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LIKELIHOOD-BASED MODEL SELECTION FOR STOCHASTIC
BLOCK MODELS1

BY Y. X. RACHEL WANG AND PETER J. BICKEL

Stanford University and University of California, Berkeley

The stochastic block model (SBM) provides a popular framework for
modeling community structures in networks. However, more attention has
been devoted to problems concerning estimating the latent node labels and
the model parameters than the issue of choosing the number of blocks. We
consider an approach based on the log likelihood ratio statistic and analyze
its asymptotic properties under model misspecification. We show the limiting
distribution of the statistic in the case of underfitting is normal and obtain its
convergence rate in the case of overfitting. These conclusions remain valid
when the average degree grows at a polylog rate. The results enable us to
derive the correct order of the penalty term for model complexity and arrive
at a likelihood-based model selection criterion that is asymptotically consis-
tent. Our analysis can also be extended to a degree-corrected block model
(DCSBM). In practice, the likelihood function can be estimated using more
computationally efficient variational methods or consistent label estimation
algorithms, allowing the criterion to be applied to large networks.

1. Introduction. Network modeling has attracted increasing research atten-
tion in the past few decades as the amount of data on complex systems accumulates
at an unprecedented rate. Many complex systems in science and nature consist of
interacting individual components which can be represented as nodes with con-
necting edges in a network. Network modeling has found numerous applications
in studying friendship networks in sociology, Internet traffic in information tech-
nology, predator–prey interactions in ecology and protein–protein interactions and
gene regulatory mechanisms in molecular biology.

One prominent feature of many of these networks is the presence of communi-
ties, where groups of nodes exhibit high internal connectivity. Communities pro-
vide a natural division of the network into subunits with certain traits. In social
networks, they often arise based on people’s common interests and geographic lo-
cations. The World Wide Web forms communities or hubs based on the content
of the web pages. In gene networks, communities correspond to genes with re-
lated functional groupings, many of which can act in the same biological pathway.
Numerous heuristic algorithms have been proposed for detecting communities.
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However, a generative model is needed to study the problem from a theoretical
perspective.

The stochastic block model (SBM), proposed by Holland, Laskey and Leinhardt
(1983) in social science, is one of the simplest random graph models incorporating
community structures. It assigns each node a latent discrete block variable and the
connectivity levels between nodes are determined by their block memberships. In
practice, this model sometimes oversimplifies the structures of real networks and
other variants have been proposed, including the degree-corrected SBM (DCSBM)
[Karrer and Newman (2011)] relaxing the within-block degree homogeneity con-
straint and overlapping SBM [Airoldi et al. (2008)] allowing a node to be in mul-
tiple blocks. These models have been applied to model real networks in social
science and biology [Bickel and Chen (2009), Daudin, Picard and Robin (2008),
Airoldi et al. (2008), Karrer and Newman (2011)].

Much research effort has been devoted to the problems of estimating the la-
tent block memberships and model parameters of a SBM, including modular-
ity [Newman (2006a)] and likelihood maximization [Bickel and Chen (2009),
Amini et al. (2013)], variational methods [Daudin, Picard and Robin (2008),
Latouche, Birmelé and Ambroise (2012)], spectral clustering [Rohe, Chatterjee
and Yu (2011), Fishkind et al. (2013)], belief propagation [Decelle et al. (2011)]
to name but a few. The asymptotic properties of some of these methods have also
been studied [Bickel and Chen (2009), Rohe, Chatterjee and Yu (2011), Celisse,
Daudin and Pierre (2012), Bickel et al. (2013)]. However, these methods require
knowing (or knowing at least a suitable range for) K , the number of blocks, a pri-
ori. Less attention has been paid to the problem of selecting K .

For general networks, this problem corresponds to the issue of determining the
number of communities, which remains a challenging open problem. Recursive
approaches have been adopted to extract [Zhao, Levina and Zhu (2011)] or divide
[Bickel and Sarkar (2016)] one community sequentially, while using optimization
strategies or hypothesis testing to decide whether the process should be stopped
at one stage. A more general sequential test for comparing a fitted SBM against
alternative models with finer structures is proposed in Lei (2014). Conceptually
these approaches are more appealing for networks with a hierarchical structure. In
other cases, it would be more desirable to be able to compare different commu-
nity numbers directly. A few likelihood-based model selection criteria have been
proposed [Daudin, Picard and Robin (2008), Latouche, Birmelé and Ambroise
(2012), Saldana, Yu and Feng (2014)]. From an information-theoretic perspective,
Peixoto (2013) proposed a criterion based on minimum length description. These
approaches circumvent the difficulty of analyzing the likelihood directly by using
variational approximations or assuming the node labels are fixed and using plug-
in estimates obtained from other inference algorithms. Furthermore, the asymp-
totic studies of these criteria examining their large-sample performance remain
incomplete. Empirically, a network cross-validation method has been investigated
in Chen and Lei (2014). More recently, Le and Levina (2015) proposed a method
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based on analyzing the spectral properties of graph operators, including the non-
backtracking matrix and the Bethe Hessian matrix.

In this paper, we directly address the challenges involved in analyzing the
asymptotic distribution of the maximum log likelihood function under model mis-
specification. We show the log likelihood ratio statistic is asymptotically normal
in the case of underfitting. Although obtaining an explicit asymptotic distribution
of the statistic in the case of overfitting is much more challenging, we have still
derived its order of convergence and subsequently shown these two cases of mis-
specification can be separated with probability tending to one. We thus propose a
model selection criterion taking the form of a penalized likelihood and show it is
asymptotically consistent in the regime where network average degree grows at a
polylog rate. In Section 2, we first derive our main results under the regular SBM
assumptions and then outline how the arguments can be extended to a DCSBM.
Computationally, the likelihood can be approximated with variational algorithms
or consistent label estimation algorithms without affecting the asymptotic consis-
tency of the criterion. We demonstrate the effectiveness of our method by compar-
ing its performance with other model selection approaches on simulated and real
networks in Sections 3 and 4.

2. Results.

2.1. Preliminaries. A SBM with K blocks on n nodes is defined as follows.
A vector of latent labels Z = (Z1, . . . ,Zn) is generated with Zi taking integer
values from [K] = {1, . . . ,K} governed by a multinomial distribution with pa-
rameters π = (π1, π2, . . . , πK). Given Zi = a, Zj = b, an adjacency matrix A is
generated with

Ai,j |(Zi = a,Zj = b) ∼ Bernoulli(Ha,b), i �= j.

We consider a symmetric A with zero diagonal entries corresponding to an undi-
rected graph, although our arguments generalize easily to directed graphs. H is a
K ×K symmetric matrix describing the connectivities within and between blocks.
We denote the model parameters θ = (π,H) and let �K be the parameter space of
a K-block model,

�K =
{
θ |π ∈ (0,1)K,

K∑
a=1

πa = 1,H ∈ (0,1)K×K

}
.

