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Abstract. In this paper we consider a probability distribution P
q,t
HL on plane partitions, which arises as a one-parameter gen-

eralization of the standard qvolume measure. This generalization is closely related to the classical multivariate Hall–Littlewood
polynomials, and it was first introduced by Vuletić in (Trans. Am. Math. Soc. 361 (2009) 2789–2804).

We prove that as the plane partitions become large (q goes to 1, while the Hall–Littlewood parameter t is fixed), the scaled
bottom slice of the random plane partition converges to a deterministic limit shape, and that one-point fluctuations around the limit
shape are asymptotically given by the GUE Tracy–Widom distribution. On the other hand, if t simultaneously converges to its
own critical value of 1, the fluctuations instead converge to the one-dimensional Kardar–Parisi–Zhang (KPZ) equation with the
so-called narrow wedge initial data.

The algebraic part of our arguments is closely related to the formalism of Macdonald processes (Probab. Theory Relat. Fields
158 (1) (2014) 225–400). The analytic part consists of detailed asymptotic analysis of the arising Fredholm determinants.

Résumé. Dans cet article, nous considérons une distribution de probabilité P
q,t
HL sur les partitions planes, qui apparaît comme une

généralisation à un paramètre de la mesure standard qvolume. Cette généralisation est étroitement reliée aux classiques polynômes
multivariés de Hall–Littlewood, et a été introduite pour la première fois par Vuletić dans (Trans. Am. Math. Soc. 361 (2009)
2789–2804).

Nous montrons que lorsque la partition plane devient grande (q tend vers 1, alors que le paramètre de Hall–Littlewood t est
fixé), la partie inférieure proprement renormalisée de la partition plane converge vers une forme limite déterministe, et que les
fluctuations à un point autour de la forme limite sont asymptotiquement données par la distribution du GUE Tracy–Widom. Par
contre, si t converge vers sa propre valeur critique 1, les fluctuations convergent cette fois vers l’équation unidimensionnelle de
Kardar–Parisi–Zhang (KPZ) avec les conditions initiales à courte bande (narrow wedge data).

La partie algébrique de notre argument est étroitement reliée au formalisme des processus de Macdonald (Probab. Theory Relat.
Fields 158 (1) (2014) 225–400). La partie analytique consiste en une analyse asymptotique détaillée des déterminants de Fredholm
associés.
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1. Introduction and main results

The main results of this paper are contained in Section 1.3. The two sections below give background for and define
the main object we study, which is a certain 2-parameter family of probability distributions on plane partitions.

1.1. Preface

Roughly 30 years ago Kardar, Parisi and Zhang [30] studied the time evolution of random growing interfaces and
proposed the following stochastic partial differential equation for the height function H(T ,X) ∈ R (T ∈ R+ is time
and X ∈R is space)

∂T H(T ,X) = 1

2
∂2
XH(T ,X) + 1

2

(
∂XH(T ,X)

)2 + Ẇ(T ,X). (1.1)

The randomness Ẇ models the deposition mechanism and is taken to be space–time Gaussian white noise, so that
formally E[Ẇ(T ,X)Ẇ(S,Y )] = δ(T − S)δ(X − Y). Drawing upon the work of Forster, Nelson and Stephen [28],
KPZ predicted that for large time T , the height function H(T ,X) exhibits fluctuations around its mean of order T 1/3

and spatial correlation length of order T 2/3. The critical exponents 1/3 and 2/3 are believed to be universal for a large
class of growth models, which has become known as the KPZ universality class. A growth model is believed to belong
to the KPZ universality class if it satisfies the following (imprecise) conditions:

1. there is a smoothing mechanism, disallowing deep holes and high peaks (in (1.1) this is reflected by the Laplacian
1
2∂2

XH(T ,X));
2. growth is slope-dependent, ensuring lateral growth of interfaces (captured by 1

2 (∂XH(T ,X))2 in (1.1));
3. randomness is driven by short space–time correlated noise (the term Ẇ(T ,X) in (1.1)).

For additional background the reader is referred to [19,38,40].
It took a quarter of a century to prove that the KPZ equation was in the KPZ universality class itself (by demon-

strating the 1/3 and 2/3 exponents) [2,4,10,12,22,41] and it is important to note the contribution of integrable (or
exactly solvable) models for this success. Historically, methods for analyzing exactly solvable discretizations of the
KPZ equation such as the (partially) asymmetric simple exclusion process (ASEP), the q-deformed totally asymmetric
simple exclusion process (q-TASEP), or the O’Connell-Yor semi-discrete directed random polymers were developed
first (see the review [20] and references therein). Consequently, these stochastic processes were shown to converge
(under special weakly asymmetric or weak noise scaling) to the KPZ equation. The exact formulas available for the
processes allowed one to conclude that they belong to the KPZ universality class and after appropriate scaling the
same could be concluded for the solution to the KPZ equation. We remark that the developed methods allow one to
analyze the KPZ equation only within a certain class of initial conditions.

Since their discovery many of the discrete stochastic processes have become interesting in their own right as
fundamental models for interacting particle systems, directed polymers in random media and parabolic Anderson
models. These processes typically come with some enhanced algebraic structure, which makes them more amenable
to detailed analysis and hence provides the most complete access to various phenomena such as phase transition,
intermittency, scaling exponents, and fluctuation statistics. One particular algebraic framework, which has enjoyed
substantial interest and success in analyzing various probabilistic systems in the last several years, is the theory of
Macdonald processes [10]. Macdonald processes are defined in terms of a remarkable class of symmetric functions,
called Macdonald symmetric functions, which are parametrized by two numbers (q, t) – see [33]. By leveraging some
of their algebraic properties, Macdonald processes have proved useful in solving a number of problems in probability
theory, including computing exact Fredholm determinant formulas and associated asymptotics for one-point marginal
distributions of the O’Connel-Yor semi-discrete directed polymer [10,12]; log-gamma discrete directed polymer [10,
14]; KPZ/stochastic heat equation [12]; q-TASEP [5,10,11,15] and q-PushASEP [16,23].

There exists a natural family of operators, called the Macdonald difference operators, which are diagonalized by the
Macdonald symmetric functions. Using these operators one can express the expectation of a large class of observables
for Macdonald processes in terms of contour-integrals. The approach of studying Macdonald processes through these
observables was initiated in [10], where it was used to analyze the q-Whittaker process (a special case of Macdonald
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processes, corresponding to setting t = 0). This approach has subsequently been generalized and put on much more
abstract footing in [13], where it was suggested that it can be used to study various other special cases of Macdonald
processes, coming from degenerations of Macdonald to other symmetric functions.

The purpose of this paper is to use the approach of Macdonald difference operators to study a different degeneration
of the Macdonald process, called the Hall–Littlewood process, which corresponds to setting q = 0. Our motivation
for studying the Hall–Littlewood process is that it arises naturally in a problem of random plane partitions. The
distribution on plane partitions we consider, called P

r,t
HL in the text and defined in the next section, was first considered

by Vuletić in [46], where she discovered a generalization of the famous MacMahon formula and identified an important
geometric structure of the measure. The measure P

r,t
HL is a one-parameter generalization of the usual rvol measure on

plane partitions, which is recovered if one sets t = 0 (the volume parameter is usually denoted by q in the literature,
and also in the abstract above, but we reserve this letter for the q in the Macdonald polynomials and use r instead for
the remainder of the text).

The algebraic part of our arguments consists of developing a framework for the Macdonald difference operators in
the Hall–Littlewood case. Although our discussion is parallel to the one for the q-Whittaker case in [10], we remark
that there are several technical modifications that need to be made, which require us to redo most of the work there.
In the Hall–Littlewood setting the operators approach gives access to a single observable and we find a Fredholm
determinant formula for its t -Laplace transform. This result is given in Proposition 3.5 and we believe it to be of
separate interest as it can be applied to generic Hall–Littlewood measures and its Fredholm determinant form makes
it suitable for asymptotic analysis. For the particular model we consider, the observable is insufficient to study the
3-dimensional diagram; however, we are able to use it to analyze the one-point marginal distribution of the bottom
part of the diagram.

The main results of the paper (Theorems 1.1 and 1.2 below) describe the asymptotic distribution of the bottom
slice of a plane partition, distributed according to P

r,t
HL, in two limiting regimes: when r → 1−, t ∈ (0,1) – fixed and

when r, t → 1− in some critical fashion. In both cases one observes the same limit shape, while the fluctuations in the
first limiting regime converge to the Tracy–Widom GUE distribution [44], and to the distribution of the Hopf–Cole
solution to the KPZ equation with narrow wedge initial data [2,6] in the second one. The latter results suggest that
our model belongs to the KPZ universality class, although some care needs to be taken. Typically, models belonging
to the KPZ universality class are characterized by some dynamics (interacting particle systems, growing interfaces,
random polymers etc.), so that the system evolves with time. In sharp contrast, the model we consider is stationary,
i.e. there is no notion of time.

In order to prove our main results we specialize the general formula for the t -Laplace transform from Proposi-
tion 3.5 to the particular measure we consider. Subsequently, we find two different representations of this formula that
are suitable for the two limiting regimes. When t ∈ (0,1) is fixed and r → 1− the t -Laplace transform converges to
an indicator function and our Fredholm determinant formula converges to the CDF of the Tracy–Widom GUE dis-
tribution. When both r, t → 1− the t -Laplace transform converges to the usual Laplace transform and our Fredholm
determinant formula converges to the Laplace transform of the partition function of the continuous directed random
polymer [1,17]. The main difficulties in establishing the above convergence results are finding suitable contours for
our Fredholm determinants and representations for the integrands. We reduce the convergence results to verifying
certain exponential bounds for the integrands, which are obtained through a careful analysis on the (specially) con-
structed contours. This detailed asymptotic analysis of the arising Fredholm determinants forms the analytic part of
our arguments.

Even though our methods do not allow us to verify it directly, we believe that if t ∈ [0,1) is fixed one still obtains
a 3-dimensional limit shape in the limit r → 1−. That limit shape (if it exists) necessarily depends on t as the volume
of the (rescaled) diagram satisfies a law of large numbers and converges to an explicit function of t (see Section 1.4
for details). This function decreases to 0 as t increases from 0 to 1, which suggests that the measure P

r,t
HL concentrates

on diagrams of smaller size as t increases. In sharp contrast, the result of Theorem 1.1 suggests that while the volume
of the plane partition decreases in t the bottom slice asymptotically looks the same. The latter is quite surprising and
we are not aware of this phenomenon occurring in other random tiling/plane partition models. As can be observed in
simulations what happens is that the 3-dimensional limit shape becomes flatter and concentrates on diagrams, which
have a fixed base but are quite thin. We refer to Section 1.4 for further details.

Another interesting feature of our model is that it is rich enough to produce the Tracy–Widom GUE and KPZ
statistics under different scaling limits. The Tracy–Widom GUE distribution and, more generally, the Airy process
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[37] have been shown to arise as universal scaling limits of a wide variety of probabilistic systems including random
matrix theory, stochastic growth processes, interacting particle systems, directed polymers in random media, random
tilings and random plane partitions (see [25] and [39] and references therein). It is believed that the Airy process also
arises as the large time limit of the properly translated and scaled solution to the KPZ equation with narrow wedge
initial data. The latter statement has been verified at the level of one point statistics for example in [2]; however,
there is significant (non-rigorous) evidence supporting the multi-point convergence (see the discussion at the end of
Section 1.2 in [19]).

An important and well-studied link between the KPZ equation and Airy process is established through their mutual
connection to directed random polymers in 1+1 dimension. Specifically, the free energy fluctuations of the continuous
directed random polymer (a universal scaling limit of discrete directed polymer models [1]) are related to the narrow
wedge initial data solution to the KPZ equation, while the fluctuations of certain zero-temperature degenerations of
directed polymer models (like last-passage percolation) are related to the Airy process (see [39] and references therein
for precise statements). The latter link can be understood as both models arising as different scaling limits of the same
underlying stochastic dynamical systems. The situation is very different for stationary stochastic models. Specifically,
while the Airy process has been related to interface fluctuations of random tiling and plane partition models no such
connection has been established for the KPZ equation. In this sense, the appearance of the solution to the KPZ equation
with narrow wedge initial data as a scaling limit of our stationary model Pr,t

HL is quite surprising. The distribution P
r,t
HL

is thus the first example of a stationary model exhibiting KPZ statistics, and we view this as one of the main novel
contributions of this work.

We now turn to carefully describing the measure P
r,t
HL and explaining our results in detail.

1.2. The measure P
r,t
HL

We recommend Section 2.1 for a brief overview of some concepts related to partitions and Young diagrams. A plane
partition is a Young diagram filled with positive integers that form non-increasing rows and columns. A connected
component of a plane partition is the set of all connected boxes of its Young diagram that are filled with the same
number. The number of connected components in a plane partition π is denoted by k(π). Figure 1 shows an example
of a plane partition and the 3-d Young diagram representing it. The connected components, which are separated in the
Young diagram with bold lines, naturally correspond to the grey terraces in the 3-d diagram.

If a box (i, j) belongs to a connected component C, we define its level h(i, j) as the smallest h ∈ N such that
(i + h, j + h) /∈ C. A border component is a connected subset of a connected component where all boxes have the
same level. We also say that the border component is of this level. For the example above, the border components and
their levels are illustrated in Figure 2.

For each connected component C we define a sequence (n1, n2, . . .) where ni is the number of i-level border
components of C. We set PC(t) := ∏

i≥1(1 − t i )ni . If C1,C2, . . . ,Ck(π) are the connected components of π , we
define

Aπ(t) :=
k(π)∏
i=1

PCi
(t). (1.2)

For the example in Figure 2 Aπ(t) = (1 − t)7(1 − t2)3(1 − t3).

Fig. 1. A plane partition and its 3-d Young diagram. In this example k(π) = 7.
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Fig. 2. Border components and their levels.

Given two parameters r, t ∈ (0,1) we define P
r,t
HL to be the probability distribution on plane partitions such that

P
r,t
HL(π) ∝ r |π |Aπ(t),

where |π | denotes the volume of π , i.e. the number of boxes in its 3-d Young diagram. In [46] it was shown that

∑
π

r |π |Aπ(t) =
∞∏

n=1

(
1 − trn

1 − rn

)n

=: Z(r, t). (1.3)

The above explicitly determines Pr,t
HL as

P
r,t
HL(π) := Z(r, t)−1r |π |Aπ(t), with Z(r, t) as in (1.3). (1.4)

Remark 1.1. In Section 2.3 it will be shown that Pr,t
HL arises as a certain Macdonald process. This process is defined

in terms of Hall–Littlewood symmetric functions, which is reflected by the “HL” in our notation.

Remark 1.2. In the literature, the volume parameter is usually denoted by q , but we reserve this letter for a different
parameter, which appears in the definition of Macdonald polynomials, and instead use the letter r .

The distribution P
r,t
HL has been studied in the cases t = 0 and t = −1. When t = 0 we have Pr,0

HL(π) = Z(r,0)−1r |π |,
where Z(r,0) is given by the famous MacMahon formula

Z(r,0) =
∑
π

r |π | =
∞∏

n=1

(
1

1 − rn

)n

. (1.5)

We summarize a few of the known results when t = 0. In [18] it was shown that under suitable scaling a partition π ,
distributed according to P

r,0
HL, converges to a particular limit shape as r → 1− (see also [31]). In [36] it was shown that

P
r,0
HL is described by a Schur process and has the structure of a determinantal point process with an explicit correlation

kernel, suitable for asymptotic analysis. In [27] it was shown that under suitable scaling the edge of the limit shape
converges to the Airy process.

When t = −1 the measure P
r,−1
HL concentrates on strict plane partitions (these are plane partitions such that all

border components have level 1) and is described by a shifted Schur process as discussed in [45]. The shifted Schur
process is shown to have the structure of a Pfaffian point process with an explicit correlation kernel, which can be
analyzed as r → 1−. A limiting point density can be derived, which suggests a limit-shape phenomenon similar to the
t = 0 case. To the author’s knowledge there are no results regarding the edge asymptotics in this case.

The purpose of this paper is to study the distribution P
r,t
HL for t ∈ (0,1). In particular, we will be interested in

the behavior of a plane partition, distributed according to P
r,t
HL, as the parameter r goes to 1−. Part of the difficulty

in dealing with the case t ∈ (0,1) comes from the fact that a determinantal or Pfaffian point process structure is no
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longer available. Instead, we will use the formalism of Macdonald difference operators (see [10] and [13]) to obtain
formulas for a certain class of observables for a plane partition π , distributed according to P

r,t
HL. These formulas can

be asymptotically analyzed and imply one-point convergence results for the bottom slice of π .

1.3. Main results

For a partition λ, we let λ′
1 denote its largest column (i.e. the number of non-zero parts). Given a plane partition π , we

consider its diagonal slices λt (alternatively λ(t)) for t ∈ Z, i.e. the sequences

λk = λ(k) = (πi,i+k) for i ≥ max(0,−k).

For r ∈ (0,1), τ ∈R we define

N(r) := 1

1 − r
and χ :=

[
e−|τ |/2

(1 + e−|τ |/2)2

]−1/3

=
[

4

cosh2(τ/4)

]−1/3

. (1.6)

Below we analyze the large N asymptotics of λ′
1(�τN(r)	) of a random plane partition, distributed according to P

r,t
HL.

Theorem 1.1. Consider the measure P
r,t
HL on plane partitions, given in (1.4), with t ∈ (0,1) fixed. Then for all τ ∈

R \ {0} and x ∈ R we have

lim
r→1− P

r,t
HL

(
λ′

1(�τN(r)	) − 2N(r) log(1 + e−|τ |/2)

χ−1N(r)1/3
≤ x

)
= FGUE(x),

where FGUE is the GUE Tracy–Widom distribution [44]. The coefficients N(r) and χ are as in (1.6).

Theorem 1.2. Consider the measure P
r,t
HL on plane partitions, given in (1.4). Suppose T > 0 is fixed and − log t

(1−r)1/3 =
χ(T /2)1/3. Then for all τ ∈ R \ {0} and x ∈R we have

lim
r→1− P

r,t
HL

(
λ′

1(�τN(r)	) − 2N(r) log(1 + e−|τ |/2)

χ−1N(r)1/3(T /2)−1/3
+ log

(
N(r)1/3χ−1(T /2)−1/3) ≤ x

)
= FCDRP(x),

where FCDRP(x) = P(F(T ,0) + T/24 ≤ x) and F(T ,X) is the Hopf–Cole solution to the Kardar–Parisi–Zhang
equation with narrow wedge initial data [2,6]. The coefficients N(r) and χ are as in (1.6).

The definitions of FGUE(x) and FCDRP(x) are provided below in Definition 1.3. In Sections 4 and 5 we will reduce
the proofs of the above results to claims on certain asymptotics of Fredholm determinant formulas. Throughout the
paper, we will, rather informally, refer to the limiting regime in Theorem 1.1 as “the GUE case” and to the one in
Theorem 1.2 as “the CDRP case”.

Remark 1.3. The exclusion of the case τ = 0 appears to be a technical assumption, necessary for our proofs to work.
It is possible that the arguments of this paper can be modified to include this case, but we will not pursue this goal.

Before we record the limiting distributions that appear in our results, we briefly discuss the definition of F(X,T ).
The continuous directed random polymer (CDRP) is a universal scaling limit for 1 + 1 dimensional directed random
polymers [1,17]. Its partition function with respect to general boundary perturbations is given as follows (this is
Definition 1.7 in [12]).

Definition 1.1. The partition function for the continuous directed random polymer with boundary perturbation
lnZ0(X) is given by the solution to the stochastic heat equation (SHE) with multiplicative Gaussian space–time
white noise and Z0(X) initial data:

∂T Z = 1

2
∂2
XZ +ZẆ, Z(0,X) =Z0(X). (1.7)
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The initial data Z0(X) may be random but is assumed to be independent of the Gaussian space–time white noise
Ẇ and is assumed to be almost surely a sigma-finite positive measure. Observe that even if Z0(X) is zero in some
regions, the stochastic PDE makes sense and hence the partition function is well-defined.

A detailed description of the SHE and the class of initial data for which it is well-posed can be found in [2,6].
Provided, Z0 is an almost surely sigma-finite positive measure, it follows from the work of Mueller [34] that, almost
surely, Z(T ,X) is positive for all T > 0 and X ∈ R and hence its logarithm is a well-defined random space–time
function. The following is Definition 1.8 in [12].

Definition 1.2. For Z0 an almost surely sigma-finite positive measure define the free energy for the continuous di-
rected random polymer with boundary perturbation lnZ0(X) as

F(T ,X) = lnZ(T ,X).

The random space–time function F is also the Hopf–Cole solution to the Kardar–Parisi–Zhang equation with initial
data F0(X) = lnZ0(X) [2,6]. In this paper, we will focus on the case when Z0(X) = 1{X=0}, which is known as the
narrow wedge or 0-spiked initial data [2,12]. In Theorem 1.10 of [12] it was shown that when Z0(X) = 1{X=0}, one
has the following formula for the Laplace tansform of exp(F(T ,0) + T/24)

E
[
e−ex exp(F(T ,0)+T/24)

] = det(I − KCDRP)L2(R+), (1.8)

where the right-hand-side (RHS) denotes the Fredholm determinant (see Section 2.4) of the operator KCDRP, given in
terms of its integral kernel

KCDRP
(
η,η′) :=

∫
R

dt
ex

ex + e−t/σ
Ai(t + η)Ai

(
t + η′). (1.9)

In the above formula σ = (2/T )1/3, x ∈ R and Ai(·) is the Airy function.
We now record the definitions of the limiting distributions that appear in Theorems 1.1 and 1.2. The first part of

the following definition appears in Definition 1.6 in [12].

