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ESTIMATING AVERAGE CAUSAL EFFECTS UNDER GENERAL
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NETWORK EXPERIMENT
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Yale University and New York University

This paper presents a randomization-based framework for estimating
causal effects under interference between units motivated by challenges that
arise in analyzing experiments on social networks. The framework integrates
three components: (i) an experimental design that defines the probability dis-
tribution of treatment assignments, (ii) a mapping that relates experimen-
tal treatment assignments to exposures received by units in the experiment,
and (iii) estimands that make use of the experiment to answer questions of
substantive interest. We develop the case of estimating average unit-level
causal effects from a randomized experiment with interference of arbitrary
but known form. The resulting estimators are based on inverse probability
weighting. We provide randomization-based variance estimators that account
for the complex clustering that can occur when interference is present. We
also establish consistency and asymptotic normality under local dependence
assumptions. We discuss refinements including covariate-adjusted effect es-
timators and ratio estimation. We evaluate empirical performance in realistic
settings with a naturalistic simulation using social network data from Ameri-
can schools. We then present results from a field experiment on the spread of
anti-conflict norms and behavior among school students.

1. Introduction. We develop methods for analyzing an experiment in which
treatments are applied to individuals in a social network and causal effects are
hypothesized to transmit to peers through the network. Experimental and observa-
tional studies often involve treatments with effects that “interfere” [Cox (1958)]
across units through spillover or other forms of dependency. Such interference is
sometimes considered a nuisance, and researchers may strive to design studies that
isolate units as much as possible from interference. However, such designs are not
always possible. Furthermore, researchers may be interested in estimation of the
spillover effects themselves, as these effects may be of substantive importance.
Other applications share structural similarities to the social network case. For ex-
ample, an urban renewal program applied to one town may divert capital from
other towns, in which case the overall effect of the program may be ambiguous.
Treatment effects may carry over from one time period to another, and units have
some chance of receiving treatment at any one of a set of points in time. In these
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cases, we need methods to estimate effects of both direct and indirect exposure to
a treatment. Moreover, researchers may be interested in understanding how such
indirect effects vary depending on individuals’ characteristics.

This paper presents a general, randomization-based framework for estimating
causal effects under these and other forms of interference. Interference represents a
departure from the traditional causal inference scenario wherein units are assigned
directly to treatment or control, and the potential outcomes that would be observed
for a unit in either the treatment or control condition are fixed [Cole and Frangakis
(2009)] and do not depend on the overall set of treatment assignments. The latter
condition is what Rubin (1990) refers to as the “stable unit treatment value as-
sumption” (SUTVA). In the examples above, the traditional scenario is clearly an
inadequate characterization, as SUTVA would be violated. A more sophisticated
characterization of treatment exposure and associated potential outcomes must be
specified. For the school field experiment, program participation was randomly as-
signed, but encouragement to support anti-conflict norms could come from direct
participation in the program as well as indirect exposure via social network peers
that participated in the program.

We start with theoretical results for an estimation framework that consists of
three components: (i) the experimental (or quasi-experimental) “design,” which
characterizes precisely the probability distribution of treatments assigned; (ii) an
“exposure mapping,” which relates treatments assigned to exposures received; and
(iii) a set of causal estimands selected to make use of the experiment to answer
questions of substantive interest. For the case of a randomized experiment under
arbitrary but known forms of interference, we provide unbiased estimators of av-
erage unit-level causal effects induced by treatment exposure. We also provide
estimators for the randomization variance of the estimated average causal effects.
These variance estimators are assured of being conservative (that is, non-negatively
biased). We establish conditions for consistency and large-N confidence intervals
based on a normal approximation. We propose ratio-estimator-based and covariate-
adjusted refinements for increased efficiency. We assess finite-sample empirical
performance with a naturalistic simulation on real-world school social network
data. The results demonstrate the reliability of the proposed methods in a realistic
sample.

We then present our analysis of a field experiment on the effects of a program
meant to promote anti-conflict norms and behavior among middle school students.
In the experiment, schools were first randomly assigned to host the anti-conflict
program and then sets of students within the host schools were randomly assigned
to participate directly in the program. The goal was to understand how attitudinal
and behavioral effects on participants might transmit through their social network
and affect their peers’ behavior.

2. Related literature. Our framework extends from the foundational work
of Hudgens and Halloran (2008), who study two-stage, hierarchical randomized
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trials in which some groups are randomly assigned to host treatments; treat-
ments are then assigned at random to units within the selected groups, and in-
terference is presumed to operate only within groups. Hudgens and Halloran pro-
vide randomization-based estimators for group-average causal effects, conditional
on assignment strategies that determine the density of treatment within groups.
Tchetgen Tchetgen and VanderWeele (2012) extend Hudgens and Halloran’s re-
sults, providing conservative variance estimators, a framework for finite sample
inference with binary outcomes, and extensions to observational studies. Liu and
Hudgens (2014) develop asymptotic results for such two-stage designs. Related
to these contributions is work by Rosenbaum (2007), which provides methods for
inference with exact tests under partial interference. Under hierarchical treatment
assignment and partial interference, estimation and inference can proceed assum-
ing independence across groups. In some settings, however, the hierarchical struc-
turing may not be valid, as with experiments carried out over networks of actors
that share links as a result of a complex, endogenous process. Bowers, Fredrick-
son and Panagopolous (2013) apply exact tests to evaluate parameters in models
of spillover processes. Such a testing approach differs in its aims from ours, which
focuses on estimating averages of potentially heterogenous unit-level causal ef-
fects.

A key contribution of this paper is to go beyond the setting of hierarchical exper-
iments with partial interference, and to generalize estimation and inference theory
to settings that exhibit arbitrary forms of interference and treatment assignment de-
pendencies. In addition, our framework allows the analyst to work with different
estimands, including both types of group-average causal effects defined by the au-
thors above as well as average unit-level causal effects. Average unit-level causal
effects are often the estimand of primary interest, as is the case, for example, when
exploring unit-level characteristics that moderate the magnitude of treatment ef-
fects.

3. Treatment assignment and exposure mappings. In this section, we de-
fine the first two components of our analytical framework: the experiment design
and exposure mapping. We focus on the case of a randomized experiment with
an arbitrary but known exposure mapping. The first step is to distinguish between
(i) treatment assignments over the set of experimental units and (ii) each unit’s
treatment exposure under a given assignment. Treatment assignments can be ma-
nipulated arbitrarily with the experimental design. However, treatment-induced ex-
posures may be constrained on the basis of the varying potential for interference
of different experimental units. For example, interference or spillover effects may
spread over a spatial gradient. If so, then different treatment assignments may re-
sult in different patterns of interference depending on where treatments are applied
on the spatial plane.

Formally, suppose we have a finite population U of units indexed by i =
1, . . . ,N on which a randomized experiment is performed. Define a treatment as-
signment vector, z = (z1, . . . , zN)′, where zi ∈ {1, . . . ,M} specifies which of M
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possible treatment values that unit i receives. An experimental design contains a
plan for randomly selecting a particular value of z from the MN different possi-
bilities with predetermined probability pz. Restricting our attention only to treat-
ment assignments that can be generated by a given experimental design, define
� = {z : pz > 0} so that Z = (Z1, . . . ,ZN)′ is a random vector with support � and
Pr(Z = z) = pz. Our analysis below focuses on the case where the design is known
in the following sense: Pr(Z = z) for all z ∈ � is known.

We define an exposure mapping as a function that maps an assignment vector
and unit-specific traits to an exposure value: f : � × � → �, where θi ∈ � quan-
tifies relevant traits of unit i. The exposure mapping construction is functionally
equivalent to the “effective treatments” function used by Manski (2013), though
we find it helpful to denote separately the unit-specific attributes, θi , that feed into
the exposure mapping, f (·). In applications we consider below, θi is unit i’s row in
a network adjacency matrix. More complex exposure mappings could take in θi’s
that encode other traits of units and their peers—not only network ties, but also
differences in age, gender, or other unit-level characteristics. Or, θi could encode
not only first-degree peer connections, but also second-degree connections, third-
degree, and so on. The codomain � contains all of the possible treatment-induced
exposures that might be induced in the experiment. The contents of � depend on
the nature of interference. These exposures may be represented as vectors, discrete
classes, or scalar values. As we will show formally below, each of the distinct
exposures in � may give rise to distinct potential outcomes for each unit in U .
The estimation of causal effects under interference amounts to using information
about treatment assignments, which come from the experiment’s design, to esti-
mate effects defined in terms of treatment-induced exposures, which result from
the interaction of the design (captured by Z) and other underlying features of the
population (captured by f and the θi’s).

To make things more concrete, consider some examples of exposure mappings.
The Neyman–Rubin causal model typically considers inference under an expo-
sure mapping in which we set � = {1, . . . ,M} and f (z, θi) = f (z) = zi for all
i. This model has been a workhorse for much of the causal inference literature
[Holland (1986), Imbens and Rubin (2015), Rubin (1978), Neyman (1990)]. An
exposure mapping that allowed for completely arbitrary interference would be one
for which |�| = |�| × N , in which case each unit has a unique type of exposure
under each treatment assignment, and f (z, θi) would be unique for each z. If such
an exposure mapping were valid, then it is clear that there would be no meaningful
way to use the results of the experiment to estimate average exposure-specific ef-
fects (although other types of causal effects may admit well-behaved estimators).
Instead, the analyst must use substantive judgment about the extent of interfer-
ence to fix a mapping somewhere between the traditional randomized experiment
and completely arbitrary exposure mappings in order to carry out analyses under
interference. For example, Hudgens and Halloran (2008) consider a setting that
allows unit i’s exposure to vary with each possible treatment assignment within
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i’s group, but, where conditional on the assignment for i’s group, i’s exposure
does not vary in the treatment assignments of other groups. Then θi would be unit
i’s group index, |�| would equal the largest number of assignment possibilities
for any group, and f (·) would map each assignment possibility for units in unit
i’s group to a separate exposure condition. The types of effects that Hudgens and
Halloran (2008) construct are ones that average over these exposures for each unit.
Below we discuss implications of using an exposure model that does not fully ac-
count for interference, drawing connections back to the estimators in Hudgens and
Halloran (2008). In the simulation study below and in the application, we provide
more examples of exposure mappings. Finally, our characterization of exposures
is “reduced form” in that it does not distinguish between the channels through
which interference occurs [Ogburn and VanderWeele (2014)]. The exposure map-
ping does not distinguish between effects that emanate directly from treatments be-
ing assigned to peers or that are mediated by changes in peers’ outcomes [Eckles,
Karrer and Ugander (2014), pages 8–9; Manski (1995), Chapter 7].