Throughout the paper, θ∗ = (π∗,H ∗) will denote the true generative parameter
giving rise to an observed A. We will further parametrize H ∗ by H ∗ = ρnS

∗,
where the degree density ρn may be �(1) or going to zero at a rate nρn/ logn →
∞. We assume θ∗ ∈ �K and H ∗ has no identical columns, meaning the underlying
model has K blocks and it is identifiable in the sense that it cannot be further
collapsed to a smaller model. z = (z1, . . . , zn) ∈ [K ′]n represents another set of
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labels under a K ′-block model with K ′ not necessarily equaling K . g(A; θ) is the
likelihood function describing the distribution of A with parameter θ ∈ �K ′ and
can be written as the sum of the complete likelihood function f (z,A; θ) associated
with the labels z ∈ [K ′]n:

(2.1) g(A; θ) = ∑
z∈[K ′]n

f (z,A; θ),

where f (z,A; θ) takes the form

f (z,A; θ) =
(

K ′∏
a=1

πna(z)
a

)(
K ′∏

a=1

K ′∏
b=1

H
Oa,b(z)

a,b (1 − Ha,b)
na,b(z)−Oa,b(z)

)1/2

with count statistics

na(z) =
n∑

i=1

I(zi = a), na,b(z) =
n∑

i=1

∑
j �=i

I(zi = a, zj = b),

Oa,b(z) =
n∑

i=1

∑
j �=i

I(zi = a, zj = b)Ai,j .

g and f are invariant with respect to a permutation on the block labels, τ : [K ′] →
[K ′], and its corresponding permutations on the node labels z and the parameters θ .
Furthermore, let R(z) be the K ′ × K confusion matrix whose (k, a)th entry is

(2.2) Rk,a(z,Z) = n−1
n∑

i=1

I(zi = k,Zi = a).

We take a likelihood-based approach toward model selection and first inves-
tigate whether different model choices can be separated using the log likelihood
ratio

(2.3) LK,K ′ = log
supθ∈�K′ g(A; θ)

supθ∈�K
g(A; θ)

.

Here, the comparison is made between the correct K-block model and fitting a
misspecified K ′-block model.

In the following sections, we analyze the asymptotic distribution of LK,K ′ for
K ′ �= K . The main focus of analysis lies in handling the sum in (2.1) which con-
tains an exponential number of terms. It has been shown in Bickel et al. (2013)
that when θ ∈ �K , supθ∈�K

g(A; θ) is essentially equivalent to maximizing the
complete likelihood corresponding to the correct labels Z, supθ∈�K

f (Z,A; θ).
In the next section, we handle the case of underfitting and derive the asymptotic
distribution of LK,K ′ .
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FIG. 1. A schematic representation of how H∗ is merged to give H = UK−1,K(H∗,p). The green
area contains unchanged parameters and the arrows indicate where mergings occur.

2.2. Underfitting. We start by considering K ′ = K − 1. Intuitively, a (K − 1)-
block model can be obtained by merging blocks in a K-block model. More specif-
ically, given the correct labels Z ∈ [K]n and the corresponding block proportions
p = (p1, . . . , pK), pa = na(Z)/n, we define a merging operation Ua,b(H

∗,p)

which combines blocks a and b in H ∗ by taking weighted averages with propor-
tions in p. For example, for H = UK−1,K(H ∗,p),

Hl,k = H ∗
l,k for 1 ≤ l, k ≤ K − 2;

Hl,K−1 = plpK−1H
∗
l,K−1 + plpKH ∗

l,K

plpK−1 + plpK

for 1 ≤ l ≤ K − 2;(2.4)

HK−1,K−1 = p2
K−1H

∗
K−1,K−1 + 2pK−1pKH ∗

K−1,K + p2
KH ∗

K,K

p2
K−1 + 2pK−1pK + p2

K

.

A schematic representation of H is given in Figure 1.
For consistency, when merging two blocks (a, b) with b > a, the new merged

block will be relabeled a and all the blocks c with c > b will be relabeled c − 1.
Using this scheme, we also obtain the merged node labels Ua,b(Z) and merged
proportions Ua,b(p) with [Ua,b(p)]a = pa + pb.

Constraining the parameters to a smaller model results in a suboptimal likeli-
hood and its distance from the likelihood associated with the correct model can be
measured by the Kullback–Leibler divergence, denoted DKL(·‖·). Let

γ1(x) = x logx + (1 − x) log(1 − x),

γ2(x) = x logx − x

and define

(2.5) Di(a, b) =
K−1∑
k,l=1

[
Ua,b

(
π∗)]

k

[
Ua,b

(
π∗)]

lγi

([
Ua,b

(
H ∗, π∗)]

k,l

)
.
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When p = π∗ and treating the labels Z as fixed parameters, denote PA|Z,H ∗ the
probability distribution of A. Then the information loss incurred by the merging
operation Ua,b can be measured by

DKL(PA|Z,H ∗‖PA|Ua,b(Z),Ua,b(H
∗,π∗))

(2.6)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2

2

[
K∑

c,d=1

π∗
c π∗

d γ1
(
H ∗

c,d

)− D1(a, b)

]
+ O(n),

for ρn = �(1);
n2ρn

2

[
K∑

c,d=1

π∗
c π∗

d γ2
(
H ∗

c,d

)− D2(a, b)

]
+ O

(
n2ρ2

n

)
,

for ρn → 0.

Thus, an optimal merging minimizing DKL is essentially equivalent to maximizing
Di(a, b).

We assume the following holds for θ∗.

ASSUMPTION 2.1. A unique maximum exists for max(a,b) Di(a, b).

This assumption is more of a notational convenience than necessity. From now
on, without loss of generality assume the maximum is achieved at a = K − 1 and
b = K , and denote H ′ = UK−1,K(H ∗, π∗), S′ = H ′/ρn and Z′ = UK−1,K(Z). We
also assume H ′ is identifiable in the sense that we have the following.

ASSUMPTION 2.2. S′ has no identical columns.

Thus, the merged model cannot be collapsed further to a smaller model.
The next lemma argues supθ∈�K−1

g(A; θ) is essentially dominated by the com-
plete likelihood associated with the optimal merging.

LEMMA 2.3. Let S(z) be the set of labels which are equivalent up to a per-
mutation τ , S(z) = {τ(z)|τ : [K − 1] → [K − 1]}. Then

(2.7)
∑

z/∈S(Z′)
sup

θ∈�K−1

f (z,A; θ) = sup
θ∈�K−1

f
(
Z′,A; θ)oP (1).

The proof is shown in the Appendix.
This lemma provides a tractable bound on supθ∈�K−1

g(A; θ), allowing the rest
of the analysis to be carried out by usual Taylor expansion.
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Define

μ1
(
θ∗) = 1

2

[
D1(K − 1,K) −

K∑
c,d=1

π∗
c π∗

d γ1
(
H ∗

c,d

)]
,

μ2
(
θ∗) = μ1

(
θ∗)+ 1

n

{(
π∗

K−1 + π∗
K

)
log

(
π∗

K−1 + π∗
K

)
− π∗

K−1 logπ∗
K−1 − π∗

K logπ∗
K

}
.

Upon merging blocks K −1 and K , denote u(a) as the new block label of block a,
and define di(a, b) such that

d1(a, b) = H ∗
a,b log

H ′
u(a),u(b)

H ∗
a,b

+ (
1 − H ∗

a,b

)
log

1 − H ′
u(a),u(b)

1 − H ∗
a,b

,

(2.8)

d2(a, b) = S∗
a,b log

S′
u(a),u(b)

S∗
a,b

+ (
S′

u(a),u(b) − S∗
a,b

)
.

The following theorem gives the asymptotic distribution of LK,K−1, the proof of
which is shown in the Appendix.

THEOREM 2.4. Suppose the underlying model parameter generating A is
θ∗ = (π∗,H ∗) ∈ �K , then LK,K−1 is asymptotically normal with

n−3/2LK,K−1 − √
nμ1

(
θ∗) D−→ N

(
0, σ 2

1
(
θ∗)) if ρn = �(1);

(2.9)
ρ−1

n n−3/2LK,K−1 − ρ−1
n

√
nμ2

(
θ∗) D−→ N

(
0, σ 2

2
(
θ∗)) if ρn → 0

when Assumptions 2.1 and 2.2 hold. Let 
(π∗) be the covariance matrix of a
multinomial(π∗) distribution, that is, 
a,a(π

∗) = π∗
a (1 − π∗

a ) and 
a,b(π
∗) =

−π∗
a π∗

b for a �= b. The variance σ 2
i (θ∗) is given by J T (θ∗)
(π∗)J (θ∗) for i =

1,2, where J (θ∗) = (Jb(θ
∗))1≤b≤K ,

Jb

(
θ∗) =

⎧⎪⎨
⎪⎩

π∗
K−1di(b,K − 1) + π∗

Kdi(b,K), for 1 ≤ b ≤ K − 2,∑
a �=b

π∗
a di(a, b) + π∗

b di(b, b), for b = K − 1,K.

