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NORMAL APPROXIMATION AND CONCENTRATION OF
SPECTRAL PROJECTORS OF SAMPLE COVARIANCE
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Let X,X1, . . . ,Xn be i.i.d. Gaussian random variables in a separable
Hilbert space H with zero mean and covariance operator � = E(X ⊗X), and
let �̂ := n−1 ∑n

j=1(Xj ⊗Xj ) be the sample (empirical) covariance operator
based on (X1, . . . ,Xn). Denote by Pr the spectral projector of � correspond-
ing to its rth eigenvalue μr and by P̂r the empirical counterpart of Pr . The
main goal of the paper is to obtain tight bounds on

sup
x∈R

∣∣∣∣P
{‖P̂r − Pr‖2

2 −E‖P̂r − Pr‖2
2

Var1/2(‖P̂r − Pr‖2
2)

≤ x

}
− �(x)

∣∣∣∣,
where ‖ · ‖2 denotes the Hilbert–Schmidt norm and � is the standard normal
distribution function. Such accuracy of normal approximation of the distribu-
tion of squared Hilbert–Schmidt error is characterized in terms of so-called
effective rank of � defined as r(�) = tr(�)

‖�‖∞ , where tr(�) is the trace of �

and ‖�‖∞ is its operator norm, as well as another parameter characterizing
the size of Var(‖P̂r −Pr‖2

2). Other results include nonasymptotic bounds and
asymptotic representations for the mean squared Hilbert–Schmidt norm error
E‖P̂r − Pr‖2

2 and the variance Var(‖P̂r − Pr‖2
2), and concentration inequal-

ities for ‖P̂r − Pr‖2
2 around its expectation.

1. Introduction. Let X be a mean zero Gaussian random vector in a separa-
ble Hilbert space H with covariance operator � = E(X ⊗ X) and let X1, . . . ,Xn

be a sample of n i.i.d. copies of X. The sample covariance operator �̂ = �̂n is
defined as follows: �̂ := �̂n := n−1 ∑n

j=1(Xj ⊗Xj). Denote by μr the r th eigen-
value of � (in a decreasing order) and by Pr the corresponding spectral projector
of � (i.e., the orthogonal projector on the eigenspace of eigenvalue μr ). Let P̂r

denote properly defined empirical counterpart of Pr (see Section 2.2 for a precise
definition). The main goal of the paper is to obtain a tight bound on the accuracy
of normal approximation of the distribution of the squared Hilbert–Schmidt norm
error ‖P̂r − Pr‖2

2 of the estimator P̂r . Another goal is to provide bounds on the
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risk E‖P̂r − Pr‖2
2 of this estimator as well as nonasymptotic bounds on concen-

tration of random variables ‖P̂r − Pr‖2
2 around its expectation. These bounds will

be expressed in terms of natural complexity parameters of the problem, the most
important one being the so-called effective rank r(�) that has been recently used
in the literature (see [2, 18, 20]).

DEFINITION 1. The following quantity r(�) := tr(�)
‖�‖∞ will be called the ef-

fective rank of �.

Here, tr(�) denotes the trace of � and ‖�‖∞ denotes its operator norm. The
above definition clearly implies that r(�) ≤ rank(�). A recent result by Koltchin-
skii and Lounici (see [14]) shows that, in the Gaussian case, the size of the opera-
tor norm error ‖�̂ − �‖∞ of sample covariance �̂ is completely characterized by
‖�‖∞ and r(�). This makes the effective rank r(�) the crucial complexity pa-
rameter of the problems of estimation of covariance and its spectral characteristics
(its principal components) that allows one to study principal component analysis
(PCA) problems in a unified dimension-free framework that includes their high-
dimensional and infinite-dimensional versions (functional PCA, kernel PCA, etc.).
Our goal is to study the problem in a “high-complexity setting”, where both the
sample size n and the effective rank r(�) are large, although our primary focus is
on the case when r(�) = o(n) which implies operator norm consistency of both
�̂ and P̂r . This setting is much closer to high-dimensional covariance estimation
and PCA problems than to standard results on PCA in Hilbert spaces with a fixed
value of tr(�) (see, e.g., [4]) that are commonly used in the literature on functional
PCA and kernel PCA. It includes, in particular, high-dimensional spiked covari-
ance models (see [9, 10, 19]) in which

� =
m∑

j=1

s2
j (θj ⊗ θj ) + σ 2Pp,(1.1)

where {θj } is an orthonormal basis of H, s2
1 > s2

2 > · · · > s2
m are the variances of

m independent components of the “signal”, σ 2 is the variance of the noise compo-
nents and Pp := ∑p

j=1(θj ⊗θj ) is the orthogonal projector on the linear span of the
vectors θ1, . . . , θp , where p > m. This models the covariance of a Gaussian sig-
nal with m independent components observed in an independent Gaussian white
noise. It is usually assumed that the number of components m and the variances
s2

1 , . . . , s2
m,σ 2 are fixed, but the overall dimension of the problem p = pn → ∞ as

n → ∞ is large, implying that

tr(�) =
m∑

j=1

s2
j + σ 2p ∼ σ 2p → ∞ as n → ∞

and r(�) ∼ σ 2

s2
1+σ 2 p. Estimation of the components of the “signal” θ1, . . . , θm is

viewed as PCA for unknown covariance �. It is common to consider a sequence
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of high-dimensional problems in spaces Rp,p = pn (rather than explicitly embed
the spaces Rp into an infinite dimensional Hilbert space H). To assess the perfor-
mance of the PCA, the loss function L(a, b) := 2(1 − |〈a, b〉|), where a, b ∈ R

p

are unit vectors, was used in [1]. A closely related loss function is defined by
L′(a, b) := ‖a ⊗ a − b ⊗ b‖2

2 = 2(1 −〈a, b〉2); see, for instance, [3, 18, 21]. In the
case of spiked covariance model with σ 2 = 1 and p

n
→ 0 as n → ∞, the following

asymptotic representation of the risk holds [1]:

EL(θ̂j , θj ) =
[(p − m)(1 + s2

j )

ns4
j

+ 1

n

∑
k �=j

(1 + s2
j )(1 + s2

k )

(s2
j − s2

k )2

](
1 + o(1)

)
,

(1.2)
j = 1, . . . ,m.

In this paper, we are not making any structural assumptions on the covariance
operator �, such as the spiked covariance model, sparsity, etc., but rather study
the problem in terms of complexity parameter r(�). We derive representations of
the Hilbert–Schmidt risk E‖P̂r − Pr‖2

2 of empirical spectral projectors in the case
when r(�) = o(n) that imply representation (1.2) for spiked covariance model.
Specifically, we prove that

E‖P̂r − Pr‖2
2 = (

1 + o(1)
)Ar(�)

n
,(1.3)

where Ar(�) = 2 tr(Pr�Pr) tr(Cr�Cr) and the operator Cr is defined as Cr :=∑
s �=r

Ps

μr−μs
. In addition, we show that

Var
(‖P̂r − Pr‖2

2
) = (

1 + o(1)
)B2

r (�)

n2 ,(1.4)

where Br(�) := 2
√

2‖Pr�Pr‖2‖Cr�Cr‖2, and derive concentration bounds for
random variable ‖P̂r − Pr‖2

2 around its expectation. One of the main results of the
paper is the following bound on the accuracy of normal approximation of random
variable ‖P̂r − Pr‖2

2 that holds under rather mild assumptions:

sup
x∈R

∣∣∣∣P
{‖P̂r − Pr‖2

2 −E‖P̂r − Pr‖2
2

Var1/2(‖P̂r − Pr‖2
2)

≤ x

}
− �(x)

∣∣∣∣
(1.5)

≤ C

[
1

Br(�)
+ r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)]
,

where �(x) denotes the standard normal distribution function. This bound implies

that the distribution of random variable
‖P̂r−Pr‖2

2−E‖P̂r−Pr‖2
2

Var1/2(‖P̂r−Pr‖2
2)

is asymptotically stan-

dard normal as soon as n → ∞, Br(�) → ∞ and r(�)

Br (�)
√

n
→ 0 which, in particu-

lar, implies that r(�) = o(n) [see (4.5), (4.6)].
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In our paper [13], asymptotics and concentration bounds for bilinear forms
〈P̂ru, v〉, u, v ∈ H of empirical spectral projectors P̂r were studied in a similar
setting under the assumption r(�) = o(n).

Note that in the case of spiked covariance model, the classical PCA is known to
yield inconsistent estimators of the eigenvectors when condition p = o(n) [which
is a special case of our condition r(�) = o(n)] fails and p

n
→ c > 0; see, for ex-

ample, [10]. In [1], a thresholding procedure in spirit of diagonal thresholding of
Johnstone and Lu [10] was proposed and it was proved that it achieves optimality
in the minimax sense for the loss L(·, ·) under sparsity conditions on the eigenvec-
tors of �.

Throughout the paper, for A,B > 0, the notation A � B means that there exists
an absolute constant C > 0 such that A ≤ CB . Similarly, A � B means that A ≥
CB for an absolute constant C > 0 and A � B means that A � B and A � B .
In the cases when the constant C in the above bounds might depend on some
parameter(s), say, γ , and we want to emphasize this dependence, we will write
A �γ B , A �γ B , or A �γ B . Also, throughout the paper (as it was already done in
the Introduction), ‖ · ‖2 denotes the Hilbert–Schmidt norm and ‖ · ‖∞ the operator
norm of operators acting in H. With a minor abuse of notation, 〈·, ·〉 denotes both
the inner product of H and the Hilbert–Schmidt inner product. We will also use the
sign ⊗ to denote the tensor product. For instance, for u, v ∈ H, u ⊗ v is a linear
operator in H defined as follows: (u ⊗ v)x = u〈v, x〉, x ∈H.

In what follows, we will frequently prove exponential bounds for certain ran-
dom variables, say, ξ , of the following type: for some constant C > 0 and for all
t ≥ 1, with probability at least 1 − e−t , ξ ≤ C

√
t . Often it will be proved instead

that the inequality holds with probability, say, 1 − 2e−t . In such cases, it is easy
to rewrite the probability bound in the initial form by changing the value of the
constant C. For instance, replacing t by t + log 2 allows one to claim that with
probability 1 − e−t , ξ ≤ C

√
t + log 2 ≤ C(1 + log 2)1/2√t that holds for all t ≥ 1.

In such cases, it will be said without further explanation that probability bound
1 − 2e−t can be replaced by 1 − e−t by adjusting the constants.

2. Preliminaries. In this section, we discuss recent bounds on the operator
norm ‖�̂n − �‖∞ obtained in [14] and several well-known results of perturbation
theory used throughout the paper (see also [13]).

2.1. Bounds on the operator norm ‖�̂n −�‖∞. In [14], it was proved that, in
the Gaussian case, moment bounds and concentration inequalities for the operator
norm ‖�̂ − �‖∞ are completely characterized by the operator norm ‖�‖∞ and
the effective rank r(�). More precisely, the following theorems hold.

