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Abstract. We study the lengths of monotone subsequences for permutations drawn from the Mallows measure. The Mallows
measure was introduced by Mallows in connection with ranking problems in statistics. Under this measure, the probability of a
permutation π is proportional to qinv(π) where q is a positive parameter and inv(π) is the number of inversions in π .

In our main result we show that when 0 < q < 1, then the limiting distribution of the longest increasing subsequence (LIS) is
Gaussian, answering an open question in (Probab. Theory Related Fields 161 (2015) 719–780). This is in contrast to the case when
q = 1 where the limiting distribution of the LIS when scaled appropriately is the GUE Tracy–Widom distribution. We also obtain
a law of large numbers for the length of the longest decreasing subsequence (LDS) and identify the limiting constant, answering a
further open question in (Probab. Theory Related Fields 161 (2015) 719–780).

Résumé. Nous étudions les longueurs des sous-suites monotones de permutations aléatoires tirées sous la mesure de Mallows. La
mesure de Mallows a été introduite par Mallows dans le contexte des problèmes de classement en statistique. Sous cette mesure
la probabilité d’une permutation π est proportionnelle à qinv(π) où q est un paramètre positif et inv(π) est le nombre d’inversions
de π .

Notre résultat principal montre que lorsque 0 < q < 1, la loi de la plus longue sous-suite croissante est Gaussienne, répondant
ainsi à une question posée dans (Probab. Theory Related Fields 161 (2015) 719–780). Notons le contraste avec le cas q = 1, où la
loi limite de la plus longue sous-suite croissante proprement normalisée est la distribution du GUE Tracy–Widom. Nous obtenons
aussi une loi des grands nombres pour la longueur de la plus longue sous-suite décroissante et identifions la limite, répondant ainsi
à une autre question posée dans (Probab. Theory Related Fields 161 (2015) 719–780).
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1. Introduction

Random permutations are well-studied objects in combinatorics and probability. Whereas different statistics of a
uniform random permutation have been extensively studied, some non-uniform measures on permutations have, in
recent years, generated attention as well. Among the non-uniform models of permutations, the following exponential
family of distributions on Sn, the set of permutations on [n] := {1,2, . . . , n}, introduced by Mallows [29], has been
one of the popular choices. Let q be a positive parameter. A random permutation � = �n,q on Sn is said to be drawn
from the Mallows(q) measure if

P(� = π) = q inv(π)

Zn,q
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for every permutation π of [n] where

inv(π) := #
{
(i, j) : 1 ≤ i < j ≤ n,π(i) > π(j)

}
is the number of inversions in π and Zn,q is a normalizing constant. Observe that for q = 1, this reduces to the
uniform measure on permutations whereas for q > 1 and q < 1, permutations with more and less inversions are
favored respectively.

In this paper, we study the lengths of longest monotone subsequence of a Mallows(q) permutation. This is a
classically studied question for uniform permutations and the study for general Mallows measures was initiated fol-
lowing a question raised by Borodin et al. in [10] and has received significant attention of late [9,31]; see Section 1.1
for more details. For a permutation π in Sn, we say that 1 ≤ i1 < i2 < · · · < ik is an increasing subsequence of
π with length k if π(i1) < π(i2) < · · · < π(ik). An increasing subsequence of maximum length is called a longest
increasing subsequence (LIS). Define the length of any such subsequence as the length of a longest increasing sub-
sequence of π . Analogously, we say that 1 ≤ i1 < i2 < · · · < ik is a decreasing subsequence of π with length k if
π(i1) > π(i2) > · · · > π(ik). A decreasing subsequence of maximum length is called a longest decreasing subse-
quence (LDS) and the common length of such subsequences is defined to be the length of a longest decreasing subse-
quence of π . For a random Mallows(q) permutation � as defined above, let Ln = Ln(q) and L

↓
n = L

↓
n(q) denote the

length of a longest increasing subsequence and the length of a longest decreasing subsequence of � respectively.
Weak laws of large numbers have been established for Ln(q) for different ranges of q = q(n). For q = 1, it is a

classical result that Ln scales as 2
√

n. It is also not hard to see via a subadditive argument (see e.g. [9]) that Ln scales
linearly with n when q < 1. The growth rate of Ln as well the limiting constant has been identified in intermediate
regimes in [9,31]. However, so far, scaling limits for Ln have not been established in any case except when q = 1. In
this paper we consider q ∈ (0,1) fixed. Our main result is a central limit theorem for Ln(q), which is the first result
identifying the limiting distribution for the Mallows model in a case when q �= 1. We prove that Ln is asymptotically
Gaussian with linear variance, confirming a conjecture in [9]. This provides an instance of a phase transition in the
scaling limit of the length of LIS between Gaussian and GUE Tracy–Widom distribution as q varies; see Section 1.1
for more details.

Theorem 1. Fix 0 < q < 1. Then exist constants σ = σ(q) > 0 and a = a(q) > 0 such that for Ln = Ln(q) defined
as above, we have

Ln − an

σ
√

n
⇒N (0,1)

as n → ∞ where ⇒ denotes convergence in distribution and N (0,1) denotes the standard Normal distribution with
mean 0 and variance 1.

We do not have explicit formulae for a(q) and σ(q) in the above theorem. However, in Section 5, we derive
representations of a and σ as certain statistics of a measure on the space of permutations with variable length. Observe
that a = limn→∞ ELn

n
, where the existence of the limit is guaranteed by a subadditive argument. Bounds on a were

derived in [9], but evaluating this constant was left as one of the open problems there.
Our second main result is a law of large numbers for L

↓
n(q) for 0 < q < 1. The order of the rate of growth of L

↓
n(q)

was found in [9] and the identification of the limiting constant was left as an open question, which we answer in the
following theorem.

Theorem 2. Fix 0 < q < 1. For L
↓
n = L

↓
n(q) defined as above, we have

L
↓
n

√
logq−1

√
2 logn

→ 1

in probability as n → ∞.
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The reversal πR of a permutation π is given by πR(i) := n + 1 − π(i) for 1 ≤ i ≤ n. It is easy to check (see e.g.
[9]) that the reversal of a Mallows(q) distributed permutation is a Mallows(1/q) permutation. Since the length of an
LIS of a permutation is equal to the length of an LDS of its reversal, Theorem 2 can also be interpreted as a law of
large numbers of Ln(q) when q > 1.