Definition 1.3. The GUE Tracy–Widom distribution [44] is defined as

FGUE(x) := det(I − KAi)L2(x,∞),

where KAi is the Airy kernel, that has the integral representation

KAi
(
η,η′) = 1

(2πι)2

∫ e2πι/3∞

e−2πι/3∞
dw

∫ eπι/3∞

e−πι/3∞
dz

1

z − w

ez3/3−zη′

ew3/3−wη
,

where the contours z and w do not intersect.

Suppose F(T ,X) is the free energy for the CDRP with boundary perturbation lnZ0(X) and Z0(X) = 1{X=0} as in
Definition 1.2. Then we define

FCDRP(x) := P
(
F(T ,0) + T/24 ≤ x

)
.

1.4. Discussion and extensions

In this section we discuss some of the implications of the results of the paper and some of their possible extensions. We
start by considering possible limit shape phenomena. In [18] it was shown that if each dimension of a plane partition π ,
distributed according to P

r,t
HL with t = 0, is scaled by 1 − r then as r → 1− the distribution concentrates on a limit

shape with probability 1. We expect that a similar phenomenon occurs for any value t ∈ (0,1). The limit shape, if it
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exists, should depend on t , which one observes by considering the volume of the plane partition. Specifically, we have
that

E
[|π |] = r d

dr
Z(r, t)

Z
and Var

(|π |) = E
[|π |2] −E

[|π |]2 = r
d

dr
E

[|π |].
Using that Z(r, t) = ∏∞

n=1(
1−trn

1−rn )n one readily verifies that

E
[|π |] =

∞∑
k=1

rk(1 + rk)

(1 − rk)3
−

∞∑
k=1

tk
rk(1 + rk)

(1 − rk)3
.

The latter implies that limr→1− E[(1−r)3|π |] = 2ζ(3)−2Li3(t), where ζ(s) = ∑∞
n=1

1
ns is the Riemann zeta function

and Li3(z) = ∑∞
k=1

zk

k3 is the polylogarithm of order 3. In addition, one verifies that limr→1− Var((1 − r)3|π |) = 0 and

so the rescaled volume (1 − r)3|π | converges in probability to 2ζ(3) − 2Li3(t). In particular, the volume decreases
from 2ζ(3) to 0 as t varies from 0 to 1. When t = 1 the measure P

r,t
HL is concentrated on the empty plane partition for

any value of r and so convergence of the volume to 0 is expected.
In sharp contrast, the result of Theorem 1.1 suggests that while the volume of the plane partition decreases in t the

bottom slice asymptotically looks the same. The latter is quite surprising and we are not aware of this phenomenon
occurring in other tiling models. The independence of the bottom slice on t ∈ [0,1) has been empirically verified
through simulations and is presented in Figures 3–6, where the red line indicates the limit shape 2 log(1 + e−|τ |/2) in
Theorem 1.1. What happens as t increases to 1 is that the mass from the top part of the plane partition π decreases (so
πi,j decrease), but the base (given by the non-zero πi,j ) remains asymptotically the same. I.e. the three-dimensional
limit shape becomes flatter and concentrates on diagrams, which have a fixed base but are quite thin. The latter can be
observed in the left parts of Figures 7 and 8 (we will get to the right parts shortly).

The result of Theorem 1.1, in fact, says something stronger. Namely, not only do we obtain the same law of large
numbers for the bottom slice for any t ∈ [0,1), but we have the same fluctuations as well. Thus at least upto first two
orders (it is possible that the dependence on t does become visible at higher orders that we do not consider) the base

Fig. 3. Bottom slice simulation with t = 0.

Fig. 4. Bottom slice simulation with t = 0.2.
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Fig. 5. Bottom slice simulation with t = 0.4.

Fig. 6. Bottom slice simulation with t = 0.6.

Fig. 7. Simulation with t = 0.4.

of our plane partition does not depend on t . The only analogue of this result that we know comes from a very recent
work [8], which shows that the asymptotic behavior of the first column of a random partition, distributed according to
a Macdonald measure (of which our measure is a special case), does not depend on the choice of parameters.

We next turn to possible extensions of Theorems 1.1 and 1.2. The statement of Theorem 1.1 can be understood as
a one-point convergence result about the fluctuations of the bottom slice of a plane partition π , distributed according
to P

r,t
HL, to FGUE. FGUE is the one point marginal distribution of the Airy process and in [27] it was shown that the

fluctuations in the case of t = 0 converge as a process to the Airy process. Consequently, it is natural to suppose that
the same occurs for any value of t ∈ (0,1). We will take this idea further, using the fact that the Airy process appears as
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Fig. 8. Simulation with t = 0.8.

the distribution of the bottom line of the Airy line ensemble [21], and conjecture that the fluctuations of all horizontal
slices of π converge (in the sense of line ensembles – see the discussion at the beginning of Section 2.1 in [21]) to the
Airy line ensemble. The formulation is presented in Conjecture 1.1.

In a similar fashion, a natural extension of Theorem 1.2 is to show that the fluctuations of the bottom slice con-
verge as a process to F(T ,X). The (shifted) Hopf–Cole solution to the KPZ equation with narrow wedge initial data
F(T ,X) + T/24 is also the distribution of the top line of the KPZ line ensemble [22], and so we will conjecture
that the fluctuations of all horizontal slices of π (upon appropriate shifts and scaling) converge (in the sense of line
ensembles) to the KPZ line ensemble. The formulation is presented in Conjecture 1.2.

For τ > 0 let f (τ) = 2 log(1 + e−τ/2), f ′(τ ) = − e−τ/2

1+e−τ/2 and f ′′(τ ) = 1
2

e−τ/2

(1+e−τ/2)2 . Also set N(r) = 1
1−r

. With
this notation we have the following conjectures.

Conjecture 1.1. Consider the measure P
r,t
HL on plane partitions, given in (1.4), with t ∈ (0,1) fixed. For τ ∈ R define

the random N×R-indexed line ensemble �τ as

�τ
k(s) = λ′

k(�τN + sN2/3	) − Nf (|τ |) − sN2/3f ′(|τ |) − (1/2)s2N1/3f ′′(|τ |)
3
√

2f ′′(|τ |)N . (1.10)

Then as r → 1− we have �τ =⇒ Aτ (weak convergence in the sense of line ensembles), where Aτ is defined as
Aτ

k (s) =Ak(s
3
√

2f ′′(|τ |)/2) and (Ak)k∈N is the Airy line ensemble.

Conjecture 1.2. Consider the measure P
r,t
HL on plane partitions, given in (1.4). Suppose T > 0 is fixed and − log t

(1−r)1/3 =
(T /2)1/3

3
√

2f ′′(|τ |) . For τ ∈R define the random N×R-indexed line ensemble 
τ as


τ
k(s) = λ′

k(�τN + sN2/3	) − Nf (|τ |) − sN2/3f ′(|τ |) − (1/2)s2N1/3f ′′(|τ |)
(T /2)−1/3 3

√
2f ′′(|τ |)N − T/24

+ log
(
(T /2)−1/3 3

√
2f ′′(|τ |)N) + (k − 1) log

(
NT −1(2f ′′(|τ |))−3/2

2
√

2

)

− s2T 1/3(2f ′′(|τ |))2/3

8
. (1.11)
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Then as r → 1− we have 
τ =⇒ Hτ,T (weak convergence in the sense of line ensembles), where Hτ,T is defined as
Hτ,T

k (s) =HT
k (sT 2/3 3

√
2f ′′(|τ |)/2) and (HT

k )k∈N is the KPZ line ensemble.

Motivation about the choice of scaling as well as partial evidence supporting the validity of these conjectures
is given in Section 7 of [24]. Here we will only make the observation that in the statement of Conjecture 1.1, the
separation between consecutive horizontal slices of π , distributed according to P

r,t
HL is suggested to be of order N1/3,

which is the order of the fluctuations. On the other hand, in Conjecture 1.2 there is a deterministic shift of order
N1/3 logN , while fluctuations remain of order N1/3. The latter phenomenon can be observed in simulations, as is
shown in Figures 7 and 8. Namely, the conjectures suggest that as t goes to 1, one should observe a larger spacing
between the bottom slices of π , which is clearly visible.

1.5. Outline

The introductory section above formulated the problem statement and gave the main results of the paper. In Section 2
we present some background on partitions, symmetric functions, Hall–Littlewood processes and Fredholm determi-
nants. In Section 3 we derive a formula for the t -Laplace transform of a certain random variable in terms of a Fredholm
determinant using the approach of Macdonald difference operators. In Sections 4 and 5 we establish Theorems 1.1
and 1.2 respectively, using various technical lemmas, which are proved in Section 6.

2. General definitions

In this section we summarize some facts about partitions and symmetric functions, using [33] as a main reference. We
explain how the measure Pr,t

HL arises as a generalization of the Schur process from [36] and end with some background
on Fredholm determinants, used in the text.

2.1. Partitions and Young diagrams

We start by fixing terminology and notation. A partition is a sequence λ = (λ1, λ2, . . .) of non-negative integers such
that λ1 ≥ λ2 ≥ · · · and all but finitely many elements are zero. We denote the set of all partitions by Y. The length
�(λ) is the number of non-zero λi and the weight is given by |λ| = λ1 +λ2 +· · · . If |λ| = n we say that λ partitions n,
also denoted by λ 
 n. There is a single partition of 0, which we denote by ∅. An alternative representation is given
by λ = 1m12m2 · · · , where mj(λ) = |{i ∈N : λi = j}| is called the multiplicity of j in the partition λ. There is a natural
ordering on the space of partitions, called the reverse lexicographic order, which is given by

λ > μ ⇐⇒ ∃k ∈ N such that λi = μi, whenever i < k and λk > μk.

A Young diagram is a graphical representation of a partition λ, with λ1 left justified boxes in the top row, λ2 in the
second row and so on. In general, we do not distinguish between a partition λ and the Young diagram representing it.
The conjugate of a partition λ is the partition λ′ whose Young diagram is the transpose of the diagram λ. In particular,
we have the formula λ′

i = |{j ∈N : λj ≥ i}|.
Given two diagrams λ and μ such that μ ⊂ λ (as a collection of boxes), we call the difference θ = λ − μ a skew

Young diagram. A skew Young diagram θ is a horizontal m-strip if θ contains m boxes and no two lie in the same
column. If λ − μ is a horizontal strip we write λ � μ. Some of these concepts are illustrated in Figure 9.

A plane partition is a two-dimensional array of nonnegative integers

π = (πi,j ), i, j = 0,1,2, . . . ,

such that πi,j ≥ max(πi,j+1,πi+1,j ) for all i, j ≥ 0 and the volume |π | = ∑
i,j≥0 πi,j is finite. Alternatively, a plane

partition is a Young diagram filled with positive integers that form non-increasing rows and columns. A graphical
representation of a plane partition π is given by a 3-dimensional Young diagram, which can be viewed as the plot of
the function

(x, y) → π�x	,�y	, x, y > 0.
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Fig. 9. The Young diagram λ = (5,3,3,2,2) and its transpose (not shown) λ′ = (5,5,3,1,1). The length �(λ) = 5 and weight |λ| = 15. The
Young diagram μ = (3,3,2,2,1) is such that μ ⊂ λ. The skew Young diagram λ − μ is shown in black bold lines and is a horizontal 4-strip.

Fig. 10. The plane partition π =∅ ≺ (1) ≺ (1) ≺ (3) ≺ (4,2) ≺ (5,3,1) � (4,3) � (4,3) � (3,1) � (3) �∅ . The volume |π | = 41.

Given a plane partition π we consider its diagonal slices λt for t ∈ Z, i.e. the sequences

λt = (πi,i+t ) for i ≥ max(0,−t).

One readily observes that λt are partitions and satisfy the following interlacing property

· · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · .

Conversely, any (terminating) sequence of partitions λt , satisfying the interlacing property, defines a partition π in the
obvious way. Concepts related to plane partitions are illustrated in Figure 10.

2.2. Macdonald symmetric functions

We let �X denote the Z≥0 graded algebra over C of symmetric functions in variables X = (x1, x2, . . .), which can be
viewed as the algebra of symmetric polynomials in infinitely many variables with bounded degree, see e.g. Chapter I
of [33] for general information on �X . One way to view �X is as an algebra of polynomials in Newton power sums

pk(X) =
∞∑
i=1

xk
i , for k ≥ 1.

For any partition λ we define

pλ(X) =
�(λ)∏
i=1

pλi
(X),

and note that pλ(X), λ ∈ Y form a linear basis in �X .
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In what follows we fix two parameters q, t and assume that they are real numbers with q, t ∈ (0,1). Unless the
dependence on q, t is important we will suppress them from our notation, similarly for the variable set X.

The Macdonald scalar product 〈·, ·〉 on � is defined via

〈pλ,pμ〉 = δλ,μ

(
�(λ)∏
i=1

1 − qλi

1 − tλi

)(
λ1∏
i=1

imi(λ)mi(λ)!
)

. (2.1)

The following definition can be found in Chapter VI of [33].

Definition 2.1. Macdonald symmetric functions Pλ, λ ∈ Y, are the unique linear basis of � such that

1. 〈Pλ,Pμ〉 = 0 unless λ = μ.

2. The leading (with respect to reverse lexicographic order) monomial in Pλ is
∏�(λ)

i=1 x
λi

i .

Remark 2.1. The Macdonald symmetric function Pλ is homogeneous of degree |λ|.

Remark 2.2. If we set xN+1 = xN+2 = · · · = 0 in Pλ(X), then we obtain the symmetric polynomials Pλ(x1, . . . , xN)

in N variables, which are called the Macdonald polynomials.

There is a second family of Macdonald symmetric functions Qλ, λ ∈ Y, which are dual to Pλ with respect to the
Macdonald scalar product:

Qλ = 〈Pλ,Pλ〉−1Pλ, 〈Pλ,Qμ〉 = δλ,μ, λ,μ ∈Y.

For two sets of variables X = (x1, x2, . . .) and Y = (y1, y2, . . .) define

�(X;Y) =
∑
λ∈Y

Pλ(X)Qλ(Y ).

Then from Chapter VI (2.5) in [33] we have

�(X;Y) =
∞∏

i,j=1

(txiyj ;q)∞
(xiyj ;q)∞

, (2.2)

where (a;q)∞ = (1 − a)(1 − aq)(1 − aq2) · · · is the q-Pochhammer symbol. The above equality holds when both
sides are viewed as formal power series in the variables X, Y and it is known as the Cauchy identity.

We next proceed to define the skew Macdonald symmetric functions (see Chapter VI in [33] for details). Take two
sets of variables X = (x1, x2, . . .) and Y = (y1, y2, . . .) and a symmetric function f ∈ �. Let (X,Y ) denote the union
of sets of variables X and Y . Then we can view f (X,Y ) ∈ �(X,Y ) as a symmetric function in xi and yi together. More
precisely, let

f =
∑
λ∈Y

Cλpλ =
∑
λ∈Y

Cλ

�(λ)∏
i=1

pλi
,

be the expansion of f into the basis pλ of power symmetric functions (in the above sum Cλ = 0 for all but finitely
many λ). Then we have

f (X,Y ) =
∑
λ∈Y

Cλ

�(λ)∏
i=1

(
pλi

(X) + pλi
(Y )

)
.

In particular, we see that f (X,Y ) is the sum of products of symmetric functions of xi and symmetric functions of yi .
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Skew Macdonald symmetric functions Pλ/μ, Qλ/μ are defined as the coefficients in the expansion

Pλ(X,Y ) =
∑
μ∈Y

Pμ(X)Pλ/μ(Y ) and Qλ(X,Y ) =
∑
μ∈Y

Qμ(X)Qλ/μ(Y ). (2.3)

Remark 2.3. The skew Macdonald symmetric function Pλ/μ is 0 unless μ ⊂ λ, in which case it is homogeneous of
degree |λ| − |μ|.

Remark 2.4. When λ = μ, Pλ/μ = 1 and if μ =∅ (the unique partition of 0), then Pλ/μ = Pλ.

2.3. The measure P
r,t
HL as a Hall–Littlewood process

The main object of interest in this paper is a distribution P
r,t
HL on plane partitions, depending on two parameters

r, t ∈ (0,1), which satisfies PHL(π) ∝ r |π |Aπ(t) for a certain explicit polynomial Aπ , depending on the geometry
of π (see Section 1.2 for the details). We explain how this measure can be realized as a process on sequences of
partitions.

We begin by first considering the special case t = 0. Suppose (�,M) is a pair of sequences of partitions � =
{λk}k∈Z and M = {μk}k∈Z. Define the weight of such a pair as

W(�,M) :=
∏
n∈Z

Sλn/μn−1(xn)Sλn/μn(yn), (2.4)

where xi, yi ∈ [0,1) for all i ∈ Z and Sλ/μ is the skew Schur symmetric function (a degeneration of the skew Mac-
donald function Pλ/μ with q = t ). Using that Sλ/μ(x) = 1λ�μx|λ|−|μ| (see (I.5.8) in [33]) we have that W(�,M) is
non-negative and finite. Provided Z := ∑

�,M W(�,M), is finite we have that P(�,M) := Z−1W(�,M) defines
probability measure on (�,M). The latter construction is a special case of the Schur process from [36], where it was
considered with the variable specialization

xn = r−n−1/2, yn = 0 if n ≤ −1; yn = rn+1/2, xn = 0 if 0 ≤ n; r ∈ (0,1). (2.5)

For the above variables it was shown that

1. Z = ∏∞
n=1(1 − rn)−n < ∞ so that the measure is well defined;

2. μn = λn for n < 0 and μn = λn+1 for n ≥ 0;
3. · · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · and λk =∅ for all |k| � 1;

where the last two statements hold with probability 1. The last statement shows that � defines a plane partition π (see
Section 2.1) and so the projection of the Schur process on � induces a measure on plane partitions. One can readily
calculate (see Section 2.2.12 in [36]) that P(�) = Z−1r

∑
k |λk | and so the induced measure on plane partitions satisfies

P(π) = Z−1r |π |.
Suppose now that t ∈ (0,1). We modify the weight W(�,M) in (2.4) by replacing Sλn/μn−1(xn) with

Pλn/μn−1(xn; t) and Sλn/μn(yn) with Qλn/μn(yn; t). Here Pλ/μ and Qλ/μ are skew Hall–Littlewood symmetric func-
tions (they are degenerations of the skew Macdonald functions of the same letters with q = 0). From (5.8) and (5.8′)
in Chapter III of [33] we have

Pλ/μ(x; t) = ψλ/μ(t)x|λ|−|μ| and Qλ/μ(x; t) = φλ/μ(t)x|λ|−|μ|, where

ψλ/μ(t) = 1λ�μ

∏
j∈J

(
1 − tmj (μ)

)
and φλ/μ(t) = 1λ�μ

∏
i∈I

(
1 − tmi(λ)

);
I = {

i ∈ N : λ′
i+1 = μ′

i+1 and λ′
i > μ′

i

}
and J = {

j ∈ N : λ′
j+1 > μ′

j+1 and λ′
j = μ′

j

}
.

Observe that the new weights are still non-negative (as t ∈ (0,1)) and provided their sum is finite we again obtain a
measure on sequences (�,M), which we call a Hall–Littlewood process. In [46] the same specialization of xi, yi as
in (2.5) was considered and it was shown that the normalizing constant equals Z(r, t) from (1.3), while the measure



654 E. Dimitrov

is supported on sequences (�,M) satisfying conditions 2 and 3 above. Hence the projection on � again induces a
measure on plane partitions and substituting Pλ/μ(x; t) and Qλ/μ(x; t) with the above expressions one arrives at

P(�) = Z(r, t)−1r
∑

k |λk |B�(t), where B�(t) =
0∏

n=−∞
ψλn/λn−1(t) ×

∞∏
n=1

φλn−1/λn(t).

What is remarkable is that if π is the plane partition associated to �, then B�(t) = Aπ(t) from (1.2), i.e. B� admits
the geometric interpretation from Section 1.2. The latter is very far from obvious from the definition of B�, since
the functions φ and ψ are somewhat involved, and we refer the reader to [46] where this identification was first
discovered.

Remark 2.5. One can generalize the approach we described above by considering the Macdonald symmetric func-
tions, instead of the Schur or Hall–Littlewood ones, and by considering more general (than single variable) special-
izations. The resulting object is called the Macdonald process and was defined and studied in [10].

Our discussion shows how P
r,t
HL arises as the Hall–Littlewood process with parameters as in (2.5). Our study of Pr,t

HL
goes through understanding the distribution of the diagonal slices λk for which we have

P
r,t
HL

(
λk = λ

) = Z(r, t)−1Pλ

(
r1/2, r3/2, . . . ; t)Qλ

(
r1/2+|k|, r3/2+|k|, . . . ; t),

where Pλ, Qλ are Hall–Littlewood symmetric functions with parameter t . The above formula was obtained using
(2.3) and the proportionality of Pλ and Qλ to combine the cases k ≥ 0 and k < 0. Using the homogeneity of Pλ and
Qλ, we see that

P
r,t
HL

(
λk = λ

) = Z(r, t)−1Pλ

(
a, ar, ar2, . . . ; t)Qλ

(
a, ar, ar2, . . . ; t),

where a(k) = r(1+|k|)/2. We call the above measure on partitions the Hall–Littlewood measure with parameters a, r, t ∈
(0,1).

In subsequent sections we will analyze measures PX,Y with X = (x1, . . . , xN), Y = (y1, . . . , yN) such that

PX,Y (λ) ∝ Pλ(x1, . . . , xN ; t)Qλ(y1, . . . , yN ; t) and xi, yi ∈ [0,1).

The normalizing constant is given by �(X;Y) = ∏N
i,j=1

1−txiyj

1−xiyj
(this is the Cauchy identity (2.2) with q = 0) and we

refer to the latter measure as the finite length Hall–Littlewood measure. The Hall–Littlewood measure with parameters
a, r, t will then be recovered by setting xi = ari−1 = yi and letting N → ∞.