Units’ probabilities of falling into one or another exposure condition are cru-
cial for the estimation strategy that we develop below. Define the exposure that
unit i receives as Di = f (Z, θi), a random variable with support �i ⊆ � and for
which Pr(Di = d) = πi(d). Note that because |�| ≤ |�| × N , � is a finite set of
K ≤ |�| × N values, such that � = {d1, . . . , dK}. Then for each unit, i, we have
a vector of probabilities, (πi(d1), . . . , πi(dK))′ = π i . Invoking Imbens’s (2000)
generalized propensity score, we call π i the generalized probability of exposure
for i. A unit i’s generalized probability of exposure tells us the probability of i

being subject to each of the possible exposures in {d1, . . . , dK}. We have

πi(dk) = ∑
z∈�

I
(
f (z, θi) = dk

)
Pr(Z = z) = ∑

z∈�

pzI
(
f (z, θi) = dk

)
.

Thus the generalized probability of exposure for unit i is also known exactly. Each
component probability, πi(dk), is equal to the expected proportion of treatment
assignments that induce exposure dk for unit i.

Below, we will refer to joint exposure probabilities when discussing variance
estimators; that is, we define πij (dk) as the probability of the joint event that both
units i and j are subject to exposure dk , and we define πij (dk, dl) as the probability
of the joint event that units i and j are subject to exposures dk and dl , respectively.
To compute both individual and joint exposure probabilities from the experiment’s
design, first define the N × |�| matrix

Ik = [
I
(
f (z, θi) = dk

)]
z∈�

i=1,...,N

=

⎡⎢⎢⎢⎣
I
(
f (z1, θ1) = dk

)
I
(
f (z2, θ1) = dk

) · · · I
(
f (z|�|, θ1) = dk

)
I
(
f (z1, θ2) = dk

)
I
(
f (z2, θ2) = dk

) · · · I
(
f (z|�|, θ2) = dk

)
...

...
. . .

I
(
f (z1, θN) = dk

)
I
(
f (z2, θN) = dk

)
I
(
f (z|�|, θN) = dk

)
⎤⎥⎥⎥⎦ ,
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which is a matrix of indicators for whether units are in exposure condition k

over possible assignment vectors. Define the |�| × |�| diagonal matrix P =
diag(pz1,pz2, . . . , pz|�|). Then

IkPI′
k =

⎡⎢⎢⎢⎣
π1(dk) π12(dk) · · · π1N(dk)

π21(dk) π2(dk) · · · π2N(dk)
...

...
. . .

πN1(dk) πN2(dk) πN(dk)

⎤⎥⎥⎥⎦
is an N ×N symmetric matrix with individual exposure probabilities, the πi(dk)’s,
on the diagonal and joint exposure probabilities, the πij (dk)’s, on the off-
diagonals. The nonsymmetric N × N matrix

IkPI′
l =

⎡⎢⎢⎢⎣
0 π12(dk, dl) · · · π1N(dk, dl)

π21(dk, dl) 0 · · · π2N(dk, dl)
...

...
. . .

πN1(dk, dl) πN2(dk, dl) 0

⎤⎥⎥⎥⎦
yields all joint probabilities across exposure conditions k and l. The zeroes on
the diagonal are due to the fact that a unit cannot be subject to multiple exposure
conditions at once.

In practice, |�| may be so large that it is impractical to construct � to compute
the π i’s and the joint probability matrices exactly. One may nonetheless approx-
imate the π i’s and joint probabilities with arbitrary precision through simulation,
that is, produce R random replicate z’s based on the randomization plan. From
these R replicates, we can construct an N × R indicator matrix, Îk , for each of
the k = 1, . . . ,K exposure conditions. Then an estimator for IkPI′

k that incorpo-
rates mild additive smoothing to ensure nonzero marginal probability estimates is
(Îk Î′

k + ιN)/(R + 1), where ιN is an N × N identity matrix. Similarly, an estima-
tor for IkPI′

l , which does not admit additive smoothing due to zero joint inclusion
probabilities, is (Îk Î′

l)/R.

PROPOSITION 3.1. As R → ∞,(
Îk Î′

k + ιN
)
/(R + 1)

a.s.→ IkPI′
k, and

(
Îk Î′

l

)
/R

a.s.→ IkPI′
l .

All proofs appear in the Appendix. Rates of convergence of Îk̂I′
k/R are dis-

cussed in Fattorini (2006) and Aronow (2013). Below we give guidance on select-
ing a value of R based on a bound on the relative bias for an estimator of a target
quantity.

4. Average potential outcomes and causal effects. We develop the case of
estimating average unit-level causal effects of exposures. An average unit-level
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causal effect is defined in terms of a difference between the average of units’ po-
tential outcomes under one exposure versus the average under another exposure.
The starting point is the estimation of average potential outcomes under each of
the exposure conditions. With that, the analyst is in principle free to compute a
variety of causal quantities of interest, not just average unit-level causal effects.
For example, one could consider effects that are defined as differences between
the average of potential outcomes under one set of exposures versus the average
under another set of exposures. The direct, indirect, and overall effects of Hudgens
and Halloran (2008) are defined in this way using the construction of the “indi-
vidual average potential outcome.” The hierarchical designs that they consider are
specifically tailored to ensure that estimators for such effects are nonparametri-
cally identified. While our focus is on estimating exposure-specific causal effects
that are defined for arbitrary designs, such design-specific estimators can certainly
be derived and analyzed using the framework developed here. Our focus on the av-
erage of unit-level, exposure-specific causal effects is due to its being the natural
extension of the “average treatment effect” that is the focus of much current causal
inference and program evaluation literature [e.g., Imbens and Wooldridge (2009)].

Suppose all units have nonzero probabilities of being subject to each of the K

exposures: 0 < πi(dk) < 1 for all i and k. [When πi(dk) = 0 for some units, then
design-based estimation of average potential outcomes and causal effects must be
restricted to the subset of units for which πi(dk) > 0.] In the most general terms,
each z ∈ � can generate a potential outcome for unit i. We label the randomization
potential outcome of unit i associated with z as yr

i (z). These randomization poten-
tial outcomes are fixed for all units in the population and do not depend on the
value of randomized treatment, Z. A condition that we use in our analysis below
is that the exposure mapping fully characterizes interference.

CONDITION 1 (Properly specified exposure mapping). For all i ∈ {1, . . . ,N}
and z, z′ ∈ � such that f (z, θi) = f (z′, θi), yr

i (z) = yr
i (z

′).

Given Condition 1, each unit i has |�| = K potential outcomes, which we can
write in terms of the exposure conditions as (yi(d1), . . . , yi(dK)), where yi(dk) =
yr
i (z),∀i ∈ {1, . . . ,N}, k ∈ {1, . . . ,K}, and z ∈ � such that f (z, θi) = dk .

Let Yi be the observed outcome for unit i. We assume the following consistency
condition that relates the observed data to potential outcomes under the exposure
model [VanderWeele (2009)].

CONDITION 2 (Consistent potential outcomes).

Yi =
K∑

k=1

I(Di = dk)yi(dk), ∀i ∈ {1, . . . ,N}.
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Although SUTVA is violated at the level of treatment assignment (i.e., the in-
dividual zi values), Conditions 1 and 2 restore a form of SUTVA with respect
to exposures in a manner that is conceptually similar to Hudgens and Halloran’s
(2008) stratified interference assumption. Below we examine implications of vi-
olating Conditions 1 and 2—that is, implications of misspecifying the exposure
mapping. Throughout, unless otherwise noted, we will be assuming Conditions 1
and 2.

We seek estimates for all k of μ(dk) = 1
N

∑N
i=1 yi(dk) = 1

N
yT (dk), where

yT (dk) is the total of the potential outcomes under dk . This allows us to define
an average causal effect of being in exposure condition dk as compared to being in
condition dl as

τ(dk, dl) = 1

N

N∑
i=1

yi(dk) − 1

N

N∑
i=1

yi(dl).

The number of units in the population, N , is fixed, but we cannot estimate
yT (dk) directly, as we only observe yi(dk) for those with Di = dk . However, by de-
sign, the collection of units for which we observe yi(dk) is an unequal-probability
without-replacement sample from (y1(dk), . . . , yN(dk)), with the sampling proba-
bilities known exactly. By Horvitz and Thompson (1952), a design-based estimator
for yT (dk) is the inverse probability weighted estimator

(1) ŷT
HT(dk) =

N∑
i=1

I(Di = dk)
Yi

πi(dk)
.

Below, we consider variance-reducing refinements to this estimator. We start with
an analysis of ŷT

HT(dk) because it very clearly reveals first-order issues for estima-
tion under interference. Estimator 1 is unbiased, and its variance is characterized
in Lemma 4.1.

LEMMA 4.1.