REMARK 2.5. (i) A special case occurs for K = 2, π∗
1 = π∗

2 , H ∗
1,1 = H ∗

2,2.
In this case, σ 2

i (θ∗) = 0 and ρ−1
n n−3/2LK,K−1 converges to its asymptotic mean.

In general, for homogeneous block models with H ∗
a,a = h and H ∗

a,b = g for a �=
b, J (θ∗) simplifies to Jb(θ

∗) = 0 for b ≤ K − 2, JK−1(θ
∗) = π∗

K−1di(K,K) +
π∗

Kdi(K − 1,K), and JK(θ∗) = π∗
K−1di(K − 1,K) + π∗

Kdi(K,K).
(ii) In general, underfitting a K− < K model will lead to the same type of limit-

ing distribution under conditions similar to Assumptions 2.1 and 2.2, assuming the
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uniqueness of the optimal merging scheme and identifiability after merging. That
is,

(2.10) ρ−1
n n−3/2LK,K− − ρ−1

n

√
nμ

D−→ N
(
0, σ 2)

for some mean μ ∼ Cρn and variance σ 2. The proof will be similar but involve
more tedious descriptions of how various merges can occur.

(iii) The asymptotic distributions derived under the null distribution of a K-
block model suggest one might consider performing hypothesis testing directly
to compare against an alternative simpler model. However, the asymptotic means
depend on the true parameters, and its maximum likelihood estimate converges
only at the rate

√
n [Bickel et al. (2013)].

(iv) Without Assumptions 2.1 and 2.2, it is easy to show

(2.11) LK,K− ≤ −�P

(
n2ρn

)
,

where �(·) denotes asymptotic lower bound, using the method in proving Theo-
rem 2.7.

2.3. Overfitting. In the case of overfitting a K+-block model with K+ > K ,
deriving the asymptotic distribution of LK,K+ is much more challenging. Intu-
itively, embedding a K-block model in a larger model can be achieved by ap-
propriately splitting the labels Z and there are an exponential number of possible
splits. We first show a result analogous to Lemma 2.3. However, the number of
summands involved in supθ∈�K+ g(A; θ) remains exponential this time.

Recall that for z ∈ [K+]n, R(z,Z) is the K+ × K confusion matrix. We first
define a subset VK+ ∈ [K+]n such that

VK+ = {
z ∈ [

K+]n| there is at most one nonzero entry in every row of R(z,Z)
}
.

VK+ is obtained by splitting of Z such that every block in z is always a subset of an
existing block in Z. The next lemma shows it suffices to consider only the subclass
of labels VK+ in the sum g(A; θ), the proof of which is given in the Appendix.

LEMMA 2.6. Suppose θ∗ ∈ �K , then∑
z∈[K+]n

sup
θ∈�K+

f (z,A; θ) = (
1 + oP (1)

) ∑
z∈VK+

sup
θ∈�K+

f (z,A; θ).

The lemma does not provide a direct simplification of the sum and suggests
the reason why obtaining an asymptotic distribution for LK,K+ is difficult. On the
other hand, with appropriate concentration we can still derive the asymptotic order
of the statistic.

THEOREM 2.7. Suppose θ∗ ∈ �K , then overfitting by a K+-block model with
K+ > K gives LK,K+ = OP (n3/2ρ

1/2
n ).

The proof is provided in the Appendix.
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2.4. Model selection. The results in the previous sections lead us to construct
a penalized likelihood criterion for selecting the optimal block number. The cri-
terion is consistent in the sense that asymptotically it chooses the correct K with
probability one. Define

(2.12) β
(
K ′) = sup

θ∈�K′
logg(A; θ) − NK ′Bn,

where Bn gives the order of the penalty term, and NK ′ is a strictly increasing
sequence indexed by K ′ describing the complexity of the model. The optimal K0
is such that

(2.13) K0 = arg max
K ′ β

(
K ′).

COROLLARY 2.8. For K ′ < K , setting Bn = o(n2ρn),

(2.14) Pθ∗
(
β
(
K ′) < β(K)

) → 1.

For K ′ > K , setting Bn such that Bnn
−3/2ρ

−1/2
n → ∞,

(2.15) Pθ∗
(
β
(
K ′) < β(K)

) → 1.

PROOF. For K ′ < K , generalizing Theorem 2.4,

Pθ∗
(
β
(
K ′) < β(K)

)
= Pθ∗

(
n−3/2ρ−1

n log
supθ∈�K′ g(A; θ)

supθ∈�K
g(A; θ)

(2.16)

− √
nρ−1

n μ < (NK ′ − NK)
Bn

n3/2ρn

− √
nρ−1

n μ

)

→ 1,

since Bn = o(n2ρn) and −ρ−1
n μ ≥ C(θ∗) for some positive constant depending on

θ∗. In general, the same conclusion holds by Remark 2.5(iii).
For K ′ > K , using Theorem 2.7,

Pθ∗
(
β
(
K ′) < β(K)

)
= Pθ∗

(
1

n3/2ρ
1/2
n

log
supθ∈�K′ g(A; θ)

supθ∈�K
g(A; θ)

< (NK ′ − NK)
Bn

n3/2ρ
1/2
n

)
(2.17)

→ 1,

when Bnn
−3/2ρ

−1/2
n → ∞. �

Since the ratio of the upper bound n2ρn and the lower bound n3/2ρ
1/2
n tends to

infinity, such a sequence Bn exists. Choosing Bn in this interval, we have K0 = K
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with probability tending to 1. However, we also note that for finite cases with
moderate-sized n,

√
nρ−1

n μ in (2.16) is small, making it easy to over penalize
with large Bn. At the same time, the lower bound in Theorem 2.7 is not tight and
can be refined further.

We further assume the following holds for tractable approximation.

ASSUMPTION 2.9. The maximum is achieved in the set NK+ = {z ∈
VK+|nk(z) ≥ εn for all k, for some ε > 0, }.

Assumption 2.9 assumes the maximum can only be achieved on a loosely bal-
anced block design. The assumption and Lemma 2.6 imply it remains to analyze
the order of maxz∈NK+ supθ∈�K+ logf (z,A; θ). The following theorem shows the
order of LK,K+ can be refined to OP (n). The details can be found in the Appendix.

THEOREM 2.10. Under Assumption 2.9, LK,K+ is of order OP (n) for
K+ > K .

It follows then choosing Bn growing slightly faster than n will ensure consis-
tency in the sense described in Corollary 2.8. Thus, we choose a penalized likeli-
hood of the following form:

(2.18) β
(
K ′) = sup

θ∈�K′
logg(A; θ) − λ · K ′(K ′ + 1)

2
n logn,

where the complexity term corresponds to the number of parameters in the edge
probability matrix and the constant λ is a tuning parameter. Similar to many BIC-
type criteria, choosing the tuning parameter is a challenging problem even though
it does not affect the asymptotic properties. We discuss this problem in Section 3.

2.5. Extension to a degree-corrected stochastic block model. In practice, the
SBM often oversimplifies the community structures by assuming all the nodes
within a block have the same expected degree, thereby excluding networks with
“hub” nodes and other possible degree variations within blocks. To address this
limitation, Karrer and Newman (2011) proposed the degree-corrected stochastic
block model (DCSBM) by setting

(2.19) E(Ai,j |Z,ω) = ωiωjHZi,Zj
, i �= j,

where ω = (ω1, . . . ,ωn) is the set of node degree parameters with some identifia-
bility constraint.

