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Abstract. The Null-Space Property (NSP) is a necessary and sufficient condition for the recovery of the largest coefficients of
solutions to an under-determined system of linear equations. Interestingly, this property governs also the success and the failure of
recent developments in high-dimensional statistics, signal processing, error-correcting codes and the theory of polytopes.

Although this property is the keystone of �1-minimization techniques, it is an open problem to derive a closed form for the
phase transition on NSP. In this article, we provide the first proof of NSP using random processes theory and the Rice method. As
a matter of fact, our analysis gives non-asymptotic bounds for NSP with respect to unitarily invariant distributions. Furthermore,
we derive a simple sufficient condition for NSP.

Résumé. La propriété du noyau (NSP en anglais) est une condition nécessaire et suffisante pour estimer les plus grands coefficients
d’un système linéaire sous-déterminé d’équations. De manière intéressante, cette propriété gouverne aussi le succès ou l’échec
de récentes approches en statistique en grandes dimensions, traitement du signal, codes correcteurs d’erreurs et la théorie des
polytopes.

Bien que cette propriété soit au centre des techniques de minimisation L1, un problème ouvert reste l’obtention d’une forme
explicite de la transition de phase de la propriété NSP. Dans cet article, nous donnons la première preuve de la propriété NSP du
point de vue de la théorie des processus aléatoires et de la méthode de Rice. Ainsi, notre analyse conduit à de nouvelles bornes
non asymptotiques pour la propriété NSP pour toute distribution invariante par rotation. De plus, nous déduisons une condition
suffisante simple pour établir la propriété NSP.
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1. Introduction

1.1. Null-space property

One of the simplest inverse problem can be described as follows: given a matrix X ∈ Rn×p and y ∈ Im(X), can we
faithfully recover β� such that the identity y = Xβ� holds? In the ideal case where n ≥ p and the matrix X is one
to one (namely, the model is identifiable), this problem is elementary. However, in view of recent applications in
genetics, signal processing, or medical imaging, the frame of high-dimensional statistics is governed by the opposite
situation where n < p. To bypass the limitations due to the lack of identifiability, one usually assumes that the matrix
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X is at random and one considers the �1-minimization procedure [14]:

�X

(
β�

) ∈ arg min
Xβ=Xβ�

‖β‖1, (P�1 )

where β� ∈Rp is a “target” vector we aim to recover. Interestingly, Program (P�1 ) can be solved efficiently using linear
programming, e.g. [11]. Furthermore, the high-dimensional models often assume that the target vector β� belongs to
the space �s of s-sparse vectors:

�s := {
β ∈Rp,‖β‖0 ≤ s

}
,

where ‖β‖0 denotes the size of the support of β . Note that this framework is the baseline of the flourishing Compressed
Sensing (CS), see [10,13,15,19] and references therein. A breakthrough brought by CS states that if the matrix X is
drawn at random (e.g. X has i.i.d. standard Gaussian entries) then, with overwhelming probability, one can faithfully
recovers β� ∈ �s using (P�1 ). More precisely, the interplay between randomness and �1-minimization shows that with
only n =O(s log(p/s)), one can faithfully reconstruct any s-sparse vector β� from the knowledge of X and y := Xβ�.
Notably, this striking fact is governed by the Null-Space Property (NSP).

Definition (Null-Space Property of order s and dilatation C). Let 0 < s < p be two integers and G be a sub-space
of Rp . One says that the sub-space G satisfies NSP(s,C), the Null-Space Property of order s and dilatation C ≥ 1, if
and only if:

∀γ ∈ G,∀S ⊂ {1, . . . , p} s.t. |S| ≤ s, C‖γS‖1 ≤ ‖γSc‖1,

where Sc denotes the complement of S, the vector γS has entry equal to γi if i ∈ S and 0 otherwise, and |S| is the size
of the set S.

As a matter of fact, one can prove [15] that the operator �X is the identity on �s if and only if the kernel of X

satisfies NSP(s,C) for some C > 1.

Theorem 1 ([15]). For all β� ∈ �s there is a unique solution to (P�1 ) and �X(β�) = β� if and only if the nullspace
ker(X) of the matrix X enjoys NSP(s,C) for some C > 1. Moreover, if ker(X) enjoys NSP(s,C) for some C > 1 then
for all β� ∈ Rp ,

∥∥β� − �X

(
β�

)∥∥
1 ≤ 2(C + 1)

C − 1
min|S|≤s

∥∥β� − β�
S

∥∥
1.

