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Abstract. We show that the squared maximal height of the top path among N non-intersecting Brownian bridges starting and
ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This
result can be thought of as a pre-asymptotic version of K. Johansson’s result (Comm. Math. Phys. 242 (2003) 277-329) that the
supremum of the Airy, process minus a parabola has the Tracy—~Widom GOE distribution, and as such it provides an explanation
for how this distribution arises in models belonging to the KPZ universality class with flat initial data. The result can be recast in
terms of the probability that the top curve of the stationary Dyson Brownian motion hits an hyperbolic cosine barrier. Our proof
is based on a formula, derived in (Ann. Inst. Henri Poincaré B, Calc. Probab. Stat. 51 (2015) 28-58), for the probability that
Dyson Brownian motion stays below a curve on a finite interval, which is given in terms of the Fredholm determinant of a certain
“path-integral” kernel.

Résumé. On montre que le carré de la hauteur maximale de la trajectoire supérieure parmi N ponts browniens non-
intersectants issus et terminés en 0 a la méme loi que la plus grande valeur propre d’une matrice aléatoire tirée de 1’Ensemble
Orthogonal de Laguerre. Ce résultat peut étre vu comme une version pré-asymptotique du résultat de K. Johansson (Comm. Math.
Phys. 242 (2003) 277-329) qui établit que le supremum du processus d’Airy, moins une parabole est distribué selon la loi de
Tracy—Widom GOE, et fournit ainsi une explication sur la fagon dont cette distribution apparait dans des modeles appartenant a la
classe d’universalité de KPZ avec donnée initiale plate. Le résultat peut étre reformulé en termes de la probabilité que la plus haute
courbe du mouvement brownien de Dyson stationnaire atteigne une barriere de cosinus hyperbolique. Notre preuve repose sur une
formule, obtenue dans (Ann. Inst. Henri Poincaré B, Calc. Probab. Stat. 51 (2015) 28-58), pour la probabilité que le mouvement
Brownien de Dyson reste sous une courbe dans un intervalle fini, qui est donnée en termes du déterminant de Fredholm d’un certain
«noyau d’intégrale de chemins ».
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1. Introduction and main results
1.1. Motivation and background

The Kardar—Parisi—Zhang (KPZ) universality class describes a broad collection of models, including stochastic inter-
face growth on a one-dimensional substrate, polymer chains directed in one dimension and fluctuating transversally in
the other due to a random potential, driven lattice gas models, reaction-diffusion models in two-dimensional random
media, and randomly forced Hamilton—Jacobi equations. Although there is no precise definition of the KPZ univer-
sality class, it can be identified at the roughest level by its unusual 7!/3 scale of fluctuations (decorrelating at a spatial
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scale of 72/3). The asymptotic distribution of the fluctuations, in the long time limit 7 — oo, is conjectured to depend
only on the initial (or boundary) condition imposed on each particular model.

There are three special classes of initial data which stand out because of their scale invariance, usually referred
to as curved, flat and stationary. Based on exact computations for a few models which enjoy a special determinantal
structure, the distribution of the asymptotic fluctuations in these three cases is known explicitly. One of the most in-
triguing aspects of the KPZ universality class is that these limiting fluctuations are given in terms of objects coming
from random matrix theory (RMT). This is particularly evident in the cases of curved and flat initial data: the asymp-
totic fluctuations are given, respectively, by the Tracy—Widom GUE and GOE distributions [48,49]. The first of these
two distributions describes the asymptotic fluctuations of the largest eigenvalue of a random Hermitian matrix with
Gaussian entries (the Gaussian Unitary Ensemble), while the second one is the analog in the real symmetric case (the
Gaussian Orthogonal Ensemble); both will be introduced explicitly later on. For more background on this aspect of
the KPZ universality class we refer the reader to the reviews [11,40]; for some other perspectives we refer additionally
to [9,38,42].

It is very natural in this context to wonder about what lies behind the connection between the KPZ class and
RMT. Perhaps the most basic relationship one may seek is to find a model which lies in the KPZ universality class
and which, at the same time, is naturally expressed as an object in RMT. As it turns out, in the case of the GUE
(corresponding to curved initial data in the KPZ class) this can be achieved by considering a simple model: non-
intersecting Brownian bridges (which we will introduce in detail in Section 1.2). This model is, on the one hand,
one of the simplest and most studied models belonging to the KPZ class, while on the other hand it is equivalent to
Dyson Brownian motion, a process which describes the evolution of the eigenvalues of a GUE matrix whose entries
undergo independent Ornstein—Uhlenbeck diffusions. A straightforward consequence of this equivalence is that the
positions of the N non-intersecting Brownian paths at a single time are distributed as the eigenvalues of a GUE matrix
of size N, and this leads directly to analog statements about their asymptotic fluctuations. Interestingly, the scope
of this relationship extends also to looking at the entire paths of these processes. For instance, if one scales the top
path of Dyson Brownian motion (or non-intersecting Brownian bridges) appropriately, then in the limit one obtains
the Airy, process, which is known to describe the spatial fluctuations of models in the KPZ class with curved initial
data. Beyond the basic relationship which we have just described, more recent developments in the area known as
integrable probability have led to other, arguably deeper, ways of understanding the connection (see e.g. [8,9]).

The situation in the case of GOE, which corresponds to flat initial data in the KPZ class, is much less clear. In fact,
essentially no results are available, and it has been a question of interest for several years now, both for probabilists
and for physicists, to understand whether a relationship similar to the one available for the GUE case is available for
GOE, or whether the appearance of the Tracy—Widom GOE distribution in the KPZ class is not much more than a
coincidence.

The fact that the GOE/flat link is much more difficult to understand is actually not surprising given that, as it is
widely accepted, for most (if not all) models both in the KPZ class and in RMT, the GOE/flat case is considerably
more difficult to analyze than the GUE/curved one. This is because many aspects of the integrability of these models
which are present in the latter case, and lead to relatively simple exact formulas, are lost in the former one. It should
be noted moreover that, in a certain sense, the GOE/flat connection is necessarily more tenuous than the GUE/curved
one. In fact, if one considers the GOE version of Dyson Brownian motion then it is natural to expect (as conjectured in
[7]), by analogy with the GUE case, that the top path would converge, under appropriate scaling, to the Airy; process,
which is the analog of the Airy, process for models in the KPZ class with flat initial data. Nevertheless, [5] provided
convincing numerical evidence showing that this is not the case.

The main goal of this article is to provide an explanation of how the GOE/flat link arises. We will achieve this
by considering the model of non-intersecting Brownian bridges mentioned above but focusing now on a different
quantity, namely the maximal height attained by the top path. Our main result will show that the distribution of the
maximal height coincides with that of the largest singular value of a large rectangular matrix with Gaussian entries, or
in other words, with the square root of the largest eigenvalue of a matrix from the Laguerre Orthogonal Ensemble, i.e.
a real Wishart matrix. We remark that this identity will be established at the pre-asymptotic level (that is, for a finite
number of paths and for a finite matrix), which is interesting in itself as we will explain in Section 1.3. The connection
with the GOE is established through the known RMT fact that the square root of the top eigenvalue of a real Wishart
matrix converges under the right scaling to a Tracy—Widom GOE random variable. The way in which this result fits
into the context of the KPZ universality class with flat initial data can be understood in terms of certain variational
problems, and will be explained in Section 1.5.
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In the next two subsections we will change a bit our perspective to focus in more detail on the model of non-
intersecting Brownian bridges, as well as on the Airy, process and on some previous results which relate it to the
Tracy—Widom GOE distribution.

1.2. Non-intersecting Brownian bridges

The model of non-intersecting Brownian bridges corresponds to considering a collection of N Brownian bridges
(B1(t), ..., By(1)), all starting from zero at time t = 0 and ending at zero at time ¢ = 1, and conditioning them (in
the sense of Doob) to not intersect in the region ¢ € (0, 1). We will always assume that the paths are ordered so
that By (t) < --- < By(¢) for ¢ € (0, 1). This model (which in the physics and combinatorics literatures is sometimes
referred to as watermelons without a wall) and variants of it have been studied extensively in the last decade, see for
instance [2,4,15,17,20,27,31,32,50] among many others. The model can be thought of as a limit of non-intersecting
random walks, which in the physics literature are known as vicious walkers, and were introduced by Fisher [21] (under
an additional conditioning on the walks staying positive) as a model for wetting and melting.

The interest in studying systems of non-intersecting paths, both in the statistical physics and probability literatures,
is due in large part to their intimate connection with RMT and the KPZ universality class. As an example, it has
been shown that as the number of paths N — oo, and under proper scaling, several variants of these models converge
to universal processes, such as the sine, Airy, Pearcey and tacnode processes. Universal here means that the same
limiting processes arise for a wide class of other models (for more on this aspect see [1,27] and references therein).
The first two of these universal processes also arise naturally in RMT. For instance, and as we already mentioned, for
fixed ¢ € (0, 1) the distribution of (B1(¢), ..., By(¢)) coincides (modulo some scaling) with that of the eigenvalues of
a random matrix drawn from the Gaussian Unitary Ensemble (GUE) and converge, under suitable scaling at the edge
of the GUE spectrum, to the Airy point process.