THEOREM 1. Let X,X1, . . . ,Xn be i.i.d. centered Gaussian random vectors
in H with covariance � = E(X ⊗ X). Then, for all p ≥ 1,

E
1/p‖�̂ − �‖p∞ �p ‖�‖∞ max

{√
r(�)

n
,

r(�)

n

}
.(2.1)
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THEOREM 2. Let X,X1, . . . ,Xn be i.i.d. centered Gaussian random vectors
in H with covariance � = E(X ⊗X). Then there exists a constant C > 0 such that
for all t ≥ 1 with probability at least 1 − e−t ,

∣∣‖�̂ − �‖∞ −E‖�̂ − �‖∞
∣∣ ≤ C‖�‖∞

[(√
r(�)

n
∨ 1

)√
t

n
∨ t

n

]
.(2.2)

As a consequence of this bound and (2.1), with some constant C > 0 and with the
same probability

‖�̂ − �‖∞ ≤ C‖�‖∞
[√

r(�)

n
∨ r(�)

n
∨

√
t

n
∨ t

n

]
.(2.3)

2.2. Perturbation theory. Several simple and well-known facts on perturba-
tions of linear operators (see Kato [11]) will be stated in a form suitable for our
purposes. The proofs of some of these facts that seem not to be readily available in
the literature were given in [13] (see also Koltchinskii [15] and Kneip and Utikal
[12] for some bounds in the same direction).

Let � : H �→ H be a compact symmetric operator (in our case, the covariance
operator of a random vector X in H) with the spectrum σ(�). The following spec-
tral representation is well known to hold with the series converging in the operator
norm: � = ∑

r≥1 μrPr , where μr denotes distinct nonzero eigenvalues of � ar-
ranged in decreasing order and Pr the corresponding spectral projectors. Denote by
σi = σi(�) the eigenvalues of � arranged in nonincreasing order and repeated with
their respective multiplicities. Let �r = {i : σi(�) = μr} and let mr := card(�r)

denote the multiplicity of μr . Define gr := gr(�) := μr − μr+1 > 0, r ≥ 1. Let
ḡr := ḡr (�) := min(gr−1, gr) for r ≥ 2 and ḡ1 := g1. The quantity ḡr will be
called the r th spectral gap, or the spectral gap of eigenvalue μr .

Let now �̃ := � + E be another compact symmetric operator in H with spec-
trum σ(�̃) and eigenvalues σ̃i = σi(�̃), i ≥ 1 (arranged in nonincreasing order
and repeated with their multiplicities), where E is a perturbation of �. By Lid-
skii’s inequality,

sup
j≥1

∣∣σj (�) − σj (�̃)
∣∣ ≤ sup

j≥1

∣∣σj (E)
∣∣ = ‖E‖∞.

Thus, for all r ≥ 1,

inf
j /∈�r

|σ̃j − μr | ≥ ḡr − sup
j≥1

|σ̃j − σj | ≥ ḡr − ‖E‖∞

and

sup
j∈�r

|σ̃j − μr | = sup
j∈�r

|σ̃j − σj | ≤ ‖E‖∞.
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Assuming that the perturbation E is small in the sense that ‖E‖∞ <
ḡr

2 , it is easy
to conclude that all the eigenvalues σ̃j , j ∈ �r are covered by an interval(

μr − ‖E‖∞,μr + ‖E‖∞
) ⊂ (μr − ḡr/2,μr + ḡr/2)

and the rest of the eigenvalues of �̃ are outside of the interval(
μr − (

ḡr − ‖E‖∞
)
,μr + (

ḡr − ‖E‖∞
)) ⊃ [μr − ḡr/2,μr + ḡr/2].

Moreover, under the assumption ‖E‖∞ < 1
4 min1≤s≤r ḡs =: δ̄r , the set {σj (�̃) :

j ∈ ⋃r
s=1 �s} of the largest eigenvalues of �̃ consists of r “clusters”, the diameter

of each cluster being strictly smaller than 2δ̄r and the distance between any two
clusters being larger than 2δ̄r . Thus, it is possible to identify clusters of eigenvalues
of �̃ corresponding to each of the r largest distinct eigenvalues μs, s = 1, . . . , r

of �. Let P̃r be the orthogonal projector on the direct sum of eigenspaces of �̃

corresponding to the eigenvalues σ̃j , j ∈ �r (to the r th cluster of eigenvalues of
�̃). The following “partial resolvent” operator will be frequently used throughout
the paper: Cr := ∑

s �=r
1

μr−μs
Ps .

We will need a couple of lemmas proved in [13] (see Lemmas 1 and 4 therein).

LEMMA 1. The following bound holds:

‖P̃r − Pr‖∞ ≤ 4
‖E‖∞

ḡr

.(2.4)

Moreover,

P̃r − Pr = Lr(E) + Sr(E),(2.5)

where

Lr(E) := CrEPr + PrECr(2.6)

and

∥∥Sr(E)
∥∥∞ ≤ 14

(‖E‖∞
ḡr

)2

.(2.7)

LEMMA 2. Let γ ∈ (0,1) and suppose that

δ ≤ 1 − γ

1 + γ

ḡr

2
.(2.8)

Suppose also that

‖E‖∞ ≤ (1 + γ )δ and
∥∥E′∥∥∞ ≤ (1 + γ )δ.(2.9)

Then there exists a constant Cγ > 0 such that

∥∥Sr(E) − Sr

(
E′)∥∥∞ ≤ Cγ

δ

ḡ2
r

∥∥E − E′∥∥∞.(2.10)
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3. Bounds on the risk of empirical spectral projectors. Let P̂r be the or-
thogonal projector on the direct sum of eigenspaces of �̂ corresponding to the
eigenvalues {σj (�̂), j ∈ �r} (in other words, to the r th cluster of eigenvalues of
�̂, see Section 2.2).

We will state simple bounds for the bias EP̂r − Pr and the “variance” E‖P̂r −
EP̂r‖2

2 that immediately imply a representation of the risk E‖P̂r − Pr‖2
2.

Denote

Ar(�) := 2 tr(Pr�Pr) tr(Cr�Cr).(3.1)

It is easy to see that

Ar(�) ≤ 2
mrμr

ḡ2
r

‖�‖∞r(�)(3.2)

and

Ar(�) ≥ 2
(

mrμr

‖�‖∞
r(�) − mrμ

2
r

‖�‖2∞

)
,(3.3)

which implies that

Ar(�) � r(�)(3.4)

[assuming that ‖�‖∞ and mr are both bounded, ḡr is bounded away from 0 and
r(�) → ∞].

THEOREM 3. The following bounds hold:

1.

‖EP̂r − Pr‖∞ � ‖�‖2∞
ḡ2

r

(
r(�)

n
∨

(
r(�)

n

)2)
(3.5)

and

‖EP̂r − Pr‖2 � √
mr

‖�‖2∞
ḡ2

r

(
r(�)

n
∨

(
r(�)

n

)2)
.(3.6)

2. In addition,

E‖P̂r −EP̂r‖2
2 = Ar(�)

n
+ ρn,(3.7)

where

|ρn| ≤ mr‖�‖4∞
ḡ4

r

((
r(�)

n

)3/2

∨
(

r(�)

n

)4)
.(3.8)
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3. If � = �(n), the sequences ‖�(n)‖∞ and mr = m
(n)
r are both bounded, ḡr =

ḡ
(n)
r is bounded away from 0, and

r(�) → ∞, r(�) = o(n),

then the following representation holds:

E‖P̂r − Pr‖2
2 = Ar(�)

n
+ O

((
r(�)

n

)3/2)
= (

1 + o(1)
)Ar(�)

n
.(3.9)

REMARK 1. In the case of spiked covariance model (1.1) for all r = 1, . . . ,m,

Ar(�) = 2
(

(p − m)(s2
r + σ 2)

s4
r

+ ∑
1≤j≤m,j �=r

(s2
j + σ 2)(s2

r + σ 2)

(s2
r − s2

j )2

)
.

Assuming that m,s2
1 , . . . , s2

m,σ 2 are fixed, p → ∞ and p = o(n) as n → ∞, it is
easy to check that (3.9) implies bound (1.2) obtained in [1].

PROOF. Recall the following relationship (see Lemma 1):

P̂r − Pr = Lr(E) + Sr(E),(3.10)

where E := �̂ − �, Lr(E) := CrEPr + PrECr and Sr(E) := P̂r − Pr − Lr(E).

Clearly, CrPr = PrCr = 0 (due to the orthogonality of Pr and Ps, s �= r). Also,
PrX and CrX are independent random variables (since, by the same orthogonality
property, they are uncorrelated and X is Gaussian).

To prove Claim 1, note that, since ELr(E) = 0, we have EP̂r − Pr = ESr(E).
Therefore, by bound (2.7) of Lemma 1, we get

‖EP̂r − Pr‖∞ ≤ E
∥∥Sr(E)

∥∥∞ ≤ 14
E‖E‖2∞

ḡ2
r

.(3.11)

Bound (3.5) now follows from Theorem 1. Bound (3.6) is also obvious since P̂r ,Pr

are operators of rank mr , Lr(E) is of rank at most 2mr and Sr(E) = P̂r − Pr −
Lr(E) is of rank at most 4mr . Thus, ‖Sr(E)‖2 � √

mr‖Sr(E)‖∞, and the result
follows from the previous bounds.

To prove Claim 2, note that P̂r −EP̂r = Lr(E) + Sr(E) −ESr(E). Therefore,

‖P̂r −EP̂r‖2
2 = ∥∥Lr(E)

∥∥2
2 + ∥∥Sr(E) −ESr(E)

∥∥2
2

(3.12)
+ 2

〈
Lr(E),Sr(E) −ESr(E)

〉
.

The following representations are obvious:

CrEPr = n−1
n∑

j=1

CrXj ⊗ PrXj , PrECr = n−1
n∑

j=1

PrXj ⊗ CrXj .(3.13)
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Note that, by (3.13), due to orthogonality of CrEPr,PrECr and due to indepen-
dence of PrX,CrX,

E
∥∥Lr(E)

∥∥2
2 = E‖CrEPr + PrECr‖2

2 = E
(‖CrEPr‖2

2 + ‖PrECr‖2
2
)

= 2E‖CrEPr‖2
2 = 2E

∥∥∥∥∥n−1
n∑

j=1

PrXj ⊗ CrXj

∥∥∥∥∥
2

2
(3.14)

= 2E‖PrX ⊗ CrX‖2
2

n
= 2E‖PrX‖2‖CrX‖2

n

= 2E‖PrX‖2
E‖CrX‖2

n
= 2 tr(Pr�Pr) tr(Cr�Cr)

n
= Ar(�)

n
.