Additionally, NSP suffices to show that any solution to (P�1 ) is comparable to the s-best approximation of the target
vector β�. Theorem 1 demonstrates that NSP is a natural property that should be required in CS and High-dimensional
statistics. This analysis can be lead a step further considering Lasso [33] or Dantzig selector [12]. Indeed, in the frame
of noisy observations, �1-minimization procedures are based on sufficient conditions like Restricted Isometry Property
(RIP) [12], Restricted Eigenvalue Condition (REC) [9], Compatibility Condition (CC) [34], Universal Distortion
Property (UDP) [18], or Hs,1 condition [25]. Note that all of these properties imply that the kernel of the matrix X

satisfies NSP. While there exists pleasingly ingenious and simple proofs of RIP, see [13] for instance, a direct proof
of NSP (without the use of RIP) remains a challenging issue.

1.2. Contribution

Given (ρ, δ) ∈]0,1[2, set sn = �ρn	 and pn = �n
δ
	 where �·	 denotes the integer part. Consider G(n,pn) be uni-

formly distributed on the Grassmannian Grm(Rpn) where m = pn − n or equivalently G(n,pn) = ker(X(n,pn))

where X(n,pn) ∈ Rn×pn denotes a matrix with i.i.d. centered Gaussian entries. In this paper, we describe a region
of parameters (ρ, δ) such that the probability P[G(n,pn) enjoys NSP(sn,C)] tends to one as n goes to infinity. Our
result provides a new and simple description of such region of parameters (ρ, δ).
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Fig. 1. The phase transition of Theorem 2. From top to bottom, C = 1,2,3,4.

Theorem 2. Let C ≥ 1. For all n ≥ 1, set sn = �ρn	 and pn = �n
δ
	. Let G(n,pn) be uniformly distributed on the

Grassmannian Grm(Rpn) where m = pn − n. If δ ≥ (1 + π/2)−1 
 0.389 and:

ρ log

(√
π

2eC2

(1 − ρ)2

ρ2

)
+ log

(
Ce

√
ρ(1 − δ)(1 + (C2 − 1)ρ)

(1 − ρ)(1 + (2C2 − 1)ρ)
√

δ

)

+ 1

δ
log

(√
2

eπ

1 + (2C2 − 1)ρ

(1 − ρ)
√

δ(1 − δ)(1 + (C2 − 1)ρ)

)
≤ 0

then P[G(n,pn) enjoys NSP(sn,C)] tends exponentially to one as n goes to infinity.

In Figure 1, we display the lower bound on NSP given Theorem 2 for various choices of constant C ≥ 1. We
emphasize that the condition {δ ≥ (1 + π/2)−1} is due to technical considerations depicting an union bound on
O(e1/δ) spheres in our proof. Note that Theorem 4 gives a lower bound for any values of δ. Interestingly, we can
compare our result with the strong phase transition on NSP of Donoho and Tanner [21]. Although both transitions
are defined by implicit equations (which makes it difficult to give a comparison), they can be faithfully computed
by standard solvers with prescribed precision. In Figure 2, we present this numerical comparison which unveils the
following behaviors:

• As δ → 0 (depicting the n 
 p framework), Donoho and Tanner [21] uncover a (s log(p/(
√

πn)))-bound (see
page 305 in [24] for instance). In this regime, our bound compares unfavorably and we cannot obtain the standard
s log(p/s)-bound of Compressed Sensing with our argument.

• In the regime n ∼ p, our results compare favorably with the strong phase transition up to a multiplicative constant
less than 1.8, see Figure 3 and the example below.

Example 1. In the case C = 1, we can compare our result (see Theorem 2) given by the set of (ρ, δ) ∈]0,1[2 such
that δ ≥ (1 + π/2)−1 and such that

ρ log

[√
π

2e

(1 − ρ)2

ρ2

]
+ log

[
e

√
ρ(1 − δ)

(1 − ρ)(1 + ρ)
√

δ

]
+ 1

δ
log

[√
2

eπ

1 + ρ

(1 − ρ)
√

δ(1 − δ)

]
is non-positive to the work of Donoho and Tanner [21] (see Figure 3). Observe that, up to a constant bounded by 1.8,
we recover the strong phase transition on NSP.
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Fig. 2. The panel illustrates numerically the border of the region described by Theorem 4 (blue line) for which NSP holds (� 
 0) and the strong
phase transition of Donoho and Tanner (green line). Note that the region (ρ, δ) such that � 
 0, i.e. NSP(s,1) holds, is located below the curve.
Simulations have been performed with n = 200,000.