E
[
ŷT

HT(dk)
]= N∑

i=1

yi(dk),

Var
[
ŷT

HT(dk)
]= N∑

i=1

πi(dk)
[
1 − πi(dk)

][ yi(dk)

πi(dk)

]2
(2)

+
N∑

i=1

∑
j 	=i

[
πij (dk) − πi(dk)πj (dk)

] yi(dk)

πi(dk)

yj (dk)

πj (dk)
.

Above we indicated that one can approximate IkPI′
k with (Îk Î′

k + ιN)/(R + 1),
which has diagonal elements,

π̂i(dk) = Xi + 1

R + 1
,
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where Xi =∑R
r=1 Ir (f (zr , θi) = dk) and r = 1, . . . ,R indexes the replicates. De-

fine the Horvitz–Thompson estimator that uses the π̂i(dk) estimates:

ŷT
HT,R(dk) =

N∑
i=1

I(Di = dk)
Yi

π̂i(dk)
.

Following Fattorini (2006), the following proposition provides guidance on choos-
ing R in terms of a bound on the relative bias for estimating ŷT (dk).

PROPOSITION 4.1. The relative bias for ŷT
HT,R(dk) is bounded as

∣∣∣∣E[ŷT
HT,R(dk)] − yT (dk)

yT (dk)

∣∣∣∣≤ (1 − π0(dk)
)R+1

,

where π0(dk) = mini{πi(dk)}.

For a relative bias target of b and given some approximation of π0(dk), the
bound implies selecting a number of replicates R ≥ log(b)/ log(1 − π0(dk)) − 1.
Thus, for b = 0.005 and π0(dk) = 0.0005, this would imply at least 10,593 repli-
cates. Given the apparent computational feasibility of producing enough replicates
so as to render relative biases negligible, from here on our analysis assumes that
we are working with IkPI′

k and IkPI′
l .

Given the estimator of the total of the N potential outcomes under exposure dk ,
a natural estimator for the mean is thus μ̂HT(dk) = (1/N)ŷT

HT(dk), with variance

Var(μ̂HT(dk)) = (1/N2)Var[ŷT
HT(dk)]. This allows us to construct the difference

in estimated means

(3) τ̂HT(dk, dl) = μ̂HT(dk) − μ̂HT(dl) = 1

N

[
ŷT

HT(dk) − ŷT
HT(dl)

]
,

which is an estimator of τ(dk, dl) = 1
N

∑N
i=1[yi(dk) − yi(dl)], the average unit-

level causal effect of exposure k versus exposure l.

PROPOSITION 4.2.

E
[
τ̂HT(dk, dl)

]= 1

N

N∑
i=1

yi(dk) − 1

N

N∑
i=1

yi(dl),(4)

Var
(
τ̂HT(dk, dl)

)= 1

N2

{
Var
[
ŷT

HT(dk)
]+ Var

[
ŷT

HT(dl)
]

(5)
− 2 Cov

[
ŷT

HT(dk), ŷ
T
HT(dl)

]}
,
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where

Cov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]= N∑
i=1

∑
j 	=i

yi(dk)

πi(dk)

yj (dl)

πj (dl)

[
πij (dk, dl) − πi(dk)πj (dl)

]
(6)

−
N∑

i=1

yi(dk)yi(dl).

Expressions (2) and (6) allow us to see the conditions under which exact vari-
ances are identified. As long as all joint exposure probabilities are nonzero [that
is, πij (dk) > 0 for all i, j ], unbiased estimators for Var[ŷT

HT(dk)] are identified
for the population U . Because we only observe one potential outcome for each
unit, the last sum in (6) is always unidentified, and thus Cov[ŷT

HT(dk), ŷ
T
HT(dl)]

is always unidentified. This is a familiar problem in estimating the randomiza-
tion variance for the average treatment effect—for example, Neyman (1990) or
Freedman, Pisani and Purves (1998), A32–A34. If πij (dk) = 0 for some i, j , then

Var[ŷT
HT(dk)] is unidentified. Similarly, if πij (dk, dl) = 0 for some i, j , then ad-

ditional components of Cov[ŷT
HT(dk), ŷ

T
HT(dl)] are unidentified. Nonetheless, we

can always identify estimators for Var[ŷT
HT(dk)] and Cov[ŷT

HT(dk), ŷ
T
HT(dl)] that

are guaranteed to have non-negative bias. Thus, we can always identify a con-
servative approximation to the exact variances. We discuss this in the next sec-
tion.

5. Variance estimators. We derive conservative estimators for both
Var[ŷT

HT(dk)] and Var[τ̂HT(dk, dl)]. The formulations in this section follow from
Aronow and Samii (2013) which considers conservative variance estimation for
generic sampling designs with some zero pairwise inclusion probabilities. Al-
though not necessarily unbiased, the estimators we present here are guaranteed to
have a non-negative bias relative to the randomization distributions of the estima-
tors.

Given πij (dk) > 0 for all i, j , the Horvitz–Thompson estimator for

Var[ŷT
HT(dk)] is

V̂ar
[
ŷT

HT(dk)
]= ∑

i∈U

I(Di = dk)
[
1 − πi(dk)

][ Yi

πi(dk)

]2

+∑
i∈U

∑
j∈U\i

I(Di = dk)I(Dj = dk)(7)

× πij (dk) − πi(dk)πj (dk)

πij (dk)

Yi

πi(dk)

Yj

πj (dk)
.
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LEMMA 5.1. If πij (dk) > 0 for all i, j , then E[V̂ar[ŷT
HT(dk)]] = Var[ŷT

HT(dk)].

Lemma 5.1 follows from unbiasedness of the Horvitz–Thomspon estimator for
measurable designs. Then an unbiased estimator for the variance of μ̂HT(dk) is
V̂ar[μ̂HT(dk)] = (1/N2)V̂ar[ŷT

HT(dk)].
In the case where πij (dk) = 0 for some i, j , the Horvitz–Thompson estimator

of Var[ŷT
HT(dk)] is not unbiased, but its bias is readily characterized.

PROPOSITION 5.1. If πij (dk) = 0 for some i, j , then E[V̂ar[ŷT
HT(dk)]] =

Var[ŷT
HT(dk)] + A, where

A =∑
i∈U

∑
j∈{U\i:πij (dk)=0}

yi(dk)yj (dk).

A proof for Proposition 5.1 follows from Aronow and Samii (2013), Proposi-
tion 1, reproduced in the Appendix below.

Note that V̂ar[μ̂HT(dk)] is guaranteed to have non-negative bias when
yi(dk)yj (dk) ≥ 0 for all i, j with πij (dk) = 0. The bias will be small when the
terms in the sum tend to offset each other, as when the relevant yi(dk) and yj (dk)

values are centered on 0 and have low correlation with each other. (This notation
requires that we define 0/0 = 0.)

Another option is to use the following correction term (derived via Young’s
inequality):

Â2(dk) = ∑
i∈U

∑
j∈{U\i:πij (dk)=0}

[I(Di = dk)Y
2
i

2πi(dk)
+ I(Dj = dk)Y

2
j

2πj (dk)

]
,

noting that Â2(dk) = 0 if πij (dk) > 0 for all i, j .

PROPOSITION 5.2.

E
[
V̂ar
[
ŷT

HT(dk)
]+ Â2(dk)

]≥ Var
[
ŷT

HT(dk)
]
.

A proof for Propositon 5.2 follows directly from Aronow and Samii (2013),
Corollary 2, reproduced in the Appendix below. Then let V̂arA[μ̂HT(dk)] =
(1/N2)[V̂ar[ŷT

HT(dk)] + Â2(dk)]. V̂arA[μ̂HT(dk)] then provides a conservative es-
timator for the variance of the estimated average of potential outcomes under ex-
posure dk .

As discussed above, Cov[ŷT
HT(dk), ŷ

T
HT(dl)] is unidentified, which is to say that

there exist no unbiased or consistent estimators for this quantity. However, we
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can compute an approximation that is guaranteed to have expectation less than or
equal to the true covariance, providing a conservative (here, non-negatively biased)
estimator for Var(τ̂HT(dk, dl)). For the case where πij (dk, dl) > 0 for all i, j such
that i 	= j , we propose the Horvitz–Thompson-type estimator for the covariance

Ĉov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]= ∑
i∈U

∑
j∈U\i

[
I(Di = dk)I(Dj = dl)

πij (dk, dl)

Yi

πi(dk)

Yj

πj (dl)

× [
πij (dk, dl) − πi(dk)πj (dl)

]]
(8)

−∑
i∈U

[I(Di = dk)Y
2
i

2πi(dk)
+ I(Di = dl)Y

2
i

2πi(dl)

]
.

PROPOSITION 5.3. If πij (dk, dl) > 0 for all i, j such that i 	= j , then

E
[
Ĉov

[
ŷT

HT(dk), ŷ
T
HT(dl)

]]≤ Cov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]
.

A proof for Proposition 5.3 follows from noting that the term on the second
line in expression (8) has expected value less than or equal to the quantity in the
last line of expression (6), again via Young’s inequality; see Aronow and Samii
[(2013), Proposition 2, reproduced in the Appendix below] for greater detail.

Ĉov[ŷT
HT(dk), ŷ

T
HT(dl)] is exactly unbiased if, for all i ∈ U , yi(dl) = yi(dk), im-

plying no effect associated with condition l relative to condition k.

PROPOSITION 5.4. If πij (dk, dl) > 0 for all i, j such that i 	= j and for all
i ∈ U , yi(dl) = yi(dk), then

E
[
Ĉov

[
ŷT

HT(dk), ŷ
T
HT(dl)

]]= Cov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]
.

A proof follows from Aronow and Samii (2013), Corollary 1, reproduced in the
Appendix below.