As before, Z ∼ Multinomial(π). We also treat ω as a latent variable and as-
sume ωi |Z ∼ nk(Z) · Dirichlet(1) for Zi = k so that ω satisfies the identifia-
bility constraint

∑
i:Zi=k ωi = nk for every k. Similar to Karrer and Newman

(2011), we replace the Bernoulli likelihood by the Poisson likelihood and as-
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sume Ai,i ∼ Poisson(ω2
i HZi,Zi

/2) to simplify derivation. As noted in Karrer and
Newman (2011) and Zhao, Levina and Zhu (2012), sparse networks are well ap-
proximated by the Poisson distribution and little difference was found in practice
between the two choices. The assumption on the diagonal entries also does not
change the asymptotic results. Therefore, given (Z,ω), the log conditional likeli-
hood of A is (up to a constant)

logf (A|Z,ω; θ)

= 1

2

∑
i,j

(
Ai,j log(ωiωjHZi,Zj

) − ωiωjHZi,Zj

)
(2.20)

= ∑
i,j

Ai,j logωi + 1

2

∑
k,l

(
Ok,l(Z) logHk,l − nk(Z)nl(Z)Hk,l

)
.

In this case, the likelihood function f (Z,A; θ) has a tractable form and one
can show Lemma 2.3 holds provided n1/2ρn/ logn → ∞. The stricter condition
on the degree density ensures even with node degree variations [in the worst case
E(Ai,j |Z,ω) ∼ ρn/n] there still exist enough edges for parameter estimation. Sim-
ilar arguments apply to show that the criterion (2.18) is asymptotically consistent
for this DCSBM. As the derivation is largely similar to the regular SBM case, we
provide a proof sketch in the supplementary material [Wang and Bickel (2016)].

2.6. Likelihood approximations. In practice, direct computations of the likeli-
hood function g(A; θ) and its supremum involve an exponential number of sum-
mands and quickly become intractable as n grows. In this section, we provide
practical ways to approximate the likelihood and discuss conditions under which
asymptotic consistency is preserved.

Variational likelihood for regular SBM. Using the EM algorithm to optimize
over θ requires computing the conditional distribution of Z given A, which is not
factorizable in this case. Variational methods tackle the true conditional distribu-
tion fZ|A;θ with the mean field approximation, thus simplifying the local opti-
mization at each iteration. Under the regular SBM, the variational log likelihood
J (q, θ;A) for a K ′-block model is defined as

(2.21) J (q, θ;A) = −DKL(q‖fZ|A;θ ) + logg(A; θ),

where q ∈ DK ′ is any product distribution with q(z) = ∏n
i=1 qi(zi), 1 ≤ zi ≤ K ′.

The variational estimates θ̂VAR
K ′ is given by

θ̂VAR
K ′ = arg max

θ∈�K′
max

q∈DK′
J (q, θ;A),
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which can be optimized using the EM algorithm in Daudin, Picard and Robin
(2008). Also we note that J (q, θ;A) simplifies to

J (q, θ;A) =
n∑

i=1

K ′∑
k=1

qi(k)
(− logqi(k) + logπ(k)

)

+∑
i<j

K ′∑
k,l=1

qi(k)qj (l)
(
Aij logHk,l + (1 − Aij ) log(1 − Hk,l)

)

and hence can be easily evaluated.
We can replace the likelihood in (2.18) by the variational log likelihood J with-

out changing its asymptotic performance. More precisely, the criterion with varia-
tional approximation

(2.22) βVAR(K ′) = sup
θ∈�K′

sup
q∈DK′

J (q, θ;A) − λ · K ′(K ′ + 1)

2
n logn

is still asymptotically consistent. Noting that:

(i) J (q, θ;A) ≤ logg(A; θ) for any q ∈ DK ′ ;
(ii) supθ∈�K

supq∈DK
J (q, θ;A) − supθ∈�K

logg(A; θ) = OP (1) as shown in
Bickel et al. (2013),

it can be easily verified that (2.16) and (2.17) still hold. Although (ii) applies to the
global optimum of J (q, θ;A) which may not be achieved by the EM algorithm, we
note that it can be relaxed to accommodate for the difference in practice. Provided
the difference between the local optimum found by the algorithm and the global
optimum is bounded by oP (n logn), asymptotic consistency still holds.

Label estimation. The computation time of variational likelihood grows
quickly with network size and becomes more complicated for degree corrected
models. On the other hand, a number of algorithms are available for estimat-
ing the latent labels in a computationally efficient way under both regular SBM
and DCSBM. Typically, these algorithms require specifying the block number,
hence let Ẑ(K ′) be the estimated labels corresponding to block number K ′. Then
fML(Ẑ(K ′),A) = supθ∈�K′ f (Ẑ(K ′),A; θ) is the maximum complete likelihood
by plugging in the estimated labels. We assume that the estimation algorithm is
strongly consistent with the same convergence rate as in Theorem 1 of Bickel and
Chen (2009).

ASSUMPTION 2.11. There exists a sequence bn → ∞ such that

(2.23) P
(
Ẑ(K) �= τ(Z)

) = O
(
n−bn

)
,

where τ is a permutation on [K].
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Such a convergence rate can be achieved by, for example, profile maximum
likelihood [Bickel and Chen (2009)]. For computational efficiency, we will use the
pseudo-likelihood algorithm developed by Amini et al. (2013), which is available
for both regular SBM and DCSBM. Weak consistency for label estimation was
shown in Amini et al. (2013). However, the plug-in estimates of the block model
parameters are still consistent. Under Assumption 2.11, observing that:

1. fML(Ẑ(K ′),A) ≤ supθ∈�K′ logg(A; θ);

2. logfML(Ẑ(K),A) = supθ∈�K
logg(A; θ)(1 + oP (1)),

it is easy to see (2.16) and (2.17) still hold, and the criterion

(2.24) βML(K ′) = logfML
(
Ẑ
(
K ′),A)− λ · K ′(K ′ + 1)

2
n logn

is asymptotically consistent.
In the next section, we use simulated data to demonstrate how the criterion

performs in practice. We approximate the likelihood using the variational EM al-
gorithm for regular SBM and the pseudo-likelihood algorithm for DCSBM.

3. Simulations.

3.1. Goodness of fit. We first examined how well the normal limiting distri-
bution approximated the empirical distribution of the statistic in the case of under-
fitting. Figure 2 plots the distribution of n−3/2LK,K−1 for n = 200 and n = 500
obtained from 200 replications for the following two scenarios:

(a) K = 2, π∗ = (0.4,0.6), H ∗ =
(

0.15 0.05
0.01

)
;

(b) K = 3, π∗ = (0.4,0.3,0.3), H ∗ =
⎛
⎝0.2 0.1 0.1

0.2 0.03
0.1

⎞
⎠.

The log likelihoods are approximated by the variational EM algorithm initialized
by regularized spectral clustering [Joseph and Yu (2013)]. The solid curves are
normal densities with mean μ2(θ

∗) and σ(θ∗) given in Theorem 2.4. Even though
the O(n) term in μ2(θ

∗) diminishes asymptotically for ρn going to 0 slowly, we
found it essential to correct for the bias in the finite sample regimes above. In both
cases, the convergence to the Gaussian shape appears faster than the convergence
to the mean, and a bias exists for n = 200. When the network size reaches 500, the
empirical distributions are well approximated by their limiting distribution. We
note that the bias should not have an adverse effect on model selection since it is
in the direction away from zero, making it easier to separate the two models.
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FIG. 2. Empirical distributions of n−3/2LK,K−1 for (a), (b) K = 2, π∗ and H∗ as described
in scenario (a); (c), (d) K = 3, π∗ and H∗ as described in scenario (b). n = 200 in (a) and (c);
n = 500 in (b) and (d). The solid curves are normal densities with mean μ2(θ∗) and σ(θ∗) as given
in Theorem 2.4.