Next, note that E‖Sr(E) − ESr(E)‖2
2 ≤ E‖Sr(E)‖2

2. Recall that Sr(E) is of
rank ≤ 4mr and ‖Sr(E)‖2

2 ≤ 4mr‖Sr(E)‖2∞. Quite similarly to (3.11), one can
prove that E‖Sr(E)‖2∞ � 1

ḡ4
r
E‖E‖4∞. Therefore, by Theorem 1, we get

E
∥∥Sr(E) −ESr(E)

∥∥2
2 � mr

‖�‖4∞
ḡ4

r

((
r(�)

n

)2

∨
(

r(�)

n

)4)
.(3.15)

As a consequence of (3.2), (3.14) and (3.15), it easily follows that

E
∣∣〈Lr(E),Sr(E) −ESr(E)

〉∣∣ ≤ E
1/2∥∥Lr(E)

∥∥2
2E

1/2∥∥Sr(E) −ESr(E)
∥∥2

2

�
√

Ar(�)

n

√
mr

‖�‖2∞
ḡ2

r

(
r(�)

n
∨

(
r(�)

n

)2)
(3.16)

� mr

‖�‖3∞
ḡ3

r

((
r(�)

n

)3/2

∨
(

r(�)

n

)5/2)

(3.7) and (3.8) now follow from (3.12), (3.14), (3.15) and (3.16).
We now prove Claim 3. Using (2.5), we easily get

‖P̂r − Pr‖2
2 = ∥∥Lr(E)

∥∥2
2 + ∥∥Sr(E)

∥∥2
2 + 2

〈
Lr(E),Sr(E)

〉
.

In view of (3.14), we have E‖Lr(E)‖2
2 = Ar(�)

n
. By an argument similar to that of

(3.15) and (3.16) and under the assumption of the claim, we obtain

E
∥∥Sr(E)

∥∥2
2 + 2E

∣∣〈Lr(E),Sr(E)
〉∣∣ �

(
r(�)

n

)3/2

.

The result follows from the last two displays. �

4. Concentration inequalities. The main goal of this section is to derive a
concentration bound for the squared Hilbert–Schmidt error ‖P̂r − Pr‖2

2 around its
expectation. Denote

Br(�) := 2
√

2‖Pr�Pr‖2‖Cr�Cr‖2.(4.1)
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THEOREM 4. Suppose that, for some γ ∈ (0,1),

E‖�̂ − �‖∞ ≤ (1 − γ )ḡr

2
.(4.2)

Moreover, let t ≥ 1 and suppose that

mr � 1,
‖�‖∞

ḡr

√
t

n
� 1.(4.3)

Then, for some constant Dγ > 0 with probability at least 1 − e−t ,∣∣‖P̂r − Pr‖2
2 −E‖P̂r − Pr‖2

2
∣∣

(4.4)

≤ Dγ

[
Br(�)

n

√
t ∨ ‖�‖2∞

ḡ2
r

t

n
∨ ‖�‖3∞

ḡ3
r

r(�)

n

√
t

n

]
.

Note that the first term Br(�)
n

√
t in the right-hand side of (4.4) is dominant if

Br(�) → ∞ and r(�)

Br(�)
√

n
→ 0 [provided also that ‖�‖∞

ḡr
� 1 and Br(�) � √

t ].
In the next section, it will be shown that under the same assumptions the random

variable
‖P̂r−Pr‖2

2−E‖P̂r−Pr‖2
2

Var1/2(‖P̂r−Pr‖2
2)

is close in distribution to the standard normal and,

in addition, Var1/2(‖P̂r − Pr‖2
2) = (1 + o(1))Br (�)

n
. Note also that the assump-

tion r(�)

Br(�)
√

n
→ 0 imply that r(�) = o(n) provided that ‖�‖∞ � ḡr and mr � 1.

Indeed,

B2
r (�) = 8‖Pr�Pr‖2

2‖Cr�Cr‖2
2 = 8

∑
s �=r

μ2
rμ

2
smrms

(μr − μs)4 ≤ 8
mr‖�‖3∞

ḡ4
r

∑
s �=r

μsms

(4.5)

≤ 8
mr‖�‖3∞

ḡ4
r

tr(�) = 8
mr‖�‖4∞

ḡ4
r

r(�) � r(�).

Therefore,

r(�)

n
�

(
r(�)

Br(�)
√

n

)2

→ 0.(4.6)

The main ingredient in the proofs of these results is a concentration bound for
the random variables ‖P̂r −Pr‖2

2 −‖Lr(E)‖2
2 given below (recall that E = �̂−�).

THEOREM 5. Suppose that, for some γ ∈ (0,1), condition (4.2) holds. Then
there exists a constant Lγ > 0 such that for all t ≥ 1 the following bound holds
with probability at least 1 − e−t :∣∣‖P̂r − Pr‖2

2 − ∥∥Lr(E)
∥∥2

2 −E
(‖P̂r − Pr‖2

2 − ∥∥Lr(E)
∥∥2

2

)∣∣
(4.7)

≤ Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)√
t

n
.
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PROOF. It easily follows from Theorem 1 that under assumption (4.2)

‖�‖∞
(√

r(�)

n
∨ r(�)

n

)
� (1 − γ )ḡr

2
≤ ‖�‖∞,

which implies that r(�) � n. Theorem 2 implies that for some constant C′ > 0
and for all t ≥ 1 with probability at least 1 − e−t

‖�̂ − �‖∞ ≤ E‖�̂ − �‖∞ + C′‖�‖∞
(√

t

n
∨ t

n

)
.

We will first assume that

C‖�‖∞

√
t

n
≤ γ ḡr

4
(4.8)

with a sufficiently large constant C ≥ 1 (the proof of the concentration bound in
the opposite case will be much easier). This assumption easily implies that t ≤ n

and, if C ≥ C′,

C′‖�‖∞
(√

t

n
∨ t

n

)
≤ C‖�‖∞

√
t

n
.

Denote

δn(t) := E‖�̂ − �‖∞ + C‖�‖∞

√
t

n
.

Then P{‖�̂ − �‖∞ ≥ δn(t)} ≤ e−t .
The main part of the proof is the derivation of a concentration inequality for the

function

g(X1, . . . ,Xn) = (‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2

)
ϕ

(‖E‖∞
δ

)
,

where, for some γ ∈ (0,1), ϕ is a Lipschitz function on R+ with constant 1
γ

, 0 ≤
ϕ(s) ≤ 1, ϕ(s) = 1, s ≤ 1, ϕ(s) = 0, s > 1 + γ , and δ > 0 is such that ‖E‖∞ ≤ δ

with a high probability. This inequality will be then used with δ = δn(t). Together
with Theorem 2, it will imply bound (4.7) under assumption (4.8).

Our main tool is the following concentration inequality that easily follows from
Gaussian isoperimetric inequality (see, e.g., [17], Theorem 1.2).

LEMMA 3. Let X1, . . . ,Xn be i.i.d. centered Gaussian random variables in H

with covariance operator �. Let f :Hn �→R be a function satisfying the following
Lipschitz condition with some L > 0:

∣∣f (x1, . . . , xn) − f
(
x′

1, . . . , x
′
n

)∣∣ ≤ L

(
n∑

j=1

∥∥xj − x′
j

∥∥2
)1/2

,

x1, . . . , xn, x
′
1, . . . , x

′
n ∈H.
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Suppose that, for a real number M ,

P
{
f (X1, . . . ,Xn) ≥ M

} ≥ 1/4 and P
{
f (X1, . . . ,Xn) ≤ M

} ≥ 1/4.

Then there exists a constant D > 0 such that for all t ≥ 1,

P
{∣∣f (X1, . . . ,Xn) − M

∣∣ ≥ DL‖�‖1/2∞
√

t
} ≤ e−t .

The derivation of the inequality of Lemma 3 from the isoperimetric inequality
is similar to the standard derivation when M is the median.

We have to check now that the function g(X1, . . . ,Xn) satisfies the Lipschitz
condition (with a minor abuse of notation we view X1, . . . ,Xn here as nonrandom
vectors in H rather than random variables).

LEMMA 4. Suppose that, for some γ ∈ (0,1/2),

δ ≤ 1 − 2γ

1 + 2γ

ḡr

2
.(4.9)

Then there exists a constant Dγ > 0 such that, for all X1, . . . ,Xn,X
′
1, . . . ,X

′
n ∈ H,∣∣g(X1, . . . ,Xn) − g

(
X′

1, . . . ,X
′
n

)∣∣
(4.10)

≤ Dγ mr

δ2

ḡ3
r

‖�‖1/2∞ + √
δ√

n

(
n∑

j=1

∥∥Xj − X′
j

∥∥2
)1/2

.

PROOF. Observe that

‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2 = ∥∥Lr(E) + Sr(E)

∥∥2
2 − ∥∥Lr(E)

∥∥2
2

= 2
〈
Lr(E),Sr(E)

〉 + ∥∥Sr(E)
∥∥2

2 =: g̃(E).

Also, note that Lr(E) is an operator of rank at most 2mr and Sr(E) = P̂r − Pr −
Lr(E) has rank at most 4mr (under the assumption that ‖E‖∞ < ḡr/2 implying
that P̂r is of rank mr ). This allows us to bound the Hilbert–Schmidt norms of such
operators in terms of their operator norms: ‖A‖2

2 ≤ rank(A)‖A‖2∞. Thus, we get

∣∣g(X1, . . . ,Xn)
∣∣ ≤ 4

√
2mr

(∥∥Lr(E)
∥∥∞

∥∥Sr(E)
∥∥∞ + ∥∥Sr(E)

∥∥2
∞

)
ϕ

(‖E‖∞
δ

)
.

Since ϕ(
‖E‖∞

δ
) = 0 if ‖E‖∞ ≥ (1 + γ )δ, claims (2.6), (2.7) of Lemma 1 imply

that, under assumption (4.9)

∣∣g(X1, . . . ,Xn)
∣∣ ≤ cγ mr

(
δ

ḡr

)3

,(4.11)

for some constant cγ > 0 depending only γ .
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We will denote �̂′ := n−1 ∑n
j=1 X′

j ⊗ X′
j and E′ := �̂′ − �. Using now (2.6),

(2.7), (4.11) and the fact that ϕ is bounded by 1 and Lipschitz with constant 1
γ

,

which implies that the function t �→ ϕ( t
δ
) is Lipschitz with constant 1

γ δ
, we easily

get that, under the assumptions

‖E‖∞ ≤ (1 + γ )δ,
∥∥E′∥∥∞ ≤ (1 + γ )δ,(4.12)

the following inequality holds:∣∣∣∣g̃(E)ϕ

(‖E‖∞
δ

)
− g̃

(
E′)ϕ(‖E′‖∞

δ

)∣∣∣∣
≤ ∣∣g̃(E) − g̃

(
E′)∣∣ + cγ

γ

δ2

ḡ3
r

∥∥E − E′∥∥∞
(4.13)

≤ 2
∣∣〈Lr

(
E − E′), Sr(E)

〉∣∣ + 2
∣∣〈Lr

(
E′), Sr(E) − Sr

(
E′)〉∣∣

+ ∣∣〈Sr(E) − Sr

(
E′), Sr(E) + Sr

(
E′)〉∣∣ + cγ

γ

δ2

ḡ3
r

∥∥E − E′∥∥∞.