Fig. 3. On the left, comparison between the border of the region described by Theorem 2 (blue line) and the strong phase transition of Donoho and
Tanner (green line) for δ ≥ 0.39. On the right, ratio between the green and the blue line.

We outline that explicit expressions of lower bounds on the phase transition can be found in Section 2.

1.3. Direct proofs of NSP with dilatation C = 1

To the best of our knowledge, all the direct proofs of NSP with dilatation C = 1 are based either on integral convex
geometry theory, Gaussian widths, the approximate kinematic formula, or empirical process theory. This section is
devoted to a short review of some state-of-the-art results on direct proofs of NSP.

1.3.1. Grassmann angles
In a captivating series of papers [20–23], Donoho and Tanner have proved that the kernel of a matrix X(n,pn) ∈Rn×pn

with i.i.d. centered Gaussian entries enjoys a phase transition, i.e. there exists a function ρS : ]0,1[→]0,1[ such that
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for all (ρ, δ) ∈]0,1[2,

lim
n→+∞P

[
ker

(
X(n,pn)

)
enjoys NSP(sn,1)

] =
{

0 if ρ > ρS(δ),

1 if ρ < ρS(δ),

where we recall that sn = �ρn	 and pn = �n
δ
	. Moreover, they have characterized implicitly and computed numerically

the function ρS (note that the subscript S stands for “Strong” since ρS is often named the “strong threshold”). Observe
their approach is based on computation of Grassmann angles of a polytope due to Affentranger and Schneider [3]
and Vershik and Sporyshev [35]. Furthermore, note their phase transition is characterized implicitly using an equation
involving inverse Mills ratio of the standard normal density. However, they have derived a nice explicit expression of
the phase transition for small values of δ, i.e. when δ → 0. Hence, they uncover that, in the regime n 
 p, NSP(s,1)

holds when n ≥ Cs log(
p
s
) for n large enough.

1.3.2. Gaussian widths
In recent works [31,32], Stojnic has shown a simple characterization of the sign of the exponent appearing in the
expression of the “weak threshold” given by Donoho and Tanner. Note the weak threshold governs the exact recon-
struction by �1-minimization of s-sparse vectors with prescribed support and signs, while NSP characterizes the exact
reconstruction of all s-sparse vectors. In the paper [31], using “Gordon’s escape through a mesh” theorem, Stojnic has
derived a simpler implicit characterization of the strong threshold ρS . As in Donoho and Tanner’s work, observe this
implicit characterization involves inverse Mill’s ratio of the normal distribution and no explicit formulation of ρS can
be given.

Predating Stojnic’s work, Rudelson and Vershynin (Theorem 4.1 in [30]) were the first to use “Gordon’s escape
through the mesh” theorem to derive a non-asymptotic bound on sparse recovery. A similar result can found in the
astonishing book of Foucart and Rauhut, see Theorem 9.29 in [24]. Observe that these results hold with a probability
at least 1 − α and their bounds depend on log(α) so one needs one more step to derive a lower bound on the strong
phase transition. We did not pursue in this direction.

1.3.3. Approximate kinematic formula
In the papers [4,27], the authors present appealing and rigorous quantitative estimates of weak thresholds appearing
in convex optimization, including the location and the width of the transition region. Recall that NSP is characterized
by the strong threshold. Nevertheless, the weak threshold describes a region where NSP cannot be satisfied, i.e.

lim
n→+∞P

[
G(n,pn) enjoys NSP(sn,1)

] = 0.

Based on the approximate kinematic formula, the authors have derived recent fine estimates of the weak threshold.
Although their result has not been stated for the strong threshold, their work should provide, invoking a simple union
bound argument, a direct proof of NSP with dilatation C = 1.

1.3.4. Empirical process theory
Using empirical process theory, Lecué and Mendelson [26] gives a direct proof of NSP for matrices X with sub-
exponential rows. Although the authors do not pursue an expression of the strong threshold, their work shows that
NSP with dilatation C = 1 holds, with overwhelming probability, when:

n ≥ c0s log

(
ep

s

)
, (1)

with c0 > 0 a universal (unknown) constant.