3.2. Selection of tuning parameter. Before we investigate the finite sample
performance of our model selection criterion, we note that (2.18) involves a tuning
parameter λ. We next propose a heuristic scheme for selecting λ. Similar to im-
plementing BIC or AIC-type criteria, a maximum block number Kmax to be fitted
needs to be chosen first. Then λ is chosen by the following algorithm:

1. For each choice of λ, compute β(K ′) for K ′ = 1, . . . ,Kmax.
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FIG. 3. Comparison of the success rates of the penalized likelihood (plh) with variational Bayes
(vb) and network cross validation (ncv). For every parameter setting, 50 networks were simu-
lated from regular SBM with (a) K = 2, π = (0.4,0.6); (b) K = 3, π = (0.3,0.3,0.4); (c) K = 4,
πi = 0.25 for all i. In all the cases, H∗ = ρS∗, where ρ ∈ {0.02,0.04, . . . ,0.1}, the diagonal ele-
ments of S∗ equal 2 and the off diagonal elements equal 1.

2. Normalize (−β(1), . . . ,−β(Kmax)) into a probability vector (w1, . . . ,wKmax)

so that they sum to 1.
3. Choose λ that maximizes the entropy −∑

k wk log(wk).
4. If ties exist, choose the largest λ.

Here, β(K ′) can be computed from either the variational likelihood (2.22) or
the plug-in maximum likelihood (2.24). Heuristically, this algorithm chooses a
λ that maximizes the “peakedness” of the profile of the penalized likelihoods
(β(1), . . . , β(Kmax)), and hence the amount of signal contained in it. In the follow-
ing sections, λ was chosen in the interval [0,0.3] with an increment of 1 × 10−3;
Kmax = 10 for all simulated data.

3.3. Performance comparison with other methods. To see how our criterion
(denoted plh for penalized likelihood) performs against other existing model se-
lection methods, we compare its success rate with variational Bayes [Latouche,
Birmelé and Ambroise (2012), denoted vb] and the 3-fold network cross valida-
tion method in Chen and Lei (2014) (denoted ncv). Since vb is only available for
regular SBM, only ncv is included for DCSBM. plh is computed via either the
variational EM for regular SBM or the pseudo- likelihood algorithm [Amini et al.
(2013)] for DCSBM.

Figure 3 shows the average success rates of all three methods for data generated
from regular SBM. 50 networks of size 500 were generated for each parameter set
with K = 2,3,4, H ∗ = ρS∗, and ρ ∈ {0.02,0.04, . . . ,0.1}. The average degrees
of these networks range from around 12 to 75. In general, the success rate of each
method decreases as the networks become sparser and K increases, since the task
of fitting also becomes harder. Overall, plh outperforms the other two methods.
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TABLE 1
Comparison of the success rates of the penalized likelihood (plh) with network cross validation

(ncv). For every parameter setting, 50 networks were simulated from the DCSBM with (a) K = 2,
π = (0.4,0.6); (b) K = 3, π = (0.3,0.3,0.4); (c) K = 4, πi = 0.25 for all i. In all the cases,
H∗ = ρS∗, where ρ ∈ {0.02,0.04, . . . ,0.1}, the diagonal elements of S∗ equal 2 and the off

diagonal elements equal 1

K = 2 K = 3 K = 4

ρ 0.02 0.04 0.08 0.02 0.04 0.08 0.02 0.04 0.08

plh 0.88 0.96 1 0.08 0.66 1 0.12 0.64 0.98
ncv 0 0.26 1 0 0 0.54 0 0 0

Next, we simulated networks from DCSBM. To test if our method also works for
more general DCSBM parameter settings and not limited by the specific Dirich-
let prior assumption on ω, we generated degree parameters ω from a Unif(0.2,
1) distribution and further normalized them so that

∑
Zi=k ωi = nk(Z). We set

H ∗ = ρS∗ as in the previous case with varying ρ. Binary adjacency matrices were
generated even though our model in Section 2.5 is Poisson. As the simulation con-
firms, the approximation works well when networks are sparse. Table 1 shows the
average success rates of plh (calculated using the pseudo-likelihood algorithm)
and nvc for 50 networks of size 800 for each parameter set. Overall the prob-
lem is harder in this case than regular SBM as the inclusion of degree parameters
induces more sparsity in some regions of the networks. plh shows a significant
improvement over ncv in almost all cases.

4. Real world networks. In this section, we examine the performance of our
method on real world networks. We set Kmax = 30 for the Facebook networks
and Kmax = 15 for the others. We first implemented our method along with vb
and ncv on nine Facebook ego networks, collected and labeled by Leskovec and
Mcauley (2012). An ego network is created by extracting subgraphs formed on the
neighbors of a central (ego) node. Any isolated node was removed before analysis.
Fitting regular SBM to these networks, variational EM was used to compute plh.
The actual sizes of the networks and the number of communities selected by the
three methods are shown in Table 2. The third row of the table shows the number
of friend circles in every network with some individuals belonging to multiple
circles, but not every individual possesses a circle label. These circle numbers give
partial truth on how many communities there are in the networks. Overall, plh
gives estimates closer to the circle numbers when the network is reasonably large
and the number of circles is moderate. vb performs better on networks with a large
number of circles but also overfits in a few cases. ncv tends to produce smaller
community numbers.

We also implemented these methods on the political book network [Newman
(2006b)], which consists of 105 books and their edges representing co-purchase



516 Y. X. R. WANG AND P. J. BICKEL

TABLE 2
Facebook ego networks and the number of communities selected by the three methods

# Nonisolated vertices 333 1034 224 150 168 61 786 534 52

Average degree 15 52 29 23 20 9 36 18 6
# Circles 24 9 14 7 13 13 17 32 17
plh 6 7 6 4 6 6 9 9 6
vb 11 24 16 9 11 6 25 23 6
ncv 3 6 4 2 4 2 2 2 3

information from Amazon. Again we treated this as a regular SBM and used vari-
ational EM to fit plh. Figure 4(a) shows the manual labeling of the books based
on their political orientations being either “conservative,” “liberal” or “neutral.” As
shown in (b), plh estimated K = 6 and essentially splits each of the communities
in (a) into two, suggesting the presence of sub-communities with more uniform
degree distributions. vb found 4 communities but merged two communities in (a)
into one. ncv selected K = 2 and also merged two clusters in (a).

Finally, we used the political blog network [Adamic and Glance (2005)] as an
example of DCSBM. The network consists of blogs on US politics and their web
links as edges. Based on whether a blog is “liberal” or “conservative,” the network
is divided into two communities. As is commonly done in the literature, we con-
sidered only the largest connected component containing a total of 1222 nodes.
In this case, plh selected K = 4, splitting one of the communities into three as
shown in Figure 5. ncv selected K = 2. On the other hand, we have also observed
in simulations that ncv tends to have a bias toward lower K for DCSBM.

5. Discussion. In this paper, we have studied the problem of selecting the
community number under both regular SBM and DCSBM, allowing the average
degree to grow at a polylog rate and the true block number being fixed. We have
shown the log likelihood ratio statistic has an asymptotic normal distribution when

FIG. 4. Communities in 105 political books based on (a) manually curated ground truth; (b) pe-
nalized likelihood; (c) vb; (d) ncv.
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FIG. 5. Political blog network (a) manually labeled ground truth; (b) penalized likelihood.

a smaller model with fewer blocks is specified. In the case of misspecifying a larger
model, we have obtained the convergence rate for the statistic. Combining these
results, we arrive at a likelihood-based model selection criterion that is asymptot-
ically consistent. For finite-sized networks, we have further refined the bound for
the statistic in the overfitting case under reasonable assumptions to correct for the
possibility of over-penalizing. Our method shows better performance than vb and
ncv on simulated data and produces sensible results on a range of real world net-
works. We also note that vb is only available for regular SBM and ncv tends to
be highly varying from run to run due to its use of random partitions.

