2 and 3.2 that the test based
on TWMW is asymptotically at least as powerful as the test based on T

(2)
CQ if we first

let the dimension and then the sample sizes tend to infinity. Further, their asymp-
totic powers are equal if and only if X has a spherical Gaussian distribution. In
fact, in this case, their asymptotic powers are the same for any m,n ≥ 2 if only the
dimension tends to infinity.
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REMARK 3.2. Suppose that in a one-sample problem, we have X = μ + Ṽ,
where Ṽ is the vector formed by the first d coordinates of a spherically symmetric
infinite sequence. Assume that limn→∞ limd→∞ n‖μ‖2/d1/2 = c′ ∈ (0,∞). Also,
let both E(P ) and E(P −2) be finite. Then it follows from Theorems 2.3 and 3.3
that the tests based on TS and TSR are asymptotically at least as powerful as the
test based on T

(1)
CQ if we first let the dimension and then the sample size tend to

infinity. Further, the asymptotic powers of all three tests are equal if and only if
the distribution of X is spherical Gaussian. In fact, in this case, their asymptotic
powers are the same for any n ≥ 4 if only the dimension tends to infinity.

4. Analysis of real data. In Sections 2 and 3, we observed that the spatial-
sign and rank-based tests are at least as powerful as the mean-based tests for a large
class of models. We now investigate whether such a phenomenon occurs when we
analyze real data. For that, we implement different tests on some real benchmark
datasets in order to see their performances. Two datasets are obtained from http:
//www.cs.ucr.edu/eamonn/time_series_data, and the first of them is the ECG Data,
which contains 69 normal ECG curves and 31 ECG curves of patients with a partic-
ular heart disease, and each curve is measured at 96 time points. The second data is
the Gun Data, which contains the readings along the horizontal axis of the centroid
of the right-hand during two action sequences, namely, gun-draw and gun-point
with 24 samples and 26 samples, respectively. Each action sequence is recorded at
150 time points. The third data is the Colon Data obtained from http://datam.i2r.a-
star.edu.sg/datasets/krbd/ColonTumor/ColonTumor.zip. This dataset contains the
expression levels of 2000 genes from 40 tumor tissue and 22 normal tissue. The
fourth data is the Sonar Data obtained from http://archive.ics.uci.edu/ml/datasets.
html, which contains sonar signals emitted from 111 metal cylinder samples and
97 rock samples, and each signal is recorded at 60 wavelengths.

The tests based on TWMW and T
(2)
CQ will be implemented first using the criti-

cal values as obtained in the ρ-mixing setup described in Section 2. Since we do
not know the underlying probability distributions for the real datasets, we also im-
plement them using the permutation distributions of these test statistics. Further,
unlike what we have done in our simulation studies, where the underlying prob-
ability distributions were known, we use the following subsampling technique to
generate random samples from a given real dataset to evaluate the sizes and the
powers of the tests. To estimate the sizes of the tests based on TWMW and T

(2)
CQ for

each data, we selected two random subsamples 1000 times from one class in that
data and computed the proportion of rejections for each test. The same procedure
is now repeated for the other class and the two values obtained for each test are
averaged. For evaluating the powers of these tests, we selected 1000 random sub-
samples each from the two classes and computed the proportions of rejections for
the tests. The size of each subsample is 20%, 40%, 40% and 20% of the original
sample size for the ECG Data, the Gun Data, the Colon Data and the Sonar Data,

http://www.cs.ucr.edu/eamonn/time_series_data
http://datam.i2r.a-star.edu.sg/datasets/krbd/ColonTumor/ColonTumor.zip
http://archive.ics.uci.edu/ml/datasets.html
http://www.cs.ucr.edu/eamonn/time_series_data
http://datam.i2r.a-star.edu.sg/datasets/krbd/ColonTumor/ColonTumor.zip
http://archive.ics.uci.edu/ml/datasets.html
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TABLE 1
Sizes and powers of the tests based on TWMW and T

(2)
CQ at nominal 5% level for some real data

Data −→ ECG Gun Colon Sonar

Size Power Size Power Size Power Size Power

Implementation as in the ρ-mixing setup
TWMW 0.052 0.593 0.052 0.501 0.056 0.747 0.036 0.507

T
(2)
CQ 0.063 0.601 0.058 0.500 0.063 0.641 0.058 0.432

Permutation implementation
TWMW 0.057 0.643 0.055 0.472 0.055 0.723 0.043 0.519

T
(2)
CQ 0.057 0.624 0.052 0.442 0.060 0.596 0.038 0.360

respectively. These choices are made to ensure that the resulting datasets remain
high-dimensional and that the powers of the tests are neither too close to the nom-
inal 5% level nor to one. For computing the permutation distributions of the test
statistics, we have used 500 random permutations of the two subsamples.

Table 1 shows that the sizes as well as the powers of the tests for the two im-
plementations are not significantly different. However, the permutation implemen-
tation required almost ten times more computing time. Moreover, the sizes of the
tests are close to the nominal 5% level for all four datasets. Further, the powers
of the tests based on TWMW and T

(2)
CQ are not significantly different for the ECG

data and the Gun data. However, the test based on TWMW is significantly more
powerful than the test based on T

(2)
CQ for the Colon data and the Sonar data. Hence,

the behaviours of the tests when applied to the real datasets are similar to their
behaviours in the simulation studies in Sections 2.1 and 3.1 despite the fact that
here we do not know whether the mixing or the RSRM models are valid. We are
not much concerned about the validity of these models for the real datasets. In
fact, there is some evidence that the ECG data and the Colon data may not satisfy
either of these models. This indicates that these models are only sufficient but not
necessary for the behaviours of the tests that we have observed in the asymptotic
analyses and the simulation studies in Sections 2 and 3.