1.1. Background and related works

The Mallows model was originally introduced motivated by ranking problems in statistics. The Mallows distribution
can be defined more generally with respect to a reference permutation π0 through the Kendall–Tau distance

d(π,π0) :=
∑

1≤i<j≤n

1{π0(i)<π0(j)}1{π(i)>π(j)}

which reduces to inv(π) when π0 is the identity permutation. Mallows was interested in the problem of determining
an unknown “true” ordering or “reference permutation” on the elements π0 given samples of orderings penalized
according to the number of pairs out of order compared to the reference permutation. Generalized Mallows models
using a variety of metrics on permutations are used to model ranked and partially ranked data in machine learning and
social choice theory [13,17–19,27,30].

The Mallows(q) measure is related to representations of the Iwahori–Hecke algebra [18] and to a natural q-
deformation of exchangeability studied by Gnedin and Olshanski [21,22]. It also arises in connection with the station-
ary measures of the biased adjacent transpositions shuffle on Sn and of the nearest-neighbor asymmetric exclusion
process on an interval where particles jump to the left with probability 1 − p and to the right with probability p and
q = p/(1 − p) [8]. Further, by the correspondence between the ASEP and the XXZ quantum spin system [11,36], the
ground state of the XXZ model is a projection of the Mallows model on permutations.

The normalizing constant Zn(q) in the Mallows distribution has a closed form formula which Diaconis and Ram
[18] observed to be the Poincaré polynomial

Zn,q :=
∑
π∈Sn

q inv(π) =
n∏

i=1

qi − 1

q − 1
= [n]q ! = [n]q · · · [1]q, where [i]q = qi − 1

q − 1
. (1)

The formula (1) for Zn,q implies a straightforward method for generating a random Mallows distributed permutation.
As mentioned before, the question of determining the length of the longest increasing subsequence of permutations

drawn from a Mallows model for general q was raised in [10]. When q = 1, i.e. in the case of uniform random
permutations, the asymptotics of Ln (known as Ulam’s problem) have been extensively studied. Vershik and Kerov
[38] and Logan and Shepp [28] showed that ELn/

√
n → 2 (see also [1] for a proof using Hammersley’s interacting

particle system). Mueller and Starr [31] first studied Ln under the Mallows measure for q �= 1. In the regime that n(1−
q) tends to a constant β , they established a weak law of large numbers showing that Ln/

√
n converges in probability

to a constant C(β) which they determined explicitly. Their arguments rely on a Boltzmann–Gibbs formulation of a
continuous version of the Mallows measure and the probabilistic approach of Deuschel and Zeitouni for analyzing the
longest increasing subsequence of i.i.d. random points in the plane [14,15].

Subsequently, in [9], Bhatnagar and Peled established the leading order behavior of Ln in the regime that
n(1 − q) → ∞ and q → 1. They analyzed an insertion process which they called the Mallows process for randomly
generating Mallows distributed permutations and showed that Ln/n

√
1 − q → 1 in Lp for 0 < p < ∞ as n → ∞.

They established the order of L
↓
n and showed that it grows at different rates for different regimes of q as a function

of n (in particular they showed EL
↓
n(q) = �(

√
logn/ logq−1) when q ∈ (0,1) is fixed) and proved large deviation

bounds for Ln and L
↓
n . They also established a linear upper bound on the variance of Ln and left open the questions

of determining the precise variance and the distribution of Ln for all regimes of n and q .
Recently, further progress been made in the analysis of the empirical measure of points corresponding to the

Boltzmann–Gibbs measure of Mueller and Starr. Mukherjee [32] determined the large deviation rate function of the
empirical measure of points and Starr and Walters recently showed that the large deviation principle has a unique
optimizer [37].
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The case q = 1 is special because it is one of the exactly solvable models that belong to the so-called KPZ univer-
sality class. In this case, the longest increasing subsequence problem can also be represented as a directed last passage
percolation problem in a Poissonian environment. The results of [28,38] follow from an asymptotic analysis of exact
formulae that can be obtained for ELn through a combinatorial bijection between Sn and Young tableaux known
as the Robinson–Schensted–Knuth (RSK) bijection [26,33,34]. The RSK bijection can be further used to obtain the
order of fluctuations and scaling limit of Ln in this case. In their breakthrough work, Baik, Deift and Johansson
showed that for uniformly random permutations Ln has fluctuations of the order of n1/6 and the limiting distribution
of n−1/6(Ln − 2

√
n) is the GUE Tracy–Widom distribution from random matrix theory [5].

When q �= 1, the integrable structure is lost, and the powerful combinatorial, algebraic and analytic tools used in [5]
are no longer available for finding the limiting distribution of Ln. Indeed, as Theorem 1 shows, for q bounded away
from 1, we get a different scaling limit, namely Gaussian with diffusive scaling, in contrast with the Tracy–Widom
limit with subdiffusive scaling one gets for q = 1.

Theorem 1 indicates that as q → 1, there is a phase transition in the limiting distribution of Ln between Gaussian
and Tracy–Widom. There are other models where such transitions have been shown to occur. The so-called BBP tran-
sition [4] for the spiked complex Wishart model, a model for non-null covariance matrices [25], is a prime example.
Connections with random matrices have been exploited to show similar transitions in exactly solvable models of last
passage percolation with external sources [6,7]. Much less is understood in the absence of the exactly solvable ma-
chinery. Chatterjee and Dey [12] show that the first passage time across thin cylinders obeys a central limit theorem.
Dey, Joseph and Peled [16] consider the similar problem of directed last passage percolation in a Poissonian envi-
ronment restricted to band of width nγ around the diagonal. Relying on finer estimates available for exactly solvable
models they establish a sharp transition in γ for the limiting law of the length of a maximal path, showing that when
γ < 2/3, the limiting distribution is Gaussian. It is known that if γ > 2/3 the limit is again Tracy–Widom. Another
recent example of a Gaussian scaling limit in a last passage percolation model is obtained by Houdré and Işlak [24]
for the length of the longest common subsequence of random words.

The Mallows model is not known to be exactly solvable and unlike many of the exactly solvable models described
above, the location of the transition (or indeed, if there is only one transition or multiple ones) is currently not known.
It can be shown (see Remark 2 in Section 7) that if q → 1 sufficiently fast as n → ∞ that Ln, properly centered and
scaled, indeed has a Tracy–Widom distribution. To understand this transition(s) is a fascinating problem. By making
the calculations in our proof of Theorem 1 quantitative, it may be possible to show that a central limit theorem also
holds for q tending to 1 sufficiently slowly as n goes to infinity. However, in order to avoid technical complications,
we do not pursue this direction in this paper.