2.4. Background on Fredholm determinants

We present a brief background on Fredholm determinants. For a general overview of the theory of Fredholm determi-
nants, the reader is referred to [32] and [42]. For our purposes the definition below is sufficient and we will not require
additional properties.

Definition 2.2. Fix a Hilbert space L2(X,μ), where X is a measure space and μ is a measure on X. When X = �, a
simple (anticlockwise oriented) smooth contour in C we write L2(�) where for z ∈ �, dμ(z) is understood to be dz

2πι
.

Let K be an integral operator acting on f (·) ∈ L2(X,μ) by Kf (x) = ∫
X

K(x, y)f (y) dμ(y). K(x,y) is called
the kernel of K and we assume throughout K(x,y) is continuous in both x and y. If K is a trace-class operator then
one defines the Fredholm determinant of I + K , where I is the identity operator, via

det(I + K)L2(X) = 1 +
∞∑

n=1

1

n!
∫

X

· · ·
∫

X

det
[
K(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi), (2.6)

where the latter sum can be shown to be absolutely convergent (see [42]).
A sufficient condition for the operator K(x,y) to be trace-class is the following (see [32] page 345).
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Lemma 2.1. An operator K acting on L2(�) for a simple smooth contour � in C with integral kernel K(x,y) is
trace-class if K(x,y) : �2 → R is continuous as well as K2(x, y) is continuous in y. Here K2(x, y) is the derivative
of K(x,y) along the contour � in the second entry.

The expression appearing on the RHS of (2.6) can be absolutely convergent even if K is not trace-class. In partic-
ular, this is so if X = � is a piecewise smooth, oriented compact contour and K(x,y) is continuous on X × X. Let us
check the latter briefly.

Since K(x,y) is continuous on X × X, which is compact, we have |K(x,y)| ≤ A for some constant A > 0,
independent of x, y ∈ X. Then by Hadamard’s inequality1 we have∣∣det

[
K(xi, xj )

]n
i,j=1

∣∣ ≤ nn/2An.

This implies that

∣∣∣∣∣ 1

n!
∫

X

· · ·
∫

X

det
[
K(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi)

∣∣∣∣∣ ≤ nn/2Bn

n! ,

where B = A|μ|(X). The latter is clearly absolutely summable because of the n! in the denominator.
Whenever X and K are such that the RHS in (2.6) is absolutely convergent, we will still call it det(I + K)L2(X).

The latter is no longer a Fredholm determinant, but some numeric quantity we attach to the kernel K . Of course, if K

is the kernel of a trace-class operator on L2(X) this numeric quantity agrees with the Fredholm determinant. Doing
this allows us to work on the level of numbers throughout most of the paper, and avoid constantly checking if the
kernels we use represent a trace-class operator.

The following lemmas provide a framework for proving convergence of Fredholm determinants, based on pointwise
convergence of their defining kernels and estimates on those kernels.

Lemma 2.2. Suppose that � is a piecewise smooth contour in C and KN(x, y), N ∈ N or N = ∞, are measurable
kernels on � × � such that limN→∞ KN(x, y) = K∞(x, y) for all x, y ∈ �. In addition, suppose that there exists a
non-negative, measurable function F(x) on � such that

sup
N∈N

sup
y∈�

∣∣KN(x, y)
∣∣ ≤ F(x) and

∫
�

F(x)
∣∣dμ(x)

∣∣ = M < ∞.

Then for each n ≥ 1 and N one has that det[KN(xi, xj )]ni,j=1 is integrable on �n, so that in particular∫
�

· · ·∫
�

det[KN(xi, xj )]ni,j=1

∏n
i=1 dμ(xi) is well defined. Moreover, for each N

det
(
I + KN

)
L2(�)

= 1 +
∞∑

n=1

1

n!
∫

�

· · ·
∫

�

det
[
KN(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi)

is absolutely convergent and limN→∞ det(I + KN)L2(�) = det(I + K∞)L2(�).

Proof. The following is similar to Lemma B.3 in [12]; however, it allows for infinite contours � and assumes a weaker
pointwise convergence of the kernels, while requiring a dominating function F . The idea is to use the Dominated
Convergence Theorem multiple times.

Since limN→∞ KN(x, y) = K∞(x, y) we know that supy∈� |K∞(x, y)| ≤ F(x) and also

lim
N→∞ det

[
KN(xi, xj )

]n
i,j=1 = det

[
K∞(xi, xj )

]n
i,j=1 for all x1, . . . , xn ∈ �.

1Hadamard’s inequality: the absolute value of the determinant of an n × n matrix is at most the product of the lengths of the column vectors.
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By Hadamard’s inequality we have

∣∣det
[
KN(xi, xj )

]n
i,j=1

∣∣ ≤ nn/2
n∏

i=1

F(xi),

which is integrable by assumption. It follows from the Dominated Convergence Theorem with dominating function
nn/2 ∏n

i=1 F(xi) that for each n ≥ 1 one has

lim
N→∞

∫
�

· · ·
∫

�

det
[
KN(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi) =
∫

�

· · ·
∫

�

det
[
K∞(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi).

Next observe that∣∣∣∣∣
∫

�

· · ·
∫

�

det
[
KN(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi)

∣∣∣∣∣ ≤
∫

�

· · ·
∫

�

∣∣det
[
KN(xi, xj )

]n
i,j=1

∣∣ n∏
i=1

∣∣dμ(xi)
∣∣ ≤ nn/2Mn.

The latter shows the absolute convergence of the series, defining det(I + KN)L2(�) for each N . A second application

of the Dominated Convergence Theorem with dominating series 1 + ∑
n≥1

nn/2Mn

n! now shows the last statement of
the lemma. �

Lemma 2.3. Suppose that �1,�2 are piecewise smooth contours and gN
x,y(z) are measurable on �2

1 ×�2 for N ∈N or

N = ∞ and satisfy limN→∞ gN
x,y(z) = g∞

x,y(z) for all x, y ∈ �1, z ∈ �2. In addition, suppose that there exist bounded
non-negative measurable functions F1 and F2 on �1 and �2 respectively such that

sup
N∈N

sup
y∈�1

∣∣gN
x,y(z)

∣∣ ≤ F1(x)F2(z), and
∫

�i

Fi(u)
∣∣dμ(u)

∣∣ = Mi < ∞.

Then for each N one has
∫
�2

|gN
x,y(z)||dμ(z)| < ∞ and in particular KN(x, y) := ∫

�2
gN

x,y(z) dμ(z) are well-defined.

Moreover, KN(x, y) satisfy the conditions of Lemma 2.2 with � = �1 and F = M2F1.

Proof. Since limN→∞ gN
x,y(z) = g∞

x,y(z) for all x, y ∈ �1, z ∈ �2 we know that |g∞
x,y(z)| ≤ F1(x)F2(z) as well.

Observe that for each x, y ∈ �1 and N one has that∫
�2

∣∣gN
x,y(z)

∣∣∣∣dμ(z)
∣∣ ≤

∫
�2

F1(x)F2(z)
∣∣dμ(z)

∣∣ ≤ M2F1(x) < ∞.

Setting KN(x, y) = ∫
�2

gN
x,y(z) dμ(z), we see that |KN(x, y)| ≤ M2F1(x) for each x, y ∈ �1 and N . As an easy

consequence of Fubini’s theorem one has that KN(x, y) is measurable on �2
1 (the case of real functions and measures

μ can be found in Corollary 3.4.6 of [7], from which the complex extension is immediate). Using the Dominated
Convergence Theorem with dominating function F1(x)F2(z) we see that limN→∞ KN(x, y) = K∞(x, y). �

3. Finite length formulas

In this section, we derive formulas for the t -Laplace transform of the random variable (1 − t)t−λ′
1 , where λ is dis-

tributed according to the finite length Hall–Littlewood measure PX,Y (see Section 2.3). The main result in this section
is Proposition 3.5, which expresses the t -Laplace transform as a Fredholm determinant. We believe that such a formula
is of separate interest as it can be applied to generic Hall–Littlewood measures and its Fredholm determinant form
makes it suitable for asymptotic analysis. The derivation of Proposition 3.5 goes through a sequence of steps that is
very similar to the work in Sections 2.2.3, 3.1 and 3.2 of [10]. There are, however, several technical modifications that
need to be made, which require us to redo most of the work there. In particular, the statements below do not follow
from some simple limit transition from those in [10] and additional work is required.

In all statements in the remainder of this paper we will be working with the principal branch of the logarithm.
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3.1. Observables of Hall–Littlewood measures

In what follows fix a natural number N and t ∈ (0,1) and consider the space of functions in N variables X =
(x1, . . . , xN). Inside this space lies the space of symmetric polynomials �X in N variables. It will be convenient
to assume that xi ∈ [0,1). The following discussion will be very much in the spirit of Section 2.2.3 in [10]; however,
the results we need do not directly follow from that work and so we derive them explicitly.

Suppose we have a linear operator D, which acts on the space of functions of N variables, whose restriction to
�X is diagonalized by the Hall–Littlewood polynomials Pλ(X; t): DPλ(X; t) = dλP (X; t) for any partition λ with
�(λ) ≤ N . Then we may apply D k times to both sides of the Cauchy identity for Hall–Littlewood polynomials
(obtained from (2.2) by setting q = 0)

∑
λ:�(λ)≤N

Pλ(x1, . . . , xN ; t)Qλ(y1, . . . , yN ; t) = �(X;Y) =
N∏

i,j=1

1 − txiyj

1 − xiyj

,

to obtain∑
λ:�(λ)≤N

dk
λPλ(x1, . . . , xN ; t)Qλ(y1, . . . , yN ; t) =Dk�(X;Y).

In the above we assume that Y = (y1, . . . , yN) satisfy yi ∈ [0,1). Dividing both sides by �(X;Y) we obtain

EX,Y

[
dk
λ

] = Dk�(X;Y)

�(X;Y)
. (3.1)

Equation (3.1) gives a recipe of how to calculate expectations of certain observables of a partition λ, distributed
according to PX,Y . It requires an appropriate linear operator D, to which we now turn.

Let D1
N be defined as follows

D1
N :=

N∑
i=1

∏
j �=i

txi − xj

xi − xj

T0,xi
, where (T0,xi

F )(x1, . . . , xN) = F(x1, . . . , xi−1,0, xi+1, . . . , xN).

Remark 3.1. D1
N is the q → 0 limit of the first Macdonald difference operator, of the same letter (see Chapter VI of

[33]). In particular, the q → 0 limit of (4.15) in Chapter VI of [33] shows that D1
NPλ(X; t) = 1−t

N−λ′
1

1−t
Pλ(X; t) and so

D1
N is diagonalized by Pλ(X; t).

Set DN := [ (t−1)D1
N+1

tN
] and observe that DN satisfies the following properties:

1. DN is linear;
2. If Fn converge pointwise to a function F in N variables, then DNFn converge pointwise to DNF away from the

set {(x1, . . . , xN) : xi = xj for some i �= j};
3. DNPλ(x1, . . . , xN ; t) = t−λ′

1Pλ(x1, . . . , xN ; t) (see Remark 3.1).

Remark 3.2. Since ultimately we will let N → ∞, it is desirable to work with operators, whose eigenvalues do not
depend on N . This explains our preference to work with DN and not D1

N .

The following proposition formalizes the approach described above with D =DN and dλ = t−λ1 .

Proposition 3.1. Fix positive integers k and N and a parameter t ∈ (0,1). Let X = (x1, . . . , xN) and Y =
(y1, . . . , yN), with xi, yi ∈ [0,1) for i = 1, . . . ,N . In addition, suppose yi < ε for all i. Then we have

EX,Y

[
t−kλ′

1
] = 1

(2πι)k

∫
C0,1

· · ·
∫

C0,k

∏
1≤a<b≤k

za − zb

za − zbt−1

k∏
i=1

[
N∏

j=1

(zi − xj t
−1)(1 − ziyj )

(zi − xj )(1 − tziyj )

]
dzi

zi

, (3.2)
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where C0,a are positively oriented simple contours encircling x1, . . . , xN and 0 and contained in a disk of radius ε−1

around 0. In addition, C0,a contains t−1C0,b for a < b. Such contours will exist provided ε ≤ tk .

Proof. The following proof is very similar to the proof of Proposition 2.11 in [10]. First observe that from our
assumptions contours C0,i will always exist. Indeed, we can set C0,k to be the positively oriented circle around the
origin of radius 1 and let C0,a be positively oriented circles of radius slightly bigger than ta−k , so that C0,a contains
t−1C0,b for all a < b and C0,1 has radius less than t−k ≤ ε−1. Clearly such contours exist and satisfy the conditions
of the proposition. In addition, we notice that PX,Y is supported on partitions of length ≤ N , which implies λ′

1 ≤ N .

This means that t−kλ′
1 is bounded by t−kN and hence

∑
λ t−kλ′

1Pλ(X; t)Qλ(Y ; t) is absolutely convergent, using
xi, yi ∈ [0,1). The latter implies that the both sides of (3.2) are continuous in X ∈ [0,1)N and thus we may assume
that xi are pairwise distinct and also distinct from 0.

Next we show that the LHS of (3.2) equals
Dk

N [∑λ Pλ(X;t)Qλ(Y ;t)]
�(X;Y)

in accordance with (3.1). The latter is equivalent
to

∑
λ

t−kλ′
1Pλ(X; t)Qλ(Y ; t) =Dk

N

[∑
λ

Pλ(X; t)Qλ(Y ; t)
]
. (3.3)

We prove the latter by induction on k, with base case k = 0 being true by the Cauchy identity (2.2). Suppose that (3.3)
holds for k and apply DN to both sides to obtain

DN

[∑
λ

t−kλ′
1Pλ(X; t)Qλ(Y ; t)

]
=Dk+1

N

[∑
λ

Pλ(X; t)Qλ(Y ; t)
]
.

We observe that as t−kλ1 ≤ t−kN the sum on the LHS is absolutely converging (as 0 ≤ xi, yi < 1). This together with
Properties 1 and 2 of DN implies we can switch the order of DN and the sum, to get

∑
λ

t−kλ′
1DNPλ(X; t)Qλ(Y ; t) =Dk+1

N

[∑
λ

Pλ(X; t)Qλ(Y ; t)
]
.

Using Property 3 we have DNPλ(X; t) = t−λ′
1Pλ(X; t) and putting this above we arrive at (3.3) for k + 1. The general

result now follows by induction.
Using the Cauchy identity and (3.3) we see that (3.2) reduces to showing that for k ≥ 1 one has

Dk
N�(X;Y) = �(X;Y)

(2πι)k

∫
C0,1

· · ·
∫

C0,k

∏
1≤a<b≤k

za − zb

za − zbt−1

k∏
i=1

[
N∏

j=1

(zi − xj t
−1)(1 − ziyj )

(zi − xj )(1 − tziyj )

]
dzi

zi

. (3.4)

We prove the latter by induction on k. Suppose k = 1. Then we have that the integrand on the RHS of (3.4) has simple
poles at z1 = xi (we use our assumption that xi are pairwise distinct and non-zero), z1 = 0 and z1 = t−1y−1

i , and
the latter by our choice of contours do not lie in C0,1. Applying the Residue theorem we have that the RHS of (3.4)
equals

(
1 − t−1) N∑

i=1

�(X;Y)
∏
j �=i

xi − xj t
−1

xi − xj

N∏
j=1

1 − xiyj

1 − txiyj

+ t−N�(X;Y),

which we recognize as DN�(X;Y). This proves the base case.
Suppose we know (3.4) for k and wish to show it for k + 1. The RHS equals

1

(2πι)k+1

∫
C0,1

· · ·
∫

C0,k+1

∏
1≤a<b≤k+1

za − zb

za − zbt−1
�(X;Y)

k+1∏
i=1

[
N∏

j=1

(zi − xj t
−1)(1 − ziyj )

(zi − xj )(1 − tziyj )

]
dzi

zi

.
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We view the integrand as a function of zk+1 and notice that by assumption on the contours the only poles of the
integral inside C0,k+1 are simple and located at xi and 0. Applying the residue theorem to the zk+1 variable we see
that the above is exactly

DN

[
�(X;Y)

(2πι)k

∫
C0,1

· · ·
∫

C0,k

∏
1≤a<b≤k

za − zb

za − zbt−1

k∏
i=1

[
N∏

j=1

(zi − xj t
−1)(1 − ziyj )

(zi − xj )(1 − tziyj )

]
dzi

zi

]
.

Applying the induction hypothesis, the expression inside the brackets is just Dk
N�(X;Y). This proves the case k + 1

and the general result now follows by induction. �

Proposition 3.1 is an important milestone in our discussion as it provides an integral representation for a class of
observables for PX,Y . In subsequent sections, we will combine the above formulas for different values of k, similarly
to the moment problem for random variables, in order to better understand the distribution PX,Y .

3.2. An alternative formula for EX,Y [t−kλ′
1]

There are two difficulties in using Proposition 3.1. The first is that the contours that we use are all different and
depend implicitly on the value k. The second issue is that the formula for EX,Y [t−kλ′

1 ] that we obtain holds only when
yi are sufficiently small (again depending on k). We would like to get rid of this restriction by finding an alternative
formula for EX,Y [t−kλ′

1]. This is achieved in Proposition 3.2, whose proof relies on the following technical lemma.
The following result is very similar to Proposition 7.2 in [9].

Lemma 3.1. Fix k ≥ 1 and q ∈ (1,∞). Assume that we are given a set of positively oriented closed contours
γ1, . . . , γk , containing 0, and a function F(z1, . . . , zk), satisfying the following properties:

1. F(z1, . . . , zk) = ∏k
i=1 f (zi);

2. For all 1 ≤ A < B ≤ k, the interior of γA contains the image of γB multiplied by q;
3. For all 1 ≤ j ≤ k there exists a deformation Dj of γj to γk so that for all z1, . . . , zj−1, zj , . . . , zk with zi ∈ γi for

1 ≤ i < j and zi ∈ γk for j < i ≤ k, the function zj → F(z1, . . . , zj , . . . , zk) is analytic in a neighborhood of the
area swept out by the deformation Dj .

Then we have the following residue expansion identity:

∫
γ1

· · ·
∫

γk

∏
1≤A<B≤k

zA − zB

zA − qzB

F(z1, . . . , zk)

k∏
i=1

dzi

2πιzi

=
∑
λ
k

(1 − q)k(−1)kq
−k(k−1)

2 kq !
m1(λ)!m2(λ)! · · · ,

∫
γk

· · ·
∫

γk

det

[
1

wiqλi − wj

]�(λ)

i,j=1

�(λ)∏
j=1

f (wj )f (wjq) · · ·f (
wjq

λj −1)dwj

2πι
,

(3.5)

where kt ! = (1−t)(1−t2)···(1−tk)

(1−t)k
.

Proof. The proof of the lemma closely follows the proof of Proposition 7.2 in [9], and we will thus only sketch
the main idea. We remark that in [9] the considered contours do not contain 0 and q ∈ (0,1). Nevertheless, all the
arguments remain the same and the result of that proposition hold in the setting of the lemma.

The strategy is to sequentially deform each of the contours γk−1, γk−2, . . . , γ1 to γk through the deformations Di

afforded from the hypothesis of the lemma. During the deformations one passes through simple poles, coming from
zA − qzB in the denominator of (3.5), which by the Residue theorem produce additional integrals of possibly fewer
variables. Once all the contours are contracted to γk one obtains a big sum of multivariate integrals over various
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residue subspaces, which can be recombined into the following form (see equation (38) in [9]):

∑
λ
k

(1 − q)k(−1)kq
−k(k−1)

2

m1(λ)!m2(λ)! · · ·
∫

γk

· · ·
∫

γk

det

[
1

wiqλi − wj

]�(λ)

i,j=1

× Eq
(
w1, qw1, . . . , q

λ1−1w1, . . . ,w�(λ), qw�(λ), . . . , q
λ�(λ)−1w�(λ)

) �(λ)∏
j=1

w
λj

j q
λj (λj −1)

2
dwj

2πι
,

where

Eq(z1, . . . , zk) =
∑
σ∈Sk

∏
1≤B<A≤k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

F (zσ(1), . . . , zσ(k))∏k
i=1 zσ(i)

.

By assumption F(z1,...,zn)∏k
i=1 zi

is a symmetric function of z1, . . . , zk and thus can be taken out of the sum, while the

remaining expression evaluates to kq ! as is shown in equation (1.4) in Chapter III of [33]. Substituting this back and
performing some cancellation we arrive at (3.5). �

Proposition 3.2. Fix positive integers k and N and a parameter t ∈ (0,1). Let X = (x1, . . . , xN) and Y =
(y1, . . . , yN) with xi, yi ∈ [0,1) for i = 1, . . . ,N . Let C0 be a simple positively oriented contour, which is contained
in the closed disk of radius t−1 around the origin, such that C0 encircles x1, . . . , xN and 0. Then we have

EX,Y

[
t−kλ′

1
] =

∑
λ
k

(t−1 − 1)kkt !
m1(λ)!m2(λ)! · · ·

∫
C0

· · ·
∫

C0

det

[
1

wit−λi − wj

]�(λ)

i,j=1

×
�(λ)∏
j=1

N∏
i=1

1 − xi(wj t)
−1

1 − xi(wj t)−1tλj

1 − yi(wj t)t
−λj

1 − yi(wj t)

dwj

2πι
, where kt ! = (1 − t)(1 − t2) · · · (1 − tk)

(1 − t)k
.