5. Concluding remarks and discussion. We now consider the performances
of some other mean-based tests studied in the literature and discussed in Section 2
on some simulated datasets. We denote the test statistics associated with the tests
in Srivastava, Katayama and Kano (2013) and Gregory et al. (2015) by TSKK and
TGCBL, respectively. All the sizes and the powers referred to in this section are the
empirical sizes and the empirical powers for the different tests under the various
models. For the AR(1) models in Section 2.1, we found that the size of the test
based on TSKK increases with d and becomes significantly larger than the nominal
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5% level for d ≥ 400. Feng et al. (2015) proved that this test rejects the null hy-
pothesis with probability one as the dimension and the sample sizes tend to infinity
at a certain rate for a class of models which includes these AR(1) models. Under
the spherical t (5) model in Section 3.1, the size of the test based on TSKK is signif-
icantly less than the nominal level for all values of d considered and decreases to
zero as d increases. The size of the test based on TGCBL is significantly larger than
the nominal level for all values of d considered under the AR(1) models as well as
the spherical t (5) model. It seems that the estimates of the critical values for the
tests based on TSKK and TGCBL are adversely affected if the sample size is much
smaller than the dimension as in our simulation study. On the other hand, we found
that permutation implementations of these tests correct their sizes under all of the
above models. Even then, these tests are significantly less powerful than the test
based on TWMW (resp., T

(2)
CQ ) under all the above models [resp., AR(1) models],

but they outperform the test based on T
(2)

CQ under the spherical t (5) model. The
readers are referred to the Supplementary Material [Chakraborty and Chaudhuri
(2016)] for more details.

Cai, Liu and Xia (2014) showed that their test has better power than other tests
based on sums of squares of coordinatewise mean differences or coordinatewise
t-statistics when the mean shift has only a few nonzero coordinates. However, we
observed that this test becomes significantly less powerful than the tests based
on TWMW and T

(2)
CQ , when the mean shifts in the models considered in Sections 2.1

and 3.1 are distributed equally among all the coordinates. Moreover, the size of the
test in Cai, Liu and Xia (2014) increases with d and becomes significantly larger
than the nominal level for d ≥ 400 under all of the above models. It seems that the
asymptotic extreme value distribution of this statistic is not adequate if the data
dimension is much larger than the sample size. Since the test in Cai, Liu and Xia
(2014) involves a computationally intensive optimization involving sample disper-
sion matrices, we could not implement this test using the permutation approach.
The detailed results of the simulation study are provided in the Supplementary
Material [Chakraborty and Chaudhuri (2016)].

Multivariate Gaussian distributions with dispersion matrices of the form (1 −
β)Id + β1d1′

d for some β ∈ (0,1), where 1d denotes the d-dimensional vector
of one’s, are neither ρ-mixing nor have the RSRM property. Recently, Katayama
and Kano (2014) mentioned that for such probability models for high-dimensional
data, the size of the test based on T

(2)
CQ would be asymptotically incorrect. To

compare the performances of the tests based on TWMW and T
(2)
CQ for such mod-

els, we have chosen β = 0.7, m = n = 20 and used the permutation imple-
mentations of these tests. The mean shifts chosen are μ = (c,0,0, . . . ,0) with
c = 2.5,5,7.5,10,12.5 for d = 100,200,400,800,1600, respectively. We found
that the test based on TWMW significantly outperforms the test based on T

(2)
CQ for all

values of d (see the Supplementary Material [Chakraborty and Chaudhuri (2016)]).
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APPENDIX: MATHEMATICAL DETAILS

PROOF OF THEOREM 2.1. Without any loss of generality, we can take
E(X1) = 0. Let us write Xi = (Xi1,Xi2, . . . ,Xid)

′, 1 ≤ i ≤ m, and Yj =
(Yj1, Yj2, . . . , Yjd)′, 1 ≤ j ≤ n. First note that

‖X − Y‖2

= [‖X‖2 + ‖Y − μ‖2 − 2X′(Y − μ) + 2μ′(X − Y + μ) + ‖μ‖2]
=

d∑
k=1

[
V 2

k + W 2
k − 2VkWk

] + 2μ′(V − W) + ‖μ‖2.(A.1)

It follows from Bradley [(2005), Theorem 5.2(b)], that for any function h : R2 →
R, the sequence (h(Vk,Wk) : k ≥ 1) is ρ-mixing with its mixing coefficient
bounded by max{ρ1(·), ρ2(·)}. This fact combined with (A.1) along with Assump-
tions (C1)–(C3) and Theorem 8.2.2 in Lin and Lu (1996) imply that for any given
ε ∈ (0,1/2), we have

(A.2) ‖X − Y‖2/d − (
σ 2

1 + σ 2
2
) = o

(
d−1/2+ε)

as d → ∞ almost surely. Now,

TWMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Xi1 − Yj1)
′(Xi2 − Yj2)

d(σ 2
1 + σ 2

2 )

+ 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2)

d(σ 2
1 + σ 2

2 )

×
{

d(σ 2
1 + σ 2

2 )

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]

= (
T

(2)
CQ + T

(2)
WMW

)
/
{
d
(
σ 2

1 + σ 2
2
)}

,(A.3)

where T
(2)
CQ is given by (1.2), and

T
(2)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2)

d(σ 2
1 + σ 2

2 )

×
{

d(σ 2
1 + σ 2

2 )

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]
.

So, E(T
(2)

CQ ) = ‖μ‖2. Further, it follows from Chen and Qin (2010), page 825, that

Var(T (2)
CQ ) = 	1 + 4μ′�1μ/m + 4μ′�2μ/n, where 	1 is given by (2.1). Note that

(μ′�1μ/m) + (μ′�2μ/n) ≤ μ′(�1 + �2)μ/min(m,n). Further,

(A.4) 	1 ≥ 2 tr
[
(�1 + �2)

2]
/
(
max(m,n)

)
2.
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These facts and Assumption (C3) imply that Var(T (2)
CQ ) = 	1(1 + o(1)) as d → ∞.