Using the Lipschitz bound of Lemma 2 and (2.6), (2.7) of Lemma 1, we easily
get that

∣∣g(X1, . . . ,Xn) − g
(
X′

1, . . . ,X
′
n

)∣∣ ≤ c′
γ mr

δ2

ḡ3
r

∥∥E − E′∥∥∞,(4.14)

where c′
γ > 0 depends only on γ .

A similar bound holds in the case when

‖E‖∞ ≤ (1 + γ )δ,
∥∥E′∥∥∞ > (1 + γ )δ

[when both norms are larger than (1 + γ )δ, the function ϕ is equal to zero and the
bound is trivial]. Indeed, first consider the case when ‖E − E′‖∞ ≥ γ δ. Then, in
view of (4.11), we have∣∣∣∣g̃(E)ϕ

(‖E‖∞
δ

)
− g̃

(
E′)ϕ(‖E′‖∞

δ

)∣∣∣∣
=

∣∣∣∣g̃(E)ϕ

(‖E‖∞
δ

)∣∣∣∣ ≤ cγ mr

δ3

ḡ3
r

≤ cγ

γ
mr

δ2

ḡ3
r

∥∥E − E′∥∥∞.

On the other hand, if ‖E −E′‖∞ < γδ, we have that ‖E′‖∞ ≤ (1+2γ )δ and, tak-
ing into account assumption (4.9), we can repeat the argument in the case (4.12)
ending up with the same bound as (4.14) with a positive constant (possibly differ-
ent from c′

γ , but still depending only on γ ) in the right-hand side.
The following bound (see Lemma 5 in [13]) provides a control of ‖E − E′‖∞:∥∥E − E′∥∥∞

(4.15)

≤ 4‖�‖1/2∞ + 4
√

2δ√
n

(
n∑

j=1

∥∥Xj − X′
j

∥∥2
)1/2

∨ 4

n

n∑
j=1

∥∥Xj − X′
j

∥∥2
.
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Now substitute the last bound in the right-hand side of (4.14) and observe that, in
view of (4.11), the left-hand side of (4.14) can be also upper bounded by 2cγ mr

δ3

ḡ3
r
.

Therefore, we get that with some constant Lγ > 0,∣∣g(X1, . . . ,Xn) − g
(
X′

1, . . . ,X
′
n

)∣∣
≤ 4c′

γ mr

δ2

ḡ3
r

[‖�‖1/2∞ + √
2δ√

n

(
n∑

j=1

∥∥Xj − X′
j

∥∥2
)1/2

∨ 1

n

n∑
j=1

∥∥Xj − X′
j

∥∥2
]

∧ 2cγ mr

δ3

ḡ3
r

(4.16)

≤ Lγ mr

δ2

ḡ3
r

[‖�‖1/2∞ + √
2δ√

n

(
n∑

j=1

∥∥Xj − X′
j

∥∥2
)1/2

∨
(

1

n

n∑
j=1

∥∥Xj − X′
j

∥∥2 ∧ δ

)]
.

Using an elementary inequality a ∧ b ≤ √
ab, a, b ≥ 0, we get

1

n

n∑
j=1

∥∥Xj − X′
j

∥∥2 ∧ δ ≤
√

δ

n

(
n∑

j=1

∥∥Xj − X′
j

∥∥2
)1/2

.

This allows us to drop the last term in the maximum in the right-hand side of (4.16)
(since a similar expression is a part of the first term). This yields bound (4.10). �

Getting back to the proof of Theorem 5, it will be convenient to prove first a
version of its concentration bound with a median instead of the mean. Denote by
Med(η) a median of a random variable η and define M := Med(‖P̂r − Pr‖2

2 −
‖Lr(E)‖2

2). Let δ := δn(t) and suppose that t ≥ log(4) (by adjusting the constants,
one can replace this condition by t ≥ 1 as it is done in the statement of the the-
orem). Under conditions (4.2) and (4.8), δn(t) ≤ (1 − γ

2 )
ḡr

2 = 1−2γ ′
1+2γ ′

ḡr

2 for some
γ ′ ∈ (0,1/2). Thus, the function g(X1, . . . ,Xn) satisfies the Lipschitz condition
(4.10) with some constant D′

γ = Dγ ′ . Also, we have P{‖E‖∞ ≥ δ} ≤ e−t ≤ 1/4.

Note that on the event {‖E‖∞ < δ}, g(X1, . . . ,Xn) = ‖P̂r − Pr‖2
2 − ‖Lr(E)‖2

2.
Therefore,

P
{
g(X1, . . . ,Xn) ≥ M

} ≥ P
{
g(X1, . . . ,Xn) ≥ M,‖E‖∞ < δ

}
≥ P

{‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2 ≥ M

} − P
{‖E‖∞ ≥ δ

}
≥ 1/4.
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Quite similarly, P{g(X1, . . . ,Xn) ≤ M} ≥ 1/4. It follows from Lemma 3 that with
probability at least 1 − e−t

∣∣g(X1, . . . ,Xn) − M
∣∣ ≤ L′

γ mr

δn(t)
2

ḡ3
r

‖�‖1/2∞
(‖�‖1/2∞ + √

δn(t)
)√ t

n

with some constant L′
γ > 0. Using the bound

δn(t) � ‖�‖∞
(√

r(�)

n
∨

√
t

n

)

that easily follows from the definition of δn(t) and the bound of Theorem 1, we get
that with some Lγ > 0 and with the same probability

∣∣g(X1, . . . ,Xn) − M
∣∣ ≤ Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n

)√
t

n
.

Since P{‖E‖∞ ≥ δ} ≤ e−t and g(X1, . . . ,Xn) = ‖P̂r − Pr‖2
2 − ‖Lr(E)‖2

2 when
‖E‖∞ < δ, we can conclude that with probability at least 1 − 2e−t

∣∣‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2 − M

∣∣ ≤ Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n

)√
t

n

≤ Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)√
t

n
.

Adjusting the value of the constant Lγ one can replace the probability bound 1 −
2e−t by 1 − e−t .

We will now prove a similar bound in the case when condition (4.8) does not
hold. Then

‖�‖∞
ḡr

√
t

n
≥ γ

4C
.(4.17)

It follows from bound (2.4) and the definition of Lr(E) that, for some constant
c > 0,

∣∣‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2

∣∣ ≤ cmr

‖E‖2∞
ḡ2

r

.

We can now use the bounds of Theorems 1 and 2 to show that under condition
(4.2) for some C > 0 with probability at least 1 − e−t ,

∣∣‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2

∣∣ ≤ Cmr

‖�‖2∞
ḡ2

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)
.
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In view of condition (4.17), we get from the last bound that with some L′
γ > 0

with probability at least 1 − e−t ,

∣∣‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2

∣∣ ≤ L′
γ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)√
t

n
.

This easily implies the following bound on the median M :

M ≤ L′
γ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ log 2

n
∨

(
log 2

n

)2)√
log 2

n
.

Therefore, for some Lγ > 0 and for all t ≥ 1, with probability at least 1 − e−t

∣∣‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2 − M

∣∣
(4.18)

≤ Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)√
t

n
,

and the last bound was proved in both cases (4.8) and (4.17).
It remains to integrate out the tails of exponential bound (4.18) to get the in-

equality∣∣E(‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2

) − M
∣∣ ≤ E

∣∣‖P̂r − Pr‖2
2 − ∥∥Lr(E)

∥∥2
2 − M

∣∣
(4.19)

≤ L̄γ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ 1

n

)√
1

n

with some L̄γ > 0. Indeed, denote ξ := |‖P̂r − Pr‖2
2 − ‖Lr(E)‖2

2 − M| and

�n(t) := Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)√
t

n
.

We have �n(1) = Lγ mr
‖�‖3∞

ḡ3
r

( r(�)
n

∨ 1
n
)
√

1
n

. It is immediate to check that, for t ≥
1, �n(t) ≤ �n(1)t5/2. Therefore, it follows from (4.18) that P{ξ ≥ �n(1)t5/2} ≤
e−t , t ≥ 1 or, equivalently, P{ξ ≥ �n(1)t} ≤ e−t2/5

, t ≥ 1. Thus, we have

E
ξ

�n(1)
=

∫ ∞
0

P

{
ξ

�n(1)
≥ t

}
dt ≤ 1 +

∫ ∞
1

e−t2/5
dt := d,

where d is a numerical constant, which implies (4.19). Along with (4.18), this
implies concentration inequality (4.7). �

We now turn to the proof of Theorem 4.

PROOF OF THEOREM 4. In view of Theorem 5, it is sufficient to obtain a
concentration bound for ‖Lr(E)‖2

2 − E‖Lr(E)‖2
2. This could be done by rewrit-

ing ‖Lr(E)‖2
2 in terms of U -statistics and using the corresponding exponential



ASYMPTOTICS AND CONCENTRATION OF SPECTRAL PROJECTORS 137

bounds. However, we will follow a different (more elementary) path that directly
utilizes the Gaussiness of random variables {Xj }. The key ingredient is the fol-

lowing simple representation lemma. In what follows, ξ
d= η means that random

variables ξ and η have the same distribution.

LEMMA 5. The following representation holds:

n
∥∥Lr(E)

∥∥2
2

d= 2
∑

k∈�r

γk

∥∥CrX
(k)

∥∥2
,(4.20)

where γk are the eigenvalues of the random matrix 
r := 1
n

∑n
i=1 PrXi ⊗ PrXi

and X(k), k ∈ �r are i.i.d. copies of X independent of 
r .

PROOF. Note that n‖Lr(E)‖2
2 = n‖PrECr + CrEPr‖2

2. Since the operators
PrECr and CrEPr are orthogonal with respect to the Hilbert–Schmidt inner prod-
uct and

‖PrECr‖2
2 = tr(PrECrCrEPr) = tr(CrEPrPrECr) = ‖CrEPr‖2

2,

we have

‖PrECr + CrEPr‖2
2 = ‖PrECr‖2

2 + ‖CrEPr‖2
2 = 2‖PrECr‖2

2.

Also, note that PrECr = 1
n

∑n
j=1 PrXj ⊗ CrXj . Therefore,

n
∥∥Lr(E)

∥∥2
2 = 2n‖PrECr‖2

2 = 2

∥∥∥∥∥ 1√
n

n∑
j=1

PrXj ⊗ CrXj

∥∥∥∥∥
2

2

.(4.21)

Define the following mapping:

T (u1 ⊗ u2 ⊗ u3 ⊗ u4) = (u1 ⊗ u3 ⊗ u2 ⊗ u4), u1, u2, u3, u4 ∈ H.

It can be extended in a unique way by linearity and continuity to a bounded linear
operator T :H⊗H⊗H⊗H �→H⊗H⊗H⊗H.