1.3.5. A previous direct proof of NSP with dilatation C ≥ 1
Using integral convex geometry theory as in Donoho and Tanner’s works [20–23], Xu and Hassibi have investigated
[36,37] the property NSP(s,C) for values C ≥ 1. Their result uses an implicit equation involving inverse Mill’s ratio
of the normal distribution and no explicit formulation of their thresholds can be derived. To the best of our knowledge,
this is the only proof of NSP(s,C) for values C > 1 predating this paper.
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1.4. Simple bounds on the phase transition

As mentioned in Proposition 2.2.17 of [13], if NSP holds then

n ≥ c1s log

(
c2p

s

)
, (2)

with c1, c2 > 0 are universal (unknown) constants. The result of Section 1.3.4 shows that a similar bound is also
sufficient to get NSP. What can be understood is that the true phase transition (as presented in [20–23]) lies between
the two bounds described by (1) (lower bound) and (2) (upper bound). Observe that these bounds can be equivalently
expressed in terms of ρ = s/n and δ = n/p. Indeed, one has:{

n ≥ c1s log

(
c2p

s

)}
⇔ {

A�ρδ log(A�ρδ) ≥ −B�δ
}
, (3)

where A� = c−1
2 > 0 and 1/e ≥ B� = c−1

1 c−1
2 > 0. Denote by W0 (resp. W−1) the first (resp. the second) Lambert W

function, see [16] for a definition. We deduce that (3) is equivalent to:

ρ ≤ exp(W−1(−B�δ))

A�δ
or ρ ≥ exp(W0(−B�δ))

A�δ
. (4)

Furthermore, the papers [20–23] show that NSP enjoys a phase transition that can be described as a region ρ ≤ ρS(δ),
see Section 1.3. In particular, one can check that the region described by the right hand term of (4) cannot be a region
of solutions of the phase transition problem. We deduce from [13,26] that ρS , the phase transition of Donoho and
Tanner [20–23], can be bounded by the left hand term of (4). Hence, it holds the following result.

Theorem 3. The strong threshold ρS (phase transition of NSP) of Donoho and Tanner [20–23] is bounded by:

∀δ ∈]0,1[, exp(W−1(−B1δ))

A1δ
≤ ρS(δ) ≤ exp(W−1(−B2δ))

A2δ
, (5)

where A1,A2 > 0 and 1/e ≥ B1,B2 > 0 are universal (unknown) constants.

Although bounds (1) (lower bound) and (2) (upper bound) are known, their expressions as exponential of second
Lambert W functions remain overlooked in the literature. As a matter of fact, Figure 4 depicts a comparison between
ρS and:

δ �→ exp(W−1(−0.3394δ))

1.38δ
, (6)

where the strong threshold curve has been taken from [20–23]. Roughly speaking, the curve (6) shows empirically
that NSP holds when:

n ≥ 4s log(0.7p/s),

for large values of s, n,p. Recall that it is still an open problem to find a closed form for the weak and the strong
thresholds. In the regime δ → 0, Donoho and Tanner [20–23] have proved that the phase transition enjoys

n ≥ 2es log
(
p/(

√
πs)

) 
 5.4s log(0.6p/s),

in the asymptotic.

1.5. Outline of the paper

The main theorem (Theorem 4) is stated in the next section and Section 3 proves it. Section 4 is devoted to the proof
of Theorem 2. All the numerical experiments can be reproduced using the codes available at [28].
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Fig. 4. The strong threshold ρS and the mapping δ �→ exp(W−1(−0.3394δ))

1.38δ
.

2. Rice method bound for NSP with dilatation C ≥ 1

In this paper, we prove NSP following a new path based on stochastic processes theory and more precisely on the
Rice method [7,8]. This latter is specially design to study the tail of the maximum of differentiable random processes
or random fields. Similarly to the case of a deterministic function, it consists of studying the maximum through the
zeros of the derivative. For the tail of a stationary Gaussian process defined on the real line, it is known from the work
of Piterbarg [29] that it is super-exponentially sharp.

However, the situation here is more involved than in the aforementioned papers since the considered process X(t)

is defined on the sphere (as in the recent work [6] for example), non Gaussian and, last but not least, non differentiable.
Note that the paper [17] studies the maximum of locally linear process by a smoothing argument. A contrario to this
paper, we will use a partition of the sphere and directly the Rice method. This provides a short and direct proof of
NSP(s,C) for any value C ≥ 1. Our main result reads as follows.

Theorem 4 (Explicit lower bound). Let 0 < s < n < p and m = p − n. Let G(n,p) be the Kernel of X(n,p),
a (n × p) random matrix with i.i.d. centered Gaussian entries, then for all C ≥ 1, it holds:

P
[
G(n,p) enjoys NSP(s,C)

] = 1 − �,

with � satisfying

� ≤ √
π

[
p−n−1∑

k=0

(
p

k

)(
C2s

p̃C,k

) p−n−1−k
2 �(

2p−2k−n−1
2 )

�(
p−k

2 )�(
p−n−k

2 )
ψp−k(C)Q(k, p̃C,k,m)

]
, (7)

where � denotes the Gamma function, ψp−k(C) is defined by Lemma 4, Q(k, p̃C,k,m) is defined by Lemma 2 and
p̃C,k := (C2 − 1)s + p − k.