Further, (
T

(2)
CQ − ‖μ‖2)

= 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Xi1 − Yj1 + μ)′(Xi2 − Yj2 + μ)

− 2

mn

∑
i,j

μ′(Xi − Yj + μ) = T1 − T2,

where T1 = [(m)2(n)2]−1 ∑
i1 �=i2

∑
j1 �=j2

(Xi1 −Yj1 +μ)′(Xi2 −Yj2 +μ) and T2 =
2(mn)−1 ∑

i,j μ′(Xi − Yj + μ). It is easy to verify that E(T2) = 0 and Var(T2) =
4μ′[(�1/m) + (�2/n)]μ. So, using (A.4), Assumption (C3) and Chebyshev’s in-
equality, it follows that T2/	

1/2
1 converges to zero in probability as d → ∞. Note

that

T1 = 1

(m)2(n)2

d∑
k=1

{ ∑
i1 �=i2

∑
j1 �=j2

(Vi1k − Wj1k)(Vi2k − Wj2k)

}
.

So, E(T1) = 0 and Var(T1) = 	1. This follows from computations similar to those
used in deriving Var(T (2)

CQ ) earlier. Thus, by Theorem 4.0.1 in Lin and Lu (1996)

and Assumptions (C1) and (C2), we have the weak convergence of T1/	
1/2
1 to a

standard Gaussian distribution as d → ∞ for each fixed m,n ≥ 2. This and the
fact that T

(2)
2 converges to zero in probability as d → ∞ for each fixed m,n ≥ 2

together imply that

(A.5)
(
T

(2)
CQ − ‖μ‖2)

/	
1/2
1

L−→ N(0,1)

as d → ∞ for each fixed m,n ≥ 2. Next, let us write

T
(2)

WMW/	
1/2
1

= 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2) − ‖μ‖2

	
1/2
1

×
{

d(σ 2
1 + σ 2

2 )

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]

+ ‖μ‖2

(m)2(n)2	
1/2
1

∑
i1 �=i2

∑
j1 �=j2

{
d(σ 2

1 + σ 2
2 )

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}

= T
(3)
WMW + T

(4)
WMW,(A.6)
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where

T
(3)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2) − ‖μ‖2

	
1/2
1

×
{

d(σ 2
1 + σ 2

2 )

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]

and

T
(4)
WMW = ‖μ‖2

(m)2(n)2	
1/2
1

∑
i1 �=i2

∑
j1 �=j2

{
d(σ 2

1 + σ 2
2 )

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}
.

From the stationarity of the sequences X and Y and using the Cauchy–Schwarz
inequality, it follows that tr[(�1 +�2)

2] ≥ d(σ 2
1 +σ 2

2 )2. This fact along with (A.4),

(A.2) and Assumption (C3) imply that T
(4)

WMW converges to zero in probability as
d → ∞ for each fixed m,n ≥ 2.

Next, fix any i1 �= i2 and j1 �= j2 and consider the corresponding term inside
the double summation appearing in the definition of T

(3)
WMW. It follows from (A.2)

that d(σ 2
1 +σ 2

2 )/{‖Xi1 − Yj1‖‖Xi2 − Yj2‖}− 1 converges to zero in probability as
d → ∞. Also, note that

(Xi1 − Yj1)
′(Xi2 − Yj2) − ‖μ‖2

= (Xi1 − Yj1 + μ)′(Xi2 − Yj2 + μ)(A.7)

− μ′(Xi1 − Yj1 + μ) − μ′(Xi2 − Yj2 + μ).

Using arguments similar to those used to prove the asymptotic normality of T
(2)

1
and using Theorem 4.0.1 in Lin and Lu (1996), it follows that the first term in the
right-hand side of (A.7) is asymptotically Gaussian with zero mean and variance
2 tr[(�1 + �2)

2] as d → ∞. Using Assumption (C3) and Chebyshev’s inequality,
it follows that the second and the third terms in the right-hand side of (A.7) after
dividing by 	

1/2
1 converge to zero in probability as d → ∞. So, the left-hand side

of (A.7) after dividing by 	
1/2
1 converges weakly to a Gaussian distribution as

d → ∞. Thus, T
(3)
WMW converges to zero in probability as d → ∞ for each fixed

m,n ≥ 2. This and the fact that T
(4)

WMW converges to zero in probability as d → ∞
together imply that T

(2)
WMW/	

1/2
1 converges to zero in probability as d → ∞ for

each fixed m,n ≥ 2. Combining this fact with (A.3) and (A.5) yields

(A.8)
{
d
(
σ 2

1 + σ 2
2
)
TWMW − ‖μ‖2}

/	
1/2
1

L→ N(0,1)

as d → ∞ for each fixed m,n ≥ 2. �
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PROOF OF THEOREM 2.2. Let ζα be the (1 − α)-quantile of the standard
Gaussian distribution. Note that

βTWMW(μ) = P
{
d
(
σ 2

1 + σ 2
2
)
TWMW/	

1/2
1 > ζα

}
= P

{[
d
(
σ 2

1 + σ 2
2
)
TWMW − ‖μ‖2]

/	
1/2
1 > ζα − ‖μ‖2/	

1/2
1

}
and

β
T

(2)
CQ

(μ) = P
{
T

(2)
CQ/	

1/2
1 > ζα

} = P
{(

T
(2)

CQ − ‖μ‖2)
/	

1/2
1 > ζα − ‖μ‖2/	

1/2
1

}
,

where the probabilities are computed under the alternative hypothesis. Since
limd→∞ ‖μ‖2/	