(3.6)

Proof. Let C0,k = C0 and let C0,a be such that C0,a contains t−1C0,b for all a < b, a, b ∈ {1, . . . , k}. Suppose 0 <

ε < tk is sufficiently small so that C0,1 is contained in the disk of radius ε−1 and suppose yi < ε for i = 1, . . . ,N .
Then we may apply Proposition 3.1 to get

EX,Y

[
t−kλ′

1
] = 1

(2πι)k

∫
C0,1

· · ·
∫

C0,k

∏
1≤a<b≤k

za − zb

za − zbt−1

k∏
i=1

[
N∏

j=1

(zi − xj t
−1)(1 − ziyj )

(zi − xj )(1 − tziyj )

]
dzi

zi

.

We may now apply Lemma 3.1 (with q = t−1) to the RHS of the above and get

EX,Y

[
t−kλ′

1
] =

∑
λ
k

(1 − t−1)k(−1)kt
k(k−1)

2 kt−1 !
m1(λ)!m2(λ)! · · ·

∫
C0,k

· · ·
∫

C0,k

det

[
1

wit−λi − wj

]�(λ)

i,j=1

×
�(λ)∏
j=1

G(wj )G
(
wj t

−1) · · ·G(
wj t

1−λj
)dwj

2πι
, where G(w) =

N∏
j=1

w − xj t
−1

w − xj

1 − yjw

1 − tyjw
.

(3.7)

Observe that (−1)kt
k(k−1)

2 kt−1 !(1 − t−1)k = (t−1 − 1)kkt ! and also

�(λ)∏
j=1

G(wj )G
(
wj t

−1) · · ·G(
wj t

1−λj
) =

N∏
i=1

�(λ)∏
j=1

1 − xi(twj )
−1

1 − xi(twj )−1tλj

1 − yi(wj t)t
−λj

1 − yi(wj t)
.



KPZ and Airy limits of Hall–Littlewood random plane partitions 661

Substituting these expressions into (3.7) and recalling that C0,k = C0 we arrive at (3.6). What remains is to extend
the result to arbitrary y1, . . . , yN ∈ [0,1) by analyticity. In particular, if we can show that both sides of (3.6) define
analytic functions on D

N (D is the unit complex disk), then because they are equal on [0, ε)N it would follow they are
equal on D

N . This would imply the full statement of the proposition.
We start with the RHS of (3.6). Observe that it is a finite sum of integrals over compact contours. Thus it suffices to

show analyticity of the integrands in yi ∈ D. The integrand’s dependence on yi is through
∏�(λ)

j=1

∏N
i=1

1−yi (wj t)t
−λj

1−yi (wj t)
,

which is clearly analytic on D
N as |wj | ≤ t−1.

For the LHS of (3.6) we have:

Ex,y

[
t−kλ′

1
] = �(X;Y)−1

∑
λ∈Y

Pλ(X)Qλ(y1, . . . , yN),

where �(X;Y) = ∏N
i,j=1

1−txiyj

1−xiyj
. Clearly �(X;Y) is analytic and non-zero on D

N (as xi ∈ [0,1)) and then so is

�(X;Y)−1. In addition, the sum is absolutely convergent on D
N , since by the Cauchy identity

∑
λY

∣∣Pλ(X)Qλ(y1, . . . , yN)
∣∣ ≤

∑
λ∈Y

Pλ(X)Qλ

(|y1|, . . . , |yN |) =
N∏

i,j=1

1 − txi |yj |
1 − xi |yj | < ∞.

As the absolutely converging sum of analytic functions is analytic and the product of two analytic functions is analytic
we conclude that the LHS of (3.6) is analytic on D

N . �

3.3. Fredholm determinant formula for EX,Y [ 1

((1−t)ut
−λ′

1 ;t)∞
]

In this section we will combine Proposition 3.2 with different values of k to obtain a formula for the t -Laplace
transform of (1 − t)t−λ′

1 , which is defined by EX,Y [ 1

((1−t)ut
−λ′

1 ;t)∞
]. We recall that (a; t)∞ = (1 − a)(1 − at)(1 −

at2) · · · is the t -Pochhammer symbol.
The arguments we use to prove the following results are very similar to those in Section 3.2 in [10].

Proposition 3.3. Fix N ∈ N and t ∈ (0,1). Let X = (x1, . . . , xN) and Y = (y1, . . . , yN) with xi, yi ∈ [0,1) for i =
1, . . . ,N . Suppose |u| < tN+1 is a complex number. Then we have

lim
M→∞

M∑
k=0

uk
EX,Y [t−λ′

1k]
kt ! = EX,Y

[
1

((1 − t)ut−λ′
1; t)∞

]
. (3.8)

Proof. We have that

M∑
k=0

uk
EX,Y [t−λ′

1k]
kt ! =

N∑
c=0

PX,Y

(
λ′

1 = c
) M∑

k=0

ukt−ck

kt ! .

By our assumption on u and Corollary 10.2.2a in [3] we have that the inner sum over k converges to 1
((1−t)ut−c;t)∞ , as

M → ∞. Thus

lim
M→∞

N∑
c=0

PX,Y

(
λ′

1 = c
) M∑

k=0

ukt−ck

kt ! =
N∑

c=0

PX,Y (λ′
1 = c)

((1 − t)ut−c; t)∞

= EX,Y

[
1

((1 − t)ut−λ′
1; t)∞

]
. �
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Proposition 3.4. Fix N ∈ N, t ∈ (0,1) and xi, yi ∈ [0,1) for i = 1, . . . ,N . Then there exists ε > 0 such that for
|u| < ε and u /∈ R

+ we have

1 + lim
M→∞

M∑
k=1

(
t−1 − 1

)k
uk

∑
λ
k

1

m1(λ)!m2(λ)! · · ·
∫

C0

· · ·
∫

C0

det

[
1

wit−λi − wj

]�(λ)

i,j=1

×
�(λ)∏
j=1

N∏
i=1

1 − xi(wj t)
−1

1 − xi(wj t)−1tλj

1 − yi(wj t)t
−λj

1 − yi(wj t)

dwj

2πι
= det

(
I + KN

u

)
L2(C0)

. (3.9)

In the above C0 is the positively oriented circle of radius t−1 around 0. KN
u is defined in terms of its integral kernel

KN
u

(
w;w′) = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
ds�(−s)�(1 + s)

(−u
(
t−1 − 1

))s
gN

w,w′
(
t s

)
,

where

gN
w,w′

(
t s

) = 1

wt−s − w′
N∏

j=1

(1 − xj (wt)−1)(1 − yj (wt)t−s)

(1 − xj (wt)−1t s)(1 − yj (wt))
.

The proof of Proposition 3.4 depends on two lemmas: Lemma 3.2 and Lemma 3.3. Their statement is given below
but we postpone their proof to Section 3.4.

Lemma 3.2. Fix N ∈ N, t ∈ (0,1) and xi, yi ∈ [0,1) for i = 1, . . . ,N . Let w,w′ ∈ C be such that |w| = |w′| = t−1

and let

gN
w,w′

(
t s

) = 1

wt−s − w′
N∏

j=1

(1 − xj (wt)−1)(1 − yj (wt)t−s)

(1 − xj (wt)−1t s)(1 − yj (wt))
.

Then there exists ε > 0 such that if ζ ∈ {ζ : |ζ | < ε, ζ /∈ R+}, we have

∞∑
n=1

gN
w,w′

(
tn

)
ζ n = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
�(−s)�(1 + s)(−ζ )sgN

w,w′
(
t s

)
ds. (3.10)

Lemma 3.3. Fix N ∈ N or N = ∞, t ∈ (0,1) and xi, yi ∈ [0,1) for i = 1, . . . ,N such that
∑

i xi < ∞,
∑

i yi < ∞.
Suppose u ∈ C \ R

+. Consider the operator KN
u on L2(C0) (here C0 is the positive circle of radius t−1), which is

defined in terms of its integral kernel

KN
u

(
w,w′) = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
ds�(−s)�(1 + s)

(−u
(
t−1 − 1

))s
gN

w,w′
(
t s

)
,

where

gN
w,w′

(
t s

) = 1

wt−s − w′
N∏

j=1

(1 − xj (wt)−1)(1 − yj (wt)t−s)

(1 − xj (wt)−1t s)(1 − yj (wt))
.

Then KN
u is trace-class. Moreover, as a function of u we have that det(I + KN

u ) is an analytic function on C \R+.
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Proof of Proposition 3.4. From Lemma 3.3 we know that KN
u is trace-class for u /∈R+. Consequently we have that

det
(
I + KN

u

)
L2(C0)

= 1 +
∞∑

n=1

1

n!
∫

C0

· · ·
∫

C0

det
[
KN

u (wi,wj )
]n
i,j=1

n∏
i=1

dwi

2πι

= 1 +
∞∑

n=1

1

n!
∫

C0

· · ·
∫

C0

∑
σ∈Sn

sign(σ )

n∏
i=1

[
1

2πι

∫ 1/2+ι∞

1/2−ι∞
�(−s)�(1 + s)

(−u
(
t−1 − 1

))s
gwi,wσ(i)

(
t s

)
ds

]

×
n∏

i=1

dwi

2πι
.

Using Lemma 3.2 and the above formula we can find an ε > 0 such that for |u| < ε and u /∈R
+ one has

det
(
I + KN

u

) = 1 +
∞∑

n=1

1

n!
∫

C0

· · ·
∫

C0

∑
σ∈Sn

sign(σ )

n∏
i=1

[ ∞∑
j=1

uj
(
t−1 − 1

)j
gwi,wσ(i)

(
tj

)] n∏
i=1

dwi

2πι
. (3.11)

Let us introduce the following short-hand notation

B(c1, . . . , cn) :=
∫

C0

· · ·
∫

C0

det

[
1

wit−ci − wj

]n

i,j=1

n∏
j=1

N∏
i=1

1 − xi(wj t)
−1

1 − xi(wj t)−1tcj

1 − yi(wj t)t
−cj

1 − yi(wj t)

dwj

2πι
.

Notice that B(c1, . . . , cn) is invariant under permutation of its arguments and that (m1(λ)+m2(λ)+··· )!
m1(λ)!m2(λ)!··· is the number of

distinct permutations of the parts of λ. The latter suggests that

∑
λ
k

(t−1 − 1)kuk

m1(λ)!m2(λ)! · · ·B(λ1, . . . , λ�(λ)) =
∑
n≥1

∑
c1,c2,...,cn≥1∑

ci=k

(t−1 − 1)kuk

n! B(c1, . . . , cn).

Observe that for some positive constant C we have

∣∣∣∣∣
n∏

j=1

N∏
i=1

1 − xi(wj t)
−1

1 − xi(wj t)−1tcj

1 − yi(wj t)t
−cj

1 − yi(wj t)

∣∣∣∣∣ ≤ CNnt−Nk

N∏
i=1

1

(1 − xi)n(1 − yi)n
.

The above together with Hadamard’s inequality and the compactness of C0 implies that for some positive constants
P,Q (independent of k and n) we have |B(c1, . . . , cn)| ≤ nn/2P nQk . The latter implies that for |u| < ε and ε suffi-
ciently small the sum

∞∑
k=1

∑
n≥1

∑
c1,c2,...,cn≥1∑

ci=k

(t−1 − 1)kuk

n! B(c1, . . . , cn)

is absolutely convergent. In particular, the limit on the LHS of equation (3.9) exists and equals

1 +
∞∑

n=1

1

n!
∑

c1,c2,...,cn≥1

[(
t−1 − 1

)
u
]c1+···+cnB(c1, . . . , cn).
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Expanding the determinant inside the integral in the definition of B(c1, . . . , cn) we see that the integrand equals∑
σ∈Sn

sign(σ )
∏n

i=1 gwi,wσ(i)
(tci ). Consequently the LHS of equation (3.9) equals

1 +
∞∑

n=1

1

n!
∑

c1,c2,...,cn≥1

[(
t−1 − 1

)
u
]c1+···+cn

∫
C0

· · ·
∫

C0

∑
σ∈Sn

sign(σ )

n∏
i=1

gwi,wσ(i)

(
tci

)dwi

2πι
. (3.12)

What remains is to check that the two expressions in (3.12) and (3.11) agree. Since both are absolutely converging
sums over n, it suffices to show equality of the corresponding summands. I.e. we wish to show that

∑
c1,c2,...,cn≥1

[(
t−1 − 1

)
u
]c1+···+cn

∫
C0

· · ·
∫

C0

∑
σ∈Sn

sign(σ )

n∏
i=1

gwi,wσ(i)

(
tci

)dwi

2πι

=
∫

C0

· · ·
∫

C0

∑
σ∈Sn

sign(σ )

n∏
i=1

[ ∞∑
j=1

uj
(
t−1 − 1

)j
gwi,wσ(i)

(
tj

)]dwi

2πι
. (3.13)

By Fubini’s theorem (provided |u| is sufficiently small) we may interchange the order of the sum and the integrals and
the LHS of equation (3.13) becomes

∫
C0

· · ·
∫

C0

∑
c1,c2,...,cn≥1

[(
t−1 − 1

)
u
]c1+···+cn

∑
σ∈Sn

sign(σ )

n∏
i=1

gwi,wσ(i)

(
tci

)dwi

2πι

=
∫

C0

· · ·
∫

C0

∑
σ∈Sn

sign(σ )

n∏
i=1

[∑
ci≥1

[(
t−1 − 1

)
u
]ci gwi,wσ(i)

(
tci

)]dwi

2πι
.

From the above equation (3.13) is obvious. This concludes the proof. �

Proposition 3.5. Fix N ∈ N and a parameter t ∈ (0,1). Let X = (x1, . . . , xN) and Y = (y1, . . . , yN) with xi, yi ∈
[0,1) for i = 1, . . . ,N . Then for u /∈ R

+ one has that

EX,Y

[
1

((1 − t)ut−λ′
1; t)∞

]
= det

(
I + KN

u

)
L2(C0)

. (3.14)

The contour C0 is the positively oriented circle of radius t−1, centered at 0, and the operator KN
u is defined in terms

of its integral kernel

KN
u

(
w,w′) = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
ds�(−s)�(1 + s)

(−u
(
t−1 − 1

))s
gN

w,w′
(
t s

)
,

where

gN
w,w′

(
t s

) = 1

wt−s − w′
N∏

j=1

(1 − xj (wt)−1)(1 − yj (wt)t−s)

(1 − xj (wt)−1t s)(1 − yj (wt))
.

Proof. Using Propositions 3.2, 3.3 and 3.4 we have the statement of the proposition for |u| < ε and u /∈ R
+ for some

sufficiently small ε > 0. To conclude the proof it suffices to show that both sides of (3.14) are analytic functions of u

in C \R+.
The RHS is analytic by Lemma 3.3, while the LHS of (3.14) equals

∑N
n=0 Px,y(λ

′
1 = n) 1

(ut−n;t)∞ , and is thus a

finite sum of analytic functions and so also analytic on C \R+. �
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3.4. Proof of Lemmas 3.2 and 3.3

In this section we give the proofs of Lemmas 3.2 and 3.3. Versions of these lemmas appear in Section 3.2 of [10] and
the proofs we present are related.

Proof of Lemma 3.2. For simplicity we suppress N from our notation. Let RM = M + 1/2 (M ∈ N) and set A1
M =

1/2 − ιRM , A2
M = 1/2 + ιRM , A3

M = RM + ιRM and A4
M = RM − ιRM . Denote by γ 1

M the contour, which goes from
A1

M vertically up to A2
M , by γ 2

M the contour, which goes from A2
M horizontally to A3

M , by γ 3
M the contour, which

goes from A3
M vertically down to A4

M , and by γ 4
M the contour, which goes from A4

M horizontally to A1
M . Also let

γM = ⋃
i γ

i
M traversed in order (see Figure 11).

We make the following observations:

1. γM is negatively oriented.
2. The function gw,w′(ts) is well-defined and analytic in a neighborhood of the closure of the region enclosed by γM .

This follows from |t s | < 1 for Re(s) > 0, which prevents any of the poles of gw,w′(ts) from entering the region
Re(s) > 0.

3. If dist(s,Z) > c for some fixed constant c > 0, then | π
sin(πs)

| ≤ c′e−π | Im(s)| for some fixed constant c′, depending
on c. In particular, this estimate holds for all s ∈ γM since dist(γM,Z) = 1/2 for all M by construction.

4. If −ζ = reιθ with |θ | < π and s = x + ιy then

(−ζ )s = exp
((

log(r) + ιθ
)
(x + ιy)

) = exp
(
log(r)x − yθ + ι

(
log(r)y + xθ

))
,

since we took the principal branch. In particular, |(−ζ )s | = rxe−yθ .

We also recall Euler’s Gamma reflection formula

�(−s)�(1 + s) = π

sin(−πs)
. (3.15)

Fig. 11. The contours γ i
M

for i = 1,2,3,4.
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We observe for s = x + ιy, with x ≥ 1/2 that

∣∣gw,w′
(
t s

)∣∣ =
∣∣∣∣∣ 1

wt−s − w′
N∏

j=1

(1 − xj (wt)−1)(1 − yj (wt)t−s)

(1 − xj (wt)−1t s)(1 − yj (wt))

∣∣∣∣∣ ≤
∏N

j=1 |1 − yj (wt)t−s |
t−3/2 − t−1

N∏
i=1

2

(1 − yi)(1 − xi)
.

In addition, we have
∏N

j=1 |1 − yj (wt)t−s | ≤ Cecx for some positive constants C,c > 0, depending on N , t and yi .

Consequently, we see that if ε is chosen sufficiently small and ζ = reιθ with r < ε then∣∣gw,w′
(
t s

)
(−ζ )s

∣∣ ≤ Cecxεxe|yθ | ≤ Ce−cxe|yθ |,

with some new constant C > 0. In particular, the LHS in (3.10) is absolutely convergent, and we have

∞∑
n=1

gw,w′
(
tn

)
ζ n = lim

M→∞

M∑
n=1

gw,w′
(
tn

)
ζ n.

From the Residue theorem we have

M∑
n=1

gw,w′
(
tn

)
ζ n = 1

2πι

∫
γM

�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)
ds.

The last formula used Ress=k�(−s)�(1 + s) = (−1)k+1 and observations 1 and 2 above. What remains to be shown
is that

lim
M→∞

1

2πι

∫
γM

�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)
ds = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
�(−s)�(1 + s)(−ζ )sgw,w′

(
t s

)
ds. (3.16)

Observe that on Re(s) = 1/2 we have that |gw,w′(ts)| is bounded, while from (3.15) and observations 3 and 4 we
have

∣∣�(−s)�(1 + s)(−ζ )s
∣∣ =

∣∣∣∣ π

sin(−πs)
(−ζ )s

∣∣∣∣ ≤ c′ exp
((|θ | − π

)∣∣Im(s)
∣∣)r1/2, (3.17)

which decays exponentially in | Im(s)| since |θ | < π . Thus the integrand on the RHS of (3.16) is exponentially
decaying near ±ι∞ and so the integral is well-defined. Moreover, from the Dominated Convergence Theorem we
have that

lim
M→∞

1

2πι

∫
γ 1
M

�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)
ds = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
�(−s)�(1 + s)(−ζ )sgw,w′

(
t s

)
ds.

We now consider the integrals

1

2πι

∫
γ i
M

�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)
,

when i �= 1 and show they go to 0 in the limit. If true, (3.16) will follow.
Suppose that i = 2 or i = 4. Let s = x + ιy ∈ γ i

M , so |y| = RM and we get

∣∣�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)∣∣ ≤ Ce−cxe|θy|c′e−π |y| ≤ Ce(|θ |−π)RM ,

for some new constant C > 0. Since |θ | − π < 0 we see that∣∣∣∣ 1

2πι

∫
γ i
M

�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)∣∣∣∣ ≤ CRMe(|θ |−π)RM → 0 as M → ∞.
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Finally, let i = 3. Let s = x + ιy ∈ γ 3
M , so x = RM and we get

∣∣�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)∣∣ ≤ Ce−cxe|θy|c′e−π |y| ≤ Cc′e−cRM .

Consequently, we obtain∣∣∣∣ 1

2πι

∫
γ 3
M

�(−s)�(1 + s)(−ζ )sgw,w′
(
t s

)∣∣∣∣ ≤ 2RMCc′e−cRM → 0 as M → ∞.

This concludes the proof of (3.16) and hence the lemma. �

Proof of Lemma 3.3. We begin with the first statement of the lemma and suppress the dependence on N and u from
the notation. From Lemma 2.1 it suffices to show that K(w,w′) is continuous on C0 × C0 and that K2(w,w′) is
continuous as well, where we recall that K2(w,w′) is the derivative of K(x,y) along the contour C0 in the second
entry.

In equation (3.17) we showed that if −u(t−1 − 1) = reιθ with |θ | < π and s = 1/2 + ιy, then∣∣�(−s)�(1 + s)(−ζ )s
∣∣ ≤ C exp

((|θ | − π
)|y|)r1/2

We observe that gw,w′(ts) is continuous in w,w′ and moreover on Re(s) = 1/2 we have

∣∣gw,w′
(
t s

)∣∣ ≤ M = 1

t−3/2 − t−1

N∏
j=1

(1 + xj )(1 + yj t
−1/2)

(1 − xj t1/2)(1 − yj )
< ∞

independently of w,w′. So if (wn,w
′
n) → (w,w′) we have that gwn,w′

n
(ts) → gw,w′(ts) and by the Dominated Con-

vergence Theorem, we conclude that K(wn,w
′
n) → K(w,w′) so that K(w,w′) is continuous on C0 × C0.

We next observe that

K2
(
w,w′) = ιw′ d

dw′ K
(
w,w′) = ιw′ 1

2πι

∫ 1/2+ι∞

1/2−ι∞
ds�(−s)�(1 + s)

(−u
(
t−1 − 1

))s d

dw′ gw,w′
(
t s

)
,

where the change of the order of integration and differentiation is allowed by the exponential decay of the integrand.
We have that d

dw′ gw,w′(ts) = 1
wt−s−w′ gw,w′(ts) so a similar argument as above now shows that K2(w,w′) is continu-

ous on C0 × C0. We conclude that KN
u is indeed trace-class.