From this bound we can deduce a lower bound on the phase transition depending on ρ and δ as presented in
Theorem 2. Recall that the case C = 1 has been compared to the strong phase transition below Theorem 2. We have
seen that the bound of Theorem 4 is informative and almost sharp in the regime n ∼ p. However, investigating the last
term of the sum (7) (i.e. when k = p − n − 1) as δ → 0, one can check that the bound (7) is at least of the order of
O((1/δ)n), which is not informative. The bound of Theorem 4 is illustrated in Figure 5 for various C ≥ 1.
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Fig. 5. The region � 
 0 (NSP holds) for C = 1,2,3,4 (from bottom to top) based on Theorem 4. Simulations have been performed with
n = 200,000.

3. Proof of Theorem 4

3.1. Model and notation

Let 0 < s < n < p, let C > 1 and set m = p−n. Let G(n,p) be uniformly distributed on the Grassmannian Grm(Rp).
Observe that it can be generated by m independent standard Gaussian vectors gi ∈ Rp for i = 1, . . . ,m. Define
{Z(t); t ∈ Sm−1} the process with values in Rp given by:

Z(t) :=
m∑

i=1

tigi .

Note this process spans G(n,p) and it can be written as

for j = 1, . . . , p, Zj (t) = 〈
t, gj

〉
,

where (gj )
p

j=1 are independent Gaussian random vectors with standard distribution in Rm. Let Op and Om two
orthogonal matrices of size, respectively, (p × p) and (m × m). Thanks to unitarily invariance of the Gaussian distri-
bution, remark that:

∀t ∈ Sm−1, OpZ(t)Om ∼ Z(t).

Consider now the ordered statistics of the absolute values of the coordinates of Z(t):∣∣Z(1)(t)
∣∣ ≥ · · · ≥ ∣∣Z(p)(t)

∣∣,
where the ordering ((1), . . . , (p)) is always uniquely defined if we adopt the convention of keeping the natural order in
case of ties. Given a sparsity s, a degree of freedom m, and a degree of constraint p, consider the real valued process
{X(t); t ∈ Sm−1} such that:

X(t) = C
∣∣Z(1)(t)

∣∣ + · · · + C
∣∣Z(s)(t)

∣∣ − [∣∣Z(s+1)(t)
∣∣ + · · · + ∣∣Z(p)(t)

∣∣]. (8)

NSP is equivalent to the fact that this process is always non positive. We will prove that it happens with an overwhelm-
ing probability.
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3.2. Cutting the sphere out

As we will see later, the process X(·) is locally linear over some subsets and to take benefit of that, we need to consider
a particular partition of the sphere.

Let A ⊆ {1, . . . , p}, define the random subsets SA and ṠA of the unit sphere Sm−1 by:

SA = {
t ∈ Sm−1;ZA(t) = 0

}
,

ṠA = {
t ∈ Sm−1;ZA(t) = 0 and ∀j /∈ A,Zj (t) �= 0

}
,

where we denote ZA(t) = (Zj (t))j∈A. One can check that SA is the unit sphere of the orthogonal of VA :=
Span{gj ; j ∈ A}. This implies that a.s. SA is a random sphere of dimension m − 1 − |A| if |A| ≤ m − 1 and is
almost surely empty if |A| > m − 1. It follows that the quantities |Z(1)(t)|, . . . , |Z(n+1)(t)| are a.s. positive and that
a.s.

Sm−1 =
⋃

|A|≤m−1

ṠA,

giving a partition of the sphere. We define also, for later use, the random subset W by:

W := {
t ∈ Sm−1; ∣∣Z(s)(t)

∣∣ = ∣∣Z(s+1)(t)
∣∣}.

Observe that, conditionally to gj , the set W is closed with empty interior.

3.3. Probability of failure

We consider the probability:

� =P{M > 0} ≤
∑

|A|≤m−1

P{MṠA
> 0}, (9)

where M and MṠA
are respectively the number of positive local maximum of X(·) along Sm−1 and ṠA. The baseline

of our proof is to upper-bound each right hand side probabilities, using the expected number of positive local maximum
above zero and Markov inequality. The first element is Lemma 4 proving that:

∀t ∈ ṠA, P
{
X(t) > 0

} ≤ ψp−k(C),

where k := |A| and:

ψp−k(C) =
(

p − k

s

)(
C24s

π

) p−k−s
2 �((p − k)/2)

�(s/2)�(p − k − s + 1)
,

where � denotes the Gamma function. The second element is that X(t) admits a density pX(t). To check that, note
that |Z(1)(t)|, . . . |Z(p)(t)| are the order statistics of the absolute values of i.i.d. Gaussian variables and thus they have
a known joint density on the simplex |Z(1)| ≥ · · · ≥ |Z(p)|. Formula (8) implies the existence of a density for X(t).
Moreover, this density does not depend on t due to invariance of Gaussian distribution.