For the case where πij (dk, dl) = 0 for some i, j and k, l, we can refine the
expression for the covariance given in (6) to

Cov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]= ∑
i∈U

∑
j∈{U\i:πij (dk,dl)>0}

[
yi(dk)

πi(dk)

yj (dl)

πj (dl)

× [
πij (dk, dl) − πi(dk)πj (dl)

]]
(9)

−∑
i∈U

∑
j∈{U :πij (dk,dl)=0}

yi(dk)yj (dl),
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where the term on the last line subsumes the term on the last line in expression (6).
This leads us to propose a more general estimator for the covariance

ĈovA

[
ŷT

HT(dk), ŷ
T
HT(dl)

]
= ∑

i∈U

∑
j∈{U\i:πij (dk,dl)>0}

[
I(Di = dk)I(Dj = dl)

πij (dk, dl)

Yi

πi(dk)

Yj

πj (dl)

(10)

× [
πij (dk, dl) − πi(dk)πj (dl)

]]

−∑
i∈U

∑
j∈{U :πij (dk,dl)=0}

[
I(Di = dk)Y

2
i

2πi(dk)
+ I(Dj = dl)Y

2
j

2πj (dl)

]
.

PROPOSITION 5.5.

E
[
ĈovA

[
ŷT

HT(dk), ŷ
T
HT(dl)

]]≤ Cov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]
.

A proof again follows from the fact the term in the last line in (10) has expected
value no greater than the term in the last line of (9) by Young’s inequality.

Based on the variance expressions and correction terms defined above, we ob-
tain a conservative variance estimator for Var(τ̂HT(dk, dl)) as

V̂ar
[
τ̂HT(dk, dl)

]= 1

N2

{
V̂ar
[
ŷT

HT(dk)
]+ Â2(dk) + V̂ar

[
ŷT

HT(dl)
]+ Â2(dl)

(11)
− 2ĈovA

[
ŷT

HT(dk), ŷ
T
HT(dl)

]}
.

PROPOSITION 5.6.

E
[
V̂ar
[
τ̂HT(dk, dl)

]]≥ Var
[
τ̂HT(dk, dl)

]
.

The result follows from Proposition 5.2, Proposition 5.5, and the linearity of
expectations.

6. Asymptotics and intervals. Consider a sequence of nested populations in-
dexed by size N , (UN). To define a notion of asymptotic growth, we let N tend
to infinity, allowing for the experimental design to be reapplied anew to each UN ,
subject to the conditions defined below [Brewer (1979), Isaki and Fuller (1982)].
Consistency and the asymptotic validity of Wald-type confidence intervals will
then follow from restrictions on the growth process of the design and exposure
mapping.
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6.1. Consistency. We first establish conditions for the estimator τ̂HT(dk, dl) to
converge to τ(dk, dl) as N grows. We will show that, under two regularity condi-

tions, τ̂HT(dk, dl) − τ(dk, dl)
p−→ 0 as N → ∞.

CONDITION 3 (Boundedness of potential outcomes and exposure probabilities).
Potential outcomes and exposure probabilities are bounded so that, for all values i

and dk , |yi(dk)| ≤ c1 < ∞ and |1/πi(dk)| ≤ c2 < ∞.

Condition 3 can be relaxed, though Condition 4 would likely need to be
strengthened accordingly.

We will also make an assumption about the amount of dependence in exposure
conditions in the population. Define a pairwise dependency indicator gij such that
if gij = 0, then Di ⊥⊥ Dj , else let gij = 1.

CONDITION 4 (Restrictions on pairwise dependence).
∑N

i=1
∑N

j=1 gij =
o(N2).

Condition 4 entails that, as N grows, the amount of pairwise clustering in expo-
sure conditions induced by the design and exposure mapping is limited in scope.
As units are added to the sample, the number of new nonzero entries in the ex-
panding pairwise correlation matrix of exposures should be limited by the order
condition.

PROPOSITION 6.1. Given Conditions 3 and 4, τ̂HT(dk, dl) − τ(dk, dl)
p−→ 0

as N → ∞.

6.2. Confidence intervals. We now establish conditions for the asymptotic va-
lidity of Wald-type confidence intervals under stricter conditions on the asymptotic
growth process. Consistency for the variance estimators, asymptotic normality,
and therefore asymptotic validity of confidence intervals, follow straightforwardly
when the amount of dependence across units in the population is limited.

We shall assume that Condition 3 holds, but will strengthen Condition 4 to en-
sure that dependence across exposures is limited in scope. Unlike Condition 4, we
will exploit joint independence of observations rather than pairwise independence.
Define a binary dependency indicator hij over all pairs (i, j) ∈ {1,2, . . . ,N} ×
{1,2, . . . ,N}, where hij satisfies the following: for any pair of disjoint sets 	1
and 	2 ⊆ {1, . . . ,N} such that there exists no pair (i, j) with hij = 1 and either
(i) i ∈ 	1 and j /∈ 	2, (ii) j ∈ 	1 and i /∈ 	2, (iii) i /∈ 	1 and j ∈ 	2, or (iv) j /∈ 	1
and i ∈ 	2, {Di, i ∈ 	1} and {Di, i ∈ 	2} are independent.

CONDITION 5 (Local dependence). There exists a finite constant m such that,
for all UN , i ∈ 1, . . . ,N ,

∑N
j=1 hij ≤ m.
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Condition 5 is equivalent to assuming that dependencies across exposures can
be represented by a dependency graph such that the maximal degree of each unit
tends to be limited relative to N . Condition 5 will allow us to straightforwardly
invoke a central limit theorem for random fields as derived via Stein’s method
[Chen and Shao (2004), Example 2.4.1]. (The authors thank Betsy Ogburn for the
suggestion of the use of Stein’s method in this setting.) Finite m ensures that our
variance estimators will converge at a sufficiently fast rate. Note that Condition 5
subsumes Condition 4, as

∑N
i=1

∑N
j=1 gij = O(N) when Condition 5 holds.

It is illustrative to consider settings where Condition 5 holds. For Bernoulli-
randomized designs, Condition 5 would hold if interference were characterized
by first-order dependence on a graph connecting units and network degrees were
bounded above by some value m. Condition 5 also generalizes the partial interfer-
ence setting considered by, for example, Sobel (2006) and Liu and Hudgens (2014)
given finite subpopulations across which interference is localized (in this case, m

would be the size of the largest subpopulation). However, Condition 5 would be
violated if changing the treatment assigned to one unit would affect the exposure
received by all N units. In comparing Conditions 4 and 5, note that Condition 4 is
a restriction on the order of growth of pairwise dependencies, while Condition 5
requires local dependence. The latter condition is more restrictive, as it imposes
conditions on all higher-order joint inclusion probabilities. It is possible that Con-
dition 4 could hold, but Condition 5 would be violated if, for example, there exists
a single unit for which the number of associated pairwise dependencies tended to
infinity in N .

CONDITION 6 (Nonzero limiting variance.). N Var[τ̂HT(dk, dl)] p→ c, where
c > 0.

Convergence of N Var[τ̂HT(dk, dl)] to a non-negative constant is generally en-
sured by Conditions 3 and 5, sufficient for root-n consistency of τ̂HT(dk, dl). Con-
dition 6 is a mild regularity condition that ensures that this constant is positive, and
rules out degenerate cases (e.g., all outcomes are zero).

PROPOSITION 6.2. Given Conditions 3, 5, and 6, Wald-type intervals con-
structed as

τ̂HT(dk, dl) ± z1−α/2

√
V̂ar
[
τ̂HT(dk, dl)

]
will tend to cover τHT(dk, dl) at least 100(1 − α)% of the time for large N .

7. Refinements. The mean and difference-in-means estimators presented thus
far are unbiased by sample theoretic arguments, and we have derived conservative
variance estimators. However, we may wish to improve efficiency by incorporating
auxiliary covariate information. In addition, by analogy to results from the unequal
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probability sampling literature, ratio approximations of the Horvitz–Thompson es-
timator may significantly reduce mean squared error with little cost in terms of
bias [Särndal, Swensson and Wretman (1992), pages 181–184]. We discuss such
refinements here.

7.1. Covariance adjustment. Auxiliary covariate information may help to im-
prove efficiency. A first method of covariance adjustment is based on the so-called
“difference estimator” [Raj (1965), Särndal, Swensson and Wretman (1992),
Chapter 6]. Covariance adjustment of this variety can reduce the randomization
variance of the estimated exposure means and average causal effects without
compromising unbiasedness. In addition, the difference estimator addresses the
problem of location noninvariance that afflicts Horvitz–Thompson-type estimators
[Fuller (2009), pages 9–10]. The estimator requires prior knowledge of how out-
comes relate to covariates, perhaps obtained from analysis of auxiliary datasets.

Assume an auxiliary covariate vector xi is observed for each i. We have some
predefined function g(xi, ξ i(dk)) →R, where ξ i is a parameter vector. Ideally g(·)
is calibrated on auxiliary data to produce values that approximate yi(dk). We as-
sume Cov[g(xi, ξ i(dk)),Zi] = 0 as a sufficient condition for unbiasedness. Define

ŷT
G(dk) =

N∑
i=1

I(Di = dk)
Yi

πi(dk)
−

N∑
i=1

I(Di = dk)
g(xi, ξ i(dk))

πi(dk)

(12)

+
N∑

i=1

g
(
xi, ξi(dk)

)
,

which is unbiased for yT (dk) by

E

[
−

N∑
i=1

I(Di = dk)
g(xi, ξ i(dk))

πi(dk)
+

N∑
i=1

g
(
xi, ξi(dk)

)]= 0.

Define εi(dk) = Yi − g(xi, ξi(dk)) for cases with Di = dk . Then, by substitution,

(13) ŷT
G(dk) =

N∑
i=1

I(Di = dk)
εi(dk)

πi(dk)
+

N∑
i=1

g
(
xi, ξ i(dk)

)
.

Estimation proceeds as above using ŷT
G(dk) in place of ŷT (dk) to estimate yT (dk).