Our analysis hinges on identifying a regenerative process associated with an infinite Mallows permutation. In [21],
Gnedin and Olshanski study a notion of q-exchangeability in infinite Mallows permutations on Z. As in the finite case,
there is a natural insertion process for generating infinite Mallows permutations. One key observation in our work is
that we can define a certain N-valued Markov chain associated with this process. The times when the chain reaches 0
form a set of regeneration times which enables us to view Ln as a sum of longest increasing subsequences restricted
to the permutation defined by the interval between the renewal times; see Section 3 for details. This view allows us to
apply results from renewal theory directly to establish Theorem 1 and makes the analysis rather clean. A more refined
analysis of the same Markov chain allows us to establish Theorem 2.

One could hope that this or similar constructions might be useful in studying other properties of the Mallows
measure. Indeed, shortly before completing this work, we learnt that Gladkich and Peled use a construction of Mallows
permutations and an associated Markov chain similar to what we define to analyze the cycle structure of random
Mallows distributed permutations [20]. For the chain in [20], Gladkich and Peled also analyze the excursions away
from zero, and indeed, the two chains share the same return times to zero and they obtain estimates similar to ours.

Organization of the paper

The rest of this paper is organized as follows. In Section 2 we recall the construction of a Mallows permutation via
Mallows’ process. In Section 3 we obtain a regenerative process representation of a Mallows process. In Section 4
we obtain estimates on the renewal time of the regenerative process by relating it to a return time of a certain Markov
chain. Using these estimates we complete proofs of Theorem 1 and Theorem 2 in Section 5 and Section 6 respectively.
We conclude with some open questions in Section 7.
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2. Constructing Mallows permutations

Fix 0 < q < 1. Gnedin and Olshanski [21,22] constructed an infinite Mallows(q) permutation on N via an insertion
process, which we will also refer to as Mallows(q) process, often dropping q from the argument. The process is as
follows. Start with an i.i.d. sequence {Zi}i≥1 of Geom(1 − q) variables. Construct a permutation �̃ of the natural
numbers inductively as follows: Set �̃(1) = Z1. For i > 1, set �̃(i) = k where k is the Zi th number in the increasing
order from the set N \ {�̃(j) : 1 ≤ j < i}. For example, suppose that the realizations of the first five independent
geometrics are z1 = 4, z2 = 1, z3 = 6, z4 = 2, and z5 = 3. Then we have �̃(1) = 4, �̃(2) = 1, �̃(3) = 8, �̃(4) = 3
and �̃(5) = 6. We represent the process step-by-step below. Note that in each step, the new element i is placed in the
zi th unassigned position among the currently unassigned positions.

1 · · ·
2 1 · · ·
2 1 3 · · ·
2 4 1 3 · · ·
2 4 1 5 3 · · ·

Let �n be the permutation on [n] induced by �̃, i.e., �n(i) = j if �̃(i) has rank j when the set {�̃(k) : k ∈ [n]}
is arranged in an increasing order. Consider in the above example n = 4. Then we have �4(1) = 3, �4(2) = 1,
�̃(3) = 4 and �4(4) = 2. In short, we shall write this permutation as �4 = 2413, with the interpretation that �4 takes
the element 1 to the position 3 and so on. In general, with this representation we can read off �n from the above array
by restricting to the elements in [n] in the representation above. The following lemma is essentially contained in [21]
although it is not explicitly spelt out there. We provide a proof for completeness.

Lemma 2.1. Let �̃ be an infinite Mallows(q) permutation and let �n be the induced permutation on [n], as defined
above. Then �n is a Mallows(q) permutation on [n].
Proof. Fix the values of �̃(i) for i ∈ [n] and let the set of these values be A = An = {ai : i ∈ [n]}. Suppose that
π ∈ Sn. Given A and π , there is a uniquely determined set of values {zi}ni=1 for the first n geometric random variables
so that �n = π . Moreover,

P(�n = π,A) = (1 − q)n
n∏

i=1

qzi−1.

For any 1 ≤ i ≤ n, let π ′ = (i, i + 1) ◦ π , that is, π ′ is the permutation obtained from π by exchanging the positions
of the elements i and i + 1. Letting {z′

i}ni=1 denote the corresponding geometrics, it is simple to verify that, depending
on whether π(i) < π(i + 1) or not, either z′

i = zi+1 + 1 and z′
i+1 = zi or z′

i = zi+1 and z′
i+1 = zi − 1 while zj = z′

j

for all j /∈ {i, i + 1}. Thus

P(�n = π ′,A)

P(�n = π,A)
=

{
q if π(i) < π(i + 1),
1
q

if π(i) > π(i + 1).

Thus the distribution of �n conditioned on A is Mallows(q) since the transpositions generate the group Sn. Summing
over all possibilities for A completes the proof of the claim. �

Notice that the construction of �̃ and �n as described in Section 2 generates a family of Mallows(q) permutations
on [n] for n ∈N on the same probability space. Henceforth when we talk about a Mallows(q) permutation �n on [n],
it will be assumed that �n is constructed from an infinite Mallows(q) permutation as described above.

3. The regenerative process representation

A stochastic process X = {X(t) : t ≥ 0} is said to be a regenerative process if there exist regeneration times 0 ≤ T0 <

T1 < T2 < · · · such that for each k ≥ 1, the process {X(Tk + t) : t ≥ 0} has the same distribution as {X(T0 + t) : t ≥ 0}
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and is independent of {X(t) : 0 ≤ t < Tk}. Below we define a regenerative process associated with the Mallows(q)

process described above.
Recall the sequential construction of �̃ and the induced permutation �n. Suppose m ∈ N is such that we have

�̃([m]) = [m], i.e. the permutation �̃ restricted to [m] defines a bijection from [m] to [m]. Define the permutation
�̃∗ : N → N by �̃∗(i) = �̃(i + m) − m. It is clear from the construction of �̃ that �̃∗ and �̃ have the same law.
Together with the independence of the geometric variables {Zi} this implies that {�̃(i) − i}i∈N is a regenerative
process with regeneration times 0 = T0 < T1 < T2 < · · · where for i > 1 we have,

Ti = min
{
j > Ti−1 : {�̃(k) : k ∈ [j ] \ [Ti−1]

} = [j ] \ [Ti−1]
}
.