3.4. Initialization: Local maxima on Ṡ∅

By considering the symmetry properties of the sphere Ṡ∅, we have:

P{MṠ∅
> 0} ≤ 1

2
E(MṠ∅

).
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In this part, our aim will be to give bound to the expectation using a Kac-Rice formula. One can check that if t belongs
to Ṡ∅ and does not belong to W , X(·) is locally the sum of the absolute values of some s coordinates multiplied by
C minus the sum of the absolute values of the other coordinates. It can be written as:

X(u) = Cε1Z(1)(u) + · · · + CεsZ(s)(u) + εs+1Z(s+1)(u) + · · · + εpZ(p)(u),

where ε1, . . . , εp are random variables taking values ±1.

Lemma 1. Let t ∈ Sm−1 then, almost surely, it holds t ∈ Ṡ∅ and t /∈ W . Furthermore, the spherical gradient X′(t)
and the spherical Hessian X′′(t) of X(·) along Sm−1 at t exist and:

• X′′(t) = −X(t)Im−1.
• (X(t),X′′(t)) and X′(t) are independent.
• X′(t) has a Gaussian centered isotropic distribution onto t⊥ with variance p̃C,0 = (sC2 + (p − s)) .

Proof. The fact that, with probability 1, t ∈ Ṡ∅ and t /∈ W implies that the process X(·) is locally given by

X(u) = Cε1Z(1)(u) + · · · + CεsZ(s)(u) + εs+1Z(s+1)(u) + · · · + εpZ(p)(u),

where the signs (ε1, . . . , εp) and the ordering (1), . . . , (p) are those of t . The process X(·) is locally linear and thus
differentiable around t and its gradient in Rm at t , denoted Ẋ(t), is given by

Cε1g
(1) + · · · + Cεsg

(s) + εs+1g
(s+1) + · · · + εpg(p).

Moreover, note that its Hessian on Rm vanishes.
Let us consider now the spherical gradient X′(t) and the spherical Hessian X′′(t). It is well known that X′(t) =

Pt⊥Ẋ(t), where Pt⊥ is the orthogonal projection onto the orthogonal of t . As for the spherical Hessian, it is defined
on the tangent space t⊥ and is equal to the projection of the Hessian in Rm, which vanishes, minus the product of the
normal derivative by the identity matrix. This is detailed in Lemma 5. In the case of the unit sphere, the vector normal
to the sphere at t is t itself and

X′′(t) = −〈
Ẋ(t), t

〉
Im−1 = −X(t)Im−1.

In the case of X′(t), remark that Z(t) and thus X(t), (ε1, . . . , εp, (1), . . . , (p)) are functions of (Pt (g
1), . . . ,Pt (g

p)) =
(Z1(t)t, . . . ,Zp(t)t) (with obvious notation). They are therefore independent of X′(t) which is a function of
(Pt⊥(g1), . . . ,Pt⊥(gp)). Conditionally to (ε1, . . . , εp, (1), . . . , (p)), X′(t) can be written as

X′(t) = (
Cε1Pt⊥g(1) + · · · + CεsPt⊥g(s) + εs+1Pt⊥g(s+1) + · · · + εpPt⊥g(p)

)
,

which implies that the conditional distribution of X′(t) is Gaussian with variance-covariance matrix (sC2 +
(p − s)) Idt⊥ , where Idt⊥ is the identity operator on t⊥. Since X′(t) is independent of (ε1, . . . , εp, (1), . . . , (p)) this
conditional distribution is in fact equal to the unconditional distribution. �

The next step is to prove that a.s. there is no local maximum on W . The case where there are tied among the |Zi(t)|
has to be considered (though it happens with probability 0 for a fixed t ). Note that the order statistics and the ordering
remain uniquely defined because of our convention.

Suppose that t ∈ W . Since all the possible ordering ((1), . . . , (p)) and signs (ε1, . . . , εp) play the same role by
unitarily invariance of the distribution of Z(t) for all t , we make the proof in the particular case where ((1), . . . , (p))

is the identity and all the signs (ε1, . . . , εp) are positive:

Z1(t) ≥ · · · ≥ Zs−h−1(t) > Zs−h(t) = · · · = Zs+k(t) > Zs+k+1(t) ≥ · · · ≥ Zp(t) > 0.