Middleton and Aronow (2011) and Aronow and Middleton (2013) demonstrate
that ŷT

G(dk) is location invariant. Variance estimation proceeds as in Section 5 us-
ing εi(dk) in place of yi(dk) as long as g(xi, ξ i(dk)) is fixed.

An approximation to the difference estimator is given by regression adjustment
using the data at hand. Regression can be thought of as a way to automate selection
of the parameters in the difference estimator. In doing so, unbiasedness is compro-
mised although the regression estimator is typically consistent [Särndal, Swensson
and Wretman (1992), pages 225–239]. We may use weighted least squares to es-
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timate a sensible parameter vector. For some common experimental designs, the
least squares criterion will be optimal [Lin (2013)], and weighting by 1/πi(dk) en-
sures that the regression proceeds on a sample representative of the population of
potential outcomes. With additional details on Ik and g(·), it is possible to estimate
optimal parameter vectors [Särndal, Swensson and Wretman (1992), pages 219–
244], though such values will typically be close to those produced by the weighted
least squares estimator (barring unusual and extreme forms of clustering).

Define an estimated parameter vector associated with exposure condition dk ,

̂ξ(dk) = arg min
ξ(dk)

∑
i:Di=dk

1

πi(dk)

[
Yi − g

(
xi, ξ(dk)

)]2
,

where g(·) is the specification for the regression of Yi on I(Di = dk) and xi. Then
the regression estimator for the total is

(14) ŷT
R (dk) =

N∑
i=1

I(Di = dk)
Yi − g(xi,

̂ξ(dk))

πi(dk)
+

N∑
i=1

g
(
xi,

̂ξ(dk)
)
.

Estimation proceeds as above using ŷT
R (dk) in place of ŷT

HT(dk) to estimate yT (dk).
Under weak regularity conditions on g(·), a variance estimator based on a Tay-
lor linearization of ŷT

R (dk) is consistent [Särndal, Swensson and Wretman (1992),
pages 236–237]. The linearized variance estimator can be computed by substitut-
ing the residuals, ei = yi(dk) − g(xi,̂ξ(dk)), for the yi(dk) terms in constructing
the variance estimator given in expression (11).

7.2. Hajek ratio estimation via weighted least squares. The Hájek (1971) ratio
estimator is a refinement of the standard Horvitz–Thompson estimator that often
facilitates efficiency gains at the cost of some finite N bias and complications in
variance estimation. Let us first consider the problem that the Hajek estimator is
designed to resolve. The high variance of μ̂HT(dk) is often driven by the fact that
some randomizations may yield units with exceptionally high values of the weights
1/πi(dk). The Hajek refinement allows the denominator of the estimator to vary
according to the sum of the weights 1/πi(dk), thus shrinking the magnitude of the
estimator when its value is large, and raising the magnitude of the estimator when
its value is small. The Hajek ratio estimator is

(15) μ̂H (dk) =
∑N

i=1 I(Di = dk)
Yi

πi(dk)∑N
i=1 I(Di = dk)

1
πi(dk)

.

Note that E[∑N
i=1 I(Di = dk)

1
πi(dk)

] = N so that the Hajek estimator is the ratio of
two unbiased estimators. It is well known that the ratio of two unbiased estimators
is not an unbiased estimator of the ratio. However, the bias will tend to be small
relative to the estimator’s sampling variability, and we may place bounds on its
magnitude.
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By Hartley and Ross (1954) and Särndal, Swensson and Wretman (1992),
page 176,

∣∣E[μ̂H (dk)
]− μ(dk)

∣∣≤
√√√√Var

(
1

N

N∑
i=1

I(Di = dk)
1

πi(dk)

)
Var
(
μ̂H (dk)

)
.

Under Conditions 3 and 4, both variances will converge to zero, and the bias ra-
tio will converge to zero. Practically speaking, the Hajek estimator can be com-
puted using weighted least squares, with covariance adjustment through weighted
least squares residualization. Variance estimation proceeds via Taylor linearization
[Särndal, Swensson and Wretman (1992), pages 172–176]. A linearized variance
estimator can be computed by substituting the residuals, ui = yi(dk)− μ̂H (dk), for
the yi(dk) terms in constructing the variance estimator given in expression (11).

8. Misspecification. Recall Condition 1, which states that the exposure map-
ping fully characterizes interference. Here we examine what happens when this
assumption fails, for example, there is interference between units that is not fully
characterized by the exposure mapping. By “misspecification” of the exposure
mapping, we refer to the situation in which the condition Di = dk may be con-
sistent with multiple potential outcomes for some i. As in Section 4, we have
randomization potential outcomes for unit i as yr

i (z) for all z ∈ �.

CONDITION 7 (Misspecification). There exists some i ∈ {1, . . . ,N} and
z, z′ ∈ � such that f (z, θi) = f (z′, θi) and yr

i (z) 	= yr
i (z

′). Then Yi =∑
z∈� I(Z =

z)yr
i (z),∀i ∈ {1, . . . ,N}.
The following proposition shows the implications of misspecification for the

potential outcome population total estimator given in expression (1).

PROPOSITION 8.1. Define ŷT
HT(dk) as above, but suppose Condition 7 instead

of Conditions 1 and 2. Then

(16) E
[
ŷT

HT(dk)
]= N∑

i=1

∑
z:f (z,θi )=dk

wi,zy
r
i (z),

where wi,z = pz/πi(dk).

Under Condition 7, the estimator μ̂HT(dk) = (1/N)ŷT
HT(dk) is unbiased for the

population mean of what Hudgens and Halloran (2008), page 834, refer to as the
“individual average potential outcome” given Di = dk . The causal effect estimate
given in (3), which compares mean outcomes given exposures dk versus dl , is a
difference in population means of individual average randomization potential out-
comes given different restrictions on the set of treatments implied in constructing
exposures dk and dl .
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COROLLARY 8.1. Under Condition 7,

E
[
τ̂HT(dk, dl)

]= 1

N

N∑
i=1

[ ∑
z:f (z,θi )=dk

wi,zy
r
i (z) − ∑

z′:f (z′,θi )=dl

wi,z′yr
i

(
z′)].

Inference for such an effect would not follow immediately from the results
above. However, under partial interference, inference would follow from the re-
sults of Liu and Hudgens (2014).

9. A naturalistic simulation with social network data. We use a naturalistic
simulation to illustrate how our framework may be applied and also to study oper-
ating characteristics of the proposed estimators in a realistic sample. We estimate
direct and indirect effects of an experiment with individuals linked in a complex,
undirected social network. We use friendship network data from American school
classes collected through the National Longitudinal Study of Adolescent Health
(Add Health). The richness of these data makes Add Health a canonical dataset for
methodological research related to social networks, as with Bramoullé, Djebbari
and Fortin (2009), Chung, Lanza and Loken (2008), Goel and Salganik (2010),
Goodreau, Kitts and Morris (2009), Goodreau (2007), Handcock, Raftery and
Tantrum (2007), and Hunter, Goodreau and Handcock (2008). We simulate experi-
ments in which a treatment, Z, is randomly assigned without replacement and with
uniform probability to 1/10 of individuals in a school network. Indirect effects are
transmitted only within a subject’s school. This simulated experiment resembles
various studies of network persuasion campaigns [Aral and Walker (2011), Chen,
Humphreys and Modi (2010), Paluck (2011)], including the field experiment that
we analyze below.

We define the exposure mapping as a function f (z, θi) such that the parame-
ter, θi , is a column vector equal to the transpose of subject i’s row in a network
adjacency matrix (modified such that we have zeroes on the diagonal). The inner
product, z′θi , counts the number of subject i’s peers assigned to treatment. We use
a simple exposure mapping that captures direct and indirect effects of the treat-
ment, with indirect effects being transmitted to a subject’s immediate peers:

f (z, θi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d11 (Direct + Indirect Exposure) : ziI

(
z′θi > 0

)= 1,

d10 (Isolated Direct Exposure) : ziI
(
z′θi = 0

)= 1,

d01 (Indirect Exposure) : (1 − zi)I
(
z′θi > 0

)= 1,

d00 (No Exposure) : (1 − zi)I
(
z′θi = 0

)= 1,

where each unit falls into exactly one of the four exposure conditions. This ex-
posure mapping was selected to mimic the one used in the application studied in
the next section. A contrast of mean outcomes under d10 versus d00 isolates the
effect of direct exposure in the absence of any interaction with indirect exposure,
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whereas the d11–d00 contrast yields an effect that incorporates such interactive ef-
fects. The d01–d00 contrast isolates the effect of indirect exposure in the absence
of any interaction with direct exposure.

This experiment is repeated independently across the 144 school classes in-
cluded in Add Health, with an average class size of 626 students. We constructed
the school network graphs as undirected graphs where a link between two students
was assigned if either student nominated the other as a friend in the Add Health
survey. Students could nominate up to 5 male and 5 female friends. To ensure that
our effect estimates all refer to the same underlying population, we dropped sub-
jects that reported zero friendship ties. For the resulting sample, 42% of students
have network degree in the 1 to 5 range, 40% in the 6 to 10 range, 18% in the 11
to 20 range, and 1% greater than 20, with a maximum degree of 39. To give an
idea of the range of exposure probabilities, for the student with degree of 39, the
probability of isolated direct exposure was 0.00067. In Figure 3 of the Appendix,
we display the cumulative distribution functions for the four exposure probabili-
ties. About 3% of students have an exposure probability of less than 0.01 for the
direct + indirect exposure condition, 0.5% for isolated direct exposure, and then
there were no cases with probabilities less than 0.01 for either the indirect- or
no-exposure conditions.