We illustrate by an example. Suppose that in the sequential construction for �̃, the values of the first 8 geometrics
are z1 = 1, z2 = 2, z3 = 3, z4 = 1, z5 = 2, z6 = 3, z7 = 1 and z8 = 1. This corresponds to the permutation

1 4 2 7 3 5 8 6 9 10 · · ·
and we see that T1 = 1, T2 = 8, T3 = 9 and T4 = 10 are the regeneration times. We may also view the graphical
representation of the permutation by plotting the points (i, �̃(i)) in R

2 for each i ∈ N. This is illustrated in Figure 1
for the first 50 elements of �̃ which is a random Mallows(0.55) permutation. The regeneration times are marked by
the corners of the squares which lie on the diagonal y = x. The figure illustrates that the points can be partitioned into
such squares, which are minimal in the sense that no smaller square with its corners on the diagonal can contain a
strict subset of the points in a box.

Set Xi = Ti − Ti−1 for i ≥ 1. Clearly, Xi are independent and identically distributed. Let �j(i) := �̃(i + Tj−1) −
Tj−1 for i ∈ {Tj−1 + 1, Tj−1 + 2, . . . , Tj }. Then �j is a permutation of [Xj ] and furthermore the {�j }j≥1 are i.i.d.
Let Sn := min{j : Tj ≥ n}.

Recall that Ln (resp. L↓
n ) is the length of the longest increasing (resp. decreasing) subsequence in �n. The following

two lemmas connect Ln and L
↓
n with the corresponding statistics defined in the permutations {�j }j≥1.

Lemma 3.1. For j ≥ 1, let Yj denote length of a longest increasing subsequence of �j . Then we have,

Sn−1∑
j=1

Yj < Ln ≤
Sn∑

j=1

Yj .

Proof. By Lemma 2.1, the LIS of �n is distributed as Ln. Observe that any subsequence in �j corresponds, in an
obvious way, to a subsequence in �̃ and conversely, any subsequence of �̃ contained in [Tj ] \ [Tj−1] corresponds

Fig. 1. The regeneration times T0 < T1 < · · · are marked by the corners of the squares.
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uniquely to a subsequence in �j . An increasing subsequence of �n when restricted to [Tj ] \ [Tj−1] for 1 ≤ j ≤ Sn

corresponds to an increasing subsequence of �j , which implies the upper bound. On the other hand, any union of
increasing subsequences in the �j for 1 ≤ j ≤ Sn − 1 corresponds to an increasing subsequence in �n, which implies
the lower bound. �

Lemma 3.2. Let Y
↓
i denote the length of the LDS in �i . We have

max
i≤Sn−1

Y
↓
i ≤ L↓

n ≤ max
i≤Sn

Y
↓
i . (2)

Proof. The lemma follows by observing that any decreasing subsequence of � must be contained in [Ti] \ [Ti−1] for
some i. We omit the details. �

4. Renewal time estimates via a Markov chain

Our objective in this section is to prove that the inter-renewal times Xi as defined in the previous section has finite first
and second moments. These are the conditions we require to apply results from the theory of regenerative processes
to show the central limit theorem for Ln. We define a Markov chain such that the Xi ’s can be represented as the
excursion lengths of this Markov chain. Kac’s formula for the moments of return times from the theory of recurrent
Markov chains then implies that the moments of Xi are finite.

For convenience, let X denote a random variable with the distribution same as the common one of Xi ’s. First we
show that X has the same law as the return time of a certain Markov chain which we define below.

Let {Mn}n≥0 denote a Markov chain with the state space 	 =N∪{0} and the one step transition defined as follows:
set Mn = max{Mn−1,Zn}− 1 where {Zi} is a sequence of i.i.d. Geom(1 − q) variables. Let R+

0 denote the first return
time to 0 of this chain, i.e.

R+
0 = min{k > 0 : Mk = 0}.

Lemma 4.1. For the Markov chain Mn started at M0 = 0, the return time R+
0

d= T1. In particular X has the same law
as R+

0 .

Proof. Couple the Markov chain Mn with M0 = 0 with the Mallows’ process by using the same sequence {Zi} of
random variables to run both processes. Under this coupling, it is easy to verify that for each n, by definition

Mn = max
1≤j≤n

{
�̃(j)

} − n.

The claim thus follows immediately from the definitions of R+
0 and T1. �

We analyze the Markov chain Mn and the return time R+
0 in the next few lemmas.

Lemma 4.2. The Markov chain Mn is a positive recurrent Markov chain whose unique stationary distribution μ =
(μj )j≥0 is given by

μj =
(

1 +
∞∑

j=1

qj∏j

k=1(1 − qk)

)−1
qj∏j

k=1(1 − qk)
; j ≥ 0.

Proof. Let PPP = {Pi,j }i,j≥0 denote the transition matrix of the chain and let Z denote a Geom(1−q) random variable.
It is clear from the definition of the chain that for i ≥ 0 and j ≥ i we have Pi,j = P(Z = j + 1) = qj (1 − q); for i ≥ 1
we have Pi,i−1 = P(Z ≤ i) = 1 − qi and for all other pairs (i, j) we have Pi,j = 0. Clearly the chain is irreducible. It
is known from elementary Markov chain theory (see e.g. [2]) that a stationary distribution exists and is unique if and
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only if there exists a unique probability vector (i.e., vector with non-negative entries whose co-ordinates sum up to 1)
μ solving the set of linear equations μPPP = μ. The equation corresponding to the j th column of the matrix PPP is given
by

μ0(1 − q) + μ1(1 − q) = μ0 (3)

for j = 0 and

j∑
k=0

μkq
j (1 − q) + μj+1

(
1 − qj+1) = μj (4)

for j > 0. It is easy to check that any solution of this set of equations must satisfy μj+1 = q

1−qj+1 μj , and hence we
must have

μj = qj∏j

k=1(1 − qk)
μ0.

Since

1 +
∞∑

j=1

qj∏j

k=1(1 − qk)
=Z(q) < ∞

a unique probability vector μ satisfying the above conditions does indeed exist and is given by

μj = 1

Z(q)

qj∏j

k=1(1 − qk)
.