1/2
1 exists, the equality of the asymptotic powers of the tests based

on TWMW and T
(2)
CQ follows from (A.5) and (A.8). Moreover, their common value is

�(−ζα + limd→∞ ‖μ‖2/	
1/2
1 ) = �(−ζα +c), which follows from the expressions

of their powers and their asymptotic Gaussian distributions proved in Theorem 2.1.
The last part of the present theorem now follows easily. �

PROOF OF THEOREM 2.3. (a) We will derive the asymptotic distribution of
TSR and T

(1)
CQ only since the derivation of that of TS is simpler and follows from

similar arguments. Using the assumptions in the theorem and the arguments similar
to those in the proof of Theorem 2.1, we have

TSR = 1

(n)4

∑
i1,i2,i3,i4
all distinct

(Xi1 + Xi2)
′(Xi3 + Xi4)

2dσ 2

+ 1

(n)4

∑
i1,i2,i3,i4
all distinct

[
(Xi1 + Xi2)

′(Xi3 + Xi4)

2dσ 2

×
{

2dσ 2

‖Xi1 + Xi2‖‖Xi3 + X4‖ − 1
}]

= 2

(n)2

∑
i1 �=i2

X′
i1

Xi2

dσ 2 + 1

(n)4

∑
i1,i2,i3,i4
all distinct

[
(Xi1 + Xi2)

′(Xi3 + Xi4)

2dσ 2

×
{

2dσ 2

‖Xi1 + Xi2‖‖Xi3 + X4‖ − 1
}]

.(A.9)

It follows from (1.1) that the first term in (A.9) equals 2T
(1)

CQ/(dσ 2). Using As-

sumption (C4), it can be shown that E(T
(1)

CQ ) = ‖μ‖2 and Var(T (1)
CQ ) = 	2(1+o(1))

as d → ∞, where 	2 is defined in (2.2). Using arguments similar to those in the
proof of Theorem 2.1, we have the weak convergence of (T

(1)
CQ − ‖μ‖2)/ψ

1/2
2 to
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a standard Gaussian distribution. Further, the second term in (A.9) after dividing
by 	

1/2
2 converges to zero in probability as d → ∞ for each n ≥ 4. The previous

two statements together imply that (dσ 2TSR − 2‖μ‖2)/ψ
1/2
2 converges weakly to

a N(0,4) distribution as d → ∞ for each n ≥ 4.
(b) The proof of this part of the theorem follows from arguments similar to those

used in the proof of Theorem 2.2. �

PROOF OF THEOREM 3.1. Without any loss of generality, we can take μ1 =
0, so that μ = μ2. Let us write Xi = Ṽi and Yj = μ + W̃j , where Ṽi = Vi/Pi

and W̃j = Wj /Qj for 1 ≤ i ≤ m and i ≤ j ≤ n. Let V = (V1,V2, . . . , Vd)′ and
W = (W1,W2, . . . ,Wd)′. Denote �V = Disp(V), �W = Disp(W), σ 2

V = Var(V1)

and σ 2
W = Var(V2).

(a) We will first derive the asymptotic distribution of TWMW. Using arguments
similar to those used in proving (A.1), we get

(A.10) ‖X − Y‖2 =
d∑

k=1

[
V 2

k

P 2 + W 2
k

Q2 − 2VkWk

PQ

]
+ 2μ′

(
V
P

− W
Q

)
+ ‖μ‖2.

Consider the event E = {‖X−Y‖2/d − (σ 2
V /P 2 +σ 2

W/Q2) = o(d−1/2+ε) as d →
∞}. It follows from Bradley [(2005), Theorem 5.2(b)], that for any function h :
R2 →R, the sequence (h(Vk,Wk) : k ≥ 1) is ρ-mixing with its mixing coefficient
bounded by max{ρ1(·), ρ2(·)}. Using this fact and (A.10) above along with the
assumptions in the theorem and Theorem 8.2.2 in Lin and Lu (1996), we get that
for any given ε ∈ (0,1/2),

(A.11) Pr(E|P,Q) = 1

for almost every P and Q. Now,

TWMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Xi1 − Yj1)
′(Xi2 − Yj2)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

+ 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

×
{d(σ 2

V P −2
i1

+ σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+ σ 2
WQ−2

j2
)1/2

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]

= (
T

(1)
WMW + T

(2)
WMW

)
/d,(A.12)

where

T
(1)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Xi1 − Yj1)
′(Xi2 − Yj2)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2
,



TESTS FOR HIGH-DIMENSIONAL DATA 791

T
(2)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

×
{d(σ 2

V P −2
i1

+ σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+ σ 2
WQ−2

j2
)1/2

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]
.

Let us define Ai1,i2 = ∑
j1 �=j2

(σ 2
V P −2

i1
+ σ 2

WQ−2
j2

)−1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j1

)−1/2,

Bj1,j2 = ∑
i1 �=i2

(σ 2
V P −2

i1
+ σ 2

WQ−2
j2

)−1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j1

)−1/2, and Ci1,j1 =∑
i2 �=i1

∑
j2 �=j1

(σ 2
V P −2

i1
+σ 2

WQ−2
j2

)−1/2(σ 2
V P −2

i2
+σ 2

WQ−2
j1

)−1/2. Some straightfor-
ward algebra yields

T
(1)

WMW = 1

d(m)2(n)2

{ ∑
i1 �=i2

Ai1,i2X′
i1

Xi2 − 2
∑
i,j

Ci,j X′
iYj

+ ∑
j1 �=j2

Bj1,j2Y′
j1

Yj2

}

= 1

d(m)2(n)2

{ ∑
i1 �=i2

Ai1,i2

Pi1Pi2

V′
i1

Vi2 − 2
∑
i,j

Ci,j

PiQj

V′
i (Qjμ + Wj )

+ ∑
j1 �=j2

Bj1,j2

Qj1Qj2

(Qj1μ + Wj1)
′(Qj2μ + Wj2)

}
.(A.13)

Now, E(dT
(1)

WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = ‖μ‖2S1, where

S1 = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(
σ 2

V P −2
i1

+ σ 2
V Q−2

j2

)−1/2(
σ 2

V P −2
i2

+ σ 2
WQ−2

j1

)−1/2
.