Recall that PrXj , j = 1, . . . , n and CrXj , j = 1, . . . , n are centered Gaussian
random variables and they are uncorrelated (see the proof of Theorem 3). There-
fore, they are also independent. Conditionally on PrXj , j = 1, . . . , n, the distribu-
tion of random operator U := 1√

n

∑n
j=1 PrXj ⊗ CrXj is centered Gaussian with

covariance

E(U ⊗ U |PrXj , j = 1, . . . , n)

= n−1
n∑

j=1

E(PrXj ⊗ CrXj ⊗ PrXj ⊗ CrXj |PrXj , j = 1, . . . , n)

= T
(

r ⊗E(CrX ⊗ CrX)

) = T
(

r ⊗ (Cr�Cr)

)
.
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Note that 
r can be viewed as a symmetric operator acting in the eigenspace of
eigenvalue μr , and it is nonnegatively definite. Thus, it has spectral representation

r = ∑

k∈�r
γkφk ⊗φk , where γk ≥ 0 are its eigenvalues and φk are its orthonormal

eigenvectors (that belong to the eigenspace of μr ). It follows that

E(U ⊗ U |PrXj , j = 1, . . . , n) = T

( ∑
k∈�r

γk

(
φk ⊗ φk ⊗E(CrX ⊗ CrX)

))
.

Let X(k), k ∈ �r be independent copies of X (also independent of X1, . . . ,Xn).
Denote V := ∑

k∈�r

√
γkφk ⊗ CrX

(k). It is now easy to check that

E(V ⊗ V |PrXj , j = 1, . . . , n) = T

( ∑
k∈�r

γk

(
φk ⊗ φk ⊗E(CrX ⊗ CrX)

))
,

implying that conditional distributions of U and V given PrXj , j = 1, . . . , n are
the same. As a consequence, the distribution of n‖Lr(E)‖2

2 = 2‖U‖2
2 coincides

with the distribution of random variable

2‖V ‖2
2 = 2

∑
k∈�r

γk

∥∥φk ⊗ CrX
(k)

∥∥2
2 = 2

∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
.(4.22)

�

Note that ∥∥CrX
(k)

∥∥2 = ∑
s �=r

∑
j∈�s

μs

(μs − μr)2 η2
k,j ,

where ηk,j := μ
−1/2
s 〈X(k), θj 〉, j ∈ �s, k ∈ �r, s �= r are i.i.d. standard normal

random variables, {θj : j ∈ �s} being an orthonormal basis of the eigenspace cor-
responding to μs, s ≥ 1. In view of representation (4.22), we get

n
∥∥Lr(E)

∥∥2
2

d= 2
∑

k∈�r

∑
s �=r

∑
j∈�s

γkμs

(μs − μr)2 η2
k,j

and, since γk, k ∈ �r and ηk,j , j ∈ �s, k ∈ �r are independent,

nE
∥∥Lr(E)

∥∥2
2 = 2

∑
k∈�r

∑
s �=r

∑
j∈�s

Eγkμs

(μs − μr)2 = 2
∑
s �=r

E tr(
r)msμs

(μs − μr)2

= 2
∑
s �=r

tr(Pr�Pr)msμs

(μs − μr)2 = 2
∑
s �=r

mrμrmsμs

(μs − μr)2

= 2 tr(Pr�Pr) tr(Cr�Cr) = Ar(�).

Therefore,∥∥Lr(E)
∥∥2

2 −E
∥∥Lr(E)

∥∥2
2

d= 2

n

∑
k∈�r

∑
s �=r

∑
j∈�s

μrμs

(μs − μr)2

γk

μr

(
η2

k,j − 1
)

(4.23)

+ 2

n

∑
k∈�r

∑
s �=r

μrmsμs

(μs − μr)2

(
γk

μr

− 1
)
.
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In order to control the right-hand side in the above display, the following ele-
mentary lemma will be used (see, e.g., [20], Proposition 5.16).

LEMMA 6. Let {ξk} be i.i.d. standard normal random variables. There exists
a numerical constant c > 0 such that for all t > 0

P

(∣∣∣∣∑
k

λk

(
ξ2
k − 1

)∣∣∣∣ ≥ t

)
≤ 2

(
exp

{
− ct2∑

k λ2
k

}
∨ exp

{
− ct

supk |λk|
})

.

Applying the bound of the lemma to the first term in the right-hand side of
relationship (4.23) conditionally on γk, k ∈ �r , we get that with probability at
least 1 − e−t∣∣∣∣2

n

∑
k∈�r

∑
s �=r

∑
j∈�s

μrμs

(μs − μr)2

γk

μr

(
η2

k,j − 1
)∣∣∣∣

�
(∑

s �=r

μ2
rmsμ

2
s

(μs − μr)4

∑
k∈�r

γ 2
k

μ2
r

)1/2 √
t

n
∨ sup

s �=r

μrμs

(μs − μr)2

supk∈�r
γk

μr

t

n
.

Since supk∈�r
γk = ‖
r‖∞,

∑
k∈�r

γ 2
k ≤ mr‖
r‖2∞ and

B2
r (�) = 8

∑
s �=r

mrμ
2
rmsμ

2
s

(μs − μr)4 ,

the last bound can be rewritten as∣∣∣∣2

n

∑
k∈�r

∑
s �=r

∑
j∈�s

μrμs

(μs − μr)2

γk

μr

(
η2

k,j − 1
)∣∣∣∣

(4.24)

� Br(�)
‖
r‖∞

μr

√
t

n
∨ ‖�‖2∞

ḡ2
r

‖
r‖∞
μr

t

n
.

As to the second term in the right-hand side of (4.23), the following bound is
straightforward:∣∣∣∣2

n

∑
k∈�r

∑
s �=r

μrmsμs

(μs − μr)2

(
γk

μr

− 1
)∣∣∣∣

(4.25)

≤ 2

n

∑
s �=r

mrμrmsμs

(μs − μr)2

‖
r − Pr�Pr‖∞
μr

= Ar(�)

n

‖
r − Pr�Pr‖∞
μr

.

Theorems 1 and 2 easily imply that for all t ≥ 1 with probability at least 1 − e−t

‖
r − μrPr‖∞ =
∥∥∥∥∥n−1

n∑
j=1

PrXj ⊗ PrXj −E(PrX ⊗ PrX)

∥∥∥∥∥∞

� μr

(√
mr

n
∨ mr

n
∨

√
t

n
∨ t

n

)
.
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Under additional assumptions mr � n, t � n, this bound could be simplified as

‖
r − μrPr‖∞ � μr

(√
mr

n
∨

√
t

n

)
(4.26)

and it implies that ‖
r‖∞
μr

� 1.
Thus, representation (4.23) and bounds (4.24), (4.25) imply that with probabil-

ity at least 1 − e−t

∣∣∥∥Lr(E)
∥∥2

2 −E
∥∥Lr(E)

∥∥2
2

∣∣
(4.27)

� Br(�)

√
t

n
∨ ‖�‖2∞

ḡ2
r

t

n
∨ Ar(�)

n

(√
mr

n
∨

√
t

n

)
.

To complete the proof, it is enough to combine bound (4.27) with concentration
inequality of Theorem 5, to use bound (3.2) to control Ar(�) and to take into
account conditions (4.3) to simplify the resulting bound. �

5. Normal approximation of squared Hilbert–Schmidt norm errors of em-
pirical spectral projectors. The main result of this section is the following the-
orem.

THEOREM 6. Suppose that, for some constants c1, c2 > 0, mr ≤ c1 and
‖�‖∞ ≤ c2ḡr . Suppose also condition (4.2) holds with some γ ∈ (0,1). Then the
following bounds hold with some constant C > 0 depending only on γ, c1, c2:

sup
x∈R

∣∣∣∣P
{

n

Br(�)

(‖P̂r − Pr‖2
2 −E‖P̂r − Pr‖2

2
) ≤ x

}
− �(x)

∣∣∣∣
(5.1)

≤ C

[
1

Br(�)
+ r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)]

and

sup
x∈R

∣∣∣∣P
{‖P̂r − Pr‖2

2 −E‖P̂r − Pr‖2
2

Var1/2(‖P̂r − Pr‖2
2)

≤ x

}
− �(x)

∣∣∣∣
(5.2)

≤ C

[
1

Br(�)
+ r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)]
,

where �(x) denotes the distribution function of standard normal random variable.

This result essentially means that as soon as Br(�) → ∞ and r(�)

Br (�)
√

n
→ 0 as

n → ∞ (for � = �(n)), the sequence of random variables
‖P̂r−Pr‖2

2−E‖P̂r−Pr‖2
2

Var1/2(‖P̂r−Pr‖2
2)

is

asymptotically standard normal. As it could be seen from the proof given below,
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the first term in the normal approximation bound, 1
Br(�)

, is related to a Berry–

Esseen-type bound on normal approximation of ‖Lr(E)‖2
2 − E‖Lr(E)‖2

2, which
is the quadratic function of the Gaussian data (based on the first-order term in

the perturbation series for P̂r ). The second term r(�)

Br (�)
√

n

√
log(

Br (�)
√

n
r(�)

∨ 2) is re-

lated to approximation of ‖P̂r − Pr‖2
2 − E‖P̂r − Pr‖2

2 by the quadratic function
‖Lr(E)‖2

2 −E‖Lr(E)‖2
2 (see Theorem 5).

We will first establish the following fact that would allow us to replace Br(�)
n

in

bound (5.1) by a normalizing factor Var1/2(‖P̂r − Pr‖2
2) in bound (5.2).

THEOREM 7. Suppose condition (4.2) holds for some γ ∈ (0,1). Then the
following bound holds with some constant Cγ > 0:

∣∣∣∣ n

Br(�)
Var1/2(‖P̂r − Pr‖2

2
) − 1

∣∣∣∣ ≤ Cγ mr

‖�‖3∞
ḡ3

r

r(�)

Br(�)
√

n
+ mr + 1

n
.(5.3)

Bound (5.3) shows that, under the assumptions mr
‖�‖3∞

ḡ3
r

r(�)

Br (�)
√

n
= o(1) and

mr = o(n), we have

Var1/2(‖P̂r − Pr‖2
2
) = (

1 + o(1)
)Br(�)

n
.