Since KN
u is trace-class we know that

det
(
I + KN

u

) = 1 +
∑
n≥1

1

n!
∫

C0

· · ·
∫

C0

det
[
KN

u (wi,wj )
]n
i,j=1

n∏
i=1

dwi

2πι
.

We wish to show that the above sum is analytic in u ∈ C \R+.
We begin by showing that KN

u (w,w′) is analytic in u for each (w,w′) ∈ C0 × C0. Observe that on (C \ R
+) ×

(1/2 + ιR), �(−s)�(1 + s)(−u(t−1 − 1))sgN
w,w′(ts) is jointly continuous in (u, s) and analytic in u for each s. From

Theorem 5.4 in Chapter 2 of [43] we know that for any A ≥ 0

hA(u) :=
∫ 1/2+ιA

1/2−ιA

�(−s)�(1 + s)
(−u

(
t−1 − 1

))s
gN

w,w′
(
t s

)
ds

is an analytic function of u ∈C \R+. In addition, using our earlier estimates we see that

∣∣hA(u) − KN
u

(
w,w′)∣∣ ≤ 2|u|1/2MC

∫ ∞

A

exp
((|θ | − π

)
y
)
dy = 2|u|1/2MC

π − |θ | exp
((|θ | − π

)
A

)
.
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The latter shows that hA(u) converges uniformly on compact subsets of C \ R+ to KN
u (w,w′) as A → ∞, which

implies that KN
u (w,w′) is analytic in u. Notice that when A = 0 the above shows that if K ′ is a compact subset of

C \R+ and u ∈ K ′, we have |KN
u (w,w′)| ≤ C(K ′) for some contant C > 0 independent of w,w′.

We next observe that KN
u (w,w′) is jointly continuous in u and (w,w′) and analytic in u for each w,w′ from our

proof above. The latter implies that det[KN
u (wi,wj )]ni,j=1 is continuous on Cn

0 × C \ R+ and analytic in u for each
(w1, . . . ,wn) ∈ Cn

0 . It follows from Theorem 5.4 in Chapter 2 of [43] that

Hn(u) = 1

n!
∫

C0

· · ·
∫

C0

det
[
KN

u (wi,wj )
]n
i,j=1

n∏
i=1

dwi

2πι
,

is analytic in u.
Finally, suppose K ′ ⊂ C \ R+ is compact and u ∈ K ′. Then from Hadamard’s inequality and our earlier estimate

on |KN
u (w,w′)| we know that

∣∣Hn(u)
∣∣ = 1

n!
∣∣∣∣
∫

C0

· · ·
∫

C0

det
[
KN

u (wi,wj )
]n
i,j=1

dwi

2πι

∣∣∣∣ ≤ 1

n!
(
t−1)n

nn/2C
(
K ′)n = Bn nn/2

n! .

The latter is absolutely summable, and since the absolutely convergent sum of analytic functions is analytic and K ′
was arbitrary, we conclude that 1 + ∑∞

n=1 Hn(u) = det(I + KN
u )L2(C0) is analytic in u on C \ R+. This suffices for

the proof. �

4. GUE asymptotics

In this section, we use the results from Section 3 to get formulas for the t -Laplace transform of t1−λ′
1 , with λ distributed

according to the Hall–Littlewood measure with parameters a, r, t ∈ (0,1) (see Section 2.3). Subsequently, we analyze
the formulas that we get in the limiting regime r → 1−, t ∈ (0,1) – fixed and obtain convergence to the Tracy–Widom
GUE distribution. In what follows, we will denote by Pa,r,t and Ea,r,t the probability distribution and expectation with
respect to the Hall–Littlewood measure with parameters a, r, t ∈ (0,1).

4.1. Fredholm determinant formula for Ea,r,t [ 1

((1−t)ut
−λ′

1 ;t)∞
]

In the following results, unless otherwise specified, det(I + K)L2(C) dentotes the absolutely convergent sum on the
RHS of (2.6) – see the discussion in Section 2.4.

Proposition 4.1. Suppose a, r, t ∈ (0,1) and let δ > 0 be such that a < (1 − δ). Then for u ∈ C \R+ one has that

Ea,r,t

[
1

((1 − t)ut−λ′
1; t)∞

]
= det(I + Ku)L2(C0)

. (4.1)

The contour C0 is a positively oriented piecewise smooth simple curve, contained in the closed annulus Aδ,t between
the 0-centered circles of radius t−1 and max(t−1(1 − δ/2), t−3/4). The kernel Ku(w,w′) is defined as

Ku

(
w,w′) = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
ds�(−s)�(1 + s)

(−u
(
t−1 − 1

))s
gw,w′

(
t s

)
, (4.2)

where

gw,w′
(
t s

) = 1

wt−s − w′
∞∏

j=0

(1 − arj (wt)−1)(1 − arj (wt)t−s)

(1 − arj (wt)−1t s)(1 − arj (wt))
.
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Remark 4.1. Proposition 4.1 will be the starting point for our asymptotic analysis in both the GUE and CDRP
cases. In the different limiting regimes, we will encounter different contours, which will be suitably picked contours
contained in Aδ,t .

Proof. We first prove the proposition when C0 is the positively oriented circle of radius t−1. The starting point is
Proposition 3.5, from which we see that whenever u /∈ R+ one has for every N ∈N

E
N
a,r,t

[
1

((1 − t)ut−λ′
1; t)∞

]
= det

(
I + KN

u

)
L2(C0)

.

Here E
N
a,r,t stands for the expectation with respect to the finite length Hall–Littlewood measure on partitions, corre-

sponding to xi = yi = ari−1 for i = 1, . . . ,N . The result would thus follow once we show that

1. limN→∞ E
N
a,r,t [ 1

((1−t)ut
−λ′

1 ;t)
] = Ea,r,t [ 1

((1−t)ut
−λ′

1 ;t)
].

2. limN→∞ det(I + KN
u )L2(C0)

= det(I + Ku)L2(C0)
.

Before we prove the above two statements let us remark that the two limiting quantities are indeed well-defined. The
fact that Ku is a trace-class operator on L2(C0) follows from Lemma 3.3. Next, we observe that if u /∈ R

+ then for
any n we have that 1

(ut−n;t)∞ is well defined and moreover there exists a constant M(u) such that | 1
(ut−n;t)∞ | ≤ M , for

all n. Consequently, we can define unambiguously the expectation Ea,r,t [ 1

((1−t)ut
−λ′

1 ;t)
] and it is a finite quantity.

We start with 1. Denote by P N
λ and QN

λ the N -length specialization of the Hall–Littlewood symmetric functions
with xi = yi = ari−1 for i = 1, . . . ,N and xi = yi = 0 for i > N (here N is a positive integer or ∞). Also let ZN be
the normalization constant, which in the above case equals

ZN =
N∏

i,j=1

1 − tari−1arj−1

1 − ari−1arj−1
– this is the Cauchy identity in (2.2).

We obtain

E
N
a,r,t

[
1

((1 − t)ut−λ′
1; t)∞

]
= 1

ZN

∑
λ∈Y

P N
λ QN

λ

1

((1 − t)ut−λ′
1; t)∞

.

One readily verifies that ZN ↗ Z∞, P N
λ ↗ P ∞

λ and QN
λ ↗ Q∞

λ as N → ∞. Thus from the Dominated Convergence
Theorem (with dominating function MP ∞

λ Q∞
λ ) we get

lim
N→∞

∑
λ∈Y

P N
λ QN

λ

1

((1 − t)ut−λ′
1; t)∞

=
∑
λ∈Y

P ∞
λ Q∞

λ

1

((1 − t)ut−λ′
1; t)∞

.

The latter implies that

lim
N→∞

1

ZN

∑
λ∈Y

P N
λ QN

λ

1

((1 − t)ut−λ′
1; t)∞

= 1

Z∞
∑
λ∈Y

P ∞
λ Q∞

λ

1

((1 − t)ut−λ′
1; t)∞

,

which concludes the proof of 1.
Next we turn to 2. Firstly, one readily observes that

gN
w,w′

(
t s

) → gw,w′
(
t s

)
, as N → ∞

and moreover we have

∣∣gN
w,w′

(
t s

)∣∣ ≤ 1

t−3/2 − t−1

∞∏
j=0

(1 + arj )(1 + arj t−1/2)

(1 − arj t1/2)(1 − arj )
= M < ∞,
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independently of N,w,w′. Recall from (3.17) that∣∣�(−s)�(1 + s)
(−(

t−1 − 1
)
u
)s∣∣ ≤ C exp

((|θ | − π
)|y|)r1/2,

where −(t−1 − 1)u = reιθ and s = 1/2 + ιy. It follows by the Dominated Convergence Theorem (with dominating
function MC exp((|θ | − π)|y|)r1/2) that

lim
N→∞KN

u

(
w,w′) = Ku

(
w,w′),

and moreover there exists a finite constant M2 (depending on u) such that |KN
u (w,w′)| ≤ M2 for all N,w,w′. Next

we have from the Bounded Convergence Theorem that for every n

lim
N→∞

1

n!
∫

C0

· · ·
∫

C0

det
[
KN

u (wi,wj )
]n
i,j=1

n∏
i=1

dwi

2πι
= 1

n!
∫

C0

· · ·
∫

C0

det
[
Ku(wi,wj )

]n
i,j=1

n∏
i=1

dwi

2πι
.

By Hadamard’s inequality we have that for each n the above is bounded (in absolute value) by
nn/2t−nMn

2
n! . Conse-

quently, by the Dominated Convergence Theorem we have that

lim
N→∞

∞∑
n=1

1

n!
∫

C0

· · ·
∫

C0

det
[
KN

u (wi,wj )
]n
i,j=1

n∏
i=1

dwi

2πι
=

∞∑
n=1

1

n!
∫

C0

· · ·
∫

C0

det
[
Ku(wi,wj )

]n
i,j=1

n∏
i=1

dwi

2πι
.

This concludes the proof of 2.
We next wish to extend the result to a more general class of contours. Let C be a positively oriented piecewise

smooth simple contour contained in the annulus, described in the statement of the proposition. What we have proved
so far is that

Ea,r,t

[
1

((1 − t)ut−λ′
1; t)∞

]
= 1 +

∞∑
n=1

1

n!
∫

C0

· · ·
∫

C0

det
[
Ku(wi,wj )

]n
i,j=1

n∏
i=1

dwi

2πι
, (4.3)

where the latter sum is absolutely convergent. One readily verifies that gw,w′(ts) is analytic in w,w′ on a neighborhood
of Aδ,t × Aδ,t and by the exponential decay of �(−s)�(1 + s)(−(t−1 − 1)u)s near 1/2 ± ι∞ the same is true for
Ku(w,w′). It follows that det[Ku(wi,wj )]ni,j=1 is analytic on a neighborhood of An

δ,t and by Cauchy’s theorem we
may deform the contours C0 in (4.3) to C, without changing the value of the integrals. This is the result we wanted. �

4.2. A formula suitable for asymptotics: GUE case

In this section we use Proposition 4.1 to derive an alternative t -Laplace transform, which is more suitable for asymp-
totic analysis in the GUE case. The following result makes references to two contours γW (A) and γZ(A), which
depend on a real parameter A ≥ 0, as well as a function Sa,r (·), which we define below.

Definition 4.1. For a parameter A ≥ 0 define

γW (A) = {−A|y| + ιy : y ∈ I
}

and γZ(A) = {
A|y| + ιy : y ∈ I

}
, where I = [−π,π].

The orientation is determined from y increasing in I .

Definition 4.2. For a, r ∈ (0,1) define

Sa,r (z) :=
∞∑

j=0

log
(
1 + arj ez

) −
∞∑

j=0

log
(
1 + arj e−z

)
.
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The function Sa,r plays a central role in our arguments and the properties that we will need are summarized in
Section 6. We isolate the most basic facts about Sa,r in a lemma below. The lemma appears again in Section 6 as
Lemma 6.1, where it is proved.

Lemma 4.1. Suppose that δ ∈ (0,1). Consider r ∈ (0,1) and a ∈ (0,1 − δ]. Then there exists �′(δ) > 0 such that
Sa,r (z) is well-defined and analytic on Dδ = {z ∈ C : |Re(z)| < �′} and satisfies

exp
(
Sa,r (z)

) =
∞∏

j=0

1 + arj ez

1 + arj e−z
. (4.4)

Proposition 4.2. Suppose a, r, t ∈ (0,1) and let δ > 0 be such that a < (1 − δ). If A > 0 is sufficiently small (depend-
ing on δ and t ) and γW (A) and γZ(A) are as in Definition 4.1, then for ζ ∈ C \R+ one has

Ea,r,t

[
1

(ζ t1−λ′
1; t)∞

]
= det(I − K̃ζ )L2(γW ).

The kernel K̃(W,W ′) has the integral representation

K̃ζ

(
W,W ′) = eW

2πι

∫
γZ(A)

dZ(−ζ )ft (Z,W)

eW ′ − eZ
Gζ,t (W,Z) exp

(
Sa,r (Z) − Sa,r (W)

)
. (4.5)

In the above formula, Sa,r is as in Definition 4.2 and we have

Gζ,t (W,Z) :=
∑
k∈Z

π(− log t)−1(−ζ )2πkι/(− log t)

sin(−πft (Z + 2πkι,W))
and ft (Z,W) := Z − W

− log t
. (4.6)

Proof. We consider the contour CA := {−t−1eιθ−A|θ | : θ ∈ [−π,π]}, which is a positively oriented piecewise smooth
contour. For A > 0 sufficiently small we know that CA is contained in the annulus Aδ,t in the statement of Proposi-
tion 4.1. Consequently, from (4.1) we know that

Ea,r,t

[
1

((1 − t)ut−λ′
1; t)∞

]
= 1 +

∞∑
n=1

1

n!
∫

CA

· · ·
∫

CA

det
[
Ku(wi,wj )

]n
i,j=1

n∏
i=1

dwi

2πι
,

where Ku(w,w′) is as in (4.2) and the above sum is absolutely convergent. The nth summand equals

1

n!
∫ π

−π

· · ·
∫ π

−π

det
[
Ku

(−t−1eιθi−A|θi |,−t−1eιθj −A|θj |)]n
i,j=1

n∏
i=1

−t−1eιθi−A|θi |(ι − A sign(θi)) dθi

2πι
.

Setting yi = ιθi − A|θi | the above becomes

(−1)n

n!
∫

γW (A)

· · ·
∫

γW (A)

det
[
t−1eyi Ku

(−t−1eyi ,−t−1eyj
)]n

i,j=1

n∏
i=1

dyi

2πι
.

To conclude the proof it suffices to show that for W,W ′ ∈ γW (A) and ζ = (t−1 − 1)u one has

t−1eWKu

(−t−1eW ,−t−1eW ′) = K̃ζ

(
W,W ′). (4.7)

Setting Z = (− log t)s + W , using the Euler Gamma reflection formula from (3.15) and recalling ft (Z,W) = Z−W
− log t

,
we see that the LHS of (4.7) equals

eW

2πι

∫ − log t
2 +W+ι∞

− log t
2 +W−ι∞

(− log t)−1π dZ

sin(−πft (Z,W))
(−ζ )ft (Z,W) 1

eW ′ − eZ

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )
.
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Fig. 12. If A is very small, no points of W + (− log t)Z fall between Aπ + ιR and − log t
2 + W + ιR, when W ∈ γW (A).

If W ∈ γW (A) we know that Re[− log t
2 + W ] ∈ [− log t

2 − πA,
− log t

2 ]. In addition, the only poles of the integrand
for Re(Z) > 0 come from 1

sin(−πft (Z,W))
and are located at W + (− log t)Z. This implies that if A is sufficiently small

we may shift the Z-contour so that it passes through the point Aπ , without crossing any poles of the integrand (see
Figure 12). The shift does not change the value of the integral by Cauchy’s theorem and the exponential decay of the
integrand near ±ι∞. Thus we get that the LHS of (4.7) equals

eW

2πι

∫ Aπ+ι∞

Aπ−ι∞
(− log t)−1π dZ

sin(−πft (Z,W))
(−ζ )ft (Z,W) 1

eW ′ − eZ

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )
.

The next observation is that eAπ+ιy is periodic in y with period T = 2π . Using this we see that the LHS of (4.7)
equals

eW

2πι

∑
k∈Z

∫ Aπ+ιT /2+ιkT

Aπ−ιT /2+ιkT

(− log t)−1π dZ

sin(−πft (Z,W))
(−ζ )ft (Z,W) 1

eW ′ − eZ

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )

= eW

2πι

∑
k∈Z

∫ Aπ+ιT /2

Aπ−ιT /2
dZ

(−ζ )ιkT /(− log t)(− log t)−1π

sin(−πft (Z + ιkT ,W))

(−ζ )ft (Z,W)

eW ′ − eZ

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )
.

Let (−ζ ) = reιθ with |θ | < π . Then, using a similar argument as in (3.17), we have for |k| ≥ 1∣∣∣∣ (−ζ )ιkT /(− log t)

sin(−πft (Z + ιkT ,W))

∣∣∣∣ =
∣∣∣∣ e−θkT /(− log t)

sin(−πft (Z + ιkT ,W))

∣∣∣∣ ≤ Ce|k|T (|θ |−π)/(− log t), (4.8)

where C is some positive constant, independent of Z and W , provided W ∈ γW (A), | Im(Z)| ≤ π and Re(Z) = Aπ .
We observe the latter is summable over k. Additionally, we have∣∣∣∣∣ (−ζ )ft (Z,W)

eW ′ − eZ

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )

∣∣∣∣∣ ≤ 1

eAπ − 1

∣∣∣∣∣(−ζ )ft (Z,W)
∞∏

j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )

∣∣∣∣∣,
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Fig. 13. If A is very small, no points of W + (− log t)Z fall between Aπ + ι[−π,π ] and γZ(A), when W ∈ γW (A).

and the latter is bounded by some constant M(ζ,B), provided Re(Z) = Aπ and W ∈ γW (A). By Fubini’s theorem,
we may change the order of the sum and the integral and get that LHS of (4.7) equals

eW

2πι

∫ Aπ+ιT /2

Aπ−ιT /2

dZ(−ζ )ft (Z,W)

eW ′ − eZ

[∑
k∈Z

π(− log t)−1(−ζ )ιkT /(− log t)

sin(−πft (Z + ιkT ,W))

] ∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )
.

From (4.8) we see that Gζ,t (W,Z), which is given by

π(− log t)−1

sin(−πft (Z,W))
+

∑
|k|≥1

π(− log t)−1(−ζ )ιkT /(− log t)

sin(−πft (Z + ιkT ,W))
,

is the sum of π(− log t)−1

sin(−πft (Z,W))
and an analytic function in Z in the region D = {Z ∈C : | Im(Z)| ≤ π and Re(Z) ≥ 0}. In

particular, the poles of Gζ,t (W,Z) in D are exactly at W + (− log t)N. If we now deform the contour [Aπ − ιπ,Aπ +
ιπ] to γZ(A) (see Figure 13) we will not cross any poles and from Cauchy’s theorem we will obtain that the LHS of
(4.7) equals

eW

2πι

∫
γZ(A)

dZ(−ζ )ft (Z,W)

eW ′ − eZ
Gζ,t (W,Z)

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )
.

From Lemma 4.1 (provided A is sufficiently small so that γZ(A), γW (A) ⊂ Dδ), we have that

∞∏
j=0

(1 + arj e−W)(1 + arj eZ)

(1 + arj e−Z)(1 + arj eW )
= exp

(
Sa,r (Z) − Sa,r (W)

)
.

Substituting this above we recognize the RHS of (4.7). �

4.3. Convergence of the t -Laplace transform (GUE case) and proof of Theorem 1.1

Here we state the regime, in which we scale parameters and obtain an asymptotic formula for Ea,r,t [ 1

(ζ t
1−λ′

1 ;t)∞
]. The

formula is analyzed below and used to prove Theorem 1.1. One key reason we are considering the t -Laplace transform
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is that it asymptotically behaves like the expectation of an indicator function. The latter (as will be shown carefully
below) allows one to obtain the limiting CDF of the properly scaled first column of a partition distributed according
to the Hall–Littlewood measure with parameters a, r, t and match it with FGUE (see Definition 1.3).

We summarize the limiting regime and some relevant expressions.

1. We will let r → 1− and keep t ∈ (0,1) fixed.
2. We assume that a depends on r and for some δ > 0 we have limr→1− a(r) = a(1) ∈ (0,1 − δ].
3. We denote by N(r) = 1

1−r
, M(r) = 2

∑∞
k=1 a(r)k

(−1)k+1

1−rk and α = [ a(1)

(1+a(1))2 ]−1/3.

For a given x ∈R set ζx = −tM(r)+xα−1N(r)1/3
. (4.9)

The following result is the key fact for the Tracy–Widom limit of the fluctuations of the first column of a partition
distributed according to Pa,r,t in the GUE case. It shows that under the scaling regime described above the Fredholm
determinant (and hence the t -Laplace transform) appearing in Proposition 4.2 converges to FGUE.

Theorem 4.1. Let x ∈ R be given and let ζx be given as in (4.9). If A > 0 is sufficiently small (depending on δ and t )
then

lim
r→1− det(I − K̃ζx )L2(γW (A)) = FGUE(x), (4.10)

where FGUE is the GUE Tracy–Widom distribution (see Definition 1.3), γW (A) is defined in Definition 4.1 and K̃ζx is
as in (4.5).

In what follows we prove Theorem 1.1, assuming the validity of Theorem 4.1, whose proof is postponed until the
next section.