A particular aspect which has been subject of intense research has been the study of the maximal height attained
by the highest path of a collection of non-intersecting paths. In the physics and combinatorics literatures, [18,43,
44.,46] obtain various expressions for the distribution of this maximum. As in the case of the limiting processes
mentioned above, their main motivation lies in the computation of the asymptotic distribution in the N — oo limit,
which for many different models is conjectured to be given by the Tracy—Widom GOE distribution. This was achieved
in the physics literature using non-rigorous methods (see e.g. [22], which further establishes connections with Yang—
Mills theory). For the case of non-intersecting Brownian motions on the half-line (with either absorbing or reflecting
boundary condition at zero) this was rigorously proved by Liechty [32].

In this paper we will focus on the distribution of the maximal height of a finife number of non-intersecting Brownian
bridges. More precisely, for fixed N we are interested in the distribution of the random variable

My = max By(t). (1.1)
t€l0,1]
As we already mentioned, under proper centering and scaling My should converge in distribution as N — oo to a
Tracy—Widom GOE random variable. The question in which we will be interested here is whether there is a finite N
version of this result. Rather surprisingly, and as we mentioned already above, we will find that the answer is yes. But
before stating the result, and in order to provide additional motivation (and in particular explain why this is in itself a
natural question), let us discuss in some detail the GOE result in the N — oo regime.

1.3. The Airy, process and GOE

The Airy, process Ay was introduced by Prihofer and Spohn [36] in the study of the scaling limit of a discrete
polynuclear growth (PNG) model. It is expected to govern the asymptotic spatial fluctuations in a wide variety of
random growth models on a one-dimensional substrate with curved initial conditions, and the point-to-point free
energies of directed random polymers in 1+ 1 dimensions. For its definition and a detailed discussion of its properties
and relevance we refer the reader to [40]; let us just mention that the Airy, process is non-Markovian and stationary,
with marginal distributions given by the Tracy—Widom GUE distribution.

The Airy, process is also known to arise in the setting of (geometric) last passage percolation. Here one considers a
family {w(i, j)}; jez+ of independent geometric random variables with parameter g (i.e. P(w(i, j) = k) =q(1 — )k
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for k > 0) and let Iy be the collection of up-right paths of length N, that is, paths # = (7, ..., m,) such that
mi — w1 € {(1,0), (0, 1)}. The point-to-point last passage time is defined, for M, N € ZT, by

M+N

LPO(M L N) = max Z w(m;),
mellpy+n:(0,00—(M,N) izo

where the maximum is taken over all up-right paths connecting the origin to (M, N). Johansson [25] proved that there
are explicit constants ¢ and ¢», depending only on ¢, such that P(LPO"(N, N) < ¢/ N + caN'3r) — Fgue(r)
as N — oo, with Fgyg the Tracy—~Widom GUE distribution. Next one defines a process t — Hy () by linearly
interpolating the values given by scaling LPP"(N, M) through the relation

LP"Y(N +k, N —k) =ciN + caN' 3 Hy (esN k), (1.2)
where c3 is another explicit constant which depends only on g. Johansson [26] went on to show that
Hy(t) — Ao (1) — 12 (1.3)

in distribution, in the topology of uniform convergence on compact sets. On the other hand one can define the point-
to-line last passage time by

L"(N) =  max y LPOYN 4k, N — k). (1.4)

From the definition and Johansson’s result (1.3) it follows that

c2_1N_1/3[Lhne(N) - c1N] — suﬂg{Az(z‘) - t2}
te

in distribution. But it was known separately [3] that the quantity on the left converges in distribution to a Tracy—Widom
GOE random variable, from which Johansson deduced in [26] the remarkable fact that

P(I?G%(Az(t) —1?) < r) = Foo(4'3r), (1.5)

where Fgog denotes the Tracy—Widom GOE distribution (an explicit formula for Fgog will be given in Section 1.4).
A more direct proof of (1.5) was given in [13], based on formulas for the hitting probabilities for the Airy, process.
This method has led to several other results about the Airy, and related processes (see e.g. [35] or the review [40])
and it is the one we will use in this paper in the context of non-intersecting Brownian bridges.

The relation between the Airy, process and the study of My lies in the fact that, suitably rescaled, the top path of
a collection of non-intersecting Brownian bridges converges to the Airy, process minus a parabola:

ANVO(By(A(1+ N71P1)) = V/N) — Ax(t) — 1 (1.6)

in the sense of convergence in distribution in the topology of uniform convergence on compact sets. This result is
well-known in the sense of convergence of finite-dimensional distributions; the stronger convergence stated here was
proved in [12]. In view of this result, a similar argument as the one leading to (1.5) together with (1.5) itself gives the
following:

Theorem 1.1.

lim ]13’(2N1/6< max By (f) — «/N) < r) = Fgor(4'r). (1.7)
N—o0 t€[0,1]

It is this version of Johansson’s result (1.5) which provided the original motivation for our paper. We remark that,
as a by-product of our results, we obtain a more direct derivation of (1.7).
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1.4. GOE and LOE

In this section we will quickly introduce the two ensembles of random matrices which are most relevant to our
results. The first one is the Gaussian Orthogonal Ensemble (GOE). Let N (a, b) denote a Gaussian random variable
with mean a and variance b. An N x N GOE matrix is a symmetric matrix A such that A;; = N (0, 1) for i > j
and A;; = N (0, 2), where all the Gaussian variables are independent (subject to the symmetry condition). The term
orthogonal refers to the fact that the distribution of a GOE matrix is invariant under conjugation by an orthogonal
matrix. The GOE can be regarded as the probability measure on the space of N x N real symmetric matrices A with

density &e‘é (4% for some normalization constant C ~ . The joint density of the eigenvalues (A1, ..., Ay) of a GOE
matrix can be explicitly computed, and is given by

. . 32 S . .
for some other normalization constant Zy. The weights e /4 appearing in this formula are the weights associated

to the Hermite polynomials in the theory of orthogonal polynomials; for this reason, the Gaussian ensembles such
as the GOE are sometimes also referred to as Hermite ensembles. The Wigner semicircle law [52] states that the
empirical eigenvalue density for the GOE has approximately a semicircle distribution on the interval [—2+/N, 2¢/N].
The fluctuations of the spectrum at its edges are of order N ~'/¢ and give rise to the Tracy—-Widom GOE distribution:
denoting by Agog(N) the largest eigenvalue of an N x N GOE matrix, we have [49]

Jim P(roE(N) < 2N + N7V%) = Fgor(r) (1.8)
—00
with

Fgog(r) = det(l — PoB,Po) 12 (k) (1.9)

where P, denotes the projection onto the interval (r, 00) (i.e. P, f(x) = f(x)1,~, for f € L%(R)), B, is the integral
operator acting on L?(R) with kernel

Br(x,y) =Ai(x +y+r), (1.10)

and Ai denotes the Airy function. The determinant in (1.9) means the Fredholm determinant on the Hilbert space
L%(R). For the definition, properties and some background on Fredholm determinants, which can be thought of as
the natural generalization of the usual determinant to infinite dimensional Hilbert spaces, we refer the reader to [40,
Section 2]. We remark that (1.9) is not the original formula provided in [49] (which is written in terms of Painlevé
II transcendents instead of Fredholm determinants); this formula is essentially due to [45], and was proved in [19].
Note also that one can choose a slightly different scaling (with the entries of a GOE matrix having variances N off
the diagonal and 2N on the diagonal) so that the edge of the spectrum is at 2N and the fluctuations are of order N'/3,
which leads to a scaling in (1.8) of the same order as that in (1.2).

We turn now to the Laguerre Orthogonal Ensemble (LOE). Let X be an n x N matrix whose entries are i.i.d.
N(0, 1), where we assume n > N. Then the matrix M = X' X is said to be an N x N LOE matrix (often referred
to also as a Wishart matrix). In applications to statistics, one thinks of the rows of X as containing n independent
samples of an N-variate Gaussian population (with covariance matrix given by the identity), so that %M corresponds
to the sample covariance matrix. The joint density of the eigenvalues of M is also explicit in this case, and is given by

N

1 | | | | —Ai/2

Z_N |)Ll _)‘j| )\,?6‘ i/ s
1<i<j<N i=1

where the parameter a is defined to be a = (n — N — 1)/2. The weights Afe_ki /2 appearing in this case are the ones
associated to the (generalized) Laguerre polynomials, which explains the name of this family of random matrices. By
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the Marcenko—Pastur law [34] the eigenvalues of M are concentrated on the interval [0, 4N]. Under our scaling, if
a=(n— N —1)/2 is fixed (and independent of N) then the fluctuations at the soft edge 4N are of order N 13 and
have the same limiting distribution as in the GOE case [28]: denoting by ALog(NV) the largest eigenvalue of the LOE
matrix, we have

Nlim P(ALop(N) < 4N +2Y3N'3r) = Foor(r). (1.11)
—00

The scaling at the hard edge at the origin is different and gives rise to a different limit distribution, but we will not
need it in this paper.
In all that follows we will be interested exclusively in the case a = 0.