Figure 1 illustrates a treatment assignment and corresponding treatment-
induced exposures under this mapping. The figure illustrates two key issues that
our methods address. First is the connection between a unit’s underlying traits, in

FIG. 1. Illustration of a treatment assignment (left) and then treatment-induced exposures (right)
for one of the school classes in the study. Each dot is a student, and each line represents an undirected
friendship tie.
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this case its network degree, and the propensity to fall into one or another exposure
condition. The second is the irregular clustering that occurs in exposure conditions.
Such irregular clustering is precisely what one must address in deriving variance
estimates and intervals for estimated effects.

We use as our outcome a variable in the dataset that records the number of
after-school activities in which each student participates. This variable defines the
yi(d00) values—that is, potential outcomes under the “control” exposure. This
makes our simulation naturalistic not only in the networks that define the inter-
ference patterns, but also in the outcome data. The variable exhibits a high de-
gree of right skew, with mean 2.14, standard deviation 2.64, and 0, 0.25, 0.5,
0.75, and 1 quantiles of 0, 1, 2, 3, and 33, respectively. We consider a simple
“dilated effects” scenario [Rosenbaum (1999)] where potential outcomes are such
that yi(d11) = 2 × yi(d00), yi(d10) = 1.5 × yi(d00), yi(d01) = 1.25 × yi(d00). We
run 500 simulated replications of the experiment, applying five estimators in each
scenario:

• The Horvitz–Thompson estimator for the causal effect given in expression (3),
with the associated conservative variance estimator, given in expression (11);

• The Hajek ratio estimator given in expression (15), with the associated lin-
earized variance estimator;

• The weighted least squares (WLS) estimator given in expression (14), adjusting
for network degree as the sole covariate, with the associated linearized variance
estimator;

• An ordinary least squares (OLS) estimator that regresses the outcome on indi-
cator variables for the exposure conditions, adjusting for network degree as a
covariate, with MacKinnon and White’s (1985) finite sample adjusted “HC2”
heteroskedasticity consistent variance estimator;

• A simple difference in sample means (DSM) for the exposure conditions, also
with the HC2 estimator.

With respect to point estimates, the Horvitz–Thompson estimator is unbiased but
possibly unstable, while the Hajek and WLS estimators are consistent and expected
to be more stable. The DSM estimator is expected to be biased because it totally
ignores relationships between exposure probabilities and outcomes. The OLS es-
timator controls for network degree, and so this will remove bias due to correla-
tion between exposure probabilities and outcomes. However, OLS is known to be
biased in its aggregation of unit-level heterogeneity in causal effects [Angrist and
Krueger (1999)]. With respect to standard error estimates and confidence intervals,
the variance estimators for the Horvitz–Thompson, Hajek, and WLS estimators are
expected to be conservative though informative. The variance estimators for OLS
and DSM may be anti-conservative because they ignore the clustering in exposure
conditions.

Table 1 shows results of the simulation study, which conform to expectations.
The Horvitz–Thompson, Hajek, and WLS estimators exhibit no perceivable bias.
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TABLE 1
Results from school friends’ network simulated experiment

Mean 95% CI 90% CI
Estimator Estimand Bias S.D. RMSE S.E. Coverage Coverage

HT τ (d01, d00) 0.00 0.04 0.04 0.05 0.960 0.924
τ (d10, d00) 0.00 0.10 0.10 0.19 0.986 0.970
τ (d11, d00) 0.00 0.13 0.13 0.28 0.990 0.970

Hajek τ (d01, d00) 0.00 0.03 0.03 0.03 0.968 0.916
τ (d10, d00) 0.00 0.07 0.07 0.13 0.992 0.970
τ (d11, d00) 0.00 0.12 0.12 0.25 0.986 0.970

WLS τ (d01, d00) 0.00 0.03 0.03 0.03 0.970 0.928
τ (d10, d00) 0.00 0.07 0.07 0.12 0.992 0.968
τ (d11, d00) 0.00 0.11 0.11 0.25 0.988 0.950

OLS τ (d01, d00) −0.02 0.03 0.03 0.02 0.842 0.768
τ (d10, d00) −0.08 0.06 0.10 0.07 0.706 0.576
τ (d11, d00) 0.12 0.09 0.15 0.09 0.660 0.530

DSM τ (d01, d00) 0.42 0.02 0.42 0.02 0.000 0.000
τ (d10, d00) −0.08 0.06 0.10 0.07 0.726 0.614
τ (d11, d00) 0.56 0.09 0.57 0.09 0.000 0.000

HT = Horvitz–Thompson estimator with conservative variance estimator.
Hajek = Hajek estimator with linearized variance estimator.
WLS = Least squares weighted by exposure probabilities with covariate adjustment for network
degree and linearized variance estimator.
OLS = Ordinary least squares with covariate adjustment for network degree and heteroskedasticity
consistent variance estimator.
DSM = Simple difference in sample means with no covariate adjustment and heteroskedasticity
consistent variance estimator.
S.D. = Empirical standard deviation from simulation; RMSE = Root mean square error; S.E. =
standard error estimate; CI = Normal approximation confidence interval.

The Horvitz–Thompson estimator exhibits higher variability than the Hajek and
WLS estimators, although the differences are not very pronounced, perhaps ow-
ing to the small number of cases with very small exposure probabilities. The
OLS estimator and DSM estimator are heavily biased when considered relative
to the variability of the effect estimates. The bias in OLS is expected because unit-
level causal effects, defined in terms of differences, are heterogenous from unit to
unit when underlying potential outcomes are based on dilated effects. Thus OLS
will suffer from an aggregation bias in addition to any biases due to inadequate
conditioning on network degree. The standard error estimates for the Horvitz–
Thompson, Hajek, and WLS estimators are informative but conservative, resulting
in empirical coverage rates that exceed nominal levels. The intervals for the OLS
and DSM variance estimators badly undercover, primarily due to the bias in the
point estimates rather than understatement of variability.
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10. Analysis of a social network field experiment. In this section we an-
alyze a field experiment on the promotion of anti-conflict norms and behavior
among American middle school students. The experiment sought to shed light
on how such a program might affect attitudes and behaviors of participant youth
and also, crucially, to understand how these effects transmit to participants’ so-
cial network peers. Full details and a richer analysis of the experiment are given
in Paluck, Shepherd and Aronow (2016). The experiment involved two levels of
randomization. First, 28 of 56 schools were randomly selected to host the anti-
conflict program, via block randomization. Within all schools, a group of between
40 to 64 students were nonrandomly selected as eligible to participate in the pro-
gram. Within each school hosting the program, half of the eligible students were
then block randomized to participate in the program, with blocking on gender,
grade, and a measure of network closure. Every two weeks over the course of the
school year, the program had participants attend meetings with program staff dur-
ing which they discussed social conflicts and patterns of exclusion at their school
and formulated behavioral strategies to help friends and other students. At the be-
ginning of the school year, the research team measured students’ social networks,
asking students to nominate up to 10 students in their school that they had chosen
to spend time with, face to face or online, in the last two weeks. These nominations
were used to construct an undirected adjacency graph so that students were con-
sidered “peers” if either student nominated one another. In Figure 2, we present
an illustrative graph of one of these networks. As expected, students of the same
grade and gender are more likely to associate with one another. At the end of the
school year, the research team implemented a survey to measure behaviors and
attitudes that reflected conflict-related norms. In the current analysis, we focus on
one particular behavior: (self-reports of) wearing a wristband issued to students
through the program that was meant to reflect a student’s public endorsement of
anti-conflict norms.

Given this design, let zi = 0,1 be an indicator for whether student i is assigned
to participate in the program and let z be the vector of student-level assignments
in the school. Let si = 0,1 be an indicator for whether subject i’s school hosts
the program. Finally, as in the simulation study above, let θi be a column vector
equal to the transpose of student i’s row in the school network adjacency matrix
(with zeroes on the diagonal), in which case z′θi is again the number of subject i’s
peers that are assigned to participate in the program. Then we define the exposure
mapping as follows:

f (z, θi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d111 (Direct + Indirect Exposure) : ziI
(
z′θi > 0

)
si = 1,

d101 (Isolated Direct Exposure) : ziI
(
z′θi = 0

)
si = 1,

d011 (Indirect Exposure) : (1 − zi)I
(
z′θi > 0

)
si = 1,

d001 (School Exposure) : (1 − zi)I
(
z′θi = 0

)
si = 1,

d000 (No Exposure) : (1 − si) = 1.
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FIG. 2. Example of a proximity network for one school in the social network field experiment.
Network edges were measured using student nomination data in the first survey.

Three features emerge from examination of the exposure mapping. First, the ex-
posure mapping reflects four different sources of exposure to the program: being
in a school with the program (School), having a peer who was a participation stu-
dent (Indirect), and being a participating student (Direct). Second, only students
selected as “eligible” have a nonzero possibility of being in all exposure con-
ditions. Thus, we limit the present analysis to the set of students with nonzero
probabilities of exposure (N = 2,050). [Paluck, Shepherd and Aronow (2016) ex-
amine effects for members of the ineligible subpopulation who nonetheless have
nonzero probability of indirect exposure.] Third, the conditions for our asymp-
totic results hold in the number of schools. This exposure model provides a par-
simonious characterization of first-order peer effects and school-wide climate ef-
fects, which were the primary effects of interest for Paluck, Shepherd and Aronow
(2016) when designing the experiment. If other types of peer effects are present,
analysis under this exposure model estimates treatment-regime-specific aggregates
that average over those other effects, as described in the section on misspecification
above.
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TABLE 2
Social network experiment results: effects of exposures on probability of wearing a

program wristband

Estimator Estimand Estimate S.E. 95% CI

HT τ (d001, d000) 0.057 0.062 (−0.065,0.179)

τ (d011, d000) 0.154 0.029 (0.097,0.211)

τ (d101, d000) 0.305 0.141 (0.029,0.581)

τ (d111, d000) 0.299 0.020 (0.260,0.338)

Hajek τ (d001, d000) 0.058 0.064 (−0.067,0.183)

τ (d011, d000) 0.154 0.037 (0.081,0.227)

τ (d101, d000) 0.292 0.123 (0.051,0.533)

τ (d111, d000) 0.307 0.049 (0.211,0.403)

WLS τ (d001, d000) 0.056 0.066 (−0.072,0.186)

τ (d011, d000) 0.156 0.037 (0.083,0.229)

τ (d101, d000) 0.295 0.124 (0.050,0.536)

τ (d111, d000) 0.306 0.049 (0.212,0.404)

HT = Horvitz–Thompson estimator with conservative variance estimator.
Hajek = Hajek estimator with linearized variance estimator.
WLS = Least squares weighted by exposure probabilities with covariate adjustment for network
degree and linearized variance estimator.
S.E. = Estimated standard error; CI = Normal approximation confidence interval.