We begin by summarizing the key results from our previous work as well as recalling a couple of lemmas from
the literature. From Proposition 4.2 and Theorem 4.1 we have that under the scaling described in the beginning of the
section and any x ∈ R

lim
r→1− Ea,r,t

[
1

(−tM(r)+α−1xN(r)1/3
t1−λ′

1; t)∞

]
= FGUE(x). (4.11)

Set ξr := αN(r)−1/3(λ′
1 − M(r)) and observe that (4.11) is equivalent to

lim
r→1− Ea,r,t

[
1

((−t) · t−[N(r)1/3α−1(ξr−x)]; t)∞

]
= FGUE(x). (4.12)

The function that appears on the LHS under the expectation in (4.12) has the following asymptotic property, which
was essentially proved in Lemma 5.1 of [26], and hence we skip the proof.

Lemma 4.2. Fix a parameter t ∈ (0,1). Then

fq(y) := 1

((−t) · tqy; t)∞ =
∞∏

k=1

1

1 + tqy+k
(4.13)

is increasing for all q > 0 and decreasing for all q < 0. For each δ > 0 one has fq(y) → 1{y>0} uniformly on
R \ [−δ, δ] as q → ∞.

We will also use the following elementary probability lemma (see e.g. Lemma 4.39 of [10]).

Lemma 4.3. Suppose that fn is a sequence of functions fn : R → [0,1], such that for each n, fn(y) is strictly
decreasing in y with a limit of 1 at y = −∞ and 0 at y = ∞. Assume that for each δ > 0 one has on R \ [−δ, δ],
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fn → 1{y<0} uniformly. Let Xn be a sequence of random variables such that for each x ∈ R

E
[
fn(Xn − x)

] → p(x),

and assume that p(x) is a continuous probability distribution function. Then Xn converges in distribution to a random
variable X, such that P(X < x) = p(x).

Proof of Theorem 1.1. Let rn be a sequence converging to 1− and set

fn(y) = 1

((−t) · t−[N(rn)1/3α−1y]; t)∞
and Xn = ξrn .

Lemma 4.2 shows that fn satisfy the conditions of Lemma 4.3 and from (4.12) we have that ξrn converges weakly
to the Tracy–Widom distribution. In particular, for each x ∈ R we have

lim
r→1− Pa,r,t (ξr ≤ x) = FGUE(x). (4.14)

Consider a(r) = r(1+|�τN(r)	|)/2. Since limr→1− rN(r) = e−1, we see that limr→1− a(r) = a(1) = e−|τ |/2 < 1
(whenever τ �= 0). This means that α−1 := [ a(1)

(1+a(1))2 ]1/3 = [ e−|τ |/2

(1+e−|τ |/2)2 ]1/3 =: χ−1. From Section 2.3 we conclude
that

P
r,t
HL

(
λ′

1(�τN(r)	) − M(r)

χ−1N(r)1/3
≤ x

)
= Pa,r,t

(
λ′

1 − M(r)

α−1N(r)1/3
≤ x

)
= Pa,r,t (ξr ≤ x). (4.15)

Combining (4.14) and (4.15) shows that if τ �= 0 one has

lim
r→1− P

r,t
HL

(
λ′

1(�τN(r)	) − M(r)

χ−1N(r)1/3
≤ x

)
= FGUE(x).

In (6.8) we will show that M(r) = 2N(r) log(1 + a(1)) + O(1) = 2N(r) log(1 + e−|τ |/2) + O(1). Substituting this
above concludes the proof of the theorem. �

4.4. Proof of Theorem 4.1

We split the proof of Theorem 4.1 into four steps. In the first step we rewrite the LHS of (4.10) in a suitable form for
the application of Lemmas 2.2 and 2.3. In the second step we verify the pointwise convergence and in the third step
we provide dominating functions, which are necessary to apply the lemmas. In the fourth step we obtain a limit for
the LHS of (4.10), subsequently we use a result from [12], to show that the limit we obtained is in fact FGUE.

In Steps 2 and 3 we will require some estimates, which we summarize in Lemmas 4.4 and 4.5 below. The proofs
are postponed until Section 6.

Lemma 4.4. Let A > 0 be sufficiently small. Then for all large N we have

Re
(
Sa,r (z) − M(r)z

) ≤ −cN |z|3 for all z ∈ γZ(A) and (4.16)

Re
(
Sa,r (z) − M(r)z

) ≥ cN |z|3 for all z ∈ γW (A). (4.17)

In the above c > 0 depends on A and δ. In addition, we have

Re
(
Sa,r (z) − M(r)z

) = O(1) if |z| = O
(
N−1/3) and (4.18)

lim
N→∞Sa,r

(
N−1/3u

) − M(r)N−1/3u = u3α−3/3 for all u ∈C. (4.19)
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Lemma 4.5. Let t, u,U ∈ (0,1) be given such that 0 < u < U < min(1,− log t/10). Suppose that z,w ∈ C are such
that Re(w) ∈ [−U,0], Re(z) ∈ [u,U ]. Then there exists a constant C > 0, depending on t such that the following hold

∣∣∣∣ 1

ez − ew

∣∣∣∣ ≤ Cu−1 and
∑
k∈Z

∣∣∣∣ 1

sin(−πft (z + 2πιk,w))

∣∣∣∣ ≤ Cu−1, where ft (z,w) = z − w

− log t
. (4.20)

Step 1. For A > 0 define γ ′
W(A) = {−A|y| + ιy : y ∈ R} and γ ′

Z(A) = {A|y| + ιy : y ∈ R}. Suppose A > 0 is
sufficiently small, so that Proposition 4.2 holds. We consider the change of variables zi = N1/3Zi and wi = N1/3Wi

and observe that the LHS of (4.10) can be rewritten as det(I − K̃N
x )L2(γ ′

W (A)), where

K̃N
x

(
w,w′) =

∫
γ ′
Z(A)

g
N,x
w,w′(z)

dz

2πι
, and

g
N,x
w,w′(z) = 1{max(| Im(w)|,| Im(w′)|,| Im(z)|)≤N1/3π}

eN−1/3wN−2/3

eN−1/3w′ − eN−1/3z
Gζx,t

(
N−1/3w,N−1/3z

)
(4.21)

× exp(Sa,r (N
−1/3z) − MN−1/3z − xα−1z)

exp(Sa,r (N−1/3w) − MN−1/3w − xα−1w)
.

We deform the contour γ ′
Z(A) inside the disc of radius A−1 so that it is still piecewise smooth and contained in

{z ∈C : Re(z) ≥ 1/2}. Observe that the poles of g
N,x
w,w′(z) in the right complex half-plane come from Gζx,t and are thus

located at least a distance of order N1/3 from the imaginary axis. The later implies that if we perform, a deformation
inside a disc of radius O(1) we will not cross any poles provided N is sufficiently large. In particular, our deformation
does not change the value of g

N,x
w,w′ for all large N by Cauchy’s theorem. We will continue to call the new contour by

γ ′
Z(A). Deforming the contour has the advantage of shifting integration away from the singularity point 0.

Step 2. Let us now fix w,w′ ∈ γ ′
W(A) and z ∈ γ ′

Z(A) and show that

lim
N→∞g

N,x
w,w′(z) = g

∞,x
w,w′(z), where g

∞,x
w,w′(z) := exp(α−3z3/3 − α−3w3/3 − xα−1z + xα−1w)

(w − z)(w′ − z)
. (4.22)

One readily observes that

lim
N→∞ eN−1/3w

1{max(| Im(w)|,| Im(w′)|,| Im(z)|)≤N1/3π}
N1/3(eN−1/3w′ − eN−1/3z)

= 1

w′ − z
. (4.23)

Using (4.19) we get

lim
N→∞

exp(Sa,r (N
−1/3z) − MN−1/3z − xα−1z)

exp(Sa,r (N−1/3w) − MN−1/3w − xα−1w)
= exp

(
α−3(z3/3 − w3/3

) − xα−1z + xα−1w
)
. (4.24)

From (4.6) we have

N−1/3Gζx,t

(
N−1/3w,N−1/3z

) = N−1/3
∑
k∈Z

π(− log t)−1(−ζx)
2πkι/(− log t)

sin(−πft (N−1/3z + 2πkι,N−1/3w))
. (4.25)

Using a similar argument as in (3.17) we see that for |k| ≥ 1 and all large N one has

∣∣∣∣ π(− log t)−1(−ζx)
2πkι/(− log t)

sin(−πft (N−1/3z + 2πkι,N−1/3w))

∣∣∣∣ ≤ Ce−2|k|π/(− log(t)).
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The latter is summable over |k| ≥ 1 and killed by N−1/3 in (4.25). We see that the only non-trivial contribution in
(4.25) comes from k = 0 and so

lim
N→∞N−1/3Gζx,t

(
N−1/3w,N−1/3z

) = lim
N→∞N−1/3 π(− log t)−1

sin(πN−1/3

− log t
(w − z))

= 1

w − z
. (4.26)

Equations (4.23), (4.24) and (4.26) imply (4.22).
Step 3. We now proceed to find estimates of the type necessary in Lemma 2.3 for the functions g

N,x
w,w′(z). If z is

outside of the disc of radius A−1 (so lies on the undeformed portion of γ ′
Z(A)) and | Im(z)| ≤ πN1/3 the estimates of

(4.16) are applicable (provided A is small enough) and so we obtain∣∣exp
(
Sa,r

(
N−1/3z

) − MN−1/3z − xα−1z
)∣∣ ≤ C exp

(−c|z|3 + ∣∣xα−1z
∣∣), (4.27)

where C,c are positive constants. Next suppose z is contained the disc of radius A−1 around the origin (i.e. lies on
the portion of γ ′

Z(A) we deformed). From (4.19) we know that Sa,r (N
−1/3z) − MN−1/3z is O(1). This implies that

| exp(Sa,r (N
−1/3z)−MN−1/3z−xα−1z)| is bounded and the estimate (4.27) continues to hold with possibly a bigger

C.
If w ∈ γ ′

W(A) and | Im(w)| ≤ πN1/3 the estimates of (4.17) are applicable (provided A is small enough) and we
obtain∣∣exp

(−Sa,r

(
N−1/3w

) + MN−1/3w + xα−1w
)∣∣ ≤ C exp

(−c|w|3 + ∣∣xα−1w
∣∣), (4.28)

for some C,c > 0.
If A is sufficiently small so that Aπ < min(1,− log t/10), then the estimates in Lemma 4.5 hold (with u =

(1/2)N−1/3 and U = Aπ ), provided max(| Im(w)|, | Im(w′)|, | Im(z)|) ≤ N1/3π , z ∈ γ ′
Z(A) and w′,w ∈ γ ′

W(A).
Consequently, for some positive constant C we have

∣∣∣∣ N−1/3

eN−1/3w′ − eN−1/3z
N−1/3Gζx,t

(
N−1/3w,N−1/3z

)∣∣∣∣ ≤ C. (4.29)

Observe that eN−1/3w = O(1) when | Im(w)| ≤ πN1/3 and w ∈ γ ′
W(A). Combining the latter with (4.27), (4.28)

and (4.29) we see that whenever max(| Im(w)|, | Im(w′)|, | Im(z)|) ≤ N1/3π , z ∈ γ ′
Z(A) and w′,w ∈ γ ′

W(A) we have

∣∣gN,x
w,w′(z)

∣∣ ≤ C exp
(−c|w|3 + ∣∣xα−1w

∣∣) exp
(−c|z|3 + ∣∣xα−1z

∣∣), (4.30)

where C,c are positive constants. Since g
N,x
w,w′(z) = 0 when max(| Im(w)|, | Im(w′)|, | Im(z)|) > N1/3π we see that

(4.30) holds for all z ∈ γ ′
Z(A) and w′,w ∈ γ ′

W(A).

Step 4. We may now apply Lemma 2.3 to the functions g
N,x
w,w′(z) with F1(w) = C exp(−c|w|3 +|xα−1w|) = F2(w)

and �1 = γ ′
W(A), �2 = γ ′

Z(A). Notice that the functions Fi are integrable on �i by the cube in the exponential. As
a consequence we see that if we set K̃∞

x (w,w′) := ∫
γ ′
Z(A)

g
∞,x
w,w′(z) dz

2πι
, then K̃N

x and K̃∞
x satisfy the conditions of

Lemma 2.2, from which we conclude that

lim
r→1− det(I − K̃ζx )L2(γW (A)) = det

(
I − K̃∞

x

)
L2(γ ′

W (A))
. (4.31)

What remains to be seen is that det(I − K̃∞
x )L2(γ ′

W (A)) = FGUE(x).

We have that det(I − K̃∞
x )L2(γ ′

W ) = 1 + ∑∞
n=1

(−1)n

n! H(n), where

H(n) =
∑
σ∈Sn

sign(σ )

∫
γ ′
W

· · ·
∫

γ ′
W

∫
γ ′
Z

· · ·
∫

γ ′
Z

n∏
i=1

exp(α−3Z3
i /3 − α−3W 3

i /3 − xα−1Zi + xα−1Wi)

(Wi − Zi)(Wσ(i) − Zi)

dWi

2πι

dZi

2πι
.
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Consider the change of variables zi = α−1Zi , wi = α−1Wi . Then we have

H(n) =
∑
σ∈Sn

sign(σ )

∫
γ ′
W

· · ·
∫

γ ′
W

∫
γ ′
Z

· · ·
∫

γ ′
Z

n∏
i=1

exp(z3
i /3 − w3

i /3 − xzi + xwi)

(wi − zi)(wσ(i) − zi)

dwi

2πι

dzi

2πι
.

Consequently, we see that det(I − K̃∞
x )L2(γ ′

W ) = det(I + K̃Ai)L2(γ ′
W ), where

K̃Ai
(
w,w′) =

∫
γ ′
Z

exp(z3/3 − w3/3 − xz + xw)

(w − z)(z − w′)
dz

2πι
. (4.32)

The proof of Lemma C.1 in [12] can now be repeated verbatim to show that det(I + K̃Ai)L2(γ ′
W ) = det(I −

KAi)L2(x,∞) = FGUE(x).

5. CDRP asymptotics

In this section, we obtain alternative formulas for the t -Laplace transform of t1−λ′
1 , with λ distributed according to the

Hall–Littlewood measure with parameters a, r, t ∈ (0,1) (see Section 2.3), which are more suitable for asymptotics
in the CDRP case. Subsequently, we analyze the formulas that we get in the limiting regime r, t → 1−, and prove
Theorem 1.2. In what follows, we will denote by Pa,r,t and Ea,r,t the probability distribution and expectation with
respect to the Hall–Littlewood measure with parameters a, r, t ∈ (0,1).

5.1. A formula suitable for asymptotics: CDRP case

In this section we use Proposition 4.1 to derive an alternative representation for Ea,r,t [ 1

(ζ t
1−λ′

1 ;t)∞
]. In what follows we

will make reference to the following contours.

Definition 5.1. For t ∈ (0,1) define

γ t− = {−1/4 + ιy : y ∈ [−π(− log t)−1,π(− log t)−1]},
γ t+ = {

1/4 + ιy : y ∈ [−π(− log t)−1,π(− log t)−1]},
γ− = {−1/4 + ιy : y ∈ R} and γ+ = {1/4 + ιy : y ∈R}.

All contours are oriented upward.

The following proposition is very similar to Proposition 4.2 and will be the starting point of our proof of Theo-
rem 1.2 the same way Proposition 4.2 was the starting point of the proof of Theorem 1.1.

Proposition 5.1. Suppose a, r, t ∈ (0,1) and let δ > 0 be such that a < (1 − δ). If t is sufficiently close to 1− then for
ζ ∈ C \R+ one has

Ea,r,t

[
1

(ζ t1−λ′
1; t)∞

]
= det(I − K̂ζ )L2(γ t−).

The kernel K̂ζ (W,W ′) has the integral representation

K̂ζ

(
W,W ′) = t−W

2πι

∫
γ t+

Gζ (W,Z)
(− log t)(−ζ )Z−W dZ

t−W ′ − t−Z

exp(Sa,r ((− log t)Z))

exp(Sa,r ((− log t)W))
, (5.1)

where Gζ (W,Z) = ∑
k∈Z

π(−ζ )−2πkι/ log t

sin(π(W−Z+2πkι/ log t))
, and the contours γ t− and γ t+ are as in Definition 5.1.
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Proof. We consider the contour C := {−t−3/4eιθ : θ ∈ [−π,π]}, which is a positively oriented smooth contour, con-
tained in the annulus Aδ,t in the statement of Proposition 4.1 for t sufficiently close to 1−. Consequently, from (4.1)
we know that

Ea,r,t

[
1

((1 − t)ut−λ′
1; t)∞

]
= 1 +

∞∑
n=1

1

n!
∫

C

· · ·
∫

C

det
[
Ku(wi,wj )

]n
i,j=1

n∏
i=1

dwi

2πι
,

where Ku(w,w′) is as in (4.2) and the above sum is absolutely convergent. The nth summand equals

1

n!
∫ π

−π

· · ·
∫ π

−π

det
[
Ku

(−t−3/4eιθi ,−t−3/4eιθj
)]n

i,j=1

n∏
i=1

−t−3/4ιeιθi dθi

2πι
.

Setting yi = (−1/4) + ιθi/(− log t), the above becomes

(−1)n

n!
∫

γ t−
· · ·

∫
γ t−

det
[
Ku

(−t−3/4t−yi−1/4,−t−3/4t−yj −1/4)]n
i,j=1

n∏
i=1

t−3/4t−yi−1/4(− log t) dyi

2πι
,

which can be rewritten as

(−1)n

n!
∫

γ t−
· · ·

∫
γ t−

det
[
(− log t)t−1t−yi Ku

(−t−1t−yi ,−t−1t−yj
)]n

i,j=1

n∏
i=1

dyi

2πι
,

and the latter is still absolutely summable over n.
To conclude the proof it suffices to show that for W,W ′ ∈ γ t− and ζ = (t−1 − 1)u one has

(− log t)t−1t−WKu

(−t−1t−W,−t−1t−W ′) = K̂ζ

(
W,W ′). (5.2)

We observe that the LHS of (5.2) equals

(− log t)t−1t−W

2πι

∫ 1/2+ι∞

1/2−ι∞
ds

�(−s)�(1 + s)(−ζ )s

t−1t−W ′ − t−1t−W t−s

∞∏
j=0

(1 + arj tW )(1 + arj t−W t−s)

(1 + arj tW ts)(1 + arj t−W)
.

We set Z = s + W , and use that Re(W) = − 1
4 for W ∈ γ t− together with Euler’s Gamma reflection formula (3.15) to

see that the above equals

t−W

2πι

∫
γ+

πdZ

sin(π(W − Z))

(− log t)(−ζ )Z−W

t−W ′ − t−Z

∞∏
j=0

(1 + arj tW )(1 + arj t−Z)

(1 + arj tZ)(1 + arj t−W)
.

We observe that t ιs is periodic in s with period T = 2π
− log t

. This allows us to rewrite the above formula as

∑
k∈Z

t−W

2πι

∫
γ t+

π(−ζ )ιkT

sin(π(W − ιkT − Z))

(− log t)(−ζ )Z−W dZ

t−W ′ − t−Z

∞∏
j=0

(1 + arj tW )(1 + arj t−Z)

(1 + arj tZ)(1 + arj t−W)
.

Let (−ζ ) = reιθ with |θ | < π . Then, using a similar argument as in (3.17), we have for |k| ≥ 1∣∣∣∣ π(−ζ )ιkT

sin(π(W + ιkT − Z))

∣∣∣∣ =
∣∣∣∣ πe−θkT

sin(π(W + ιkT − Z))

∣∣∣∣ ≤ Ce|k|T (|θ |−π), (5.3)

where C is some positive constant, independent of Z and W , provided Z ∈ γ t+ and W ∈ γ t−. The latter is clearly
summable over k, which allows us to change the order of the sum and the integrals above and conclude that the LHS
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of (5.2) equals

t−W

2πι

∫
γ t+

[∑
k∈Z

π(−ζ )ιkT

sin(π(W + ιkT − Z))

]
(− log t)(−ζ )Z−W dZ

t−W ′ − t−Z

∞∏
j=0

(1 + arj tW )(1 + arj t−Z)

(1 + arj tZ)(1 + arj t−W)
.

From Lemma 4.1 we have that if t is sufficiently close to 1 (so that (− log t)z ∈ Dδ when |Re(z)| = 1/4) we have

∞∏
j=0

(1 + arj tW )(1 + arj t−Z)

(1 + arj tZ)(1 + arj t−W)
= exp(Sa,r ((− log t)Z))

exp(Sa,r ((− log t)W))
.

Substituting this above we see that the LHS of (5.2) equals

t−W

2πι

∫
γ t+

[∑
k∈Z

π(−ζ )ιkT

sin(π(W + ιkT − Z)

]
(− log t)(−ζ )Z−W dZ

t−W ′ − t−Z

exp(Sa,r ((− log t)Z))

exp(Sa,r ((− log t)W))
,

which equals the RHS of (5.2) once we identify the sum in the square brackets with Gζ (W,Z). �

5.2. Convergence of the t -Laplace transform (CDRP case) and proof of Theorem 1.2

Here we state the regime, in which we scale parameters and obtain an asymptotic formula for Ea,r,t [ 1

(ζ t
1−λ′

1 ;t)∞
] in the

CDRP case. The formula is analyzed below and used to prove Theorem 1.2. In the CDRP case the t -Laplace transform
asymptotically behaves like the usual Laplace transform. The latter (as will be shown carefully below) allows one to
obtain the limiting CDF of the properly scaled first column of a partition distributed according to the Hall–Littlewood
measure with parameters a, r, t and match it with FCDRP (see Definition 1.3).

We summarize the limiting regime and some relevant expressions.