1.5. Main results

We are ready now to state the main result of this paper. Let M be an LOE matrix with a = 0, that is, M = XX
with X an (N + 1) x N matrix with independent A/(0, 1) entries. For this choice of a we will denote by Fi o, n the
distribution function of the largest eigenvalue of M,

FLog,N(r) =P(ALoE(N) <T). (1.12)

Recall the definition in (1.1) of My as the maximum height of a collection of N non-intersecting Brownian bridges.

Theorem 1.2. Let Bi(t) < --- < By (t) be a collection of non-intersecting Brownian bridges as above. Then for all
r >0 we have

IP’( max v2By (1) < r) = FLoen (22). (1.13)
t€l0,1]

In other words, 4./\/1%, is distributed as the largest eigenvalue of an LOE matrix or, alternatively, 2 My is distributed
as the largest singular value of the (N + 1) x N matrix X introduced above.

Let us quickly verify that the scaling in this result is consistent with the one in Theorem 1.1 and (1.11). Theorem 1.2
says that My 2 \/ALos(N)/4. By (1.11), this implies that

MN=\/N+2*2/3N1/3§G0E+0(N‘/3)=W+2_5/3N_1/6§GOE+0(N_1/6),

where £GoE is a Tracy—Widom GOE random variable. In other words, 2N /(M y —+/N) = 4=13¢60E + 0(1), which
is exactly the content of Theorem 1.1. In particular, Theorem 1.1 follows as a corollary of (1.11) and (1.13).

We take a brief pause now and go back to an issue left open at the end of Section 1.1, which is the question of why
My should be interpreted as a flat initial data object in the KPZ universality class. In a way, the convergence of My
a Tracy—Widom GOE random variable should be taken, in itself, as enough evidence of this fact. But the connection
goes a bit further, and can be understood in terms of certain variational formulas. For example, in the context of last
passage percolation (LPP), the point-to-line last passage times (1.4) leading to GOE fluctuations are defined in terms
of the maximum of point-to-point last passage times (1.2), which in turn lead to GUE fluctuations. The parallel with
(1.13) is direct. The exact same relationship can be established at the level of many other polymer models (of which
LPP is a zero-temperature version), and at the level of the totally asymmetric exclusion process (which can be mapped
to LPP).

This straightforward way of expressing flat initial data quantities in terms of their curved initial data analogues
is not as explicit in the case of some other models, such as the partially asymmetric exclusion process, which have
less (or at least a more complicated) algebraic structure, but it is interesting to note that it does hold at the level of
another of the most important members of the KPZ universality class, the KPZ equation. Without going into much
detail, the KPZ equation can be understood by studying the stochastic heat equation (SHE), which is linear. It turns
out that the flat initial data for the KPZ equation corresponds to starting the SHE with initial condition Zy = 1, and
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thus by linearity the flat solution can be obtained by convolving the constant function 1 with the solution of the SHE
starting with Zo = &g, which corresponds to curved initial data. Note that the relationship in this last case is not
written directly in terms of a variational problem as described before, but one can check that (at least conjecturally, by
essentially appealing to a version of Laplace’s method) one recovers a variational problem as time ¢+ — co. For much
more on this see [14,40,41].

Coming back to the description of our main results, Theorem 1.2 is equivalent to a statement about the probability
that the top path of Dyson Brownian motion hits an hyperbolic cosine barrier, and it is that version of the result
which we will prove. Consider an N x N random matrix drawn from the Gaussian Unitary Ensemble, that is, a
(complex-valued) Hermitian matrix A such that A;; = N(0, 1/4) +iN (0, 1/4) fori > j and A;; = N(0, 1/2), where
all the Gaussian variables are independent (subject to the Hermitian condition). Note that (for later convenience) we
have chosen a somewhat different scaling for the Gaussian variables here compared with our definition of the GOE
matrices. Now suppose that we let A evolve by letting each Gaussian variable in the construction diffuse according to
independent copies of the Ornstein—Uhlenbeck process X; defined as the solution of the SDE

dXt = _X[dt+UdW[,

where W; is a standard Brownian motion and o = % for off-diagonal entries and o = 1 on the diagonal. We write
the eigenvalues of this matrix at time ¢ as (A1 (), ..., An(?)), with A; (¢) increasing with i. This eigenvalue diffusion is
known as the stationary (GUE) Dyson Brownian motion, and it defines an ensemble of almost surely non-intersecting
curves indexed by R. It can alternatively be written as the solution of a certain N-dimensional SDE, and it is not hard
to check that it is stationary, with marginals at any time ¢ given by the eigenvalue distribution of an N x N GUE
matrix.

Theorem 1.3. Let (A1(t),...,An(2)) be the stationary Dyson Brownian motion defined above and let Fiog N be
defined as in (1.12). Then

P(xn(r) <rcosh(r) Vt € R) = Fiog, v (2r7). (1.14)

The equivalence between the two results is due to the fact that non-intersecting Brownian bridges can be mapped
into the stationary Dyson Brownian motion in such a way that the probabilities on the left-hand sides of (1.13) and
(1.14) coincide. We will explain this in more detail in Section 2.

The proof of Theorem 1.3 has two steps. The first one consists in obtaining an explicit formula for the probabil-
ity on the left-hand side of (1.14). By the mapping between non-intersecting Brownian bridges and the stationary
Dyson Brownian motion alluded to above, this is equivalent to finding a formula for the distribution of My. As
we already mentioned, there are formulas in the literature for the distribution of the maximal height of several mod-
els related to non-intersecting Brownian bridges, which can be obtained through a direct application of the Karlin—
McGregor/Lindstrom—Gessel—Viennot formula [24,29,33]. For completeness, let us state the formula in the case of

My (see [46]):!

22N 22 - Y \?
PMy <r)= / dye” ZiVil>r (det|:y.] cos(y- + —>:| ) ) (1.15)
Q@mN/2N T ! ooy ; 2 ) e

By using the Cauchy—Binet identity, the right-hand side can be turned into a single N x N determinant with entries
involving Hermite polynomials, see (102)—(103) in [44]. The resulting formula is reminiscent of some of the formulas
we will obtain below, see (3.6) together with (1.17), but it is not clear how to use it directly to obtain a proof of
Theorem 1.1 (nor of (1.13)). Moreover, as we will explain next, while the structure of the Fredholm determinant
formula for the distribution of My which we will obtain in this paper (see Proposition 1.4) makes very apparent a

IThis formula was derived in [46] using path-integral techniques. Although we are not aware of a derivation in the literature based on the Karlin—
McGregor formula, for the case of non-intersecting Brownian excursions (corresponding to imposing an absorbing boundary at zero) the analog
formula, also derived in [46], was rederived in this way in [30]; additionally, for the case of non-intersecting random walks, [18] obtained a
Fredholm determinant formula (of which (101)—(102) in [44] is reminiscent) using the Lindstrom—Gessel-Viennot formula, a discrete version of
Karlin-McGregor.
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connection with Johansson’s result (1.5) — this was an important clue for us in the discovery of (1.13) — from the
formula appearing in [44] such a connection is not at all clear. It is worth mentioning that in the case of Brownian
excursions, for which the analog of (1.15) turns out to be slightly simpler, the analog of Theorem 1.1 (with the
same limit) was proved by Liechty [32] by appealing to a Riemann—Hilbert analysis of a certain system of discrete
orthogonal polynomials.

Here we follow a different strategy, leading to an arguably simpler formula which also has some intrinsic interest.
Working at the level of Dyson Brownian motion, we appeal to a result of [6] in order to obtain an expression for
P(An(t) <rcosh(t) Vt € [-L, L]), for fixed L > 0 in terms of the Fredholm determinant of what they call a “path-
integral kernel”. This path-integral kernel can be expressed in terms of the solution to a boundary value PDE, which
we then solve explicitly. Taking L — oo in the resulting formula leads to the following result. Let ¢, be the harmonic
oscillator functions (which we will refer to as Hermite functions), defined by ¢, (x) = e*12 pn(x), with p, the nth
Hermite polynomial (see e.g. [16, §18.3]) normalized so that ||¢|l2 = 1, and then define the Hermite kernel as

N-1

Kiterm, N (X, Y) = Y 02 ()@ () (1.16)
n=0

We introduce also the reflection operator o, on L*>(R), defined by

orf(x)=fQ@2r—x).
Proposition 1.4. For any r >0,

P(An (1) <cosh(r) Vi € R) = det(l — Kierm, N 0r Kierm, N) 2 (R) - (1.17)
The same formula holds for P(max;e[o,1] 2By (1) <7).