Define L1 = 4
∑

i,j1 �=j2
P −2

i Ci,j1Ci,j2 and L2 = ∑
(P −2

j1
+ P −2

j2
)Bj1,j2(2Bj1,j2 +

Bj1,j3 + Bj2,j3) with the latter summation taken over distinct indices j1, j2 and
j3. Denote L3 = 2

∑
i1 �=i2

[Pi1Pi2]−2A2
i1,i2

, L4 = 2
∑

j1 �=j2
[Qj1Qj2]−2B2

j1,j2
, and

L5 = 2
∑

i,j [PiQj ]−2C2
i,j . It can be shown that

Var
(
dT

(1)
WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n

)
= S2 + 4μ′�V μ

[(m)2(n)2]2

∑
i,j1 �=j2

P −2
i Ci,j1Ci,j2

+ μ′�Wμ

[(m)2(n)2]2

∑
j1,j2,j3

all distinct

(
P −2

j1
+ P −2

j2

)
Bj1,j2(2Bj1,j2 + Bj1,j3 + Bj2,j3)

= S2 + 1

[(m)2(n)2]2

{
L1μ

′�V μ + L2μ
′�Wμ

}
,(A.14)
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where

S2 = 1

[(m)2(n)2]2

{
2

∑
i1 �=i2

[Pi1Pi2]−2A2
i1,i2

tr
(
�2

V

)

+ 2
∑

j1 �=j2

[Qj1Qj2]−2B2
j1,j2

tr
(
�2

W

) + 4
∑
i,j

[PiQj ]−2C2
i,j tr(�V �W)

}

= {
L3 tr

(
�2

V

) + L4 tr
(
�2

W

) + 2L5 tr(�V �W)
}
/
[
(m)2(n)2

]2
.

Note that (L1μ
′�V μ + L2μ

′�Wμ) ≤ max{L1,L2}μ′(�V + �W)μ. Also,

(A.15) S2 ≥ [
(m)2(n)2

]−2 min{L3,L4,L5} tr
[
(�V + �W)2]

.

These facts along with (A.14) and Assumption (C3) imply that Var(dT
(1)

WMW|
Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = S2(1 + o(1)) as d → ∞. Now,(

dT
(1)

WMW − ‖μ‖2S1
)
/S

1/2
2

=
[

1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Xi1 − Yj1 + μ)′(Xi2 − Yj2 + μ)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

− 2

(m)2(n)2

∑
i,j

Ci,jμ
′(Xi − Yj + μ)

]/
S

1/2
2

= (
T̃

(1)
WMW − T̃

(2)
WMW

)
/S

1/2
2 ,(A.16)

where T̃
(2)
WMW = 2[(m)2(n)2]−1 ∑

i,j Ci,jμ
′(Xi − Yj + μ) and

T̃
(1)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Xi1 − Yj1 + μ)′(Xi2 − Yj2 + μ)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2
.

It can be shown that E(T̃
(2)

WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = 0 and

Var
(
T̃

(2)
WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n

)
= 4

[
(m)2(n)2

]−2

×
{ ∑

i,j1 �=j2

Ci,j1Ci,j2P
−2
i μ′�V μ + ∑

i1 �=i2,j

Ci1,jCi2,jQ
−2
j μ′�Wμ

+ ∑
i,j

C2
i,jμ

′(�V /P 2
i + �W/Q2

j

)
μ

}
.

So, using Assumption (C3) and arguments similar to those used earlier to show
that Var(dT

(1)
WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = S2(1 + o(1)) as d → ∞, we

get that Var(T̃ (2)
WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = o(S2) as d → ∞. Thus,
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Chebyshev’s inequality implies that T̃
(2)
WMW/S

1/2
2 converges to zero in probability

as d → ∞.
Next, note that

T̃
(1)

WMW

= 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

(Vi1/Pi1 − Wj1/Qj1)
′(Vi2/Pi2 − Wj2/Qj2)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

= 1

(m)2(n)2

×
d∑

k=1

∑
i1 �=i2
j1 �=j2

(Qj1Vi1k − Pi1Wj1k)(Qj2Vi2k − Pi2Wj2k)/(Pi1Pi2Qj1Qj2)

d(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2
.

It is easy to see that E(T̃
(1)

WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = 0. Further,

from calculations similar to those used earlier in deriving Var(dT
(1)
WMW|Pi,Qj ,

1 ≤ i ≤ m,1 ≤ j ≤ n), it can be shown that Var(T̃ (1)
WMW|Pi,Qj ,1 ≤ i ≤ m,1 ≤

j ≤ n) = S2. Thus, by Theorem 4.0.1 in Lin and Lu (1996) and Assumption (C4),
the conditional distribution of T̃

(1)
WMW/S

1/2
2 given the Pi ’s and the Qj ’s converges

to a standard Gaussian distribution as d → ∞. This fact along with (A.16) and the
fact that conditionally on the Pi ’s and the Qj ’s, T̃

(2)
WMW/S

1/2
2 converges to zero in

probability as d → ∞ yield

(A.17) lim
d→∞P

{(
dT

(1)
WMW − ‖μ‖2S1

)
/S

1/2
2 ≤ x

} = �(x).