There are a number of open problems for future work. (i) It would be interest-
ing to investigate whether the results can be extended to other block model vari-
ants, such as overlapping SBM [Airoldi et al. (2008), Ball, Karrer and Newman
(2011)]. (ii) We have performed our analysis with fixed block number as the num-
ber of nodes tends to infinity. However, in practice the number of communities is
also likely to grow as a network expands [Choi, Wolfe and Airoldi (2012)], espe-
cially when we view block models as histogram approximations for more general
models [Bickel and Chen (2009), Wolfe and Olhede (2013)]. Peixoto (2013) has
provided some analysis on the maximum number of blocks detectable for a given
SBM graph with fixed labels. In general, as more time-course network data be-
come available in biology, social science and many other domains, incorporating
dynamic features of community structures into network modeling will remain an
interesting direction to explore.

APPENDIX: PROOFS OF LEMMAS AND THEOREMS

In this section, we prove all the lemmas and theorems in the main paper. De-
note μn = n2ρn, the total number of edges L = ∑n

i=1
∑n

j=i+1 Ai,j , and N(z) =
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(nk,l(z))1≤k,l≤K ′ . For two sets of labels z and y, |z − y| = ∑n
i=1 I(zi �= yi). ‖ · ‖∞

denotes the maximum norm of a matrix. We abbreviate R(z,Z)S∗R(z,Z)T as
RS∗RT (z). C,C1, . . . are constants which might be different at each occurrence.
The following concentration inequalities bound the variations in A and will be
used throughout the section.

LEMMA A.1. Suppose z ∈ [K ′]n and define X(z) = O(z)/μn − RS∗RT (z).
For ε ≤ 3,

(A.1) P

(
max

z∈[K ′]n
∥∥X(z)

∥∥∞ ≥ ε
)

≤ 2
(
K ′)n+2 exp

(−C1
(
S∗)ε2μn

)
.

Let y ∈ [K ′]n be a fixed set of labels, then for ε ≤ 3m/n,

P

(
max

z:|z−y|≤m

∥∥X(z) − X(y)
∥∥∞ > ε

)
(A.2)

≤ 2
(

n

m

)(
K ′)m+2 exp

(
−C2

(
S∗)nε2μn

m

)
.

C1(S
∗) and C2(S

∗) are constants depending only on S∗.

PROOF. The proof follows from Bickel and Chen (2009) with minor modi-
fications for general K ′-block models and correcting for the zero diagonal in A.

�

Recall that

γ1(x) = x logx + (1 − x) log(1 − x),

γ2(x) = x logx − x.

Define Fi(M, t), i = 1,2, as

(A.3) Fi(M, t) =
K ′∑

k,l=1

tk,lγi

(
Mk,l

tk,l

)
.

Then the log of the complete likelihood can be expressed as

(A.4) sup
θ∈�K′

logf (z,A; θ) = n

K ′∑
k=1

α
(
nk(z)/n

)+ n2

2
F1

(
O(z)/n2,N(z)/n2),

where α(x) = x log(x). Noting the first term is of smaller order compared to the
second term, and the conditional expectation of the argument in γ1 given Z is
[RH ∗RT (z)]k,l/[R11T RT (z)]k,l and [RS∗RT (z)]k,l/[R11T RT (z)]k,l for γ2 (up
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to a diagonal difference) with fluctuation bounded by Lemma A.1, we will focus
on analyzing the conditional expectation

G1
(
R(z), S∗) =

K ′∑
k,l=1

[
R11T RT (z)

]
k,lγ1

( [RH ∗RT (z)]k,l

[R11T RT (z)]k,l

)
(A.5)

for ρn = �(1),

G2
(
R(z),H ∗) =

K ′∑
k,l=1

[
R11T RT (z)

]
k,lγ2

( [RS∗RT (z)]k,l

[R11T RT (z)]k,l

)
(A.6)

for ρn → 0.

The following lemma shows in the case of underfitting a (K − 1)-block model, to
maximize Gi over different configurations of R(z,Z) with given Z, it suffices to
consider the merging scheme described in Section 2.2 by combining two existing
blocks in Z.

LEMMA A.2. Given the true labels Z with block proportions p = n(Z)/n,
maximizing the function G1(R(z),H ∗) over R achieves its maximum in the label
set {

z ∈ [K − 1]n| there exists τ such that τ(z) = Ua,b(Z),1 ≤ a < b ≤ K
}
,

where Ua,b merges Zi with labels a and b.
Furthermore, suppose z0 gives the unique maximum (up to permutation τ ), for

all R such that R ≥ 0,RT 1 = p,

(A.7)
∂G1((1 − ε)R(z0) + εR,H ∗)

∂ε

∣∣∣
ε=0+ < −C < 0

for ρn = �(1). The same conclusions hold for G2(R(z), S∗).

PROOF. Treating R as a (K − 1) × K-dimensional vector, it is easy to check
G1(·,H ∗) is a convex function. Furthermore, since R ≥ 0, RT 1 = p, the domain
is part of a convex polyhedron PR = {R ∈ R

K(K−1)|R ≥ 0,RT 1 = p}. Therefore,
the maximum is attained at the vertices of PR , that is Rvert such that for every
a, exactly one Rvert

k,a , (1 ≤ k ≤ K − 1) is nonzero. This is equivalent to assigning
all Zi ∈ [K] with the same label into one group with a new label in [K − 1]. Let
u : [K] −→ [K − 1] be the function specified by Rvert, then

(A.8) G1
(
Rvert,H ∗) = ∑

k,l

∑
a∈u−1(k),

b∈u−1(l)

papbγ1

(∑
a∈u−1(k),b∈u−1(l)

H ∗
a,bpapb∑

a∈u−1(k),b∈u−1(l)
papb

)
.

Note that there exists at least one l ∈ [K − 1] such that |{u−1(l)}| > 1, and
{u−1(k), k ∈ [K − 1]} forms a partition on [K]. By strict convexity of γ1 and
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identifiability of H ∗, to maximize G1 it suffices to consider merging two of the
labels in [K] and mapping the other labels to the remaining labels in [K − 1] in a
one-to-one relationship.

The second part of the lemma holds since it is easy to see when the maximum
is unique, the derivative of the G1 at the optimal vertex is bounded away from 0 in
all directions. The same arguments apply to G2. �

Noting that when p = π∗, Gi evaluated at R(Ua,b(Z)) is equal to Di defined
in (2.5), it is easy to see Assumptions 2.1 and 2.2 guarantees the maximum is
unique. We will now prove Lemma 2.3.

PROOF OF LEMMA 2.3. Taking the log of the complete likelihood,

sup
θ∈�K−1

logf (z,A; θ)

(A.9)

= n

K−1∑
k=1

α
(
nk(z)/n

)+ n2

2
F1

(
O(z)/n2,N(z)/n2).

By concentration of pk , it suffices to consider {‖p − π∗‖∞ < η}, where η is small
enough that Z′ remains the unique maximizer of G1(R(z),H ∗) and G2(R(z), S∗),
and distribution conditional on Z.

Using techniques similar to Bickel et al. (2013), we prove this by considering
z far away from Z′ and close to Z′ (up to permutation τ ). Let δn be a sequence
converging to 0 slowly. Define

Iδn = {
z ∈ [K − 1]n : G1

(
R(z),H ∗)− G1

(
R
(
Z′),H ∗) < −δn

}
.