This result will be proved in Section 2.
The expression on the right-hand side of (1.17) is a close analog of the formula for Fgog appearing in (1.9). To see
this we introduce the Airy kernel, defined as

Kai(x, y) = /ood,\Ai(x + 1) Ai(y + A).
0

This kernel is closely related to GUE, as it is the limiting correlation kernel of the GUE eigenvalues near the edge of
the spectrum. It is related to the Tracy—Widom GOE distribution because of the identity f fooo drAi(a+ A1) Ai(b—A) =

2713 Ai(2=13(a + b)), which (since Ka; = BoPoBy, with By defined in (1.10)) implies that
KaiorKai = BoPoB,PoBo (1.18)

with B, (x, y) =273 Ai2713(x + y + 2r)). Since B2 = | (this identity is related to the fact that the family of
functions {Ai(x + X)},ecr constitutes a generalized eigenbasis of L?(R)), the cyclic property of the determinant and
(1.9) allow us to conclude that

Foor(4'°r) = det(l — KaiorKai) 12 (- (1.19)

We point out that there does not appear to be a direct analog of (1.18) for Kyerm, ¥ (although one can obtain explicit
formulas for Kyerm, 5 0-KHerm, v involving no integrals, see for instance (A.4) and (A.6)).

We can actually push the analogy between (1.17) and (1.19) a bit further and use it to provide a simple proof of
Theorem 1.1. Indeed, a simple scaling argument on the right-hand side of (1.17) leads to P(2N YoMy —+/N)<r)=
det(l — RHerm,NQrRHerm,N) with RHerm,N(xv ¥) = kN KHerm, N (kKN X + \/ﬁ’ KNY + \/ﬁ)» where ky = 27 12N—1e,
On the other hand, it is well known that RHerm, ~ converges to Kaj as N — oo, where the convergence is strong enough
to imply the convergence of the associated Fredholm determinants. In view of (1.19), and omitting the details, this
implies Theorem 1.1.
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A related observation is that, in a sense, Proposition 1.4 serves as a generalization of Johansson’s result for the
Airy, process, (1.5). In fact, the scaling argument used in the last paragraph leads to det(l — KHerm NOr KHerm N) =
P(An (1) < (knr + +/2N) cosh(r) V¢ € R). On the other hand, it is known that AN(t) = K_I(AN(N 153ty — V2N)
converges to A (¢) (this is just a restatement of (1.6) in view of the mapping between the two models). If we knew
that the convergence was strong enough to imply the convergence of POy (1) < a Vt € R) with some control on a, then
(1.5) would follow, because by the argument sketched in the last paragraph the determinant would go to Fgog(4'/3r),
while k' [(kn7 + V2N) cosh(N~131) — V2N =r + 12 + O(N72/3).

The second step in the proof of Theorem 1.3 consists in showing that the right-hand side of (1.17), i.e.
det(l — Kgerm, v 0rKHerm, V) L2(R)> equals FLOE, N(2r2). This is proved in Section 3. We remark that, together with
the preceding discussion, this identity provides an alternative proof of the result of [28] in the case a = 0.

2. Hitting probabilities for Dyson Brownian motion

Recall the stationary Dyson Brownian motion introduced in Section 1.5. As we mentioned, this model is intimately
related to non-intersecting Brownian bridges. The basic relation is that if one considers the non-stationary version
of Dyson Brownian motion (where the Gaussian variables making up the entries of a GUE matrix evolve according
to a plain Brownian motion), then the dynamics of the eigenvalues of this evolving matrix coincide with those of a
collection of Brownian motions conditioned to never intersect. The analogous relation in our setting goes through
a time-change, and is given explicitly in [51, Section 2.2.1]: if Bi(t) < --- < By(?), t € [0, 1], are non-intersecting
Brownian bridges and A (¢) < --- < An(?), t € R, are defined as a stationary Dyson Brownian motion, then

(Bi()i_, @ (vV2t (1 —1) )w-(%log(t/(l - t))))izl,...,N

.....

as processes defined for ¢ € [0, 1]. Changing variables t —> e /(14 e2%) leads to

max BN(t) = rnax V2t(1—1) AN( log(t/(l — t))) = sup AN ()

€[0.1] seR v/2cosh(s)

which shows that Theorems 1.2 and 1.3 are equivalent.” The rest of this section will thus be devoted to computing
P(Ay(t) <rcosh(t) Vt € R).

2.1. Path-integral kernel

The finite-dimensional distributions of the stationary (GUE) Dyson Brownian motion are classically expressed through
a Fredholm determinant in terms of the extended Hermite kernel Kf_fgrm N

SN e g, (el (y)  ifs >,

Ki o N (S, X2, y) = .
Herm, N — Y e, (e (y) ifs <t

where ¢, (x) = e=¥/2 pn(x) and pj, is the nth normalized Hermite polynomial. Explicitly, if —oco <t <t <--- <

tp, <ooandry,...,r, €R, then
IP’(AN(tj) <rj,j=1, n) =det( fK"”‘erm Nf)L2({z1 ..... xR’ 2.1
where we have counting measure on {f1, ..., #,} and Lebesgue measure on R, and f is defined on {#1, ..., #,} X R by

f(7j, %) = 1yerj,00)

(for more details see [51]).

2 A similar argument, together with the fact [50] that V2NV 6(k N(N - 3),‘) — +/2N) converges to A3 (¢) in the sense of finite-dimensional distri-
butions, provides a justification for a version of (1.6) in this weaker sense.
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The first step in our derivation is to obtain a formula for the probability that A (¢) stays below r cosh(#) on a finite
interval [—L, L]. To that end, we need to consider a finite mesh t; < --- <, of [—L, L], let r; = r cosh(#;), and then
take a limit of the corresponding probabilities as given in (2.1) as the mesh size goes to zero. But these probabilities
become increasingly cumbersome as 7 increases, due to the n-dependence in the L? space on which the operators
act. The way to overcome this problem is to first manipulate the right-hand side of (2.1) into a Fredholm determinant
of some other kernel acting on LQ(]R). Such a formula was first stated, in the context of the Airy, process, in [36]
(see also [37]), and the resulting formula was used in [13] to obtain a formula for the probability that A, (¢) stays
below a given function g(¢) on a finite interval. Later on, the procedure that converts the extended kernel formula
into a formula with a Fredholm determinant acting on L?*(R) was generalized in [6] (see also [39]) to a wide class
of processes that includes the stationary Dyson Brownian motion, and from the resulting formula they obtained a
continuum statistics formula for Dyson Brownian motion in a similar way as in [13]. In order to state the formula we
need to introduce some operators.

First, recall the definition of the Hermite kernel Kyerm,ny, given in (1.16), and note that Kg‘etrm’ N xt,y) =
KHerm, ~ (x, y) for any ¢. Next we introduce the differential operator

1
Dz—E(A—xz—H)

(A is the Laplacian on R). D and Kyerm, n are related: D, = ng;,,, so that Kgerm, v 18 the projection operator onto the
space span{¢, . .., pn_1} associated to the first N eigenvalues of D. In particular, even though ' is well-defined in
general only forz <0, e’ DKHem n 1s well defined for all 7, and its integral kernel is given by

N-1

¢PKpterm v (%, ¥) = Y "0 (X)pn (). 2.2)
n=0

Now fix £; < £, and consider a function g € Hl([él, £>]) (i.e. both g and its derivative are in LZ([El, £7])). We
introduce an operator Gfel, 0] acting on L%(R) as follows: ®Eg/él, 0] f(x) =u({2,x), where u(€,, -) is the solution at
time ¢> of the boundary value problem

oru+Du=0 forx <g(t),te L),
u(ly, x) = f(x)li<gey), (2.3)
u(t,x)=0 forx>g(t),telly,lr].

Proposition 2.1 ([6]). Forany £; < £ and g € H! ([€1, £2]) we have

P(An (1) < g(t) V1 € [£1, £2]) = det(l — Kiterm v + O, 1,167V Kpterm ). (2:4)

See [6, Proposition 4.3 and Remark 4.4] for more details. Here, and in the rest of this section, the Fredholm
determinant is computed on the Hilbert space L?(R).