Since the chain is irreducible and has a stationary distribution, it is positive recurrent (see e.g. [2], Theorem 13.4). �

Remark 1. In fact, as an anonymous referee has pointed out, the expression for Z(q) can be simplified and is given
by

Z(q) = 1∏∞
k=1(1 − qk)

.

The existence of first and second moments of R+
0 follows from the above lemma and is proved in Lemma 4.5. We

begin with the following preliminary lemmas. Let Ri denote the time for the chain to reach state i. We shall denote
by Ei (resp. Pi ) the expectation (resp. the probability measure) with respect to the chain started at the state i and Eμ

shall denote the expectation with respect to the chain started at stationarity.

Lemma 4.3. For all i ≥ 1, EiRi−1 ≥ Ei+1Ri .

Proof. If two copies of the chain are both started at k ≥ i and coupled using the same set of geometric variables, so
that they are identical, then Ri−1 > Ri and hence EkRi−1 ≥ EkRi . Suppose now that we couple two copies of the
chain, one started at i and the other at i + 1 using the same geometric variables. Let Z be a Geom(1 − q) variable and
suppose that we make one move according to Z in both chains. If Z ≤ i, then the chain started at i reaches i − 1 and
the chain started at i + 1 reaches i. If Z ≥ i + 1, then both chains go to the state Z − 1. Thus,

EiRi−1 = P(Z ≤ i) +
∞∑

j=i+1

P(Z = j)Ej−1Ri−1 ≥ P(Z ≤ i) +
∞∑

j=i+1

P(Z = j)Ej−1Ri = Ei+1Ri.
�
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Lemma 4.4. For the Markov chain Mn, EμR0 < ∞.

Proof.

EμR0 =
∞∑

j=1

μjEjR0

=
∞∑

j=1

μj

j∑
k=1

EkRk−1

(by Lemma 4.3) ≤
∞∑

j=1

jμjE1R0 < ∞.

The last inequality can be justified as follows. The positive recurrence of the chain Mn implies that E1R0 is finite.
Further, Lemma 4.2 shows that supj μj /q

j is finite (this can be verified by either noting that 1∏∞
k=1(1−qk)

> 0 or by

using the formula in Remark 1) and hence
∑

j jμj is finite. �

Lemma 4.5. Let R+
0 be as defined in Lemma 4.1. Then we have E0R

+
0 < ∞ and E0(R

+
0 )2 < ∞.

Proof. It is a basic fact about Markov chains that (see e.g. [2]) that E0R
+
0 = μ−1

0 . From the proof of Lemma 4.2, we
have μ−1

0 = Z(q) < ∞. For the second moment we argue as follows. Let R0 denote the time of the first visit of the
Markov chain to the state {0}. It is a consequence of Kac’s formula (Corollary 2.24, [2]) that (see (2.21) in [2])

E0
(
R+

0

)2 = 2EμR0 + 1

μ0
. (5)

The claim follows by Lemma 4.4 since EμR0 < ∞. �

We shall also need the following tail estimates for the return time to prove Theorem 2.

Proposition 4.6. Let 0 < q < 1 and consider the Markov chain Mn as defined above. There exist positive constants
A = A(q) and c = c(q) such that for all t ≥ 0 and s ≥ 0, we have

Pt

[
R+

0 > 10t + s
] ≤ Ae−cs . (6)

More generally, denoting the first return time to or below v ≥ 0 by R+
v we have

Pt+v

[
R+

v > 10t + s
] ≤ Ae−cs .

First we show that it suffices to only prove the first statement in the above proposition. To see this notice the
following. If we couple two copies of the chain Mn and M ′

n with M0 = t and M ′
0 = t + v using the same sequence

{Zi} of Geometric variables, then we have that M ′
n − Mn does not increase with n and in particular, min{n ≥ 
 ≥ 1 :

M
} ≥ min{n ≥ 
 ≥ 1 : M ′

 − v}. Hence the return time to 0 in Mn is at least as large as the return time to v in M ′

n

showing that it is sufficient to establish (6). We shall prove (6) using the following estimates.

Lemma 4.7. Fix 0 < q < 1. Let C1 = C1(q) be sufficiently large such that qC1

1−q
< 1

10 . There exist positive constants
A = A(q) > 1 and c = c(q) such that for any t ≥ C1 and s ≥ 0

Pt

[
R+

C1
> 10t + s/2

] ≤ Ae−cs .
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Proof. Consider the Markov chain Mn with M0 = t . Let α > 0 be a constant that we will choose to be sufficiently
small. Observe that we have for qeα < 1,

E
(
eαM
+1 | M


) = (
1 − qM


)
eα(M
−1) + qM
(1 − q)

1 − qeα
eαM


= eαM


(
e−α

(
1 − qM


) + qM
(1 − q)

1 − qeα

)
.

Since M
 > C1 on the event {
 < R+
C1

} it follows by using this that qC1

1−q
< 1

10 , by choosing α sufficiently small one

can make the quantity in the parenthesis above less than e−α/10 (for small α, it is asymptotically e−9α/10). It follows
that

E
(
eαM10t+s/21{R+

C1
>10t+s/2} | M0 = t

) ≤ eαt e−α(10t+s/2)/10.

The lemma now follows. �

Let Lx(t) denote the time the chain Mn spends at or below x up to time t . We have the following estimate.

Lemma 4.8. Fix r ≤ C1 where C1 is as above. Then there exist constants C2 = C2(q) > 0 and c > 0 such that

Pr

[
LC1(s/2) <

s

C2(q)

]
≤ A1e

−cs .

Proof. For two copies of the chain Mn and M ′
n started at a and b respectively with a ≤ b, the chains can be coupled

so that Mn ≤ M ′
n, and hence without loss of generality we may assume r = C1. Now let ξ1, ξ2, . . . denote the lengths

of a sequence of independent excursions above C1. Hence it suffices to show that for C2 sufficiently large

P

[
s/C2∑
i=1

ξi > s/2

]
≤ Ae−cs .

This in turn follows by observing that by Lemma 4.7 we have Eeαξi < ∞ for α sufficiently small. �

Now we are ready to prove Proposition 4.6.