REMARK 2. Note that in the case of spiked covariance model (1.1), for r =
1, . . . ,m,

Br(�) := 2
√

2
( ∑

1≤j≤m,j �=r

(s2
r + σ 2)2(s2

j + σ 2)2

(s2
r − s2

j )4

(5.4)

+ (s2
r + σ 2)2σ 4(p − m)

s8
r

)1/2

,

which, under the assumption that the parameters m,s2
1 , . . . , s2

m,σ 2 are fixed, but
p = pn → ∞ as n → ∞ yields that

Br(�) = (
1 + o(1)

)2
√

2(s2
r + σ 2)σ 2√p

s4
r

as p → ∞.(5.5)

Note also that r(�) ∼ σ 2

s2
1+σ 2 p. Thus, the condition p = o(n) implies r(�)

Br(�)
√

n
→ 0

as n → ∞. Therefore, Theorem 7 yields that

Var1/2(‖P̂r − Pr‖2
2
) = (

1 + o(1)
)2

√
2(s2

r + σ 2)σ 2

s4
r

√
p

n
.
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Moreover, the bounds on the accuracy of normal approximation of Theorem 6 are
of the order

sup
x∈R

∣∣∣∣P
{‖P̂r − Pr‖2

2 −E‖P̂r − Pr‖2
2

Var1/2(‖P̂r − Pr‖2
2)

≤ x

}
− �(x)

∣∣∣∣
≤ C

[
1√
p

+
√

p

n
log

(
n

p
∨ 2

)]
,

so, the asymptotic normality of ‖P̂r −Pr‖2
2 holds if p = pn → ∞ and p = o(n) as

n → ∞. If p ≤
√

n
logn

, the first term in the normal approximation bound becomes

dominant, so, the error rate is O( 1√
p
). By the optimality of the normal approxi-

mation rate in the classical Berry–Esseen theorem, it could be seen from our proof
below that the rate O( 1√

p
) is optimal in this range of the values of p.

We now provide the proof of Theorem 5.3.

PROOF OF THEOREM 5.3. In view of relationships n‖Lr(E)‖2
2

d= 2‖V ‖2
2 and

(4.22) (see the proof of Lemma 5), we have

Var
(∥∥Lr(E)

∥∥2
2

) = 4

n2 Var
(‖V ‖2

2
) = 4

n2 Var
( ∑

k∈�r

γk

∥∥CrX
(k)

∥∥2
)

= 4

n2E

[
Var

( ∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
∣∣∣PrX1, . . . ,PrXn

)]
(5.6)

+ 4

n2 Var
(
E

[ ∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
∣∣∣PrX1, . . . ,PrXn

])
.

Recall that γk , k ∈ �r depend only PrX1, . . . ,PrXn and that X(k), k ∈ �r are
independent of X1, . . . ,Xn. Thus, we get

E

[
Var

( ∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
∣∣∣PrX1, . . . ,PrXn

)]

= E

[ ∑
k∈�r

γ 2
k Var

(∥∥CrX
(k)

∥∥2)]
(5.7)

= ∑
k∈�r

E
[
γ 2
k

]
Var

(∥∥CrX
(k)

∥∥2)

= E
[‖
r‖2

2
]
Var

(‖CrX‖2)
.
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By an easy computation,

E‖
r‖2
2 = E

∥∥∥∥∥n−1
n∑

j=1

PrXj ⊗ PrXj

∥∥∥∥∥
2

2

= mrμ
2
r

(
1 + mr + 1

n

)

and, for i.i.d. standard normal random variables {ηj }

Var
(‖CrX‖2) = Var

(∑
s �=r

∑
j∈�s

μs

(μs − μr)2 η2
j

)
= 1

4mrμ2
r

B2
r (�).

Therefore,

E

[
Var

( ∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
∣∣∣PrX1, . . . ,PrXn

)]
(5.8)

= B2
r (�)

4

(
1 + mr + 1

n

)
.

Similarly, we have

Var
(
E

[ ∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
∣∣∣PrX1, . . . ,PrXn

])

= Var
( ∑

k∈�r

γkE
[∥∥CrX

(k)
∥∥2])

(5.9)

= Var
(
tr(
r)

)(
E

[‖CrX‖2])2

and

Var
(
tr(
r)

) = 2mrμ
2
r

n
,

(
E

[‖CrX‖2])2 = 1

4m2
rμ

2
r

A2
r (�),

implying that

Var
(
E

[ ∑
k∈�r

γk

∥∥CrX
(k)

∥∥2
∣∣∣PrX1, . . . ,PrXn

])
= A2

r (�)

2mrn
.(5.10)

It follows from (5.6), (5.8) and (5.10) that

Var
(∥∥Lr(E)

∥∥2
2

) = B2
r (�)

n2

(
1 + mr + 1

n

)
+ 2A2

r (�)

mrn3 .(5.11)

Denote now

ξ := ‖P̂r − Pr‖2
2 −E‖P̂r − Pr‖2

2,
(5.12)

η := ∥∥Lr(E)
∥∥2

2 −E
∥∥Lr(E)

∥∥2
2,
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and σ 2
ξ = Eξ2, σ 2

η = Eη2. Combining concentration bound of Theorem 5 with the

identity E|ξ − η|2 = ∫ ∞
0 P{|ξ − η|2 > t}dt , we obtain that

|σξ − ση| ≤
√
E|ξ − η|2 ≤ Cγ mr

‖�‖3∞
ḡ3

r

r(�)

n

1√
n
,(5.13)

for some Cγ > 0 depending only on γ .
To complete the proof, observe that identity (5.11) implies that∣∣∣∣ n

Br(�)
Var1/2(∥∥Lr(E)

∥∥2
2

) − 1
∣∣∣∣ ≤

√
1 + mr + 1

n
+ 2A2

r (�)

mrB2
r (�)n

− 1

≤
√

1 + mr + 1

n
− 1 +

√
2Ar(�)√

mrBr(�)
√

n

≤ mr + 1

n
+

√
2Ar(�)√

mrBr(�)
√

n
,

then bound Ar(�) using (3.2) and combine the resulting bound with (5.13). �

We now return to the proof of Theorem 6.

PROOF OF THEOREM 6. Under notation (5.12), we will upper bound
supx∈R |P{ n

Br(�)
ξ ≤ x} − �(x)|. Theorem 7 will allow us to rewrite the normaliz-

ing factor in terms of the variance. First recall that by Theorem 5, with probability
at least 1 − e−t ,

|ξ − η| ≤ Lγ mr

‖�‖3∞
ḡ3

r

(
r(�)

n
∨ t

n
∨

(
t

n

)2)√
t

n
.(5.14)

Also, by (4.23),

η
d= 2

n

∑
k∈�r

∑
s �=r

∑
j∈�s

μrμs

(μs − μr)2

(
η2

k,j − 1
)

+ 2

n

∑
k∈�r

∑
s �=r

∑
j∈�s

μrμs

(μs − μr)2

(
γk

μr

− 1
)(

η2
k,j − 1

)
(5.15)

+ 2

n

∑
k∈�r

∑
s �=r

μrmsμs

(μs − μr)2

(
γk

μr

− 1
)

=: ζ1 + ζ2 + ζ3.

Similarly to bound (4.24), we get that with probability at least 1 − e−t

|ζ2| � Br(�)
‖
r − μrPr‖∞

μr

√
t

n
∨ ‖�‖2∞

ḡ2
r

‖
r − μrPr‖∞
μr

t

n
.(5.16)
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Assume that 1 ≤ t � n and mr � n. It follows from (5.16), (4.25), (4.26) and also
from bound (3.2) on Ar(�) that∣∣∣∣ n

Br(�)
(ζ2 + ζ3)

∣∣∣∣
�

(√
mr

n
∨

√
t

n

)√
t ∨ ‖�‖2∞

ḡ2
r

(√
mr

n
∨

√
t

n

)
t

Br(�)

∨ Ar(�)

Br(�)

(√
mr

n
∨

√
t

n

)
(5.17)

�
(√

mr

n
∨

√
t

n

)√
t ∨ ‖�‖2∞

ḡ2
r

(√
mr

n
∨

√
t

n

)
t

Br(�)

∨ mr

‖�‖2∞
ḡ2

r

r(�)

Br(�)

(√
mr

n
∨

√
t

n

)
.

Under the assumptions of the theorem mr � 1, ‖�‖∞ � ḡr , it is easy to get from
(5.14), (5.15) and (5.17) that

n

Br(�)
ξ

d= τ + ζ,(5.18)

where

τ := 2

Br(�)

∑
k∈�r

∑
s �=r

∑
j∈�s

μrμs

(μs − μr)2

(
η2

k,j − 1
)

(5.19)

and the remainder ζ satisfies the following bound with probability at least 1 − e−t :

|ζ | � t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n
.(5.20)

We now use the Berry–Esseen theorem and a simple limiting argument that
allows one to apply it to a (possibly) infinite sum of independent random variables
(5.19) to get the following bound:

sup
x∈R

∣∣P{τ ≤ x} − �(x)
∣∣ �

∑
s �=r

mrμ
3
rmsμ

3
s

(μs−μr)6

(
∑

s �=r
mrμ2

rmsμ2
s

(μs−μr)4 )3/2

(5.21)

� ‖�‖2∞
ḡ2

r

1

Br(�)
,

where we also used the fact that B2
r (�) = 8

∑
s �=r

mrμ
2
rmsμ

2
s

(μs−μr)4 .
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It follows from (5.18), (5.20) and (5.21) that with some constants c′, c′′ > 0, for
all x ∈ R,

P

{
n

Br(�)
ξ ≤ x

}

≤ P

{
τ ≤ x + c′

(
t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

)}
+ e−t

(5.22)

≤ �

(
x + c′

(
t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

))
+ e−t + c′′

Br(�)

≤ �(x) + c′
(

t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

)
+ e−t + c′′

Br(�)
,

where we used the fact that � is a Lipschitz function with constant less than one.
Quite similarly,

P

{
n

Br(�)
ξ ≤ x

}

≥ P

{
τ ≤ x − c′

(
t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

)}
− e−t

(5.23)

≥ �

(
x − c′

(
t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

))
− e−t − c′′

Br(�)

≥ �(x) − c′
(

t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

)
− e−t − c′′

Br(�)
.

It follows from (5.22) and (5.23) that

sup
x∈R

∣∣∣∣P
{

n

Br(�)
ξ ≤ x

}
− �(x)

∣∣∣∣
(5.24)

≤ c′
(

t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n

)
+ c′′

Br(�)
+ e−t .

The last bound will be used with

t = logBr(�) ∧ log
(

Br(�)
√

n

r(�)
∨ 2

)
∧ logn,(5.25)

which implies that

e−t � t√
n

∨ r(�)

Br(�)
√

n

√
t ∨ t3/2

Br(�)
√

n
∨ 1

Br(�)
(5.26)

and we also have

t3/2

Br(�)
√

n
≤ logn√

n

√
logBr(�)

Br(�)
.
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Without loss of generality, we can assume that Br(�) is bounded away from 0 by

a numerical constant so that
√

logBr(�)
Br(�)

≤ 1 (otherwise, the bounds of the theorem

trivially hold). This implies that t3/2

Br(�)
√

n
≤ logn√

n
and (5.24) implies

sup
x∈R

∣∣∣∣P
{

n

Br(�)
ξ ≤ x

}
− �(x)

∣∣∣∣
(5.27)

≤ C

[
1

Br(�)
+ r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)
+ logn√

n

]
.

We can now use Theorem 7 to replace the normalization with n
Br(�)

by the
normalization with the standard deviation of ξ . To this end, note that

ξ

σξ

= n

Br(�)
ξ +

(
1

σξ

− n

Br(�)

)
ξ.(5.28)

Under the assumptions mr � 1 and ‖�‖∞ � ḡr , we get from Theorem 7 that∣∣∣∣ n

Br(�)
σξ − 1

∣∣∣∣ � r(�)

Br(�)
√

n
+ 1

n
.