In order to make use of (2.4) we need a formula for ®% AL By the linearity of (2.3), [t.6,] ACts as an integral
operator with kernel given by solving the boundary value problem with f replaced by a delta functlon The next result
gives a probabilistic representation for the integral kernel of G) (01.05]°

Proposition 2.2. Let o = l 26 B = l 262 and denote by O[[1 05 Y) the integral kernel 0f® (01.05]° Then

o~ (€1x—=e2)?/(4(B—a))

1,.2 2
¢ ) = o2 0P
lél,izl(x y)=e /4JT(,3—01)
X Piiarett v i(pyctsy (P0) < Vaig (3 log(@n) Vi € [a, B1), (2.5)

where the probability is computed with respect to a Brownian bridge l;(t) from e''x at time « to €2y at time B and
with diffusion coefficient 2.
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Proof. Let u(f,x) be the solution to the boundary value PDE (2.3) and consider the transformation u(t,x) =

o2+t v(t,z) with T = %ezt, z =e'x. It is not hard to check then that v(t, z) satisfies the following boundary value

problem associated to the heat equation:
dv—9v=0 forz< x/4_rg(log(41')/2), 7€ (a, p),
(e, 2) = OO £/ RO i opiar oy
u(t,2) =0 forz>+/4rg(logd1)/2), 7 € [a, I,

where o = %eze, ,B= %e”z. This boundary value PDE can be solved explicitly in terms of Brownian motion by using

the Feynman—Kac formula: letting b(s) denote a Brownian bridge with diffusion coefficient 2, we have

—(x—z)2 —
wpo= [ VIR ettt ()
Via) B

X Pp o)y 5(py—: (0(0) < VdTg(log(41)/2) on [a, B).

—00

Now using the fact that u(€;, y) = e’/ 2+ (€242 /4, '2y) and recalling that o = }—162‘31 we immediately obtain

f(efelx)

ellg(en) Lo o~ (€207 /(4(B—a))
u(ﬂz,y):/ dxerV’—1¢ 0 +b-0

o Jar (B — o)
x PE(a):x,lS(ﬂ)=e@zy(l;(T) < V4rg(log(d1)/2) on [a, B).

12

Changing variables x > e*!x in the integral, the formula for Gfﬁl 0] (x, y) readily follows. ([

2.2. Hyperbolic cosine barrier
Observe now the key fact that, in our case g(¢) = r cosh(z), the probability appearing in (2.5) is reduced to the
probability of a Brownian bridge staying below the linear function 2rt + %r, which can be computed explicitly. In

fact, assuming that x < e Y1 Qra+r/2) =rcosh(¢;) and y < e~*2(2rB +r/2) = r cosh(£») (note that the probability
below is obviously zero if either condition is not met), the Cameron—-Martin—Girsanov formula yields

A 1
Pé(a):eﬁx (b(t) <2rt+ Er on [«, ,3])

b(py=e"2y
_ (ezz }'72rﬁfezl x+2roc)2
ity 20N E€ 4(p—a) ~ 1
=1— €2y (Bma) P e max b(t) > =r ).
(%2 y—ell1)2 lz(a)_e x—2ra tefa, Bl 2
e B b(B)=et2y—2rp

The last probability can be computed easily using the reflection principle, and it equals
e (€ 1x=2ra=r/2)(e2y=2rB=r/2)/(B=a) (gee e.g. page 67 in [10]). Putting this back in our formula (2.5) for ®5"

[€1.€2]
with g(¢) = r cosh(¢), which for simplicity we will denote from now on as ®EZ AR gives
(r) 12 —x2y4e 1
® (x,y)=1 sh(¢ sh(ey)€2" P
[e1.6,]%0 Y x<rcosh(£y),y<rcosh(£2) B —a)
% (e—<eflx—ef2.v)2/(4<ﬂ—a)> _ e—r(e‘zy—e‘flx)+r2(ﬁ—a>—(eflx+e‘32y—zr(a+ﬂ)—r>2/(4<ﬂ—a>>)' (2.6)

The above expression splits into two terms. Note that if we disregard the indicator function, then by the above deriva-
tion the first term corresponds to the solution of (2.3) with g = 0o, and thus it is nothing but e~ =D (5 y). As a
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consequence, we deduce that

(ef(fzfil)D _ RE’)

07 4.1 =Preoshity) t1.6,1) Preosh(tz)» 2.7)

where I5af(x) =(—-Py)f(x)=f(x)l<, and R&?’m is the reflection term

o3 7)€ 2y—e 1)+ (B—a)— (e xte'2y=2r (a+)—r)? /(4(f—) 2.8)

RY , (ry) = e
[£1,€2] 7 (B — )

and, we recall, o = %ez‘z', B = %ezb.

Now we set —¢1 = £, = L, so that by Proposition 2.1 we have

P(Ay (1) <rcosh(r) V1 € R) = lim det(l — Kiierm, v + O} ;162 Kpterm, ).

L—o0
Using now the cyclic property of the Fredholm determinant and the identities eZLDKHerm, N = (eLDKHerm‘ ~)? and

¢ EPKyerm. v e PKuerm, v = ¢ PKherm. v e “PKperm. v = Kherm, & (Which follow directly from (2.2) and the orthonor-
mality of the ¢,,’s) we may rewrite the last identity as

P(hn (1) <rcosh(r) Vi € R) = Jim det(I — Kiterm, v + €“PKrterm, v 0”1 1¢"PKbterm, ). (2.9)

Note that s ——> @EV_)L’X] is a semigroup, so that @Er_)L’ 0= ®Erj L,0]®E(r),) 11> and thus in view of (2.7) we may write

®Er_)L’L] = |5rcosh(L) (e_LD - REr_)L,O])lsr (e_LD - RE(r)?L])lsrcosh(L)-

Following [13], we decompose ®Er_) 1.1 in the following way:
(r) _ (,—LD (r) 5 (,—LD (r) (r)
O =" =R, g)Pr(e™ =Ry, — 2], (2.10)
where
(r) _ (,—LD (r) 5 (,—LD (r)
Q) = (E - R[—L,O])Pr (6 - R[O,L])

- |5r cosh(L) (E_LD - REr_)L’O])ﬁr (e_LD - RES?L])lsrcosh(L)' (2.11)

The idea is that Q(Lr) is an error term which goes to 0 as L — oco. This is the content of the next result, whose proof
we defer to Appendix B:

Lemma 2.3. Assume r > 0. Then ?Z(Lr) = eLDKHerm,NQg)eLDKHerm,N L—> 0 in trace norm.
—00

Since the mapping A — det(l 4+ A) is continuous with respect to the trace norm, the lemma together with (2.9)
and (2.10) show that if

A= Llimw[KHerm, N = ePRiterm v (e 72 =R, )P (€70 =R, ) e PKrerm, v ] (2.12)
exists in the trace class topology, then
IP’(AN(t) <rcosh(t) Vt € R) =det(l — A). (2.13)

But, as we will see next, the operator inside the brackets in (2.12) in fact does not depend on L (the analogous property
was proved in [13] in the setting of the Airy, process). The key step is the following result:
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Lemma 2.4. Forall L >0,
¢“PKerm NR”} o) =Ktermvor  and Ry e"PKiierm, v = 0 Khterm, v
where o, is the reflection operator o, f (x) = f(2r — x).
Using this lemma and the fact that e/PKyerm, ye P = Kyerm, v We get
KHerm,N — eLDKHerm,N( R[(r)L 0])'5 (e R[((r))L]) KHerm,N
= Kherm, N — Kherm, v (I — Qr)Pr (I = 0r)KHerm, N = KHerm, N 0rKHerm, N »

where the second equality follows from the identity (I — Qr)l5r (I — o) =1 — 0. In view of (2.12) and (2.13), this
yields Proposition 1.4. All that is left to prove then is Lemma 2.4.

Proof of Lemma 2.4. We will only provide the proof of the first formula, the second one is very similar. Using (2.8)
we write the kernel of the operator RE’_) L.0] S

1 2
(r) —ax*+byx+c
R (x,y) = ————c »XTEY
(=L.01 V(I —e 2Ly
with
Ve 14e 2 ) _2et@r—y) nd o (U 4e?hHer—y?
T 2(1—e2Ly’ YT 1 —e 2L r 2(1 —e2L)

This formula together with (2.2) and the contour integral representation of the Hermite function ¢, (x),

2
12 _.2,, 0! et
(p,,(x):(Z"n!ﬁ) / e * /2—¢\de

2mi

(where the contour of integration encircles the origin), gives us

eLDKHerm,NREr_)L’O] (x,y)

N-1

= /Rdz > eH o ()en (R )z Y)

n=0

2

1 In " 12 n! e 2 2 .
noy 7% /24+2tz—az"+byz+cy
\/7,2L Z € (x) 2 n “/—) i dtthr] Rdze :

The z integral is just a Gaussian integral, and computing it the last expression becomes

N-1 —2L,2 -L ! N2
| —e t°4+2e "t 2r—y)—Q2r—y)-/2
Ln ny 12 ¢
e (x) (2" nIV/m)” 3o dt prES
n=0
N— o122 Qr=y)—@2r=y)*/2

12 n!
Z "on(x)(2"n!m) " i ?gdt Hlgln ’

where we have performed the change of variables ¢ — re’. The last integral and its prefactor are nothing but ¢, (2r —
), so this yields eLDKHerm,NREr_)L 0](*> ¥) = KHerm, v (x, 2 — y) as needed. O
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3. Connection with LOE
This section is devoted to the proof of the following result:
Proposition 3.1. Forr >0,

det(l — Kierm, N 0rKHerm, N) .2 (r) = FLOE,N (2r%).