Proof of Proposition 4.6. Let C1,C2 be as in the above two lemmas. It follows from Lemma 4.7 that it suffices to
prove

PC1

[
R+

0 >
s

2

]
≤ Ae−cs

for some positive constants A and c for s sufficiently large. For i = 1,2, . . . , s/4C1, denote the interval [(2i −
2)C1, (2i − 1)C1) (resp. [(2i − 1)C1,2iC1)) by Ji (resp. J ∗

i ). For each i, let Z
(i)
j Z

(i,∗)
j , j = 1,2, . . . ,C1 denote

independent sequences of i.i.d. Geom(1 − q) variables. For the chain Mn, define

τi = min{n ∈ Ji : Mn ≤ C1}; τ ∗
i = min

{
n ∈ J ∗

i : Mn ≤ C1
}
.

Let Ai denote the event

Ai =
{
{i : τi < ∞} <

s

4C1C2

}
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and define the event A∗
i similarly by replacing τi by τ ∗

i . Observe that from Lemma 4.8 it follows that

PC1

[
Ai ∩A∗

i

] ≤ Ae−cs .

Let B (resp. B∗) denote the event that R+
0 > s

2 together with the complement of Ai (resp. the complement of A∗
i ).

Clearly using the above display it suffices to show

P[B] + P
[
B∗] ≤ Ae−cs

for some positive constants A and c for s sufficiently large. Run the chain Mn as follows. Let

τi = min{n ∈ Ji : Mn ≤ C1}.

If τi < ∞, then use the variables Z
(i)
j to run the chain for the next C1 steps, and use independent external randomness

to run the chain for other steps. Call i good if Z
(i)
j = 1 for all j = 1,2, . . . ,C1. Clearly if for some i, τi < ∞ and i is

good then R+
0 ≤ s/2. Now observe that P[i is good] = (1 −q)C1 = d(q) > 0 and also observe that on the complement

of Ai we have

#{i : τi < ∞} >
s

4C1C2
.

It follows that

PC1 [B] ≤ (
1 − d(q)

)s/4C1C2 .

Arguing similarly with replacing Ji, τi and Z
(i)
j by J ∗

i , τ ∗
i and Z

(i,∗)
j respectively gives us the same upper bound for

PC1 [B∗]. The proposition now follows by noting

PC1

[
R+

0 >
s

2

]
≤ PC1 [B] + PC1

[
B∗] + PC1

[
Ai ∩A∗

i

]
. �

5. Anscombe’s Theorem and a CLT for the length of the LIS

In this section we complete the proof of Theorem 1 by invoking a central limit theorem for a random sum due to
Anscombe. Let X1,X2 · · · be i.i.d. random variables with finite mean and variance σ 2 > 0 and let N(t) be an integer-
valued process defined on the same probability space as the Xi . Anscombe’s Theorem [3] says that if the partial sums
Qn for the {Xi} obey a central limit theorem and do not fluctuate too much, then the random sum QN(t) also obeys
the central limit theorem.

Theorem 5.1 (Anscombe’s Theorem, e.g. [23]). Let X,X1,X2, . . . be independent, identically distributed random
variables with mean 0 and positive, finite variance σ 2. For n ≥ 1, let Qn = ∑n

i=1 Xi . Suppose {N(t), t ≥ 0} is a family
of positive, integer values random variables such that for some 0 < c < ∞,

N(t)

t

p→ c as t → ∞.

Then,

QN(t)√
t

d→ N
(
0, cσ 2) as t → ∞.

To apply Anscombe’s Theorem in our context, we make use of the following concentration result. Recall the
regenerative process from Section 3 with inter-renewal times Xi . Recall Sn = min{j : ∑j

i=1 Xi ≥ n}.
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Lemma 5.2. For μ0 as defined in the previous section,

Sn

n

a.s.→ μ0.

Proof. Observe that∑Sn−1
j=1 Xj

Sn

≤ n

Sn

≤
∑Sn

j=1 Xj

Sn

.

As n → ∞, by strong law, both the left and right hand sides of the above inequality converges to μ−1
0 , hence the

lemma. �

Using Theorem 5.1 and Lemma 5.2. we can show the following regenerative version of the Central Limit Theorem
(see e.g. [35], Chapter 2, Theorem 65), we omit the proof.

Theorem 5.3 (Regenerative CLT). Let (Xi, Yi)i≥1 and Sn be as defined in Section 3. Define a := μ0EY1 < ∞.
Suppose further that η2 := Var(Y1 − aX1) is positive and finite. Set Qn = ∑Sn

j=1 Yj . Then we have

Qn − an√
n

⇒ N
(
0,μ0η

2).
We need the following to complete the proof of Theorem 1.

Lemma 5.4. In the context of Theorem 5.3, 0 < η2 < ∞.

Proof. Observe that, since 1 ≤ Y1 ≤ X1, we have |Y1 − aX1| ≤ (1 + a)X1 and hence η2 < ∞ using Lemmas 4.1 and
4.5. To see η2 > 0, note that

Var(Y1 − aX1) = E
(
(Y1 − aX1)

2) ≥ E
(
Var(Y1 | X1)

)
and hence it suffices to prove that for some j ∈ N with P(X1 = j) > 0, we have Var(Y1 | X1 = j) > 0. To see this
consider j = 3; it is straightforward to see that P(X1 = 3) > 0, and conditioned on {X1 = 3}, notice that �1 can be
both the permutations (3 2 1) and (3 1 2) with positive probability. It then follows that Var(Y1 | X1 = 3) > 0 and the
proof is complete. �

Now we are in a position to complete the proof of Theorem 1. We make use of the following basic result.

Lemma 5.5. Let W1,W2, . . . , be an i.i.d. sequence of non-negative random variables with EW 2
i < ∞. Then we have

for all constants C > 0

max1≤i≤Cn Wi√
n

→ 0

in probability.

Proof. Fix C > 0. For every ε > 0 we have

P

(
max

1≤i≤Cn
Wi ≥ ε

√
n
)

= 1 −
(

1 − P

(
W 2

1

ε2
≥ n

))Cn

→ 0

as n → ∞. This follows from the fact that nP(W 2
1 /ε2 ≥ n) → 0 as n → ∞ since E[W 2

1 /ε2] < ∞. This completes the
proof. �
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Proof of Theorem 1. It follows from Lemma 3.1 that

Qn − an√
n

− maxi≤Sn Yi√
n

≤ Ln − an√
n

≤ Qn − an√
n

.