Table 2 presents Horvitz–Thompson (HT), Hajek, and weighted least squares
(WLS) estimates of the effects of different exposure conditions relative to the no
exposure condition. The WLS estimates control for a subject’s network degree (as
in the simulation study above). The outcome of interest, yi ∈ {0,1}, is a binary
indicator for whether the subject wore a program wristband. The effect estimates
characterize, for eligible students, the average increase in the probability of wear-
ing a wristband relative to the average in the no exposure condition. (The average
for eligible students in the no exposure condition was essentially zero, at 0.000.)

The HT, Hajek, and WLS results all mostly agree. They suggest that being in
a program school but being a nonparticipant with no participant peers (d001) has
negligible effects for eligible students: our point estimate suggests about a six per-
centage point increase in the probability of wearing a wrist band, although the 95%
confidence interval has a lower bound of about −7 percentage points. However, ef-
fects for eligible students with either indirect or direct exposure are substantially
larger. The effect of indirect exposure (d011) is about a 15 to 16 percentage point
increase in the probability of wearing a wrist band (95% confidence interval be-
tween about 8 and 23 percentage points). The effect of direct exposure, whether or
not it is accompanied by indirect exposure (d101 or d111), is about a 30 percentage
point increase in the probability of wearing a wrist band (95% confidence interval
between about 5 and 50 percentage points for the d101 condition and about 21 and
40 percentage points for the d111 condition).
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Thus, the program is seen as having substantial direct but also indirect effects on
subject’s willingness to endorse anti-conflict norms by wearing a program wrist-
band. These indirect effects mean that one would drastically underestimate the
effect of the program if one performed a naive analysis that simply compared par-
ticipant and nonparticipant individuals in schools hosting the program. Moreover,
an analysis that failed to account for indirect effects might understate the cost-
effectiveness of the program: substantial increases in school-level expressions of
commitment to anti-conflict norms would not require administering the program
to everyone.

11. Conclusion. This paper proposes an analytical framework for causal in-
ference under interference and applies it to the analysis of experiments on so-
cial networks. As discussed in the Introduction, the framework can be applied to
other settings where interference is considered to be important. The framework
integrates (i) an experimental design that defines the probability distribution for
treatments assigned, (ii) an exposure mapping that relates treatments assigned to
exposures received, and (iii) an estimand chosen to make use of an experimental
design to answer questions of substantive interest. Using this framework, we de-
velop methods for estimating average unit-level causal effects of exposures from
a randomized experiment. Our approach combines the known randomization pro-
cess with the analyst’s definition of treatment exposure, thus permitting inference
under clear and defensible assumptions. Importantly, the union of the design of
the experiment and the exposure mapping may imply unequal probabilities of
exposure and forms of dependence between units that may not be obvious ex
ante.

We develop estimators based on results from the literature on unequal probabil-
ity sampling rooted in the foundational insights of Horvitz and Thompson (1952).
The estimators are derived from the known sampling distribution of the “direct”
treatment, and they provide a basis for unbiased effect estimation and conserva-
tive variance estimation. Wald-type intervals based on a normal approximation
provide a reasonable reflection of large N behavior when clustering of exposure
indicator values is limited. Nonetheless, it is well known that Horvitz–Thompson-
type estimators may be volatile in cases where selection probabilities vary greatly
or exhibit strong inverse correlation with outcome values [Basu (1971)]. Thus, we
provide refinements that allow for variance control via covariance adjustment and
Hajek estimation.

Our approach combines minimal assumptions about restrictions on potential
outcomes with randomization-based estimators, and may be characterized as
design-consistent. The estimands and methods presented here may be useful in
evaluating alternative experimental designs for estimating causal effects in the
presence of interference [Airoldi (2016), Baird et al. (2016), Eckles, Karrer and
Ugander (2014), Toulis and Kao (2013), Ugander et al. (2013)]. Finally, the frame-
work is readily applicable to deriving estimators for estimands other than the av-
erage unit-level effect of exposures.
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APPENDIX A: PROOFS

A.1. Proof of Proposition 3.1. The replication procedure is equivalent to
drawing a random sample without replacement from �, with probabilities of selec-
tion equal to those which are defined in the randomization plan. The result follows
from the strong law of large numbers.

A.2. Proof of Lemma 4.1. To show unbiasedness, by Condition 2 we have

E
[
ŷT

HT(dk)
]= E

[
N∑

i=1

I(Di = dk)
Yi

πi(dk)

]

=
N∑

i=1

E
[
I(Di = dk)

] yi(dk)

πi(dk)
=

N∑
i=1

yi(dk).

The variance expression follows from the fact that ŷT
HT(dk) is a sum of correlated

random variables.

A.3. Proof of Proposition 4.1. We have

E
[
ŷT

HT,R(dk)
]= N∑

i=1

yi(dk)πi(dk)E
[

R + 1

Xi + 1

]

=
N∑

i=1

yi(dk)
[
1 − (1 − πi(dk)

)R+1]

= yT (dk) −
N∑

i=1

yi(dk)
(
1 − πi(dk)

)R+1
.

And so ∣∣E[ŷT
HT,R(dk)

]− yT (dk)
∣∣= ∣∣∣∣∣

N∑
i=1

yi(dk)
(
1 − πi(dk)

)R+1

∣∣∣∣∣
≤ ∣∣yT (dk)

∣∣(1 − π0(dk)
)R+1

.

A.4. Proof of Proposition 4.2. Results (4) and (5) follow from Lemma 4.1
and properties of the variance operator. For the covariance term (6), first note that
πii(dk, dl) = 0. Then following Wood (2008),

Cov
[
ŷT

HT(dk), ŷ
T
HT(dl)

]= N∑
i=1

N∑
j=1

Cov
[
I(Di = dk), I(Dj = dl)

] yi(dk)

πi(dk)

yj (dl)

πj (dl)

=
N∑

i=1

N∑
j=1

yi(dk)

πi(dk)

yj (dl)

πj (dl)

[
πij (dk, dl) − πi(dk)πj (dl)

]
.
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A.5. Key results for Propositions 5.1, 5.2, 5.3, and 5.4. We reproduce key
results from Aronow and Samii (2013) for the conservative variance corrections.
We do so in the general case of the Horvitz–Thompson estimator for a population
total. Suppose a population U indexed by 1, . . . , k, . . . ,N and a sampling design
such that the probability of inclusion in the sample for unit k is given by πk , and
the joint inclusion probability for units k and l is given by πkl .

The Horvitz–Thompson estimator of a population total is given by

t̂ =∑
k∈s

yk

πk

= ∑
k∈U

Ik

yk

πk

,

where Ik ∈ {0,1} is unit k’s inclusion indicator, the only stochastic component of
the expression, with E(Ik) = πk , the inclusion probability, and s and U refer to the
sample and the population, respectively. Define E(IkIl) = πkl , the probability that
both units k and l from U are included in the sample. Since IkIk = Ik , E(IkIk) =
πkk = πk by construction. The variance of the Horvitz–Thompson estimator for
the total is given by

Var(t̂) = ∑
k∈U

∑
l∈U

Cov(Ik, Il)
yk

πk

yl

πl

= ∑
k∈U

Var(Ik)

(
yk

πk

)2
+ ∑

k∈U

∑
l∈U\k

Cov(Ik, Il)
yk

πk

yl

πl

.

Under a measurable design, two conditions obtain: (1) πk > 0 and πk is known for
all k ∈ U and (2) πkl > 0 and πkl is known for all k, l ∈ U . Nonmeasurable designs
include those for which either of the two conditions for a measurable design do not
hold. We label a sample from a measurable design, sM , and an unbiased estimator
for Var(t̂) on sM is given by

V̂ar(t̂) = ∑
k∈sM

∑
l∈sM

Cov(Ik, Il)

πkl

yk

πk

yl

πl

= ∑
k∈U

∑
l∈U

IkIl

Cov(Ik, Il)

πkl

yk

πk

yl

πl

,

where the only stochastic part of the latter expression is IkIl , and unbiasedness is
due to E(IkIl) = πkl .

Suppose a nonmeasurable design for which πkl = 0 for some units k, l ∈ U . We
label a sample from such a nonmeasurable design as s0. Because Ik is a Bernoulli
random variable with probability πk , Cov(Ik, Il) = πkl − πkπl for k 	= l, and
Cov(Ik, Ik) = Var(Ik) = πk(1−πk). Then we can re-express the variance above as

Var(t̂) = ∑
k∈U

πk(1 − πk)

(
yk

πk

)2
+ ∑

k∈U

∑
l∈U\k

(πkl − πkπl)
yk

πk

yl

πl

= ∑
k∈U

πk(1 − πk)

(
yk

πk

)2
+ ∑

k∈U

∑
l∈{U\k:πkl>0}

(πkl − πkπl)
yk

πk

yl

πl
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− ∑
k∈U

∑
l∈{U\k:πkl=0}

ykyl︸ ︷︷ ︸
A

.

For k and l such that πkl = 0, the sampling design will never provide information
on the component of the variance labeled as A above, since we will never observe
yk and yl together.