Together with Proposition 1.4, this proposition implies Theorem 1.3.

Let us start by introducing an explicit formula for F1 og, y. To that end, we will utilize the ensemble ) < A(2) <
.-« < A(N) obtained as the result of superimposing the eigenvalues of two independent copies of our LOE matrices,
writing them in increasing order, and then keeping only the even labelled coordinates (i.e. keeping the largest, 3rd
largest, Sth largest, and so on). Observe that if ALog(N) denotes the largest eigenvalue of an LOE matrix as in
Section 1.4, then

P(rLoe(N) <2r%)° = P(A(N) <2r?). G.1)

The advantage of this representation is that the superimposed ensemble (A(i))i=1.....n is a determinantal process with
a simple correlation kernel Kpague, v (see [23]). The kernel Kpagye v is given as follows. For n € N, introduce the
Laguerre function

Yn(x) = e 2L, (x), (3.2)

where L, (x) is the nth Laguerre polynomial (see e.g. [16, §18.3]), normalized so that ||y, ||2 = 1, and then define the
Laguerre kernel as

N—-1
KLague. N (X, ) = Y Y () ().

n=0

Then
~ a [
KLague. N (¥, y) = T ox / duKpague, N (X, ).
0

The determinantal structure of the superimposed ensemble leads directly to a formula for the distribution of A(N) (see
[26] or [40, (1.36)]):

P(A(N) <2r?) = det(I — Py,2KLague, N P2y2) 12(m) - (3.3)

Observe that RLague, ~ is a finite rank operator, and thus the last determinant can be represented as the determinant of
a finite matrix. More precisely, if we factor our operator as RLague, ~N = K{Ky with K : Zz({O, ..., N—1}) — LY(R)
and K> : LZ(R) — 82({0, ..., N —1}) defined by the kernels K (x,n) = —,(x) and Ka(n, y) = fdv duir, (u), then
the cyclic property of the Fredholm determinant implies that the determinant in (3.3) equals det(l — K2P,,2K1), so that

det(l — Pp,2Kpague. NP22) 12(R)

. X N—1
:det|:8jk+/ dxw}(x)/ dulﬁk(u)}
22 0

r J k=0
N—1

o9 2r2
:det[ajk—[z 2 dij(x)wk(x)—wj(Zrz)/o duwk(u)] ,

j.k=0
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where in the second equality we have integrated by parts. Defining now a symmetric matrix® L € RV*" and two
column vectors Ry, Ry € RN by

o0 21‘2
Lio= [ dswymne, Ry =) and Ry = [ duvw, G4
r
for j,k€{0,..., N — 1}, we deduce by the last identity, (3.1) and (3.3), that
FLOE,N(272)2 =det(/ — L — R;{ ® R»). 3.5

Similarly, we have a version of (1.17) in terms of the determinant of a finite matrix (which can be obtained by
conjugating the kernel inside the Fredholm determinant in (1.17) by the operator G : L>(R) — ¢2({0, ..., N — 1})
with kernel G(n, x) = ¢, (x)):

det(l — KHerm,NQrKHerm,N)L2(]R) =det(/ — H), (3.6)

where the symmetric matrix H has entries given by

Hj = /Rdxgoj(x)q)k(Zr —X). 3.7

Therefore, and in view of (3.5), we see that, in order to prove Proposition 3.1, we have to establish that
det(I — H)> =det(I — L — R; ® R»). (3.8)

At this point the main difficulty in proving (3.8) lies in the fact that the two sides of the identity are given in terms
of objects related to two different families of orthogonal polynomials, which makes it hard to relate one to the other.
So the first step in our proof of the identity consists in replacing the matrix H on the left-hand side by a matrix defined
in terms of Laguerre polynomials.

To this end, let us introduce the following N x N (real) matrix H:

Hij = (DN (Vi -~ (2r%) = Yisjon+1(2r%)) fori, je{0,...,N —1}. (3.9)

Here v, is the Laguerre function introduced in (3.2) for n > 0, while we set ¥, =0 for n < 0. Note in particular that
H is zero above the anti-diagonal (i.e. I?ij =0if i + j < N — 1). This matrix will play a key role in the proof. As
we will see in the next lemma, H is conjugate to H, so that det(/ — H) =det(I — ﬁ). Moreover, we will see that the
matrices L and R; ® R, are also intimately related to H. In order to state the lemma we introduce a matrix Q € RN XN
and two column vectors u, v € RV by

u=(—DnHN"11, vi =(=1)2 fori=0,...,N—1,

Qij=1—2r fori=j, i,j=0,...,N—1
—4r fori > j,

(here 1 denotes the constant vector with 1 in each entry).
Note that the matrices and vectors introduced in this section are always indexed by {0,..., N — 1}, and they
generally depend on N and r; we have omitted this dependence from the notation for simplicity.

Lemma 3.2. Let H, H, L, R, Ry, Q, u and v be defined as in (3.4), (3.7), (3.9) and (3.10). Then the following
properties hold:

3 As a notational guide, note that while we have used sans-serif fonts to denote operators acting on a Hilbert space and their associated kernels, we
are using regular fonts to denote (finite) matrices.
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(1) H is conjugate to H, i.e. there exists an invertible matrix S € RN*N such that H=SHS .
(i) H*=L.
(iii) Ry = Hu and Ry = (I — H)v.
(iv) 2H=QH.
V) SU+H)'=U-H)'HQ+U - H)"EUI + H)™', where E=4rHu ® u.
This lemma contains all the key identities which will be needed in the proof of (3.8). Let us thus postpone the proof
of the lemma until the end of this section and proceed directly to the proof of the main result of this section.

Proof of Proposition 3.1. As we already explained, all we need to do is prove (3.8). The structure of the proof is
inspired in that of the proof of (1.9) in [19]. Note that both sides of (3.8) are zero if r = 0 (this is equivalent to the fact
that both sides of (3.1) vanish when r = 0, which is clear). Therefore we will assume throughout this proof that » > 0,
which for similar reasons implies that both det(/ — H) and det(/ — L — R} ® R») are strictly positive.

We start by using (ii) and (iii) in Lemma 3.2 to rewrite the determinant on the left-hand side of (3.8) as

det(/ — L — Ry ® Ry) =det(I — H*> — Huv"(I — H))
=det(/ + H)det(I — (I + H)"'Huv") det(/ — H)
=det(/ — H)det(I + H)(1 — (u, (I + H)""Hv)),

where in the third equality we used the fact that (1 + H )1 HuvT is rank one. By Lemma 3.2(i), we have det(/ — H) =
det(I — H), and thus (3.8) will follow if we prove that

det(/ — H) =det(I + H)(1 — (u, (I + H)"'Hv)). (3.11)

Note that, by the discussion in the last paragraph, since r > 0, the left-hand side and the two factors on the right-hand
side are strictly positive.

Consider the second factor on the right-hand side of (3.11). Since (u, v) =0 if N is even and (u,v) =2 if N is
odd, we can write 1 = (u, v) + (—l)N, so that

1—(u, (I + H)VHo) = (=D 4 (w,v) = (u, I+ H) " Ho) = (=D + (u, (1 + H) o).
Taking now logarithm on both sides we see that (3.11) is equivalent to

logdet(I — H) =logdet(I + H) +log((= )" + (u, (I + H)"'v)). (3.12)
We will prove that the derivatives in r of both sides are equal, that is,

(u, 21+ H)~v)
(=DN + (u, (I + H)~'v)’

—Tr(([—ﬁ)_liﬁ> =Tr((1+ﬁ)—1iﬁ>+ (3.13)
or or

where we used the fact that % log(det(A)) = Tr(A~! %A) if A is a square matrix depending smoothly on r. As a

consequence, the two sides of (3.12) differ at most by a constant. But, since H—>0asr— 00, both sides of (3.12)
go to 0 as r — 00, so the two sides are equal. Therefore our proof will be ready once we show that (3.13) holds.
Since (I — H)™'+ (I + H)"'=2(I — H*>)~!, (3.13) is equivalent to

~y 1 0~ ~ 0 ~
—2Tr(([ - H?) 18—H> [(DN +(u, (1 + H) )] = <u 8—(1 + H)‘1v>. (3.14)
r r
At this stage we use Lemma 3.2(iv) and then the cyclicity of the trace to obtain