Note that EY 2
i < ∞ since Yi ≤ Xi and E(X2

i ) < ∞ by Lemma 4.5. Using this and Lemma 5.5 it follows that

maxi≤2μ0n Yi√
n

p→ 0.

Using Lemma 5.2 now gives

maxi≤Sn Yi√
n

p→ 0.

Hence setting σ = μ
1/2
0 η and using Theorem 5.3 we have

Ln − an

σ
√

n
⇒N (0,1).

This completes the proof. �

6. Law of large numbers for the length of the LDS

In this section we establish Theorem 2, a weak law for the length of the longest decreasing subsequence L
↓
n of a

Mallows(q) permutation, or equivalently, Ln for a Mallows(1/q) permutation for 0 < q < 1. Our proof makes use of
the Markov chain defined in Section 3. Along the way, we show large deviations estimates for the longest decreasing
subsequence that improve upon some of the results in [9], Theorem 1.7, and simplify the proofs.

Recall the regenerative process from Section 3. Let � denote a random permutation having the same distribution
as �i . Let Y↓ denote the length of LDS of �. Theorem 2 follows from the following proposition and Lemma 3.2.

Proposition 6.1. P(Y↓ ≥ k) = qk2/2(1+o(1)) as k → ∞.

We postpone the proof of Proposition 6.1 and assuming it, prove the theorem. We use Lemma 5.2, the fact that Sn

is concentrated.

Proof of Theorem 2. Fix ε > 0. Since the Y
↓
i are independent and identically distributed, using Proposition 6.1 it

can be verified that as n → ∞,

P

(
max

i≤(1−ε)μ0n
Y

↓
i < (1 − 2ε)

√
2 logn

logq−1

)
≤

(
1 − 1

n(1+o(1))(1−2ε)2

)(1−ε)μ0n

→ 0 (7)

and

P

(
max

i≤(1+ε)μ0n
Y

↓
i > (1 + 2ε)

√
2 logn

logq−1

)
≤ (1 + ε)μ0n

1

n(1+o(1))(1+2ε)2 → 0. (8)

By Lemma 5.2, with probability going to 1 as n → ∞, for every ε > 0, (1 − ε)μ0n ≤ Sn ≤ (1 + ε)μ0n. The result
thus follows from equations (2), (7) and (8). �

We break the proof of Proposition 6.1 into two parts, proved in the following lemmas.

Lemma 6.2. We have P(Y↓ = k) ≥ qk2/2(1+o(1)) as k → ∞.
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Proof. The probability P(Y↓ = k) can be lower bounded by the probability that � is the permutation (k, k −
1, . . . ,2,1). Further,

P
(
� is the permutation (k, k − 1, . . . ,2,1)

) = (1 − q)kq
∑k−1

i=1 i = (1 − q)kq
k(k−1)

2 ≥ qk2/2(1+o(1)). �

Lemma 6.3. We have P(Y↓ ≥ k) ≤ qk2/2(1+o(1)) as k → ∞.

To prove Lemma 6.3 we need the following lemmas. For the rest of this section, we shall consider the coupling
between the Markov chain Mn and the Mallows’ process used in construction of � as described in Lemma 4.1.

Lemma 6.4. Suppose 
1 < 
2 < · · · < 
k are such that (
k, 
k−1, . . . , 
1) is a decreasing subsequence in �. Then
Z
1 > Z
2 > · · · > Z
k

. Further, for i ≥ 2, M
i
= M
i−1 − 1, and finally, min
1≤t<
k

Mt > Z
k
− 1.

Proof. For (
k, 
k−1, . . . , 
1) to be a decreasing subsequence we must have that 
i is placed to the left of 
i−1 for all
1 < i ≤ k. By construction M
i−1 ≤ Z
i−1 − 1 for all i. So at step 
i−1 there are at most Z
i−1 − 1 many empty spots
to the left of the spot where 
i−1 is placed. So for 
i to be placed in one of these spots we must have Z
i

< Z
i−1 . This
proves the first assertion of the lemma.

For the second assertion suppose that for some i ≥ 2, we have M
i
≥ M
i−1. Then one must have Z
i

> M
i−1. This
implies that 
i is placed to the right of all elements placed so far, in particular to the right of 
i−1, which contradicts
the assumption that (
k, 
k−1, . . . , 
1) is a decreasing subsequence.

For the last assertion, observe that when any 
1 ≤ t < 
k is assigned to its position, there must be at least Z
k
empty

positions to the left of 
1. This is because it must be the case that 
k is assigned to the left of 
1 since (
k, . . . , 
1) is a
decreasing subsequence. Thus, it cannot be the case that Mt ≤ Z
k

−1 since Mt counts the total number of unassigned
positions to the left of the rightmost assigned position. �

Lemma 6.5. Let {Zi}i≥1 be a sequence of i.i.d. Geom(1 − q) random variables. Consider the Markov chain
{Mt }t≥0 defined by Mt+1 = max{Mt,Zt+1} − 1 started from M0 = m. Fix 0 < 
1 < 
2 < · · · < 
k such that
M
i

= M
i−1 − 1 for all i. Let S = {
1, 
2, . . . , 
k}. Consider the chain M ′ started from m which is run using the
same sequence of geometric random variables {Zi} except that the 
i th steps are censored for each 1 ≤ i ≤ k, i.e.
M ′

t+1 = max{M ′
t ,Z

′
t+1} − 1 where Z′

i = Zf (i) where f (i) is the ith number when N \ S is arranged in increasing
order. Then

min
t∈[
k−k]M

′
t ≥ min

t∈[
k]
Mt.

Lemma 6.5 is an immediate consequence of the following lemma using induction on k.

Lemma 6.6. In the set-up of Lemma 6.5, suppose Z1 ≤ m1 ≤ m2. Consider running two copies of the chain M and
M ′ with M0 = m1 and M ′

0 = m2. Let M evolve using the sequence {Zi}i≥1 and M ′ evolve using the sequence {Zi}i≥2.
Then M ′

t ≥ Mt+1 for all t .

Proof. Since Z1 ≤ m1, it follows that M1 = m1 − 1 ≤ m2. The result now follows by induction and the definitions
of the chains. By definition, M ′

t = max{M ′
t−1,Zt+1} − 1 and Mt+1 = max{Mt,Zt+1} − 1. Thus if M ′

t−1 ≥ Mt , then
M ′

t ≥ Mt+1. �

We are now ready to prove Lemma 6.3.