Without loss of generality, we can and do assume that r(�)

Br(�)
√

n
+ 1

n
≤ c for a small

enough constant c > 0 so that | n
Br(�)

σξ − 1| ≤ 1/2 (otherwise, the bound of the
theorem is trivial). Then∣∣∣∣

(
1

σξ

− n

Br(�)

)
ξ

∣∣∣∣ ≤
∣∣∣∣ n

Br(�)
σξ − 1

∣∣∣∣ |ξ |
σξ

�
(

r(�)

Br(�)
√

n
+ 1

n

)
n

Br(�)
|ξ |.

Combining this with bound of Theorem 4, we get that with probability at least
1 − e−t∣∣∣∣

(
1

σξ

− n

Br(�)

)
ξ

∣∣∣∣ �
(

r(�)

Br(�)
√

n
+ 1

n

)(√
t ∨ t

Br(�)
∨ r(�)

Br(�)
√

n

√
t

)
.

Using the last bound with t defined by (5.25), we easily get that

∣∣∣∣
(

1

σξ

− n

Br(�)

)
ξ

∣∣∣∣ �
[

r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)
+ logn√

n

]
.(5.29)

By proving bounds on P{ ξ
σξ

≤ x} similar to (5.22), (5.23), it follows from (5.27),
(5.28) and (5.29) that

sup
x∈R

∣∣∣∣P
{

ξ

σξ

≤ x

}
− �(x)

∣∣∣∣
(5.30)

≤ C

[
1

Br(�)
+ r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)
+ logn√

n

]
.
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To complete the proof, it is enough to show that the term logn√
n

in bounds (5.27)
and (5.30) could be dropped. To this end, use bound (4.5) to get

logn√
n

� 1√
Br(�)

√
Br(�)

n1/4 � 1

Br(�)
+ B2

r (�)

Br(�)
√

n
� 1

Br(�)
+ r(�)

Br(�)
√

n

� 1

Br(�)
+ r(�)

Br(�)
√

n

√
log

(
Br(�)

√
n

r(�)
∨ 2

)
.

Thus, we indeed can drop the term logn√
n

in bounds (5.27) and (5.30) simultaneously
increasing the value of constant C. This yields bounds (5.1), (5.2) and completes
the proof. �

6. Concluding remarks.

1. Asymptotics of ‖P̂r − Pr‖2
2. We start this section with deducing an asymp-

totic normality result from the nonasymptotic bound of Theorem 6. To this end,
consider a sequence of problems in which the data is sampled from Gaussian
distributions in H with mean zero and covariance � = �(n). Let X = X(n) be a
centered Gaussian random vector in H with covariance operator � = �(n) and
let X1 = X

(n)
1 , . . . ,Xn = X

(n)
n be i.i.d. copies of X(n). The sample covariance

based on (X
(n)
1 , . . . ,X

(n)
n ) is denoted by �̂n. Let σ(�(n)) be the spectrum of �(n),

μ
(n)
r , r ≥ 1 be distinct nonzero eigenvalues of �(n) arranged in decreasing or-

der and P
(n)
r , r ≥ 1 be the corresponding spectral projectors. As before, denote

�
(n)
r := {j : σj (�

(n)) = μ
(n)
r } and let P̂

(n)
r be the orthogonal projector on the di-

rect sum of eigenspaces corresponding to the eigenvalues {σj (�̂n), j ∈ �
(n)
r }.

Suppose that the spectral projector of �(n) to be estimated is P (n) = P
(n)
rn , the

corresponding eigenvalue is μ(n) = μ
(n)
rn , its multiplicity is m(n) = m

(n)
rn and its

spectral gap is ḡ(n) = ḡ
(n)
rn . Denote

Bn := Brn

(
�(n)) := 2

√
2
∥∥C(n)�(n)C(n)

∥∥
2

∥∥P (n)�(n)P (n)
∥∥

2.

The following assumption on �(n) will be needed.

ASSUMPTION 1. Suppose the following conditions hold:

sup
n≥1

m(n) < +∞ and sup
n≥1

‖�(n)‖∞
ḡ(n)

< +∞;(6.1)

Bn → ∞ and
r(�(n))

Bn

√
n

→ 0 as n → ∞.(6.2)
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Note that Assumption 1 implies that r(�(n)) → ∞ and r(�(n)) = o(n) as n →
∞. This easily follows from

Bn ≤ 2
√

2
√

m(n)

(‖�(n)‖∞
g(n)

)2√
r
(
�(n)

) = O
(√

r
(
�(n)

))
and (6.2). It is also easy to see that, under mild further assumptions, Bn � ‖�(n)‖2.

COROLLARY 1. Suppose Assumption 1 holds. Then

Var
(∥∥P̂ (n) − P (n)

∥∥2
2

) =
(

Bn

n

)2(
1 + o(1)

)
and the sequences of random variables{

n(‖P̂ (n) − P (n)‖2
2 −E‖P̂ (n) − P (n)‖2

2)

Bn

}
n≥1

(6.3)

and {
(‖P̂ (n) − P (n)‖2

2 −E‖P̂ (n) − P (n)‖2
2)√

Var(‖P̂ (n) − P (n)‖2
2)

}
n≥1

both converge in distribution to the standard normal random variable.

2. Data-driven versions of asymptotic results. Neither normal approximation
bounds of Theorem 6, nor the asymptotic normality result of Corollary 1 could
be directly used to construct confidence regions for spectral projectors of covari-
ance operators or to develop hypotheses tests. The reason is that, in these results,
the squared Hilbert–Schmidt norm ‖P̂ (n) − P (n)‖2

2 is centered with its expecta-
tion and normalized with its standard deviation [or, alternatively, with n

Br(�)
] that

depend on unknown covariance operator �. It would be of interest to develop
“data-driven” versions of these results, but this problem seems to be challenging
and goes beyond the scope of the current paper. At the moment, we have only a
partial solution (that is far from being perfect) of this problem in the case when
the target spectral projector P (n) is one-dimensional (that is, the eigenvalue μ(n)

is of multiplicity one). We briefly outline such a result below. Assume that we are
given a sample of size 3n of i.i.d. centered Gaussian vectors{

X
(n)
1 , . . . ,X(n)

n ; X̃(n)
1 , . . . , X̃(n)

n ; X̄(n)
1 , . . . , X̄(n)

n

}
,

with common covariance operator �(n). For each of the three subsamples of size n,
define its sample covariance operator:

�̂(n) = 1

n

n∑
i=1

X
(n)
i ⊗ X

(n)
i , �̃(n) = 1

n

n∑
i=1

X̃
(n)
i ⊗ X̃

(n)
i ,

�̄(n) = 1

n

n∑
i=1

X̄
(n)
i ⊗ X̄

(n)
i .
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Let P̂ (n) be the orthogonal projector onto the eigenspace associated with the eigen-
value μ̂(n) of �̂(n) (which is of multiplicity one with a high probability). Similarly,
P̃ (n) and P̄ (n) are the orthogonal projectors onto the eigenspaces associated with
the eigenvalue μ̃(n) of �̃(n) and the eigenvalue μ̄(n) of �̄(n), respectively. Denote

b̂(n) =
√〈

P̂ (n), P̃ (n)
〉 − 1 and b̃(n) =

√〈
P̃ (n), P̄ (n)

〉 − 1.

It turns out that the statistic −2b̂(n) can be used as an estimator of the expecta-
tion E‖P̂ (n) − P (n)‖2

2 while the statistic |(1 + b̂(n))2 − (1 + b̃(n))2| can be used
to estimate the standard deviation Var1/2(‖P̂ (n) − P (n)‖2

2) (note that b̂(n) was in-
troduced and studied in [13] as an estimator of a “bias parameter” of empirical
spectral projectors and empirical eigenvectors). Moreover, it can be proved that,
under Assumption 1, the sequence

{ ‖P̂ (n) − P (n)‖2
2 + 2b̂(n)

|(1 + b̂(n))2 − (1 + b̃(n))2|
}

n≥1
(6.4)

converges in distribution to a random variable with the following density:

1

2

[
1

β
f

(
x − α

β

)
+ 1

β
f

(
x + α

β

)]
,

where f (x) = 1
π(1+x2)

, x ∈ R is the standard Cauchy density, α = 1/6 and β =
√

23
6 (in fact, the limit is distributed as the ratio ξ

|η| , where ξ, η are two correlated
centered normal random variables and, as a result, the limit distribution is a mixture
of two rescaled Cauchy distributions).

For the spiked covariance model (1.1) with m,s2
1 , . . . , s2

m,σ 2 being fixed and
p = pn → ∞ as n → ∞, it is easy to find a simpler version of data-driven normal-
ization with the limit distribution being standard normal. For simplicity, assume
that m = 1, so, the goal is to estimate the first principal components θ1. Recall that

in this case Bn = B1(�
(n)) = 2

√
2(s2

1+σ 2)σ 2√pn−1

s4
1

[see (5.5)]. Based on the fact that

‖�(n)‖∞ = s2
1 +σ 2 and tr(�(n)) = s2

1 +pnσ
2, we suggest the following estimator

of Bn: B̂n = 2
√

2
μ̂

(n)
1 (tr(�̂(n))−μ̂

(n)
1 )

(pnμ̂
(n)
1 −tr(�(n)))2

(pn − 1)3/2, where μ̂n
1 is the largest eigenvalue

of �̂(n) = 1
n

∑n
i=1 X

(n)
i ⊗ X

(n)
i . In the case of such a spiked covariance model, As-

sumption 1 is equivalent to p = pn → ∞ and p = o(n). Under these assumptions,

it is easy to prove that B̂n

n
= Bn

n
(1+oP(1)). Let P1 = θ1 ⊗θ1. Then it can be proved

that the sequence {
n

B̂n

(∥∥P̂ (n)
1 − P

(n)
1

∥∥2
2 + 2b̂(n))}

n≥1
(6.5)

converges in distribution to a standard normal random variable.



ASYMPTOTICS AND CONCENTRATION OF SPECTRAL PROJECTORS 151

3. Simulations. To illustrate the asymptotic behaviour of standard PCA, we
consider the following spiked covariance setting. Let X1, . . . ,Xn, X̃1, . . . , X̃n,
X̄1, . . . , X̄n be 3n i.i.d. random vectors in R

p with covariance � = s2
1(θ1 ⊗ θ1) +

σ 2Ip , s2
1 = 2, σ 2 = 1/10, where θ1 is an arbitrary unit vector in R

p . For selected

values of (n,p), we computed the statistic ‖P̂ (n)
1 −P1‖2

2, B̂n and the empirical bias

estimators b̂
(n)
1 , b̃

(n)
1 as well as the statistics (6.4), (6.5) and

n

Bn

(∥∥P̂ (n)
1 − P1

∥∥2
2 + 2b̂(n)).(6.6)

The last statistic is not completely data driven, it involves Bn that depends on
unknown parameters of covariance. It is included in our simulations to study the
impact of estimation of Bn on normal approximation. We performed 1000 replica-
tions of this experiment.