First, by (A.1) in Lemma A.1, for εn → 0 slowly,∣∣F1
(
O(z)/n2,N(z)/n2)− G1

(
R(z),H ∗)∣∣

≤ C ·∑
k,l

∣∣Ok,l(z)/n2 − (
RH ∗RT (z)

)
k,l

∣∣+ O
(
n−1)(A.10)

= oP (εn)

since γ1 is Lipschitz on any interval bounded away from 0 and 1 and minH ∗ =
�(1). For z ∈ Iδn and ρn = �(1),∑

z∈Iδn

sup
θ∈�K−1

elogf (z,A;θ)

≤ sup
θ∈�K−1

f
(
Z′,A; θ)(K − 1)neO(n)+oP (n2εn)−n2δn(A.11)

= sup
θ∈�K−1

f
(
Z′,A; θ)oP (1)
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choosing δn → 0 slowly enough such that δn/εn → ∞. Similarly, for ρn → 0,
define

Jδn = {
z ∈ [K − 1]n : G2

(
R(z), S∗)− G2

(
R
(
Z′), S∗) < −δn

}
.

Note that in this case, for εn → 0 slowly,

F1
(
O(z)/n2,N(z)/n2)
= 2 logρnL/n2 + ρnF2

(
O(z)/μn,N(z)/n2)+ OP

(
ρ2

n

)
(A.12)

= 2 logρnL/n2 + ρnG2
(
R(z), S∗)+ oP (ρnεn) + OP

(
ρ2

n

)
,

by (A.1) and the fact that γ2 is Lipschitz on any interval bounded away from 0
and 1 and minS∗

a,b > 0. Then for z ∈ Jδn ,∑
z∈Jδn

sup
θ∈�K−1

elogf (z,A;θ)

≤ sup
θ∈�K−1

f
(
Z′,A; θ)(K − 1)neO(n)+OP (μnρn)+oP (μnεn)−μnδn(A.13)

= sup
θ∈�K−1

f
(
Z′,A; θ)oP (1)

choosing εn → 0, δn → 0 slowly enough.
For z /∈ Jδn , |G2(R(z), S∗) − G2(R(Z′), S∗)| → 0. Let z̄ = minτ |τ(z) − Z′|.

Since the maximum is unique up to τ , ‖R(z̄) − R(Z′)‖∞ → 0 and |∑k α(nk(z̄)/

n) −∑
k α(nk(Z

′)/n)| → 0.
By (A.2),

P

(
max

z/∈S(Z′)

∥∥X(z̄) − X
(
Z′)∥∥∞ > ε

∣∣z̄ − Z′∣∣/n
)

≤
n∑

m=1

P

(
max

z:z=z̄,
∣∣z̄−Z′

∣∣=m

∥∥X(z) − X
(
Z′)∥∥∞ > ε

m

n

)
(A.14)

≤
n∑

m=1

2(K − 1)K−1nm(K − 1)m+2 exp
(
−C

mμn

n

)
→ 0.

It follows for |z̄ − Z′| = m, z /∈ Jδn ,∥∥∥∥O(z̄)

μn

− O(Z′)
μn

∥∥∥∥∞

= oP (1)
|z̄ − Z′|

n
+ ∥∥RS∗RT (z̄) − RS∗RT (Z′)∥∥∞(A.15)

≥ m

n

(
C + oP (1)

)
.
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Observe ‖O(Z′)/μn − RS∗R(Z′)‖∞ = oP (1) by Lemma A.1, N(Z′)/n2 =
R11T RT (Z′) + o(1) on {‖p − π∗‖∞ < η}, and F2(·, ·) has continuous derivative
in the neighborhood of (O(Z′)/μn,N(Z′)/n2). Using (A.7) in Lemma A.2,

∂F2((1 − ε)O(Z′)
μn

+ εM, (1 − ε)N(Z′)
n2 + εt)

∂ε

∣∣∣
ε=0+ < −�P (1) < 0

for (M, t) in the neighborhood of (O(Z′)/μn,N(Z′)/n2). Hence,

F2
(
O(z̄)/μn,N(z̄)/n2)− F2

(
O
(
Z′)/μn,N

(
Z′)/n2)

(A.16)
≤ −�P (1)

m

n
.

We have

sup
θ∈�K−1

logf (z,A; θ) − sup
θ∈�K−1

logf
(
Z′,A; θ)

≤ n

∣∣∣∣∣
K−1∑
k=1

α
(
nk(z̄)/n

)− α
(
nk

(
Z′)/n

)∣∣∣∣∣
+ n2(F1

(
O(z̄)/μn,N(z)/n2)

(A.17)
− F1

(
O
(
Z′)/μn,N

(
Z′)/n2))

≤ (
O(n) + oP (μn) − �P (μn)

)m
n

= −�P (μn)
m

n

using (A.12) and (A.16). We can conclude

∑
z/∈Jδn ,z �=τ(Z′)

sup
θ∈�K−1

elogf (z,A;θ)

≤ sup
θ∈�K−1

f
(
Z′,A; θ) n∑

m=1

(K − 1)K−1nm(K − 1)me−�P (μn)m/n(A.18)

= sup
θ∈�K−1

f
(
Z′,A; θ)oP (1).

The bounds (A.13) and (A.18) yield (2.7). The case for ρn = �(1) can be shown
in a similar way. �

Now Theorem 2.4 follows by Taylor’s expansion.
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PROOF OF THEOREM 2.4. First, note that

LK,K−1 = log
supθ∈�K−1

g(A; θ)

g(A; θ∗)
− log

supθ∈�K
g(A; θ)

g(A; θ∗)

= sup
θ∈�K−1

log
[

g(A; θ)

f (Z,A; θ∗)
· f (Z,A; θ∗)

g(A; θ∗)

]
+ OP (1)(A.19)

= sup
θ∈�K−1

log
g(A; θ)

f (Z,A; θ∗)
+ OP (1)

by a consequence of Theorem 1 and Lemma 3 in Bickel et al. (2013). Noting that
supθ∈�K−1

f (Z′,A; θ) is uniquely maximized at (omitting the argument Z)

π̂a = na

n
= π∗

a + OP

(
n−1/2)

for 1 ≤ a ≤ K − 2, π̂K−1 = nK−1+nK

n
,

Ĥa,b = Oa,b

na,b

= H ∗
a,b + OP

(√
ρnn

−1) for 1 ≤ a ≤ b ≤ K − 2,(A.20)

Ĥa,K−1 = Oa,K−1 + Oa,K

na,K−1 + na,K

= H ′
a,K−1 + OP

(
ρnn

−1/2)
for 1 ≤ a ≤ K − 2,

ĤK−1,K−1 =
∑K

a=K−1
∑K

b=a Oa,b∑K
a=K−1

∑K
b=a na,b

= H ′
K−1,K−1 + OP

(
ρnn

−1/2),
and Assumption 2.2 the merged S′ is identifiable, we have

supθ∈�K−1

∑
z∈S(Z′) f (z,A; θ)

supθ∈�K−1
f (Z′,A; θ)

= 1 + oP (1).

Combined with Lemma 2.3

sup
θ∈�K−1

log
g(A; θ)

f (Z,A; θ∗)
(A.21)

= sup
θ∈�K−1

log
f (Z′,A; θ)

f (Z,A; θ∗)
+ oP (1).