—2Tr<(1 - i) %ﬁ) = 2Te((1 - A% ' oH) = —2Te(QA(1 - 7% 7).
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Now note that if A is an N x N real symmetric matrix then Tr(QA) = —2r va j_zlo Ajj =—2r(u, Au), and thus

arlu, (1 — B2 Fu) = —2Tr(([ _ ) %ﬁ) (3.15)

On the other hand, on the right-hand side of (3.14) we may apply Lemma 3.2(v) and use the simple identity Qv =
(=DN4ru to get

<u,%(1+ﬁ)_lv>:<u,(l—ﬁ2) HQv+4r(1 — H) (Hu®u) (I + H)'v)

= dr{u, (I — B Hu)[(=DN + (u, (1 + H)~'0)]. (3.16)
Using (3.15) in (3.16) we get (3.14), which finishes the proof. U

Proof of Lemma 3.2. (i) Fix N € N and r > 0, and define a upper triangular matrix § € RV* as follows:

B N . Y A
S,]:Cj< J_l )(—1) +]1jzi Wltth:r m

fori, j €{0,..., N — 1}. We claim that S is invertible, with inverse given by

1 /N—1-—
s— < _ )( DN,

T j—i

To check this, note first that, since both S and S~! (as given above) are upper triangular, we have (SS _1),:/ =0
for i > j, while (SS™1);; = S,'iSi?l = 1. Thus it remains to show that (SS_I)U =0 when i < j. But (SS_I),-j =

N—1-i)! 24N —1k — 1) (N=1—i)! x~Jj—i j—i)! . .
((Nilf}))!(—l)ZN 24 p (k—(i)!(;'—k)! = ((Nllf(j)!(j—il))! Zizé(—l)k%,andby the binomial theorem the last

sum on the right-hand side is simply (—1 4 1)/~ =0.
Now Lemma A.2 in Appendix A allows us to rewrite the symmetric matrix H in terms of Laguerre functions: for
J=i,

H'i 11 CJ Z ( )(_1)kwk(272). 3.17)

clk

We will use this representation to show that S~ HS = H.We have
~ cj N—-1—-i\(N—-1—-¢ ik
S—IHS =_] _1 2N—2+j+kH .
(7H), =3 2 ( ki )( it )( : “

Note that the value of ﬁk( depends only on k +£. Letting J,, = Y_1(2r%) — ¥, (2r?), so that FNIM =(— I)NIZkaNH,
and recalling that, by convention, ¥, = 0 for n < 0, we may write

(s7'H5), ’Z[ 2. (Nk__l,._i)(x_l E)( 1>f+k+N}wn. (3.18)

1_
k=i,...N—1,£=0,...,j J

Performing the change of variables k — k + i, £ = N — 1 — £, and introducing the convention that (:,’1) =0 if
m > n > 0, the sum in the square brackets turns into

Z <N —-1- l)( ¢ >(_1)i+j+k+N.
k N-l-j

k>0,0<¢<N-1
k—l=n—i
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We claim now that the sumin 0 < £ < N — 1 can be extended to £ > 0. In fact, we may assume thatk < N — 1 —i, since
otherwise the first binomial coefficient vanishes. Since £ is constrainedtobe { =k +i —n<N—-1—-n<N —1,
adding the terms with £ > N does not really contribute to the sum. In view of this, and using Lemma A.1 from
Appendix A, our sum can be rewritten as

3 N—1-i ¢ (—1)iHiHh+N (=D (- Mizjzn forizn,
k N—1- =

1 .
k>0,>0 (=D ("0 15, fori <n.
L—k=i—n

Now we substitute this formula into (3.18) and consider three separate cases:

e Ifi = j, then (S*IﬁS),, =y oy (D, = (- 1)iw-(2r2)

o Ifi < jthen (STHS); =<3 (1 (i) =LY, (f:;)(—l)"wn(zrz), where the second iden-
tity follows by summation by parts.

e If i > j, then proceeding as for i < j we get (S_IHS)U = c’ ( 1)/ n 0 (i ;’ })Wn (2r?). Applying Lemma A.3
from Appendix A we deduce that the last sum equals

cjil@er?)/ AV o Ci =i\, i 2
ci ji2r?) 2 (n—j>( D ar )_Cj 2 <n—j)( D (2r).

Jj=n<i j=n<i

In each case, the expression for (S -1gs )ij coincides with the formula for H;; in (3.17), which completes the proof
of (i).
(ii) We will use the contour integral representation of the Laguerre function ¥, (x),

Uy = X2 }ﬁdz ¢ (3.19)
2

t"+1(1 — t)’

where the integration is along a small circle around the origin (note that by Cauchy’s theorem this formula is consistent
with our convention ¥, = 0 for n < 0). Together with the definition of L, (3.19) leads to

XV
1

o0 1 o0 e—x—m—:
Ljx= fzﬂ dxrj(xX) Y (x) = G /zrz dxjg%dudvujﬂ(l = T R—

—2r2(I+ 5+ 1%5)
(zm)z%fdudv T ) (3.20)

On the other hand, from the definition of H we get

N-1
(H7) ;= D™ D (W= (2r%) = Vjin—n+1(2r7)) (Y= n (2r%) = Yurk—n+1(2r%))

n=0

721‘27 2r2u 2)‘21)
I

- T 1 1 1 1
(2711)2 ”Z (1 —u)(1 —v) \uin=N+1 ~ jFn=N+2 J\ ynrk=N+T — yn+k=—N+2

—2r2(1+1 ) (1 N
ygfdudv d-@y?) (3.21)

ult1pk+1 (1 —uv)

= 2ni)?
The difference between (3.20) and (3.21) is then given by

~) —2r2(1+1ufu+ﬁ)(uv)N
L — H - .
= Jk (27{1)2 fff ultTok+1(1 — yv)
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Since 0 < j, k < N — 1, the integrand has no poles in # and v inside the chosen contours, and hence the whole integral

vanishes. B
(iii) For the first formula, we compute directly Hu to get

N—-1
(Huw)i = (=D [Wik-n (2) = Yisr-n1(2r) ] = v (2r%) = ¥in (2r%) = (R1):,

k=0

where the last identity follows because ¥y (2r?) = 0 (since i < N). For the second one, we use the property
£ (Ln(x) = Lpy1(x)) = Ly(x) of Laguerre polynomials to obtain & (¥, (x) = ¥41(x)) = 3 (W (x) + Y s1(x)),
which, together with the fact that L, (0) = 1 for all n € N, gives

1 2r2
5 fo Ax[Yn () + Y1 ()] = ¥ (2%) = Yuy1 (2r7)

for all n € N. Hence we can write the entries of H as

0 fori+j<N—1,
ﬁij _ (_1)N+le—r2 fori+j=N—1, (3.22)
_1\WV . .
ED (Wi jon 2P + Wi jon+1(2r%) fori+j>N—1,

with W, (s) = fos dxr, (x) (note that Yo(x) = e_x/z). Now we can compute

N-1 -1
(1= Hyw), = 3 G = B (=12 =2(=1) 2= e =2 3~ (~1)* iy
k=0 k=N—i

i—1 _I\N
=2(~Di(1—e) =2 (~DFN %(\pk (2r%) + Wip1 (2r7))
k=0

=2(—=1) (1 —e™"") = (=)' W(2r2) + W; (2r2) = (Ra);.
(iv) From (3.22) we get
3 0 fori+j<N-—1,
Eﬁ”: (—1)N2re? fori+j=N—1,
(DN 2r (Y jon @r?) + Y jon12rD) fori+j >N — 1.
This expression coincides with the i, j entry, for all i, j € {0, ..., N — 1}, of the matrix Qﬁ , which is given by

i—1
(QH)ij=—4r Y Hij —2rHij = (=) 2r (Yiy v (2r%) + Vit j-n41(2r%))
k=0

(v)Fori, j€{0,..., N — 1} we have
i—1 N—-1
(QH)ij+<HQ)ij=—4r(H,-,-+ZHk,~+ > H,-k>.
k=0 k=j+1

Since Z};}) H, = Zi;(l) Hy., the right-hand side of the last identity equals —4r Z,ivz_()l H;., which coincides with
—(4r Hu @ u);;. Thus, recalling the notation E = 4r Hu ® u, we have

QH=-HQ-E. (3.23)
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Now recall that if A is a square matrix which depends smoothly on a parameter r, then 9, A~' = —A~13, AA~!. Then,
in view of (iv) and the last identity, we have

WU+H) '=—U+H'0HI+H)™!
=(1-B)'u-HQ+E)d+ )

Comparing this with the right-hand side of the identity we seek to prove, we see that it is enough to check that
HQ(U+H)+E=(—H)(HQ + E), which follows easily from (3.23). O

Appendix A: Some formulas for Hermite and Laguerre polynomials

We begin with a combinatorial result which was used in the proof of Lemma 3.2(i) and which will also be used later
in this appendix.