Next, let us write

T
(2)
WMW

= 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2) − ‖μ‖2

(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

×
{d(σ 2

V P −2
i1

+ σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+ σ 2
WQ−2

j2
)1/2

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]

+ ‖μ‖2

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
1

(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

×
{d(σ 2

V P −2
i1

+ σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+ σ 2
WQ−2

j2
)1/2

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]

= T̃
(3)
WMW + T̃

(4)
WMW,(A.18)
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where

T̃
(3)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[
(Xi1 − Yj1)

′(Xi2 − Yj2) − ‖μ‖2

(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

×
{d(σ 2

V P −2
i1

+ σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+ σ 2
WQ−2

j2
)1/2

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]
,

T̃
(4)
WMW = 1

(m)2(n)2

∑
i1 �=i2

∑
j1 �=j2

[ ‖μ‖2

(σ 2
V P −2

i1
+ σ 2

WQ−2
j1

)1/2(σ 2
V P −2

i2
+ σ 2

WQ−2
j2

)1/2

×
{d(σ 2

V P −2
i1

+ σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+ σ 2
WQ−2

j2
)1/2

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
− 1

}]
.

The stationarity of the sequences V and W and the Cauchy–Schwarz inequality im-
ply that tr[(�V + �W)2] ≥ d(σ 2

V + σ 2
W)2. This along with (A.15), (A.11) and As-

sumption (C3) imply that conditionally on the Pi’s and the Qj ’s, each term inside

the double sum appearing in T̃
(4)

WMW above is oP (S
1/2
2 ) as d → ∞. So, T̃ (4)

WMW/S
1/2
2

converges to zero in probability as d → ∞.
Next, fix any i1 �= i2 and j1 �= j2 and consider the corresponding term inside the

double summation appearing in the expression of T̃
(3)

WMW. It follows from (A.11)
that d(σ 2

V P −2
i1

+σ 2
WQ−2

j1
)1/2(σ 2

V P −2
i2

+σ 2
WQ−2

j2
)1/2/[‖Xi1 −Yj1‖‖Xi2 −Yj2‖]−1

converges to zero in probability as d → ∞. Note that

(Xi1 − Yj1)
′(Xi2 − Yj2) − ‖μ‖2

= (Xi1 − Yj1 + μ)′(Xi2 − Yj2 + μ)(A.19)

− μ′(Xi1 − Yj1 + μ) − μ′(Xi2 − Yj2 + μ)

=
d∑

k=1

{
(Qj1Vi1k − Pi1Wj1k)(Qj2Vi2k − Pi2Wj2k)

Pi1Pi2Qj1Qj2

}

− μ′(Qj1Vi1 − Pi1Wj1)μ/(Pi1Qj1)

− μ′(Qj2Vi2 − Pi2Wj2)μ/(Pi2Qj2).(A.20)

It is easy to show that the conditional expectation of the first term in (A.20)
given the Pi’s and the Qj ’s is zero, and its conditional variance is vi1i2j1j2 =
[Pi1Pi2]−2 tr(�2

V )+[Qj1Qj2]−2 tr(�2
W)+{[Pi1Qj2]−2 +[Pi2Qj1]−2} tr(�V �W).

So, vi1i2j1j2 = O(tr[(�V +�W)2]). Hence, using (A.15) and Chebyshev’s inequal-

ity, it follows that the first term in (A.20) after scaling by S
1/2
2 is bounded in prob-

ability, conditional on the Pi ’s and the Qj ’s, as d → ∞. Using Assumption (C3),
Chebyshev’s inequality and arguments similar to those used to prove the conver-
gence in probability to zero of T̃

(2)
WMW earlier, we get that the second and the third
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terms in (A.20) after dividing by S
1/2
2 converge to zero in probability as d → ∞.

So, the left-hand side of the equation (A.19) after dividing by S
1/2
2 is bounded in

probability, conditional on the Pi ’s and the Qj ’s, as d → ∞. Thus, T̃
(3)
WMW/S

1/2
2

converges to zero in probability as d → ∞. This along with (A.18) and the fact
that T̃

(4)
WMW/S

1/2
2 converges to zero in probability as d → ∞ together imply that

T
(2)
WMW/S

1/2
2 converges to zero in probability as d → ∞. Combining this fact with

(A.17) and (A.12), we get limd→∞ P {(dTWMW − ‖μ‖2S1)/S
1/2
2 ≤ x|Pi,Qj ,1 ≤

i ≤ m,1 ≤ j ≤ n} = �(x) for all x ∈ R and for each m,n ≥ 2. Consequently,

lim
d→∞P

{(
dTWMW − ‖μ‖2S1

)
/S

1/2
2 ≤ x

} = �(x)

for all x ∈ R and for each m,n ≥ 2.
We now derive the asymptotic distribution of T

(2)
CQ . As in the proof of

Theorem 2.1, T
(2)

CQ = T1 − T2. In the setup of the present theorem, T1 =
[(m)2(n)2]−1 ∑

i1 �=i2

∑
j1 �=j2

(Vi1/Pi1 −Wj1/Qj1)
′(Vi2/Pi2 −Wj2/Qj2)

′ and T2 =
2(mn)−1 ∑

i,j μ′(Vi/Pi − Wj /Qj ). So, E(T1|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = 0.
Further, from algebraic computations similar to those used to derive the variance
of T

(2)
CQ in the proof of Theorem 2.1, it follows that

Var(T1|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n)

= 1

[(m)2(n)2]2

{
2

∑
i1 �=i2

[Pi1Pi2]−2tr
(
�2

V

)

+ 2
∑

j1 �=j2

[Qj1Qj2]−2tr
(
�2

W

) + 4
∑
i,j

[PiQj ]−2tr(�V �W)

}
.