Proof of Lemma 6.3. Observe that if Y↓ ≥ k, there must exist a sequence 
1 < 
2 < · · · < 
k such that
(
k, 
k−1, . . . , 
1) is a decreasing subsequence in � and there does not exist 
0 < 
1 such that 
0 can be added to
the sequence to make a longer decreasing subsequence. Let l = {
1 < 
2 < · · · < 
k} and h = {h1 > h2 > · · · > hk}.
Let Al,h denote the event that (
k, 
k−1, . . . , 
1) is a decreasing subsequence of � satisfying the above property that
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1 is as small as possible, and Z
i
= hi for all i. Clearly

P
[
Y↓ ≥ k

] =
∑
l,h

P[Al,h]. (9)

Now, it is easy to observe using Lemma 6.4 that

Al,h ⊆ E
1 ∩Fh ∩Dh1,hk,l (10)

where

E
1 =
{

min
t∈[
1−1]Mt > 0

}
;

Fh = {∀i ∈ [k],Z
i
= hi

};
Dh1,hk,l =

{
M
1 = h1 − 1; ∀i ≥ 2,M
i

= M
i−1 − 1; min

1≤t<
k

Mt > hk − 1
}
.

Let M ′
t be the chain started at h1 − 1 so that M ′

0 = h1 − 1, M ′
t = max{Z′

t ,M
′
t−1} − 1 and {Z′

i} is the sequence of
geometrics restricted to {Zi}∞i=
1+1 omitting the sequence {Z
i

}ki=2. Let Gh1,hk,l denote the event that

min
t∈[
k−
1−k+1]M

′
t > hk − 1.

By Lemma 6.5,

Dh1,hk,l ⊆ Gh1,hk,l. (11)

Now observe that E
1 , Fh and Gh1,hk,l are independent. Combining equations (10) and (11), we have that

P[Al,h] ≤ P0
[
R+

0 > 
1 − 1
]
Ph1−1

[
R+

hk−1 > 
k − 
1 − k + 1
](

q−1(1 − q)
)k

q
∑

i hi .

Using Proposition 4.6 we have

P0
[
R+

0 > 
1 − 1
] ≤ Ae−c(
1−1)

and

Ph1−1
[
R+

hk−1 > 
k − 
1 − k + 1
] ≤ Ae−c(max{
k−
1−k−10(h1−hk),0}).

Observe that
∑k

i=2 hi ≥ k(k − 1)/2 = k2/2(1 + o(1)). Now we split the sum over l and h in the right hand side of
(9) into a few cases. Let C1 denotes the set of all l such that 
k ≤ k3/2. Then we have∑

l∈C1,h

P[Al,h] ≤ qk2/2(1+o(1))
∑
h1

(
k3/2

k

)(
h1

k

)
qh1

≤ qk2/2(1+o(1))
∑
h≥k

hkqh = qk2/2(1+o(1)).

Let C2 denote the set of all l such that 
k > k3/2 and 
1 > 
k/2. Then we have∑
l∈C2,h

P[Al,h] ≤ qk2/2(1+o(1))
∑


k≥k3/2

∑
h1

(

k

k

)(
h1

k

)
e−c
k/3qh1

≤ qk2/2(1+o(1))
∑


≥k3/2

∑
h≥k


ke−c
/3hkqh = qk2/2(1+o(1)).
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To aid the reader attempting to verify the calculations, we note that above, as well as in the following estimate, we
have not attempted to optimize the constant in the exponent of the bound.

Let C3 denote all the pairs (l,h) such that l /∈ C1 ∪ C2 and h1 < 
k/200. Then we have

∑
(l,h)∈C3

P[Al,h] ≤ qk2/2(1+o(1))
∑


k≥k3/2

∑
h1

(

k

k

)(
h1

k

)
qh1e−c
k/10

≤ qk2/2(1+o(1))
∑


≥k3/2

∑
h≥k


ke−c
/10hkqh

= qk2/2(1+o(1)).

Finally let C4 denote all the pairs (l,h) such that l /∈ C1 ∪ C2 and h1 ≥ 
k/200. In this case we have

∑
(l,h)∈C4

P[Al,h] ≤ qk2/2(1+o(1))
∑
h1

∑

k≤200h1

(

k

k

)(
h1

k

)
qh1

≤ qk2/2(1+o(1))
∑

h≥200k3/2

(200h)k+1hkqh

= qk2/2(1+o(1)).

Combining these four cases we complete the proof of the lemma. �

7. Concluding remarks and open questions

In this paper, based on a regenerative representation of the Mallows process and analysis of an associated Markov
chain, we established some limit theorems for the lengths of longest increasing and decreasing subsequences of a
Mallows(q) permutation for a fixed q ∈ (0,1). Many interesting open questions remain. We conclude with a discussion
of a few of them.

1. For which regime of q is the limiting distribution of Ln Tracy–Widom? If q → 1 sufficiently fast as n → ∞ the
limiting distribution is Tracy–Widom, but how fast does (1 − q) need to decay for this conclusion to hold? Does
there exist a range of q where the limiting distribution is neither Gaussian nor Tracy–Widom?

Remark 2. Let us parameterize q = 1−δ. For δ = o(n−2) it is straightforward to couple a Mallows(1) permutation
and a Mallows(1−δ) permutation to agree with high probability so that the total variation distance goes to 0 as n →
∞. Clearly, in this case Ln has the Tracy–Widom distribution when scaled appropriately. Our observation is that it
is possible to improve the bound for the regime with Tracy–Widom limit to δ = o(n−4/3). For q = 1 − o(n−4/3),
using Lemma 4.2 of [31], it is possible to stochastically sandwich Ln(q), between the length of LIS of two uniform
random permutations of sizes N1(n) and N2(n), where N1 and N2 are such that both these when centered by 2

√
n

and scaled by n1/6 converges weakly to Tracy–Widom distribution.

2. How does the variance of Ln grow for different rates of q → 1? There is a general linear upper bound on variance
available from [9]. We expect the variance to go from linear in n to the order of n1/3 as q → 1, but it would be
interesting to understand the dependence on q .

3. Can one prove a law of large numbers for L
↓
n for some range of q going to one? It is shown in [9] that

EL
↓
n(q) = �(

√
logn/ logq−1) for q → 1 sufficiently slowly, but showing the existence and identification of a

limiting constant remains open.
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