We will check the expansion for the case ρn → 0; the case ρn = �(1) can be
shown in the same way.

n−3/2ρ−1
n sup

θ∈�K−1

log
g(A; θ)

f (Z,A; θ∗)

= n−3/2ρ−1
n sup

θ∈�K−1

log
f (Z′,A; θ)

f (Z,A; θ∗)
+ oP (1)
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= n−3/2ρ−1
n

{
n

K−1∑
a=1

α(π̂a)

+ 1

2

K−1∑
a=1

K−1∑
b=1

(
Oa,b log

Ĥa,b

1 − Ĥa,b

+ na,b log(1 − Ĥa,b)

)

−
K∑

a=1

na logπ∗
a(A.22)

− 1

2

K∑
a=1

K∑
b=1

(
Oa,b log

H ∗
a,b

1 − H ∗
a,b

+ na,b log
(
1 − H ∗

a,b

))}+ oP (1)

= n−1/2ρ−1
n

[
α
(
π∗

K−1 + π∗
K

)− α
(
π∗

K−1
)− α

(
π∗

K

)]
+ n−3/2ρ−1

n

1

2

∑
(a,b)∈I

(
Oa,b log

H ′
u(a),u(b)(1 − H ∗

a,b)

(1 − H ′
u(a),u(b))H

∗
a,b

+ na,b log
1 − H ′

u(a),u(b)

1 − H ∗
a,b

)
+ oP (1),

where I be the set of indices affected by the merge,

I = {
(a, b) ∈ [K]2|K − 1 ≤ a ≤ K or K − 1 ≤ b ≤ K

}
.

It is easy to see the expectation of this term is ρ−1
n

√
nμ2, we have

n−3/2ρ−1
n sup

θ∈�K−1

log
g(A; θ)

f (Z,A; θ∗)
− √

nρ−1
n μ2

= 1

2n3/2ρn

∑
(a,b)∈I

[(
Oa,b − n2H ∗

a,bπ
∗
a π∗

b

)
log

H ′
u(a),u(b)(1 − H ∗

a,b)

(1 − H ′
u(a),u(b))H

∗
a,b

+ (
na,b − n2π∗

a π∗
b

)
log

1 − H ′
u(a),u(b)

1 − H ∗
a,b

]
+ oP (1)(A.23)

= 1

2n3/2ρn

∑
(a,b)∈I

(
na,b − n2π∗

a π∗
b

)
d1(a, b) + oP (1)

=
√

n

2

∑
(a,b)∈I

(
na,b/n2 − π∗

a π∗
b

)
d2(a, b) + oP (1),

where di(a, b) is defined in (2.8). (2.9) follows by the delta method. �

PROOF OF LEMMA 2.6. The proof follows using arguments similar to
Lemma 2.3. Note that in this case G1(R(z),H ∗) is maximized at any z ∈ VK+
with the value

∑
a,b papbγ1(H

∗
a,b) [or

∑
a,b papbγ2(S

∗
a,b) for G2(R(z), S∗)].
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It suffices to discuss the case ρn → 0. Denote the optimal G∗ := ∑
a,b papb ×

γ2(S
∗
a,b), define similarly to Lemma 2.3

Jδn = {
z ∈ [

K+]n : G2
(
R(z), S∗)− G∗ < −δn

}
for δn → 0 slowly enough. It is easy to see∑

z∈Jδn

sup
θ∈�K+

f (z,A; θ) ≤ sup
θ∈�K+

f (z0,A; θ)oP (1)

for any z0 ∈ VK+ .
Next, note that treating R(z) as a vector, {R(z)|z ∈ VK+} is a subset of the union

of some of the K+ − K faces of the polyhedron PR . For every z /∈ Jδn, z /∈ VK+ ,
let z⊥ be such that R(z⊥) := minR(z0):z0∈VK+ ‖R(z) − R(z0)‖2. R(z) − R(z⊥) is
perpendicular to the corresponding K∗ − K face. Furthermore, this orthogonality
implies the directional derivative of G2(·, S∗) along the direction of R(z)−R(z⊥)

is bounded away from 0. That is,

∂G2((1 − ε)R(z⊥) + εR(z), S∗)
∂ε

∣∣∣
ε=0+ < −C

for some universal positive constant C. Similar to (A.17),

sup
θ∈�K+

logf (z,A; θ) − sup
θ∈�K+

logf (z⊥,A; θ) ≤ −�P (μn)
m

n
,

sup
θ∈�K+

f (z,A; θ) ≤ e−�P (μn)m
n sup

θ∈�K+
f (z⊥,A; θ),

where |z − z⊥| = m. We have∑
z/∈Jδn ,z/∈VK+

sup
θ∈�K+

f (z,A; θ)

≤ ∑
z∈VK+

sup
θ∈�K+

f (z,A; θ)

n∑
m=1

(K − 1)mnme−�P (μn)m
n

= oP (1)
∑

z∈VK+
sup

θ∈�K+
f (z,A; θ).

Hence, the claim follows. �

PROOF OF THEOREM 2.7. First, note

LK,K+ = log
supθ∈�K+ g(A; θ)

f (Z,A; θ∗)
+ OP (1),

where

log
supθ∈�K+ g(A; θ)

f (Z,A; θ∗)
≥ log

supθ∈�K+ f (Z,A; θ)

f (Z,A; θ∗)
(A.24)

= OP (1).
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Let D(·) be a diagonal matrix, upper bounding by the maximum,

log
supθ∈�K+ g(A; θ)

f (Z,A; θ∗)

≤ max
z

sup
θ∈�K+

log
f (z,A; θ)

f (Z,A; θ∗)
+ n logK+

= max
z

n2

2

{
F1

(
O(z)/n2,N(z)/n2)− F1

(
D(p)H ∗D(p),ppT )}+ OP (n)

≤ max
z

n2

2

∣∣F1
(
O(z)/n2,N(z)/n2)− F1

(
RH ∗RT (z),R11T RT (z)

)∣∣
(A.25)

+ max
z

n2

2

[
F1

(
RH ∗RT (z),R11T RT (z)

)− F1
(
D(p)H ∗D(p),ppT )]

+ OP (n)

≤ Cμn max
z

∥∥∥∥O(z)

μn

− RS∗RT

∥∥∥∥∞
+ OP (n)

= OP

(
n3/2ρ1/2

n

)
using (A.1) in Lemma A.1, and the fact that

max
z∈[K+]n

F1
(
RH ∗RT (z),R11T RT (z)

)
= F1

(
D(p)H ∗D(p),ppT ). �

Next, we prove Theorem 2.10.

PROOF OF THEOREM 2.10. To upper bound LK,K+ , by Lemma 2.6, it suffices
to consider

max
z∈VK+

sup
θ∈�K+

logf (z,A; θ) − sup
θ∈�K

logg(A; θ) + O(n)

= max
z∈VK+

sup
θ∈�K+

logf (z,A; θ) − logf
(
Z,A; θ∗)+ O(n).

It follows from the definition of VK+ there exists a surjective function h : [K+] →
[K] describing the block assignments in R(z,Z). We have

max
z∈VK+

sup
θ∈�K+

logf (z,A; θ) − logf
(
Z,A; θ∗)+ O(n)

= max
z∈VK+

n

K+∑
k=1

α
(
nk(z)/n

)− n

K∑
a=1

α

( ∑
k∈h−1(a)

nk(z)/n

)
(A.26)
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+ 1

2

K+∑
k=1

K+∑
l=1

(
Ok,l log

Ĥk,l

H ∗
h(k),h(l)

+ (nk,l − Ok,l) log
1 − Ĥk,l

1 − H ∗
h(k),h(l)

)

+ OP (n),

where Ĥk,l = Ok,l(z)/nk,l(z). The first part of the expression is nonpositive since
α is superadditive.

Taylor expanding (A.26) and using the fact that Ĥk,l − H ∗
h(k),h(l) =

OP (n−1/2ρ
1/2
n ) for z ∈ NK+ uniformly, (A.26) is upper bounded by OP (n). �
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SUPPLEMENTARY MATERIAL

Supplement to “Likelihood-based model selection for stochastic block mod-
els” (DOI: 10.1214/16-AOS1457SUPP; .pdf). A proof sketch of how the main
results in the paper can be extended to the DCSBM described in Section 2.5 is
provided in the supplement.
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