Define S3 = Var(T1|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n). Also, E(T2|Pi,Qj ,1 ≤ i ≤
m,1 ≤ j ≤ n) = 0, and Var(T2|Pi,Qj ,1 ≤ i ≤ m,1 ≤ j ≤ n) = o(S3) as d →
∞ using the assumptions in the theorem. Thus, T2/S

1/2
3 converges in probability

to zero as d → ∞. Further, using arguments similar to those used to prove the
asymptotic Gaussianity of T̃

(1)
WMW above, it follows that the conditional distribution

of T1/S
1/2
3 given the Pi ’s and the Qj ’s converges weakly to a standard Gaussian

distribution as d → ∞ for all m,n ≥ 2. Combining these facts, we have

lim
d→∞P

{(
T

(2)
CQ − ‖μ‖2)

/S
1/2
3 ≤ x

} = �(x)

for all x ∈ R and all m,n ≥ 2.
(b) Note that S1 is a V -statistic whose kernel (σ 2

V P −2
i1

+σ 2
V Q−2

j2
)−1/2(σ 2

V P −2
i2

+
σ 2

WQ−2
j1

)−1/2 has finite expectation ψ1 = E2{PQ/(σ 2
V Q2 + σ 2

WP 2)1/2}, by the
assumption in the theorem. Thus, it follows that S1 converges almost surely
to ψ1. Define S21 = [(m)2{(n)2}2]−1L3, S22 = [{(m)2}2(n)2]−1L4 and S23 =
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[mn(m − 1)2(n − 1)2]−1L5. Each of S21, S22 and S23 is a real valued V -
statistic whose kernel is bounded, and thus has finite expectation. So, there ex-
ist ψ21, ψ22 and ψ23 depending only on the distributions of P and Q such
that S21, S22 and S23 converge almost surely to ψ21, ψ22 and ψ23, respec-
tively. Here, ψ21 = E2{Q1Q2/[(σ 2

V Q2
2 + σ 2

WP 2
1 )(σ 2

V Q2
2 + σ 2

WP 2
1 )]1/2}, ψ22 =

E2{P1P2/[(σ 2
V Q2

1 +σ 2
WP 2

1 )(σ 2
V Q2

1 +σ 2
WP 2

2 )]1/2}, and ψ23 = [ψ21ψ22]1/2. Define
ψ2 = 2 tr(�2

V )ψ21/(m)2 +2 tr(�2
W)ψ22/(n)2 +4 tr(�V �W)ψ23/(mn). Recall that

S2 = 2 tr(�2
V )S21/(m)2 + 2 tr(�2

W)S22/(n)2 + 4 tr(�V �W)S23/(mn). Conditions
(C1) and (C2) along with Theorem 2.1.5 in Lin and Lu (1996) imply that both V
and W possess continuous spectral densities. Now, the proof of Theorem 18.2.1 in
Ibragimov and Linnik (1971) implies that each of tr(�2

V ), tr(�2
W) and tr(�V �W)

equals a constant multiple of d plus a remainder term, which is o(d) as d → ∞.
Thus, for each fixed m,n ≥ 2, there exist constants A1, A2 and A3 such that with
probability one

(A.21) lim
d→∞

ψ2

S2
= 2ψ21A1/(m)2 + 2ψ22A2/(n)2 + 4ψ23A3/(mn)

2S21A1/(m)2 + 2S22A2/(n)2 + 4S23A3/(mn)
.

We denote the right-hand side of (A.21) by Rm,n. Further, the assumption in the
theorem and arguments preceding (A.21) imply that ‖μ‖2/ψ

1/2
2 converges to a

finite nonnegative limit b̃2
m,n (say) as d → ∞, where b̃2

m,n = o((m + n)1/2) as
m,n → ∞. Now,

lim
d→∞P

{
dTWMW − ‖μ‖2ψ1

ψ
1/2
2

≤ x

}

= lim
d→∞P

{
dTWMW − ‖μ‖2S1

S
1/2
2

≤ xψ
1/2
2

S
1/2
2

− ‖μ‖2(S1 − ψ1)

S
1/2
2

}

= E

[
lim

d→∞P

{
dTWMW − ‖μ‖2S1

S
1/2
2

≤ xψ
1/2
2

S
1/2
2

− ‖μ‖2(S1 − ψ1)

S
1/2
2

∣∣∣P ′
i s,Q

′
j s

}]

= E

[
�

(
lim

d→∞
ψ

1/2
2

S
1/2
2

{
x − (S1 − ψ1) lim

d→∞
‖μ‖2

ψ
1/2
2

})]

= E
[
�

(
Rm,n

{
x − (S1 − ψ1)b̃

2
m,n

})]
.

The above expectation converges to �(x) if we now let m,n → ∞ because Rm,n

converges to one, b̃2
m,n = o((m+n)1/2), and (m+n)1/2(S1 −ψ1) converges weakly

to a standard Gaussian distribution as m,n → ∞.
Now, [(m)2{(n)2}2]−1 ∑

i1 �=i2
[Pi1Pi2]−2, [(n)2{(m)2}2]−1 ∑

j1 �=j2
[Qj1Qj2]−2

and [mn(m−1)2(n−1)2]−1 ∑
i,j [PiQj ]−2 appearing in the expression of S3 con-

verge to E2(P −2), E2(Q−2) and E(P −2)E(Q−2), respectively, as m,n → ∞.
Also note that �1 = Disp(X) = �V E(P −2) and �2 = Disp(Y) = �WE(Q−2).
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So, arguing as in the case of S2 above, we get that S3/	1 converges in probability
to one if we first let d → ∞ and then m,n → ∞. Thus, limm,n→∞ limd→∞ P ×
{(T (2)

CQ − ‖μ‖2)/	
1/2
1 ≤ x} = �(x) for all x ∈R. �

PROOF OF THEOREM 3.2. Since Y is distributed as X + μ, we have
ψ1 = σ−2

V E2{PQ/(P 2 + Q2)1/2} and ψ2 = [σ 2
V E(P −2)]−2E2{Q1Q2/[(P 2

1 +
Q2

1)
1/2(P 2

1 + Q2
2)

1/2]}	1. Here, ψ1 and ψ2 are as in the proof of Theorem 3.1.