1. We fix a positive parameter κ and let r → 1− and t → 1− so that κ = − log t

(1−r)1/3 .
2. We assume that a depends on r and for some δ > 0 we have limr→1− a(r) = a(1) ∈ (0,1 − δ].
3. We denote by N(r) = 1

1−r
, M(r) = 2

∑∞
k=1(−1)k+1a(r)k 1

1−rk and α = [ a(1)

(1+a(1))2 ]−1/3.

For a given x ∈R set ζx = −tM(r)−xκ−1N(r)1/3
. (5.4)

The following result is the key fact for the limiting fluctuations of the first column of a partition distributed ac-
cording to the Hall–Littlewood measure with parameters a, r, t in the CDRP case. It shows that under the scaling
regime described above the Fredholm determinant (and hence the t -Laplace transform) appearing in Proposition 5.1
converges to the Laplace transform of F(T ,0) + T/24 (see Definition 1.3 and equation (1.8)). The latter, as demon-
strated below, implies convergence of the usual Laplace transforms and leads to a weak convergence necessary for the
proof of Theorem 1.2.

Theorem 5.1. Let x ∈R be given and let ζx be given as in (5.4). Then we have

lim
r→1− det(I − K̂ζx )L2(γ t−) = det(I − KCDRP)L2(R+), (5.5)

where KCDRP is given in (1.9) with T = 2κ3α−3, γ t− is as in Definition 5.1, and K̂ζx is as in (5.1).

In what follows we prove Theorem 1.2, assuming the validity of Theorem 5.1, whose proof is postponed until the
next section.

We begin by summarizing the key results from our previous work that we will use as well as stating a couple of
lemmas. From Proposition 5.1 and Theorem 5.1 we have that under the scaling described in the beginning of this
section and any x ∈ R

lim
r→1− Ea,r,t

[
1

((−t) · tM(r)−κ−1xN(r)1/3
t−λ′

1; t)∞

]
= det(I − KCDRP)L2(R+). (5.6)
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Set ξ̂r := (− log t)(λ′
1 − M(r)) − log(1 − t) and observe that (5.6) is equivalent to

lim
r→1− Ea,r,t

[
1

((−t)(1 − t) · eξ̂r+x; t)∞

]
= det(I − KCDRP)L2(R+). (5.7)

The function that appears on the LHS under the expectation in (5.7) has the following asymptotic property.

Lemma 5.1. For t ∈ (0,1) and x ≥ 0 let

gt (x) := 1

((−t)(1 − t)x; t)∞ =
∞∏

k=1

1

1 + (1 − t)xtk
. (5.8)

Then gt (x) → e−x uniformly on R≥0 as t → 1−.

Proof. From the monotonicity of gt (x) and e−x it suffices to show the result only for compact subsets of R≥0. Using
(10.2.7) in [3] one has that 1

(−(1−t)x;t)∞ → e−x uniformly on compact subsets of R≥0 as t → 1−. Consequently,

gt (x) = 1 + (1 − t)x

(−(1 − t)x; t)∞ = 1

(−(1 − t)x; t)∞ + (1 − t)x

(−(1 − t)x; t)∞
also converges uniformly to e−x on compact subsets R≥0 as t → 1−. �

We will use the following elementary probability lemma.

Lemma 5.2. Suppose that fn is a sequence of functions, fn : R≥0 → [0,1], such that fn(x) → e−x uniformly on
R≥0. Let Xn be a sequence of non-negagive random variables such that for each c > 0 one has

lim
n→∞E

[
fn(cXn)

] = p(c),

and assume that p(c) = E[e−cX] for some non-negative random variable X. Then we have

lim
n→∞E

[
e−cXn

] = E
[
e−cX

]
.

In particular, Xn converges in distribution to X as n → ∞.

Proof. Let ε > 0 be given. We observe that∣∣E[
e−cXn

] −E
[
fn(cXn)

]∣∣ ≤ E
[∣∣e−cXn − fn(cXn)

∣∣] ≤ sup
x∈R≥0

∣∣e−x − fn(x)
∣∣ → 0 as n → ∞.

In the second inequality we used that Xn are non-negative and the last statement holds by assumption. It follows
that for every c > 0 limn→∞ E[e−cXn ] = E[e−cX], which implies Xn converges to X in distribution by Theorem 4.3
in [29]. �

Proof of Theorem 1.2. Let rn be a sequence converging to 1− and set tn so that (− log tn) = κ(1 − rn)
1/3. Define

fn(x) = 1

((−tn)(1 − tn) · x; tn)∞ and Xn = eξ̂rn .

Lemma 5.1 shows that fn satisfy the conditions of Lemma 5.2. In addition, recall that by (1.8) we have

det(I − KCDRP)L2(R+) = E
[
e−ex exp(F(T ,0)+T/24)

]
,
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where F is as in Definition 1.3 and T = 2κ3α−3. Consequently, Lemma 5.2 and (5.7) show that for x ∈ R one has

lim
n→∞Ea,rn,tn

[
e−ex exp(ξ̂rn )

] = E
[
e−ex exp(F(T ,0)+T/24)

]
. (5.9)

In particular, exp(ξ̂r ) converges weakly to exp(F(T ,0)+T/24) = eT/24Z(T ,0). In [35] it was shown that Z(T ,0)

is a.s. positive and has a smooth density, thus we conclude that for each x ∈ R+ we have

lim
r→1− Pa,r,t

(
exp(ξ̂r ) ≤ x

) = P
(
exp

(
F(T ,0) + T/24

) ≤ x
)
.

Taking logarithms we see that for each x ∈R we have

lim
r→1− Pa,r,t (ξ̂r ≤ x) = P

(
F(T ,0) + T/24 ≤ x

)
. (5.10)

Consider a(r) = r(1+|�τN(r)	|)/2. Since, limr→1− rN(r) = e−1, we see that limr→1− a(r) = a(1) = e−|τ |/2 < 1
(whenever τ �= 0). This means that α−1 := [ a(1)

(1+a(1))2 ]1/3 = [ e−|τ |/2

(1+e−|τ |/2)2 ]1/3 =: χ−1. From Section 2.3 we conclude
that

P
r,t
HL

(
λ′

1(�τN(r)	) − M(r)

χ−1N(r)1/3(T /2)−1/3
+ log

(
N(r)1/3χ−1(T /2)−1/3) ≤ x

)

= Pa,r,t

(
λ′

1 − M(r)

α−1N(r)1/3(T /2)−1/3
+ log

(
N(r)1/3α−1(T /2)−1/3) ≤ x

)
.

The latter implies (as κ = (T /2)1/3α) that

P
r,t
HL

(
λ′

1(�τN(r)	) − M(r)

χ−1N(r)1/3(T /2)−1/3
+ log

(
N(r)1/3χ−1(T /2)−1/3) ≤ x

)
= Pa,r,t

(
ξ̂r + log

(
(1 − t)κ−1N(r)1/3) ≤ x

)
.

One observes that (1 − t)κ−1N(r)1/3 = 1−t
− log t

→ 1 as r → 1− and so from (5.10) we conclude that

lim
r→1− P

r,t
HL

(
λ′

1(�τN(r)	) − M(r)

χ−1N(r)1/3(T /2)−1/3
+ log

(
N(r)1/3χ−1(T /2)1/3) ≤ x

)
= P

(
F(T ,0) + T/24 ≤ x

)
.

From (6.8) we have c1 = M(r) = 2N(r) log(1 + a(1)) + O(1) = 2N(r) log(1 + e−|τ |/2) + O(1). Substituting this
above concludes the proof of the theorem. �

5.3. Proof of Theorem 5.1

We split the proof of Theorem 5.1 into three steps. In the first step we rewrite the LHS of (5.5) in a suitable form for
the application of Lemmas 2.2 and 2.3 and identify the pointwise limit of the integrands. In the second step we provide
dominating functions, which are necessary to apply the lemmas. In the third step we obtain a limit for the LHS of
(5.5), subsequently we use a result from [12], to show that the limit we obtained is in fact det(I − KCDRP)L2(R+).

In Steps 1 and 2 we will require some estimates, which we summarize in Lemmas 5.3 and 5.4 below. The proofs
are postponed until Section 6.

Lemma 5.3. Let t be sufficiently close to 1−. Then for all large N we have

Re
(
Sa,r

(
(− log t)z

) − M(r)(− log t)z
) ≤ C − c|z|2 for all z ∈ γ t+ and (5.11)

Re
(
Sa,r

(
(− log t)z

) − M(r)(− log t)z
) ≥ c|z|2 − C for all z ∈ γ t−. (5.12)

In the above C,c > 0 depends on δ. In addition, we have

lim
N→∞Sa,r

(
(− log t)u

) − M(r)(− log t)u = u3κ3α−3/3 for all u ∈C. (5.13)
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Lemma 5.4. Let t ∈ (1/2,1). Then we can find a universal constant C such that∣∣∣∣ 1

ez − ew

∣∣∣∣ ≤ C and
∑
k∈Z

∣∣∣∣ 1

sin(π(w − 2πkι
− log t

− z))

∣∣∣∣ ≤ C when Re(z) = 1/4 and Re(w) = −1/4. (5.14)

Step 1. Observe that the LHS of (5.5) can be rewritten as det(I − K̂N
x )L2(γ−), where

K̂N
x

(
w,w′) =

∫
γ+

g
N,x
w,w′(z)

dz

2πι
, and

g
N,x
w,w′(z) = 1{max(| Im(w)|,| Im(w′)|,| Im(z)|)≤(− log t)−1π}

× t−wGζx (w, z)
(− log t)

t−w′ − t−z

exp(Sa,r ((− log t)z) + M(log t)z + xz)

exp(Sa,r ((− log t)w) + M(log t)w + xw)
.

(5.15)

Let us now fix w,w′ ∈ γ− and z ∈ γ+ and show that

lim
N→∞g

N,x
w,w′(z) = g

∞,x
w,w′(z), where g

∞,x
w,w′(z) := π

sin(π(z − w))

1

z − w′
exp(α−3κ3z3/3 + xz)

exp(α−3κ3w3/3 + xw)
. (5.16)

One readily observes that

lim
N→∞ t−w1{max(| Im(w)|,| Im(w′)|,| Im(z)|)≤(− log t)−1π}

(− log t)

t−w′ − t−z
= 1

w′ − z
. (5.17)

Using (5.13) we get

lim
N→∞

exp(Sa,r ((− log t)z) + M(log t)z + xz)

exp(Sa,r ((− log t)w) + M(log t)w + xw)
= exp(α−3κ3z3/3 + xz)

exp(α−3κ3w3/3 + xw)
. (5.18)

From the definition of Gζx we have

Gζx (w, z) =
∑
k∈Z

π(−ζx)
2πkι/(− log t)

sin(π(w − z + 2πkι/ log t))
. (5.19)

Using a similar argument as in (3.17) we see that for |k| ≥ 1 and all large N one has∣∣∣∣ π(−ζx)
2πkι/(− log t)

sin(π(w − z + 2πkι/ log t))

∣∣∣∣ ≤ Ce−2|k|π2/(− log t).

The latter is summable over |k| ≥ 1 and since 1/(− log t) goes to infinity the sum goes to 0. We see that the only
non-trivial contribution in (5.19) comes from k = 0 and so

lim
N→∞Gζx (w, z) = lim

N→∞
π

sin(π(w − z))
= π

sin(π(w − z))
. (5.20)

Equations (5.17), (5.18) and (5.20) imply (5.16).
Step 2. We now proceed to find estimates of the type necessary in Lemma 2.3 for the functions g

N,x
w,w′(z). If z ∈ γ+

and | Im(z)| ≤ π(− log t)−1 the estimates of (5.11) are applicable and so we obtain∣∣exp
(
Sa,r

(
(− log t)z

) + M(log t)z + xz
)∣∣ ≤ C exp

(−c|z|2 + |xz|), (5.21)

where C,c are positive constants.
If w ∈ γ− and | Im(w)| ≤ π(− log t)−1 the estimates of (5.12) are applicable and we obtain∣∣exp

(−Sa,r

(
(− log t)w

) − M(log t)w − xw
)∣∣ ≤ C exp

(−c|w|2 + |xw|), (5.22)
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for some C,c > 0.
From Lemma 5.4 we have for some C > 0 that∣∣∣∣Gζx (w, z)

(− log t)

t−w′ − t−z

∣∣∣∣ ≤ C. (5.23)

Observe that t−w = O(1) when | Im(w)| ≤ π(− log t)−1 and w ∈ γ−. Combining the latter with (5.21), (5.22) and
(5.23) we see that whenever max(| Im(w)|, | Im(w′)|, | Im(z)|) ≤ (− log t)−1π , z ∈ γ+ and w′,w ∈ γ− we have∣∣gN,x

w,w′(z)
∣∣ ≤ C exp

(−c|w|2 + |xw|) exp
(−c|z|2 + |xz|), (5.24)

where C,c are positive constants. Since g
N,x
w,w′(z) = 0 when max(| Im(w)|, | Im(w′)|, | Im(z)|) > (− log t)−1π we see

that (5.24) holds for all z ∈ γ+ and w′,w ∈ γ+.
Step 3. We may now apply Lemma 2.3 to the functions g

N,x
w,w′(z) with F1(w) = C exp(−c|w|2 +|xw|) = F2(w) and

�1 = γ−, �2 = γ+. Notice that the functions Fi are integrable on �i by the square in the exponential. As a consence
we see that if we set K̂∞

x (w,w′) := ∫
γ− g

∞,x
w,w′(z) dz

2πι
, then K̂N

x and K̃∞
x satisfy the conditions of Lemma 2.2, from

which we conclude that

lim
r→1− det(I − K̂ζx )L2(γ t−) = det

(
I − K̂∞

x

)
L2(γ−)

. (5.25)

What remains to be seen is that det(I − K̃∞
x )L2(γ−) = det(I − KCDRP)L2(R+).

We have that det(I − K̃∞
x )L2(γ−) = 1 + ∑∞

n=1
(−1)n

n! H(n), where

H(n) =
∑
ρ∈Sn

sign(ρ)

∫
γ−

· · ·
∫

γ−

∫
γ+

· · ·
∫

γ+

n∏
i=1

πeα−3κ3Z3
i /3−κ3α−3W 3

i /3+xZi−xWi

sin(π(Zi − Wi))(Zi − Wρ(i))

dWi

2πι

dZi

2πι
.

Put σ = ακ−1 and consider the change of variables zi = σ−1Zi , wi = σ−1Wi . Then we have

H(n) =
∑
ρ∈Sn

sign(ρ)

∫
−1
4σ

+ιR

· · ·
∫

−1
4σ

+ιR

∫
1

4σ
+ιR

· · ·
∫

1
4σ

+ιR

n∏
i=1

σπez3
i /3−w3

i /3+σxzi−σxwi

sin(σπ(zi − wi))(zi − wρ(i))

dwi

2πι

dzi

2πι
.

Consequently, we see that det(I − K̂∞
x )L2(γ−) = det(I + K̂CDRP)

L2( −1
4 +ιR)

, where

K̂CDRP
(
w,w′) = −1

2πι

∫
1

4σ
+ιR

dz
σπeσx(z−w)

sin(σπ(z − w))

ez3/3−w3/3

z − w′ . (5.26)

Finally, det(I + K̂CDRP)
L2( −1

4 +ιR)
= det(I − KCDRP)L2(R+) from Lemma C.3 in [12].

6. The function Sa,r

In this section we isolate some of the more technical results that were implicitly used in the proofs of Theorems 1.1 and
1.2. We start by summarizing some of the analytic properties of the function Sa,r (see Definition 4.2). Subsequently,
we identify different ascent/descent contours and analyze the real part of the function along them. We finish with
several estimates that played a central role in the proofs of Theorems 4.1 and 5.1.

6.1. Analytic properties

We summarize some of the properties of Sa,r in a sequence of lemmas. For the reader’s convenience we recall the
definition of Sa,r .

Sa,r (z) :=
∞∑

j=0

log
(
1 + arj ez

) −
∞∑

j=0

log
(
1 + arj e−z

)
, where a, r ∈ (0,1).
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Lemma 6.1. Suppose that δ ∈ (0,1). Consider r ∈ (0,1) and a ∈ (0,1 − δ]. Then there exists �′(δ) > 0 such that
Sa,r (z) is well-defined and analytic on Dδ = {z ∈ C : |Re(z)| < �′} and satisfies

exp
(
Sa,r (z)

) =
∞∏

j=0

1 + arj ez

1 + arj e−z
. (6.1)

Proof. We let �′ > 0 be such that (1 − δ)e�′
< 1. Since r ∈ (0,1), we have that |arj e±z| < 1 for z ∈ Dδ and j ≥ 0.

Consequently, log(1 + arj e±z) is a well-defined analytic function on Dδ for each j ≥ 0. Since arj e±z is absolutely
summable over j ≥ 0 a standard argument in complex analysis shows Sa,r (z) is analytic on Dδ and satisfies (6.1) –
see e.g. Proposition 3.1 in Chapter 5 of [43]. �

Lemma 6.2. Assume the notation in Lemma 6.1. Then Sa,r (z) is an odd function on Dδ and the power series expansion
of Sa,r (z) near zero has the form

Sa,r = c1z + c3z
3 + · · · , where c2l+1 = 2

(1 − r)(2l + 1)!
∞∑

k=1

k2l (−1)k+1ak 1 − r

1 − rk
∈R. (6.2)

Moreover, for each l ≥ 1 one has that

c2l+1 ≤ 1

(1 − r)δ2l+1
. (6.3)

Proof. The fact that Sa,r is odd follows from its definition and Lemma 6.1. Next we consider G(z) = ∑∞
j=0 log(1 +

arj ez). On Dδ we have that |arj ez| < 1 so we can use the power-series expansion for log(1 + x) to get

∞∑
j=0

log
(
1 + arj ez

) =
∞∑

j=0

∞∑
k=1

(−1)k+1

k

(
arj

)k
ekz.

Power-expanding the exponential, the above becomes

∞∑
j=0

∞∑
k=1

∞∑
m=0

1

m!
(−1)k+1

k

(
arj

)k
kmzm. (6.4)

We will show that the above sum is absolutely convergent (provided |z| is sufficiently small), which would allow us
to freely rearrange the sum.

Consider f (x) = 1
1−x

= ∑
j≥0 xj for |x| < 1. We know that for |x| < 1 and m ≥ 0 we have

f (m)(x) =
∑
j≥0

(j + m)(j + m − 1) · · · (j + 1)xj , and f (m)(x) = m!
(1 − x)m+1

.

Putting x = a we see that

∞∑
k=1

akkm−1 ≤
∞∑

k=1

akkm ≤
∑
k≥1

(k + m) · · · (k + 1)ak <
m!

(1 − a)m+1
. (6.5)

The latter shows that

∞∑
m=0

∞∑
k=1

∞∑
j=0

(arj )kkm|z|m
km! ≤ 1

1 − r

∞∑
m=0

∞∑
k=1

km−1|z|m
m! ak <

1

1 − r

∞∑
m=0

|z|m
(1 − a)m+1

,

and the leftmost expression is finite for small enough |z|.
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Rearranging (6.4) we see that the coefficient in front of zm in G(z) is 1
m!

∑∞
k=1

∑∞
j=0

(−1)k+1

k
(arj )kkm. Since

Sa,r (z) = G(z) − G(−z) we see that the even coefficients of Sa,r (z) are zero, while the odd ones equal

c2l+1 = 2

(2l + 1)!
∞∑

k=1

∞∑
j=0

(−1)k+1

k

(
arj

)k
k2l+1 = 2

(1 − r)(2l + 1)!
∞∑

k=1

k2l (−1)k+1ak 1 − r

1 − rk
.

For the second part of the lemma observe that∣∣∣∣∣
∞∑

k=1

k2l (−1)k+1ak 1 − r

1 − rk

∣∣∣∣∣ ≤
∞∑

k=1

k2lak <
(2l)!

(1 − a)2l+1
,

where in the last inequaity we used (6.5). If l ≥ 1 and a ∈ (0,1 − δ] we conclude that

|c2l+1| ≤ 2

(1 − r)(2l + 1)!
(2l)!

(1 − a)2l+1
≤ 1

(1 − r)δ2l+1
. �

Lemma 6.3. Let c1 and c3 be as in Lemma 6.2. Also suppose that a, depends on r and limr→1− a(r) = a(1) ∈
(0,1 − δ]. Then

lim
r→1−(1 − r)c1 = 2 log

(
1 + a(1)

)
and lim

r→1−(1 − r)c3 = 1

3

a(1)

(1 + a(1))2
. (6.6)

Proof. From Lemma 6.2 we know that c1 = 2
1−r

∑∞
k=1(−1)k+1a(r)k 1−r

1−rk . Consequently,

lim
r→1−(1 − r)c1 = 2 lim

r→1−

∞∑
k=1

(−1)k+1a(r)k
1 − r

1 − rk
= 2

∞∑
k=1

(−1)k+1 a(1)k

k
= 2 log

(
1 + a(1)

)
,

where the middle equality follows from the Dominated Convergence Theorem with dominating function (1 − δ/2)k .
Similarly, we have c3 = 1

3(1−r)

∑∞
k=1 k2(−1)k+1a(r)k 1−r

1−rk . Consequently,

lim
r→1−(1 − r)c3 = 1

3
lim

r→1−

∞∑
k=1

k2(−1)k+1a(r)k
1 − r

1 − rk
= 1

3

∞∑
k=1

k(−1)k+1a(1)k = 1

3

a(1)

(1 + a(1))2
,

where the middle equality follows from the Dominated Convergence Theorem with dominating function k2(1 −
δ/2)k . �

Lemma 6.4. Let c1 and c3 be as in Lemma 6.2. Let τ ∈R \ {0} and suppose a(r) = exp(log r(1/2 + 1
2 |� τ

1−r
	|)), then

lim
r→1−(1 − r)c1 = 2 log

(
1 + e−|τ |/2) and lim

r→1−(1 − r)c3 = 1

3

e−|τ |/2

(1 + e−|τ |/2)2
. (6.7)

Moreover, one has

c1 − 2 log(1 + e−|τ |/2)

1 − r
= O(1), where the constant depends on τ . (6.8)

Proof. Using that r
1

1−r → e−1 as r → 1− we see that a(1) = limr→1− a(r) = e−|τ |/2. (6.7) now follows from Lemma
6.3. We can rewrite

c1 − 2 log(1 + a(1))

1 − r
= I1 + I2, where I1 = 2

1 − r

∞∑
k=1

bk and I2 = 2

1 − r

∞∑
k=1

ck,
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with bk := (−1)k+1[a(r)k 1−r
1−rk − a(r)k 1

k
] and ck := (−1)k+1[a(r)k 1

k
− a(1)k 1

k
]. We will show that I1 = O(1) = I2.