In Table 1, we compare the sample mean of the statistic ‖P̂ (n)
1 − P1‖2

2 denoted

by m̂n (that provides an estimator of the risk E‖P̂ (n)
1 − P1‖2

2 based on the re-

peated samples of size n) to the estimated risk −2b̂
(n)
1 for each individual sample

and the first-order approximation of the theoretical risk derived in (1.3) which can

be computed easily in this model since An := A1(�) = 2
(s2

1+σ 2)σ 2

s4
1

(p − 1). More

precisely, in the second row of the table the sample means of
|2b̂

(n)
1 +m̂n|
|m̂n| over 1000

replications of the experiment are presented. The results show that −2b̂
(n)
1 provides

a somewhat better approximation of the risk E‖P̂ (n)
1 − P1‖2

2 than the first-order
approximation (1.3) for small sample size. For relatively large sample size, the
first-order approximation (1.3) becomes more precise than the estimator −2b̂

(n)
1 .

In Table 2, we compare the sample variance of the statistic ‖P̂ (n)
1 −P1‖2

2 denoted

by Ŝ2
n to the variance estimator Ṽn := ((1 + b̂n

1)2 − (1 + b̃
(n)
1 )2)2 and also to the

first-order approximation of the theoretical variance B2
n

n2 derived in (1.4) with Bn =
2
√

2
(s2

1+σ 2)σ 2

s4
1

√
p − 1. Again, in the second row of the table the sample means of

TABLE 1
Relative deviation of the risk approximation An

n and the risk estimator −2b̂
(n)
1

from the sample risk m̂n for p = 103

n 100 200 300 500 103 2.104

|An/n−m̂n|
|m̂n| 0.49 0.24 0.15 0.1 0.049 0.008

|2b̂
(n)
1 +m̂n|
|m̂n| 0.07 0.06 0.054 0.052 0.045 0.036
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TABLE 2

Relative deviation of the variance estimator Ṽn and the variance approximation B2
n

n2

from the sample variance Ŝ2
n for p = 103

n 100 200 300 500 103 2.104

|B2
n/n2−Ŝ2

n |
Ŝ2

n

0.62 0.65 0.66 0.58 0.42 0.07

|Ṽn−Ŝ2
n |

Ŝ2
n

0.82 0.73 0.67 0.58 0.39 0.05

|Ṽn−Ŝ2
n|

Ŝ2
n

over 1000 replications of the experiment are presented. We observe that

Ṽn and B2
n

n2 provide reasonable approximation of the variance of ‖P̂ (n)
1 −P1‖2

2 only
for relatively large sample sizes.

Finally, we compute empirical densities of the statistics (6.4), (6.5) and (6.6)
and compare them with their respective theoretical limiting distributions in Fig-
ure 1. For (6.5) and (6.6), we also provide the empirical mean and variance. This
simulation study seems to confirm the theoretical limiting distributions we derived

FIG. 1. Top: empirical distribution of (6.6) and standard normal density for p = 1000. Middle:
empirical distribution of (6.5) and standard normal density for p = 1000. Bottom: empirical distri-
bution of (6.4) and density of the theoretical mixture of Cauchy distributions for p = 1000.
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TABLE 3
Ratio of B̂n and Bn for p = 103

n 100 200 500 103 5.103

B̂n
Bn

0.65 0.78 0.90 0.94 0.99

above for the statistics (6.4), (6.5) and (6.6). In Table 3, we compare B̂n to the
theoretical value Bn in our experiment. It appears that the estimator B̂n of Bn is
reasonably precise for n ≥ 103 in this spiked covariance model.

4. Beyond the Gaussian case. Extension of the results of the paper beyond the
Gaussian case poses several challenging problems. An interesting class of mod-
els to consider would be log-concave distributions in high-dimensional spaces,
but this seems to be a rather hard task. Even in a simpler case of sub-Gaussian
random vectors, the difficulties are considerable. A major stumbling block is the
extension of concentration inequality of Theorem 5 to the case of i.i.d. random
vectors X,X1, . . . ,Xn that are not necessarily Gaussian. Standard concentration
inequalities for product measures available in the literature do not seem to provide
a straightforward solution of this problem. One exception is the model described
by the following assumption.

ASSUMPTION 2. Let X = �1/2Z, where � is a d × d covariance matrix and
Z is a random vector in H = R

d , sampled from the density e−V , V : Rd �→ R,
with mean zero and identity covariance matrix Id . In addition, assume that V is a
smooth function with the Hessian V ′′ satisfying the condition V ′′(x) � cId, x ∈ R

d

for some constant c > 0.

This is a special class of log-concave distributions in R
d and it is known that

linear forms 〈X,u〉, u ∈ R
d are sub-Gaussian random variables (for general log-

concave distributions such linear forms are only sub-exponential). Moreover, con-
centration inequalities for Lipschitz functions similar to the Gaussian concentra-
tion inequality also hold under Assumption 2 (see [16], Theorems 2.7 and 2.18,
Proposition 2.18). For this model, bound of Theorem 1 holds (as it does in the
general sub-Gaussian case, see [14]) and so does bound of Theorem 2 implying
that the effective rank r(�) plays the same role of the main complexity parame-
ter as in the Gaussian case. Moreover, concentration bound of Theorem 5 could
be also easily extended for the observations satisfying Assumption 2 with, essen-
tially, identical proof. Thus, as in the Gaussian case, the study of normal approx-
imation and concentration of ‖P̂r − Pr‖2

2 − E‖P̂r − Pr‖2
2 reduces to the study of

‖Lr(E)‖2
2 − E‖Lr(E)‖2

2. Unfortunately, such models (with an exception of the
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Gaussian case) are of limited interest and extending concentration inequality of
Theorem 5 to more general models looks rather challenging.

There are also serious difficulties with the development of normal approxima-
tion bounds for ‖Lr(E)‖2

2 − E‖Lr(E)‖2
2 in the non-Gaussian case. A possible

approach is based on the following simple representation that is a consequence
of (4.21):

n
(∥∥Lr(E)

∥∥2
2 −E

∥∥Lr(E)
∥∥2

2

)
= 2

n

n∑
i=1

(
hr(Xi,Xi) −Ehr(X,X)

) + 2

n

∑
i �=j

hr(Xi,Xj ),

where

hr(x, y) := 〈Prx,Pry〉〈Crx,Cry〉, x, y ∈H.(6.7)

The problem of normal approximation is then reduced to the study of degener-
ate U -statistic Ur,n := ∑

i<j hr(Xi,Xj ) with symmetric kernel hr . Such problems
have been intensively studied in the literature, primarily, based on the martingale
approach (see Hall [8], de Jong [5]). The following characteristics are involved in
the conditions of asymptotic normality of Ur,n:

νr,2 := E
1/2h2

r (X1,X2), νr,4 := E
1/4h4

r (X1,X2),
(6.8)

κr := Var
(
hr(X,X)

)
.

We will also need

ν̃r,2 := E
1/2h̃2

r (X1,X2),
(6.9)

where h̃r (x, y) := Ehr(X,x)hr(X,y), x, y ∈ H.

Note that the kernel hr depends only on the covariance �, but the corresponding
characteristics νr,2, νr,4, ν̃r,2 depend on the whole distribution of X (that might not
be completely characterized by � in the non-Gaussian case).

As in Corollary 1, let X(n) be a mean zero random vector in H with covari-
ance �(n) (but not necessarily Gaussian) and let X

(n)
1 , . . . ,X

(n)
n be its i.i.d. copies.

Denote by h
(n)
r the kernels generated by �(n) as in (6.7) and, similarly to (6.8),

(6.9), define ν
(n)
r,2 , ν

(n)
r,4 , ν̃

(n)
r,2 . As before, denote μ(n) = μ

(n)
rn ,P (n) = P

(n)
rn , P̂ (n) =

P̂
(n)
rn ,E(n) := �̂n − �(n), etc. Also denote

h(n) := h(n)
rn

, ν
(n)
2 := ν

(n)
rn,2, ν

(n)
4 := ν

(n)
rn,4,

ν̃
(n)
2 = ν̃

(n)
rn,2, κ(n) := κ(n)

rn
.
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Theorem 1 of Hall [8] yields the following condition of asymptotic normality of∑
i<j h(n)(X

(n)
i ,X

(n)
j ): if

(ν̃
(n)
2 )2 + n−1(ν

(n)
4 )4

(ν
(n)
2 )4

→ 0 as n → ∞,(6.10)

then the sequence of random variables

{∑
i<j h(n)(X

(n)
i ,X

(n)
j )

2−1/2nν
(n)
2

}
n≥1

is asymptotically standard normal. Under an additional assumption that

κ(n)

n(ν
(n)
2 )2

→ 0 as n → ∞,(6.11)

this result implies that the sequence{
n(‖Lrn(E

(n))‖2
2 −E‖Lrn(E

(n))‖2
2)

2
√

2ν
(n)
2

}
n≥1

is also asymptotically standard normal. Together with concentration bound of The-
orem 5 (that holds under Assumption 2), these considerations yield the following
asymptotic normality result.

PROPOSITION 1. Suppose, for all n ≥ 1, X(n) ∈ R
dn satisfies Assumption 2

with some V = V (n) and with some constant c > 0 that does not depend on n. If,
in addition, conditions (6.1), (6.10), (6.11) and the condition

r(�(n))

ν
(n)
2

√
n

→ 0 as n → ∞

hold, then the sequence{‖P̂ (n) − P (n)‖2
2 −E‖P̂ (n) − P (n)‖2

2√
Var(‖P̂ (n) − P (n)‖2

2)

}
n≥1

is asymptotically standard normal.

In the Gaussian case, the conditions on the kernels h
(n)
r could be simplified

and expressed in terms of the quantity Br(�
(n)) leading precisely to the condi-

tions of asymptotic normality of Corollary 1 (and providing its alternative proof).
However, in the general, not necessarily Gaussian case, the conditions of normal
approximation would remain expressed in terms of the kernels h

(n)
r . Moreover,

they depend not only on covariance matrices �(n), but on the actual distribution
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of the data, they are more complicated and much harder to interpret. In addition,
the bounds on the accuracy of normal approximation in the non-Gaussian case that
follow from Berry–Esseen-type bounds for U -statistics and for martingales (see,
e.g., [7]) are significantly weaker than the bound of Theorem 6 proved in the pre-
vious section (but only in the Gaussian case). New Berry–Esseen type bounds for
U -statistics by Eichelsbacher and Thäle [6], based on Stein method and Malliavin
calculus in a Poisson space, look very promising, but they have been proved only
for a Poissonized version of U -statistics.

Complete understanding of this and other aspects of the problem (such as con-
centration bounds of Theorem 5) in the non-Gaussian case is beyond the scope of
this paper.
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