Since limm,n→∞ limd→∞ ‖μ‖2/	
1/2
1 = c for some c ∈ (0,∞), we have

limm,n→∞ limd→∞ β
T

(2)
CQ

(μ) = �(−ζα + c), and

lim
m,n→∞ lim

d→∞βTWMW(μ) = �

(
−ζα + cE(P −2)E2{PQ/(P 2 + Q2)1/2}

E{Q1Q2/[(P 2
1 + Q2

1)
1/2(P 2

1 + Q2
2)

1/2]}
)
.

Now, E2{Q1Q2/[(P 2
1 +Q2

1)
1/2(P 2

1 +Q2
2)

1/2]} = E[E2{Q1/(P
2
1 +Q2

1)
1/2|P1}] <

E[E{Q2
1/(P

2
1 + Q2

1)|P1}] = E{Q2
1/(P

2
1 + Q2

1)} = 1/2. Here, the inequality
can be obtained using Jensen’s inequality. Further, E2{PQ/(P 2 + Q2)1/2} >

E−2{(P 2 +Q2)1/2/PQ} > E−1{(P 2 +Q2)/P 2Q2} = 1/{E(P −2)+E(Q−2)} =
[2E(P −2)]−1. Here, the inequalities follow from Cauchy–Schwarz inequality.
Combining the previous two inequalities, we get limm,n→∞ limd→∞ βTWMW(μ) >

limm,n→∞ limd→∞ β
T

(2)
CQ

(μ). �

PROOF OF THEOREM 3.3. (a) The proof of the asymptotic Gaussianity
of TSR is provided in the Supplementary Material [Chakraborty and Chaud-
huri (2016)]. Also, Z2 and Z3 appearing in its asymptotic distribution are
Z2 = 2[(n)4σ

2
V ]−1 ∑

i1 �=i2
Ũi1,i2Pi1Pi2 and Z3 = 8 tr(�2

V )[(n)4σ
2
V ]−2 ∑

i1 �=i2
Ũ2

i1,i2
,

where Ũi1,i2 = ∑
Pi3Pi4/[(P 2

i1
+P 2

i3
)1/2(P 2

i2
+P 2

i4
)1/2] and the summation is taken

over indices (i3, i4) satisfying i3 �= i4 and (i3, i4) �= (i1, i2).
The proof of the asymptotic Gaussianity of TS will follow from arguments

similar to those used to prove the asymptotic Gaussianity of TSR, and we skip
the details. Z1 and 	3 in the asymptotic distribution of TS are given by Z1 =
[(n)2σ

2
V ]−1 ∑

i1 �=i2
Pi1Pi2 and 	3 = 2 tr(�2

V )/[(n)2σ
4
V ].

The proof of the asymptotic Gaussianity of T
(1)

CQ is also provided in the Sup-
plementary Material [Chakraborty and Chaudhuri (2016)], and Z4 appearing in its
asymptotic distribution is given by Z4 = 2 tr(�2

V )[(n)2]−2 ∑
i1 �=i2

[Pi1Pi2]−2.
(b) Since Z1, Z2, (n)4Z3 and (n)2Z4 are real-valued V -statistics with fi-

nite expectations by the assumptions in part (b) of the theorem, they con-
verge almost surely as n → ∞. The corresponding limits are θ1 = E2(P1)/σ

2
V ,

θ2 = E2{P1P2/(P
2
1 + P 2

2 )1/2}/σ 2
V , θ3 = tr(�2

V )E2{P2P3/(P
2
1 + P 2

2 )1/2(P 2
1 +

P 2
3 )1/2}/σ 4

V and θ4 = 2 tr(�2
V )E2(P −2

1 ). Note that since E(P −2) is finite, we have
� = Disp(X) = �V E(P −2) and σ 2 = Var(X1) = σ 2

V E(P −2). So, θ4 = 2 tr(�2).



798 A. CHAKRABORTY AND P. CHAUDHURI

Arguments similar to those used in the proof of part (b) of Theorem 3.1 complete
the proof of part (b) of the present theorem.

(c) Suppose that limn→∞ limd→∞ ‖μ‖2/	
1/2
2 = c for some c ∈ (0,∞). Then

lim
n→∞ lim

d→∞βTS
(μ) = �

(−ζα + cE2(P1)E
(
P −2

1

))
,

lim
n→∞ lim

d→∞βTSR(μ) = �

(
−ζα + cE2{P1P2/(P

2
1 + P 2

2 )1/2}E(P −2
1 )

E{P2P3/[(P 2
1 + P 2

2 )1/2(P 2
1 + P 2

3 )1/2]}
)
,

lim
n→∞ lim

d→∞β
T

(1)
CQ

(μ) = �(−ζα + c).

Now, from Jensen’s inequality, we have E2(P1) > E−2(P −1
1 ) > E−1(P −2

1 ), which
implies that E2(P1)E(P −2

1 ) > 1. Thus, limn→∞ limd→∞ βTS
(μ) >

limn→∞ limd→∞ β
T

(1)
CQ

(μ). The proof of the other part of the theorem is similar

to the proof of Theorem 3.2. �

SUPPLEMENTARY MATERIAL

Supplement to “Tests for high-dimensional data based on means, spatial
signs and spatial ranks” (DOI: 10.1214/16-AOS1467SUPP; .pdf). This supple-
mental article contains additional mathematical details related to the proof of
part (a) of Theorem 3.3 and the detailed results of the simulation study done in
Section 5 of the paper.
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