We begin with I1. One observes that

1 − r

1 − rk
− 1

k
= 1

1 + · · · + rk−1
− 1

k
= k − 1 − r − · · · − rk−1

k(1 + r + · · · + rk−1)
= (1 − r)

rk−2 + 2rk−3 + · · · + (k − 1)r0

k(1 + r + · · · + rk−1)
.

Consequently,

|bk| ≤ (1 − r)a(r)k
1 + 2 + · · · + (k − 1)

k
≤ k

2
(1 − r)a(r)k.

It follows that

|I1| ≤ 1

1 − r

∞∑
k=1

(1 − r)ka(r)k ≤ 2

(1 − a(r))3
≤ 2

(1 − e−|τ |/4)3
= O(1),

where in the second inequality we used (6.5) and the last inequality holds for all r close to 1−.
Next we turn to I2 = 2

1−r
[log(1 + a(r)) − log(1 + a(1))]. Since log(1 + x) is C1 on R+, we see that |I2| ≤

2C
1−r

|a(r)−a(1)| for some constant C, independent of r (provided it is sufficiently close to 1−, so that |a(1)−a(r)| ≤
1/2). Hence it suffices to show that a(1) − a(r) = O(1 − r). We know that

a(1) − a(r) = e−|τ |/2 − exp

(
log r

(
1/2 + 1

2

∣∣∣∣
⌊

τ

1 − r

⌋∣∣∣∣
))

∈ [
A(r),B(r)

]
,

where A(r) = e−|τ |/2 − exp(log r/2 + log r|τ |
2(1−r)

) and B(r) = e−|τ |/2 − exp(log r + log r|τ |
2(1−r)

). Thus it suffices to show that

A(r) = O(1 − r) = B(r). We know that r1/2e−|τ |/2 − e−|τ |/2 = O(1 − r) = r1e−|τ |/2 − e−|τ |/2, thus it remains to
show that e−|τ |/2 − exp(−− log r|τ |

2(1−r)
) = O(1 − r). Using that e−|τ |u/2 is C1 in u, we see that

∣∣∣∣e−|τ |/2 − exp

(
−− log r|τ |

2(1 − r)

)∣∣∣∣ ≤ C

∣∣∣∣1 − − log r

1 − r

∣∣∣∣,
and the latter is clearly O(1 − r) by power expanding the logarithm near 1. �

Lemma 6.5. Assume the notation in Lemma 6.1. On Dδ one has

S′
a,r (z) =

∞∑
j=0

arj ez

1 + arj ez
+

∞∑
j=0

arj e−z

1 + arj e−z
=

∞∑
j=0

arj

[
ez

1 + arj ez
+ e−z

1 + arj e−z

]
. (6.9)

Proof. The formula is obtained by termwise differentiation of the series defining Sa,r . �

6.2. Descent contours

In the following lemmas we demonstrate contours, along which the real part of Sa,r (z) − zS′
a,r (0) varies monotoni-

cally. This monotonicity plays an important role in obtaining the estimates of Lemmas 4.4 and 5.3.

Lemma 6.6. Assume the notation in Lemma 6.1. Set ε = ±1 and c1 = S′
a,r (0). Then there exists an A0 > 0 such that

if 0 < A ≤ A0, one has

d

dy
Re

(
Sa,r (Ay + ειy) − c1(Ay + ειy)

) ≤ 0 for all y ∈ [0,π],
d

dy
Re

(
Sa,r (−Ay + ειy) − c1(−Ay + ειy)

) ≥ 0 for all y ∈ [0,π].
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Proof. Pick A0 > 0 sufficiently small so that {±Ay + ιy : y ∈ [−π,π]} ⊂ Dδ , whenever 0 < A ≤ A0. Set bj = arj

and focus on the first statement of the lemma. We have (using Lemma 6.5) that

d

dy
Re

(
Sa,r (Ay + ειy) − c1(Ay + ιy)

) =
∞∑

j=0

Re

[
bj

[
eAy+ειy

1 + bj eAy+ειy
+ e−(Ay+ειy)

1 + bj e−(Ay+ειy)
− 2

1 + bj

]
(A + ει)

]
.

We will show that each summand is ≤ 0, provided A is small enough. The latter would follow provided we know that
for every b ∈ (0,1 − δ] one has

Re

[[
eAy+ειy

1 + beAy+ειy
+ e−(Ay+ειy)

1 + be−(Ay+ειy)
− 2

1 + b

]
(A + ει)

]
≤ 0.

Multiplying denominators by their complex conjugates and extracting the real part, we see that the above is equivalent
to I1 + I2 ≤ 0, where

I1 := A

[
be2Ay + eAy cos(y)

|1 + beAy+ειy |2 + be−2Ay + e−Ay cos(y)

|1 + be−Ay−ειy |2 − 2

1 + b

]
and

I2 := −eAyε sin(εy)

|1 + beAy+ειy |2 + e−Ayε sin(εy)

|1 + be−Ay−ειy |2 .

We show that I1 ≤ 0 and I2 ≤ 0, provided A is small enough.
We start with I2, which can be rewritten as

I2 = −eAy sin(y)

1 + b2e2Ay + 2 cos(y)beAy
+ e−Ay sin(y)

1 + b2e−2Ay + 2 cos(y)be−Ay
.

Since y ∈ [0,π], we have that sin(y) ≥ 0. Hence it suffices to show that

0 ≥ −eAy

1 + b2e2Ay + 2 cos(y)beAy
+ e−Ay

1 + b2e−2Ay + 2 cos(y)be−Ay

⇐⇒ u−1 + b2u + 2b cos(y) ≥ u + b2u−1 + 2b cos(y),

where u = e−Ay ∈ (0,1]. The above now is equivalent to (u−1 − u)(1 − b2) ≥ 0, which clearly holds if u ∈ (0,1] and
b ∈ (0,1], as is the case. Hence I2 ≤ 0 without any restrictions on A except that it is positive.

Next we analyze I1, which can be rewritten as

I1 = A

[
be2Ay + eAy cos(y)

1 + b2e2Ay + 2b cos(y)eAy
+ be−2Ay + e−Ay cos(y)

1 + b2e−2Ay + 2b cos(y)e−Ay
− 2

1 + b

]
.

We see that (since A > 0)

I1 ≤ 0 ⇐⇒ (
1 + b2e−2Ay + 2b cos(y)e−Ay

)(
be2Ay + eAy cos(y)

)
(1 + b)

+ (
1 + b2e2Ay + 2b cos(y)eAy

)(
be−2Ay + e−Ay cos(y)

)
(1 + b)

− 2
(
1 + b2e−2Ay + 2b cos(y)e−Ay

)(
1 + b2e2Ay + 2b cos(y)eAy

) ≤ 0

⇐⇒ (
1 + b2e−2Ay + 2b cos(y)e−Ay

)(
be2Ay + eAy cos(y) − 1 − beAy cos(y)

)
+ (

1 + b2e2Ay + 2b cos(y)eAy
)(

be−2Ay + e−Ay cos(y) − 1 − be−Ay cos(y)
) ≤ 0

⇐⇒ f (y) = u(y)2(b − b2) + u(y) cos(y)(1 − b)3

+ [−2b − 2 + 2b3 + 2b2 + 4b cos(y)2 − 4b2 cos(y)2]
≤ 0,
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where u(y) = eAy + e−Ay . We want to show that f (y) ≤ 0 on [0,π], provided A is small enough.
First consider y ∈ [0,π/2]. We have

f ′(y) = 2uu′(b − b2) + u′ cos(y)(1 − b)3 − u sin(y)(1 − b)3 + [−8b cos(y) sin(y) + 8b2 cos(y) sin(y)
]
.

The last summand equals 8b sin(y) cos(y)(b − 1) and is clearly non-positive, when y ∈ [0,π/2]. Thus

f ′(y) ≤ 2uu′(b − b2) + u′ cos(y)(1 − b)3 − u sin(y)(1 − b)3.

For A sufficiently small we have u′ ≤ 4Ay, u ≤ 3 and sin(y) > y/5 on [0,π/2]. Thus we see

f ′(y) ≤ 24A
(
b − b2)y + 4(1 − b)3Ay − 2

5
(1 − b)3y.

For A sufficiently small f ′(y) < 0 on (0,π/2) so f is decreasing on (0,π/2). But f (0) = 0 so we see f (y) ≤ 0 when
y ∈ [0,π/2].

Next we consider the case when y ∈ [π/2,π]. In that case cos(y) ≤ 0 and we see f (y) ≤ u(y)2b(1 − b) − 2(1 −
b)(1 + b)2 + 4b cos(y)2(1 − b). The latter expression is non-positive exactly when

bu(y)2 − 2(1 + b)2 + 4b cos(y)2 ≤ 0.

For A sufficiently small we have u2 ∈ [4,4 + ε0) for all y ∈ [π/2,π]. Thus it suffices to show that we can find ε0 > 0
such that

4b + bε0 − 2(1 + b)2 + 4b ≤ 0 ⇐⇒ bε0 ≤ 2(1 − b)2,

which is clearly possible as b ∈ [0,1 − δ]. Thus we conclude that there exists A > 0 small enough so that the first
statement of the lemma holds. Using that Sa,r (z) is an odd function, the second statement of the lemma follows from
the first and the same A may be chosen. �

Lemma 6.7. Assume the notation in Lemma 6.1. If β ≥ 0 and z = (− log t)(β + ιs) then provided t is sufficiently
close to 1− we have

d

ds
Re

(
Sa,r (z)

) ≤ 0 when s ∈ [
0,π(− log t)−1] and

d

ds
Re

(
Sa,r (z)

) ≥ 0 when s ∈ [−π(− log t)−1,0
]
.

If β ≤ 0 and z = (− log t)(β + ιs) then provided t is sufficiently close to 1− we have

d

ds
Re

(
Sa,r (z)

) ≥ 0 when s ∈ [
0,π(− log t)−1] and

d

ds
Re

(
Sa,r (z)

) ≤ 0 when s ∈ [−π(− log t)−1,0
]
.

Proof. The dependence on t comes from our desire to make |β|(− log t) < �′ in the statement of Lemma 6.1. We
assume this for the remainder of the proof.

Setting z = (− log t)(β + ιs) we see from Lemma 6.5

d

ds
Sa,r (z) =

∞∑
j=0

ιbj (− log t)

[
e(− log t)(β+ιs)

1 + bj e(− log t)(β+ιs)
− e(− log t)(−β−ιs)

1 + bj e(− log t)(−β−ιs)

]
,

where bj = arj . Thus we see that

d

ds
Re

(
Sa,r (z)

) =
∞∑

j=0

[
− bj (− log t) sin(θ)t−β

1 + 2 cos(θ)bj t−β + b2
j t

−2β
+ bj (− log t) sin(θ)tβ

1 + 2 cos(θ)bj tβ + b2
j t

2β

]
, with θ = s(− log t).
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We now check that each summand has the right sign for the ranges of s and β in the statement in the lemma. We
focus on β ≥ 0 and s ∈ [0,π(− log t)−1], all other cases can be handled similarly. We want to show that

− bj (− log t) sin(θ)t−β

1 + 2 cos(θ)bj t−β + b2
j t

−2β
+ bj (− log t) sin(θ)tβ

1 + 2 cos(θ)bj tβ + b2
j t

2β
≤ 0 for each j.

Put u = t−β and bj = b. Observe that for s ∈ [0,π(− log t)−1], θ ∈ [0,π] so the above would follow from

− u

1 + 2 cos(θ)bu + b2u2
+ u−1

1 + 2 cos(θ)bu−1 + b2u−2
≤ 0

⇐⇒ u−1(1 + 2 cos(θ)bu + b2u2) ≤ u
(
1 + 2 cos(θ)bu−1 + b2u−2)

⇐⇒ u−1 + 2 cos(θ)b + b2u ≤ u + 2 cos(θ)b + b2u−1

⇐⇒ (
u−1 − u

)(
1 − b2) ≤ 0.

The latter is true since u ≥ 1 and b ∈ (0,1). �

6.3. Proof of Lemmas 4.4 and 5.3

Suppose that δ > ε > 0 is sufficiently small so that Sa,r has an analytic expansion in the disc of radius ε for r ∈ (0,1)

and a ∈ (0,1 − δ]. From (6.3) we know that when |z| < ε one has

∣∣Sa,r (z) − c1z − c3z
3
∣∣ ≤ |z|4

1 − r

∑
l≥2

ε2l−3δ−2l−1, (6.10)

and the latter sum is finite by comparison with the geometric series. Suppose that z = N−1/3w where N = 1
1−r

.
Clearly, the RHS of (6.10) is O(N−1/3) and so

lim
N→∞

∣∣Sa,r

(
N−1/3w

) − c1N
−1/3w − c3N

−1w3
∣∣ = 0.

Using that limN→∞ c3N
−1 = 1

3
a(1)

(1+a(1))2 (this is (6.6)) and the above we conclude that

Sa,r

(
N−1/3w

) − c1N
−1/3w = O(1) if w = O(1) and

lim
N→∞Sa,r

(
N−1/3w

) − c1N
−1/3w = 1

3

a(1)

(1 + a(1))2
w3.

This proves (4.18), (4.19) and once we set (− log t) = κN−1/3 also (5.13).
Suppose A sufficiently small so that the statement of Proposition 6.6 holds and so that φ = arctan(A) is less than

10◦. By choosing a smaller ε than the one we had before we may assume that
∑

l≥2 ε2l−3δ2l+1 ≤ a(1) sin(3φ)

12(1+a(1))2 = c′. In
view of (6.10) and (6.6) we know that for all large N and |z| < ε

Re
(
Sa,r (z) − c1z

) ≥ c3 Re
(
z3) − c′N |z|4 ≥ N |z|3 a(1) sin(3φ)

6(1 + a(1))2
− c′N |z|3 ≥ c′N |z|3 if z ∈ γW .

This proves (4.17) when |z| < ε. Put K = ε
2π

and observe that if z ∈ γW then Kz ∈ γW and K|z| < ε. The latter
suggests that if z ∈ γW we have

Re
(
Sa,r (z) − c1z

) ≥ Re
(
Sa,r (Kz) − M(r)Kz

) ≥ c′NK3|z|3,
where in the first inequality we used the first statement of Lemma 6.6, and in the second one we used that K|z| < ε and
our earlier estimate. This proves (4.17) and using that Sa,r (−z) = −Sa,r (z), while γW = −γZ it also proves (4.16).
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Let z = 1/4+ ιs and set (− log t) = κN−1/3 for some positive κ . Suppose |(− log t)z| < ε with ε as in the beginning
of the section. We have the following equality

Re
(
c2l+1(− log t)2l+1z2l+1) = c2l+1(− log t)2l+1

l∑
k=0

(
2l + 1

2k

)
s2k(−1)k

1

42l−2k+1
.

In particular, we see that∣∣Re
(
c2l+1(− log t)2l+1z2l+1)∣∣ ≤ c2l+1(− log t)2l+1((|s| + 1/4

)2l+1 − |s|2l+1)
≤ c2l+1(− log t)2l+1 1

4

2l∑
k=0

|s|k(1/4)2l−k

≤ (2l + 1)c2l+1(− log t)2l+1|z|2l . (6.11)

Using (6.11) and (6.3) we have for |(− log t)z| < ε that∣∣∣∣Re

(∑
l≥2

c2l+1(− log t)2l+1z2l+1
)∣∣∣∣ ≤ κ3|z|2

∑
l≥2

(2l + 1)δ−2l−1ε2l−2. (6.12)

On the other hand, we have that

Re
(
c3(− log t)3z3) = −(3c3/4)(− log t)3|z|2 + (− log t)3/64 + (3c3/64)(− log t)3. (6.13)

Combining equations (6.12) and (6.13) we see that if |(− log t)z| < ε then

Re
(
Sa,r

(
(− log t)z

) − c1(− log t)z
) ≤ −(3c3/4)(− log t)3|z|2 + (− log t)3/64 + (3c3/64)(− log t)3

+ κ3|z|2
∑
l≥2

(2l + 1)δ−2l−1ε2l−2.

Notice that (3c3/4)(− log t)3 → κ3 a(1)

4(1+a(1))2 =: ρ as N → ∞ from (6.6). Moreover if we pick ε small enough we

can make κ3 ∑
l≥2(2l + 1)δ−2l−1ε2l−2 ≤ (ρ/4). It follows that for all large N we have

Re
(
Sa,r

(
(− log t)z

) − c1(− log t)z
) ≤ −(ρ/2)|z|2 + (ρ/8).

This proves (5.11) whenever |(− log t)z| < ε.
Suppose now that z = 1/4 + ιs and s ∈ [−π(− log t)−1,π(− log t)−1]. Put K = ε

2π
and notice that for all large N

we have z̃ := 1/4 + ιKs satisfies |z̃(− log t)| < ε. It follows from the first result of Lemma 6.7 and our estimate above
that

Re
(
Sa,r

(
(− log t)z

) − c1(− log t)z
) ≤ Re

(
Sa,r

(
(− log t)z̃

) − c1(− log t)z̃
) ≤ −(ρ/2)|z̃|2 + (ρ/8).

Observing that |z̃|2 ≥ K−2|z|2 we conclude (5.11) for all z ∈ γ t+. The result of (5.12) now follows from (5.11) once
we use that Sa,r (−z) = −Sa,r (z) and that γ t− = −γ t+.

6.4. Proof of Lemmas 4.5 and 5.4

Let z = x + ιp and w = y + ιq so that x > 0 and y ≤ 0 . Then we have∣∣∣∣ 1

ez − ew

∣∣∣∣ =
∣∣∣∣ 1

ex − eyeι(q−p)

∣∣∣∣ ≤
∣∣∣∣ 1

ex − ey

∣∣∣∣ ≤ 1

ex − 1
≤ x−1,

where in the last inequality we used ec ≥ c + 1 for c ≥ 0. This proves the first parts of (4.20) and (5.14).
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Let σ = (− log t)−1. Then we have∣∣∣∣ 1

sin(−πσ(x − y + ι(p − q)))

∣∣∣∣ =
∣∣∣∣ 2

e−ιπσ (x−y)eπσ(p−q) − eιπσ(x−y)eπσ(q−p)

∣∣∣∣.
If q ≥ p we see∣∣e−ιπσ (x−y)eπσ(p−q) − eιπσ(x−y)eπσ(q−p)

∣∣ = ∣∣eπσ(p−q) − e2ιπσ (x−y)eπσ(q−p)
∣∣ ≥ eπσ(q−p)

∣∣sin
(
2πσ(x − y)

)∣∣.
Conversely, if q < p we see∣∣e−ιπσ (x−y)eπσ(p−q) −eιπσ(x−y)eπσ(q−p)

∣∣ = ∣∣e−2ιπσ (x−y)eπσ(p−q) −eπσ(q−p)
∣∣ ≥ eπσ(p−q)

∣∣sin
(
2πσ(x −y)

)∣∣.
We thus conclude that∣∣∣∣ 1

sin(−πσ(x − y + ι(p − q)))

∣∣∣∣ ≤ e−πσ |p−q| 2

| sin(2πσ(x − y))| . (6.14)

In the assumption of Lemma 4.5 we have x − y ∈ [u,2U ] and 2U ≤ σ−1/5. Thus 2πσ(x − y) ∈ [2πσu,2π/5]. This
implies that∣∣∣∣ 1

| sin(2πσ(x − y))|
∣∣∣∣ ≤ e−πσ |p−q| 1

σu
, (6.15)

where we used that sinx is increasing on [0,π/2] and satisfies π sinx ≥ x there. In addition, we have from the above

∑
k∈Z

∣∣∣∣ 1

sin(−πσ(x − y + ι(p + 2πk − q))

∣∣∣∣ ≤
∑
k∈Z

e−πσ |p+2πk−q|σ−1u−1 ≤ 2σ−1u−1
∑
k≥0

e−2kπ2σ .

This proves the second part of (4.20).
Finally, suppose that x = 1/4 and y = −1/4. Notice that if dist(s,Z) > c for some constant c > 0 then | 1

sin(πs)
| ≤

c′e−π | Im(s)| for some c′, depending on c. Using this we get

∑
k∈Z

∣∣∣∣ 1

sin(π(w − 2πkι
− log t

− z))

∣∣∣∣ =
∑
k∈Z

∣∣∣∣ 1

sin(π/2 − 2π2kι
− log t

+ πι(q − p))

∣∣∣∣
≤ c′ ∑

k∈Z
exp

(
−

∣∣∣∣− 2π2k

− log t
+ π(q − p)

∣∣∣∣
)

≤ 2c′ ∑
k≥0

exp

(
− 2π2k

− log t

)
.

The latter is uniformly bounded for t ∈ (1/2,1), by 2c′
1−v

with v = exp(− 2π2

− log(1/2)
). This concludes the proof of the

second part of (5.14).
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