Throughout this appendix we adopt the convention that, for k € Nand ¢ € Z, (lz) =0if £ <0 or £ > k (this can be
justified, e.g., by replacing the factorials with Gamma functions).

Lemma A.l1. Letn,m e Nand a € Z. Then

) (”)(1)( 1y — =D"(,%,) fora >0,
i,j=0 oA (=D (:::Z:-T-zlz)l{nsza} fora <0.
j—i=a

Proof. Assume first that @ > 0. Then the formula we seek to prove can be rewritten as

) (”) (’ +“)(—1)’“’ = ( ¢ ) (A1)
4 i m m-—n

i>0

For x € R and with our convention, we have (using Newton’s generalized binomial theorem)

() (R TS

m>0i>0 i>0

=1+x0)*(-1+1+x)"

— (0% =x" Y (Z)x@.

LeZ

By equating the coefficient in front of x™ on both sides, we obtain (A.1).

When a < 0, we first let b = —a > 0 and rewrite the desired identity as
n J . n—m-—1
> ( . )( )(—1>f = ( )l{nzmm. (A2)
o\ +b)\m n—m-—>b

Pick x € R such that |x| < 1 and |1=| < 1. Using three times the identity

)Ck ad n n
o= 2o "3

n>k
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(which is a straightforward consequence of Newton’s generalized binomial theorem) together with our convention we
have

j—m X" xj+b j—m
T3 (1) () =X () =y
xb (x/(1 —x)™

T U= (I /(1 —x)ymH
b+m

X m+1
S Z ( )
>b—1

Equation (A.2) now follows from the fact that the coefficient of x” on the right-hand side is given by (Z::’;: })) when
n >m + b and equals O when n <m + b. O

Lemma A.2. Forn,m € N withn >m and any r € R\ {0}, the following relation holds:

2ma\? N (n—m
dx @ (X)@m (2r — x) =r""" — Dk (2r?). A4
/R X () 2r —x)=r (W!) ;n(k_m>< Yy (2r?) (A4)
Similarly, for the case r =0 we have
/Rdan(xwm(—X)=(—1)"1m=n. (A.5)

Proof. Recall that the Hermite polynomials have a simple generating function, namely

We write the convolution of Hermite functions in (A.4) as

/ dxn(X)gm (2r — x) = f dx H,(x)e=*"12H,,2r — x)e~@=0"/2
R

1
N2 pim! JR

and then use the above generating function to evaluate the sum

Z

:/dxezxﬁ—l‘lz—x2/2+2(2r—x)t2—t22—(2r—x)2/2:ﬁe—r2+2r(t|+t2)—211t2.
R

/dxH (x)e™™* /2H Q2r —x)e” @r—x)*/2

By equating the coefficient of #{'#7" on each side, we obtain an explicit formula for the left-hand side of (A.4):

2
—rcan qm 2r(t;+th)—2t1tr
0;, 0y, €

/dxﬁl)n(x)(/’m(zr_x):
R

1
v2"+mn!m!e

- 5 () (e *o

In particular, we get (A.5), so from now on we will assume r # 0.

t1=t=0
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Turning to the right-hand side of (A.4), we use the explicit power series expansion of the Laguerre polynomials,

k ¢
K\ (—1
Lix)=) (11)( ev) xt, (A.7)
=0 ’

to rewrite it as

2N\ E n—m e 2 (KN (=D
" <2"m!> Zz(k—m>(_1)e (z) o )

k=m £=0

We need to show that this expression equals the right-hand side of (A.6) or, equivalently, that

n—mk-+m N n 2\ ¢
n— ktm\ e, (200 mo\ o, (=2r7)
;( )( 1 )( b o 2 <n—e)( AT

k=0 l=n—m

where we have performed the changes of variables k — k 4 m on the left-hand side and ¢ +— n — £ on the right-hand
side. Using our convention, this is equivalent to

| (n—m\ (k+m pem—t | (C2rDY & (—2r?)t
ZLZ:O( k )( ¢ >( D ] 2! _[Z<n z) o

=0
It follows from Lemma A.1 (or, more specifically, from (A.1)) that the coefficients of (_2[!2)[ on both sides of this
identity coincide, and this finishes the proof. ]
Lemma A.3. For any n,m € N withn > m and any x € R, the following relation holds:

(=D)"x" & n—k—1 " (n—m k

— 2, )= ) D L), (A8)

k=0 " k=m

Proof. We will use (A.7) in order to extract the coefficients of x* in the polynomials appearing on both sides. The
coefficient of x¢ on the left-hand side of (A.8) is clearly 0 if £ < n, while for n < £ < n + m it is given by

-1 l+m—n M — k=1 k -1 {+m—n
S _ =D Y A9)
n!(f —n)! pard n—m-—1/\€—n nl(d—n)! \l—m

where we have used a variant of Vandermonde’s identity which can be obtained by equating the coefficient of x”

a x';n_lm — xr)znnﬂ = (1_);{);:""1“ obtained by using (A.3). On the other

hand, for £ < m the coefficient of x¢ on the right-hand side of (A.8) is clearly zero, while for m < £ <n 4+ m it is
given by

(_1)€—m n—m n— k+m k+m_ (_1)€+n—m m
m!((—m)lg( k )(Z— >( D m!(ﬁ—m)!(ﬁ—n)’ (A-10)

where we used the change of variables k — k + m and Lemma A.l. Notice that (A.10) equals O by our convention
if m <€ < n and it clearly equals (A.9) if n < £ <n 4 m (recall that we are assuming n > m). The proof is thus
complete. O

the expansion of both sides of the 1dent1ty by
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Appendix B: Proof of Lemma 2.3

Throughout the proof we will use c¢; and ¢; to denote positive constants which do not depend on L and whose value
may change from line to line. We will denote by || - ||; and || - || the trace class and Hilbert—Schmidt norms of operators
on L%(R). We recall that

IABl1 < |All2l|Bll2 and ||A||§=fdxa’yz‘\(x,y)2 (B.1)

if A has integral kernel A(x, y); for more details see [40, Section 2] or [47].
In view of (2.11) we write Q(Lr) = Q(Lr’l) + Q(Lr’z), where

~(r1 B ~ B _
Qg ) = eLDKHerm,NPrcosh(L) (6 LD _ REr_)L’O])Pr (e Lo _ RES?L])Prcosh(L)eLDKHerm,N,

=(r,2 — P -
Q% = " PKuterm, v (€70 = R, 0))Pr (72 = Rig) 1)) Prcoshizre™Kiterm, v

We will focus on Ez(L’ D and show that it goes to zero in trace norm, the proof for S~2(Lr ) is very similar so we will omit
it.
We factor ﬁg’]) as

=0
Q(Lr’ )= TiY,
with
T = e"PKterm, v Pr cosh(z) (e 7P — R[(';)L’O])IB, and Y, =P, (e tP - R[((r)’)“)ISrcosh(L)eLDKHerm,N-

By (B.1), it is enough to show that || Y1 |]2]|Y2|l2 — 0 as L — oo. We start with Y, which is made of two terms
which we will bound separately. By (B.1) and the fact that the family (¢, ), N is orthonormal we have

_ = 12
HeLDKHerm,NPr cosh(L)€ LDPr ”2
N-1 [ee} r
= [ dx/ dye" ") g, (x) g (x) dzdz u (2w (Z)e Pz, y)e P (2, y)
nn'=0" "% —00 [r cosh(L),00)?

N1 P

oo 2
= ot / dy ( / dzgn(2)e Pz, y))
—o0 rcosh(L)

n=0

2(N—1)L * * —LD 2
<Ne dz dy(e "P(z, )",
cosh(L)

r —0o0

where we have used the Cauchy—Schwarz inequality. Using the formula for the kernel of ¢ P which is implicit in
(2.6) and (2.7) we see that the y integral is just a Gaussian integral, and computing it gives

an—nr coth(L) —1 [

47 coth(L) Jr cosh(r)

tanh(L) for all L > 0, and thus, recalling that we are assuming r > 0,

24,
62L Z tanh(L)'

HeLDKHerm,NPrcosh(L)e_LDlsr ”5 <Ne dz

The last integral is bounded by ¢ 2L—">cosh(L)?

LD —LDp |2 2NL—cre*t
He Kterm, ¥ Pr cosh(z) € P, ”2 =cie e

for sufficiently large L. The estimate for the other term appearing in Y is very similar and leads to the same type of
bound. We deduce that

171l < creNE-ae™ (B.2)
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for large enough L. On the other hand it is easy to check that the same calculation as above leads to
121l < cre™* (B.3)

(note that in this case the projection P, ¢osn(z) appearing in Y is replaced by P, cosh(Z); this accounts for the fact that
the factor e=2¢*" disappears from the upper bound). By combining (B.2) and (B.3) together we immediately get

0], vtV — o,
L—o0
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