When V̂ar(t̂) is applied to s0, the result is unbiased for Var(t̂)+A. We state this
formally as follows.

PROPOSITION A.1 [Aronow and Samii (2013), Proposition 1]. When s0 refers
to a sample from a design with some πkl = 0, we have

E
[
V̂ar(t̂)

]= Var(t̂) + ∑
k∈U

∑
l∈{U\k:πkl=0}

ykyl = Var(t̂) + A.

PROOF. The result follows from

E
[∑
k∈s0

∑
l∈s0

Cov(Ik, Il)

πkl

yk

πk

yl

πl

]

= E
[∑
k∈U

∑
l∈{U :πkl>0}

IkIl

Cov(Ik, Il)

πkl

yk

πk

yl

πl

]

= ∑
k∈U

Var(Ik)

(
yk

πk

)2
+ ∑

k∈U

∑
l∈{U\k:πkl>0}

Cov(Ik, Il)
yk

πk

yl

πl

= Var(t̂) + ∑
k∈U

∑
l∈{U\k:πkl=0}

ykyl

= Var(t̂) + A. �

Now, consider the following variance estimator:

V̂arC(t̂) = ∑
k∈U

∑
l∈{U :πkl>0}

IkIl

Cov(Ik, Il)

πkl

yk

πk

yl

πl

+ ∑
k∈U

∑
l∈{U\k:πkl=0}

(
Ik

|yk|akl

aklπk

+ Il

|yl|bkl

bklπl

)
,

where akl, bkl are positive real numbers such that 1
akl

+ 1
bkl

= 1 for all pairs k, l

with πkl = 0.

PROPOSITION A.2 [Aronow and Samii (2013), Proposition 2].

E
[
V̂arC(t̂)

]≥ Var(t̂).
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PROOF. By Young’s inequality,

|yk|akl

akl

+ |yl|bkl

bkl

≥ |yk||yl|,

if 1
akl

+ 1
bkl

= 1. Define A∗ such that

A∗ = ∑
k∈U

∑
l∈{U\k:πkl=0}

|yk|akl

akl

+ |yl|bkl

bkl

≥ ∑
k∈U

∑
l∈{U\k:πkl=0}

|yk||yl|

≥ ∑
k∈U

∑
l∈{U\k:πkl=0}

ykyl = A

and

A∗ ≥ ∑
k∈U

∑
l∈{U\k:πkl=0}

|yk||yl| ≥
∑
k∈U

∑
l∈{U\k:πkl=0}

−ykyl = −A.

Therefore,

Var(t̂) + A + A∗ ≥ Var(t̂).

The associated Horvitz–Thompson estimator of A∗ would be

Â∗ = ∑
k∈U

∑
l∈{U\k:πkl=0}

(
Ik

|yk|akl

aklπk

+ Il

|yl|bkl

bklπl

)
,

which is unbiased by E(Ik) = πk and E(Il) = πl .
Since E[Â∗] = A∗, by Proposition A.1,

E
[∑
k∈s0

∑
l∈s0

Cov(Ik, Il)

πkl

yk

πk

yl

πl

+ Â∗
]

= Var(t̂) + A + A∗,

E
[
V̂arC(t̂)

] ≥ Var(t̂).

Substituting terms,

E
[∑
k∈U

∑
l∈{U :πkl>0}

IkIl

Cov(Ik, Il)

πkl

yk

πk

yl

πl

+ ∑
k∈U

∑
l∈{U\k:πkl=0}

(
Ik

|yk|akl

aklπk

+ Il

|yl|bkl

bklπl

)]
≥ Var(t̂).

�

This estimator is unbiased under a special condition:

COROLLARY A.1 [Aronow and Samii (2013), Corollary 1]. If, for all pairs
k, l such that πkl = 0, (i) |yk|akl = |yl|bkl and (ii) −ykyl = |yk||yl|,

E
[
V̂arC(t̂)

]= Var(t̂).
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PROOF. By (i), (ii), and Young’s inequality,

|yk|akl

akl

+ |yl|bkl

bkl

= |yk||yl| = −ykyl.

Therefore,

A∗ = ∑
k∈U

∑
l∈{U\k:πkl=0}

|yk|akl

akl

+ |yl|bkl

bkl

= ∑
k∈U

∑
l∈{U\k:πkl=0}

|yk||yl| =
∑
k∈U

∑
l∈{U\k:πkl=0}

−ykyl = −A.

It follows that

Var(t̂) + A + A∗ = Var(t̂)

and

E
[
V̂arC(t̂)

]= Var(t̂). �

In general, it would be difficult to assign optimal values of akl and bkl for all
pairs k, l such that πkl = 0. Instead, we examine one intuitive case, assigning all
akl = bkl = 2:

V̂arC2(t̂) = ∑
k∈U

∑
l∈{U :πkl>0}

IkIl

Cov(Ik, Il)

πkl

yk

πk

yl

πl

+ ∑
k∈U

∑
l∈{U\k:πkl=0}

(
Ik

y2
k

2πk

+ Il

y2
l

2πl

)
.

As a special case of V̂arC(t̂), V̂arC2(t̂) is also conservative:

COROLLARY A.2 [Aronow and Samii (2013), Corollary 2].

E
[
V̂arC2(t̂)

]≥ Var(t̂).

PROOF. For all pairs k, l such that πkl = 0, 1
akl

+ 1
bkl

= 1
2 + 1

2 = 1. Proposi-
tion A.2 therefore holds. �

A.6. Proof of Proposition 6.1. We follow the logic of Robinson (1982).
μ̂HT(dk) is unbiased for μ(dk), and thus we need only consider the variance. Con-
dition 3 implies that, for all values i and dk , |yi(dk)|/πi(dk) ≤ c3 < ∞. Substitut-
ing from equation (2), N2 Var(μ̂HT(dk)) ≤ c2

3N + c2
3
∑N

i=1
∑N

j=1 gij . Consistency

of μ̂HT(dk) for μ(dk) is therefore ensured when
∑N

i=1
∑N

j=1 gij = o(N2), as this

implies that μ̂HT(dk) − μHT(dk)
p−→ 0. Consistency of τ̂HT(dk, dl) for τ(dk, dl)

follows by Slutsky’s theorem.
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A.7. Proof of Proposition 6.2. We follow a proof technique similar to
that of Aronow, Samii and Assenova (2015) to establish convergence of
NV̂ar[τ̂HT(dk, dl)], though for a considerably more general setting. By Proposi-
tion 5.6, E[NV̂ar[τ̂HT(dk, dl)]] ≥ N Var[τ̂HT(dk, dl)]. Thus, by Chebyshev’s in-

equality, Var[NV̂ar[τ̂HT(dk, dl)]] p→ 0 is sufficient to establish convergence of
NV̂ar[τ̂HT(dk, dl)] to a value greater than or equal to N Var[τ̂HT(dk, dl)], which
is itself nonzero by Condition 6. Denote aij (Di,Dj ) as the sum of the elements
in V̂ar[τ̂HT(dk, dl)] that incorporate observations i and j . Note that all aij (Di,Dj )

are bounded above by some finite constant by Condition 3:

Var
[
NV̂ar

[
τ̂HT(dk, dl)

]]
≤ N−2 Var

[
N∑

i=1

N∑
j=1

hijaij (Di,Dj )

]

= N−2
N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

Cov
[
hij aij (Di,Dj ), hklakl(Dk,Dl)

]
.

Note that Cov[hij aij (Di,Dj ), hklakl(Dk,Dl)] 	= 0 if and only if hij = 1 and
hkl = 1, and either hik = 1, hil = 1, hjk = 1, or hjl = 1. By Condition 5, given
m 
 N , each of these four conditions is satisfied by fewer than Nm3 of the ele-
ments of the quadruple summation, and the number of elements in their union is at
most 4Nm3. Thus, Var[NV̂ar[τ̂HT(dk, dl)]] = O(N−2 × N) = O(N−1).

Define

t = τ̂HT(dk, dl) − τHT(dk, dl)√
V̂ar[τ̂HT(dk, dl)]

= τ̂HT(dk, dl) − τHT(dk, dl)√
Var[τ̂HT(dk, dl)]

(
Var[τ̂HT(dk, dl)]
V̂ar[τ̂HT(dk, dl)]

)1/2
.

Under Conditions 3, 5, and 6, then, by Chen and Shao [(2004), Theorem 2.7],
τ̂HT(dk,dl)−τHT(dk,dl)√

Var[τ̂HT(dk,dl)] is asymptotically N(0,1), while (Var[τ̂HT(dk, dl)]/
V̂ar[τ̂HT(dk, dl)])1/2 converges in probability to a quantity in (0,1]. By Slut-
sky’s theorem, t is asymptotically normal and Wald-type confidence intervals con-

structed as τ̂HT(dk, dl)± z1−α/2

√
V̂ar[τ̂HT(dk, dl)] will tend to cover τHT(dk, dl) at

least 100(1 − α)% of the time as N → ∞.

A.8. Proof of Proposition 8.1. The result follows from iterating expectations:

E
[ ̂yT

HT(dk)
]= E

[
N∑

i=1

I(Di = dk)
Yi

πi(dk)

]

=
N∑

i=1

E
[

I(Di = dk)

πi(dk)
E[Yi |Di = dk]

]
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=
N∑

i=1

E[Yi |Di = dk] =
N∑

i=1

∑
z:f (z,θi )=dk

pzy
r
i (z)∑

z:f (z,θi )=dk
pz

=
N∑

i=1

∑
z:f (z,θi )=dk

pz

πi(dk)
yr
i (z).

APPENDIX B: SIMULATION STUDY EXPOSURE PROBABILITIES

FIG. 3. Empirical CDFs of probabilities for the four types of exposure in the simulated social
network experiment.
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