Then, for w in some neighborhood N of t (not included in W), we have:

X(w) = CZ1(w)+· · ·+CZs−h−1(w)+(1+C)Maxh

(
Zs−h(w)+· · ·+Zs+k(w)

)−(
Zs−h(w)+· · ·+Zp(w)

)
,
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where Maxh is the sum of the h largest element of its (h + k + 1) arguments. As being the maximum of
(

h
(s+k)+1

)
linear forms the function Maxh is convex.

Let us consider in detail the vectors gs−h, . . . , gs+k . With probability 1, they are pairwise different. The point
t is chosen such that their projection on t coincide. As a consequence the derivatives of the linear forms Z�(w) =
〈g�,w〉, � = (s − h) · · · (s + k) on the tangent space t⊥ are pairwise different. This implies that the function Maxh has
some direction in which it is strictly convex and as a consequence t cannot be a local maximum.

Suppose that t /∈ W , and suppose that we limit our attention to points t such that X(t) > 0, then Lemma 1 implies
that X′′(t) cannot be singular.

This last condition implies that we can apply Theorem 5.1.1 of [2]. This lemma is a Kac type formula that shows
that the zeros of the derivative X′(t) are isolated an thus in finite number. In addition recalling that MṠ∅

is the number

of positive local maximum of X(·) and belonging to Ṡ∅, this number satisfies

M(Ṡ∅) = lim
δ→0

1

V (δ)

∫
Sm−1

E
(∣∣detX′′(t)

∣∣1|X′(t)−0|<δ1t∈Ṡ∅1X(t)>0
)
σ(dt),

where σ is the surfacic measure on Sm−1 and V (δ) is the volume of the ball B(δ) with radius δ. Passing to the limit
using the Fatou lemma gives:

E
(
M(Ṡ∅)

) ≤ lim inf
δ→0

∫ ∞

0
dx

∫
Ṡ∅

dtpX(t)(x)
1

V (δ)

∫
B(δ)

dx′pX′(t)
(
x′)E(∣∣det

(
X′′(t)

)∣∣|X(t) = x,X′(t) = x′)
≤ (2πp̃C,0)

1−m
2 2

π
m
2

�(m
2 )

∫ ∞

0
xm−1pX(t)(x) dx,

where pX(t)(x) denotes the density of X(t) at x and � denotes the Gamma function. Note that we have used:

• the fact that every point t is equivalent so we can replace the integral on the unit sphere by the volume of the unit
sphere 2π

m
2 /�(m

2 ) and the value at a given point,
• E(|det(X′′(t))||X(t) = x,X′(t) = x′) = xm−1,
• the Gaussian density pX′(t)(x′) is bounded by (2πp̃C,0)

1−m
2 .

So it remains to bound E[(X(t)+)m−1]. For that purpose we write X(t) as the independent product ‖Z(t)‖2Y(t),
where the process Y(t) is constructed exactly as the process X(t) but starting now from a uniform distribution U on
the unit sphere Sp−1 instead of the standard Gaussian distribution of Z(t). Using standard results on the moments of
the χ2 distribution we have:

E
((

X(t)+
)m−1) = 2

m−1
2

�(
m−1+p

2 )

�(
p
2 )

E
((

Y(t)+
)m−1)

.

We use now the fact that Y(t) ≤ C
√

s to get that:

E
((

Y(t)+
)m−1) ≤ (C

√
s)m−1P

{
Y(t) > 0

}
.

Moreover, Lemma 4 shows that, with probability greater than 1 − ψp(C), a standard Gaussian vector g in Rp enjoys:

C‖gS‖1 ≤ ‖gSc‖1.

This implies that:

P
{
Y(t) > 0

} ≤ ψp(C), (10)

and consequently the probability of having a local maximum above 0 on Ṡ∅ is bounded by:

σ(Ṡ∅)(2πp̃0)
1−m

2 2
m−1

2
�(

m−1+p
2 )

�(
p
2 )

(C
√

s)m−1ψp(C) ≤ 2
√

π

(
C2s

p̃C,0

)m−1
2 �(

m−1+p
2 )

�(
p
2 )�(m

2 )
ψp(C). (11)

Denote the right hand side of this last inequality by hC(s,m,p).
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3.5. Maximum on smaller spheres

Let us now consider the case of a maximum on ṠA, A �= ∅. A point t ∈ ṠA \ W is a local maximum on Sm−1 if it
satisfies the following conditions:

• it is a local maximum along SA,
• its super-gradient along the orthogonal space VA contains zero,

where the super-gradient is defined as the opposite of the sub-gradient. One can easily check that the two conditions
are independent. Indeed, recall that k = |A| and VA = Span{gi; i ∈ A} (see Section 3.2) and consider the process X(·)
conditionally to VA. In that case, SA becomes a deterministic sphere of dimension m − k − 1. Moreover, note that the
behavior of X(·) on SA depends only on the gj , j /∈ A and that for such j ,

Zj (t) = 〈
gj , t

〉 = 〈
�V ⊥

A
gj , t

〉
,

so, conditionally to VA, the distribution of X(t) corresponds to the case S∅ in the space of dimension m − k instead
of m and with p − k vectors. In conclusion, the first condition leads to the same computations as the case S∅ and is
bounded by

hC(s,m − k,p − k) =2
√

π

(
C2s

p̃C,k

) p−n−1−k
2 �(

2p−2k−n−1
2 )

�(
p−k

2 )�(
p−n−k

2 )
ψp−k(C).

Let us look to the second one which depends only on the gj , j ∈ A. Thus we have to compute the probability of the
super-gradient to contain zero. Indeed, locally around t , the behavior of X(w) along VA is the sum of some linear
forms (for j /∈ A) and of absolute value of linear forms (for j ∈ A) thus it is locally concave and we can define its
super-gradient. More precisely, for w in a neighborhood of t ∈ ṠA \W ,

X(w) = XA(w) + XAc(w),

where, because k ≤ p − s:

XA(w) = −
∑
i∈A

∣∣Zi(w)
∣∣.

Around t , XAc(w) is differentiable and, with a possible harmless change of sign (see Lemma 1), its gradient is given
by: ∑

i∈Ac

Cig
i,

where the coefficient Ci takes the value C for s of them and −1 for the others. This gradient is distributed as an
isotropic normal variable ξ ∈ VA with variance:

p̃C,k = (
C2 − 1

)
s + p − k.

By this we mean that the distribution of ξ , in a convenient basis, is N (0, p̃C,kIk).
Let us now consider the case i ∈ A. Observe that the super-gradient along VA of the concave function −|Zi(t)| at

point t is the segment [−gi, gi] and thus the super-gradient of XA(t) is the zonotope:

Zo =
∑
i∈A

[−gi, gi
]
, (12)

where the sum denotes the Minkowsky addition. Recall that the distribution of X(t) does not depend on t .
In conclusion, the probability of the super-gradient to contain zero is equal to P(k, p̃C,k,m) the probability of the

following event:
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Fig. 6. The standard Gaussian measure of the zonotope (in blue) is smaller than that of the rectangle (in red) with basis Z̃ok−1 (in green).

• draw k standard Gaussian variables g1, . . . , gk in Rm and consider the zonotope Zo given by formula (12),
• draw in the space VA generated by g1, . . . , gk an independent isotropic normal variable ξ of variance p̃C,k ,
• define P(k, p̃C,k,m) as the probability of ξ to be in Zo.

Lemma 2. Define the orthonormal basis e1, . . . , ek obtained by Gram-Schmidt orthogonalization of the vectors
g1, . . . gk . Then:

(a) P(k, p̃C,k,m) is less than the probability Q(k, p̃C,k,m) of ξ to be in the hyper-rectangle:

R =
∑
i∈A

[−〈
ei, gi

〉
ei,

〈
ei, gi

〉
ei

]
,

(b) this last probability satisfies:

(
Q(k, p̃C,k,m)

)2 ≤
(

2

πp̃C,k

)Hk+k−m
Hk!

(m − k)! ,

with Hk = �(π
2 p̃C,k) ∧ m	, where �·	 is the integer part.

Proof. (a) We prove the result conditionally to the gi ’s and by induction on k. When k = 1 the result is trivial since
the zonotope and the rectangle are simply the same segment.

Let ϕh be the standard Gaussian distribution on Rh, P(k, p̃C,k,m) is equal to:

ϕk

(
(p̃C,k)

−1/2 · Zo
) =: ϕk(Z̃o).

Via Gram-Schmidt orthogonalization at step k, we can compute this probability using the Fubini theorem:

P(k, p̃C,k,m) =
∫ 〈ek ,gk 〉√

p̃C,k

− 〈ek ,gk 〉√
p̃C,k

ϕk−1(Z̃ok−1 + vz)ϕ(z) dz,

where ϕ is the standard Gaussian density on R, Z̃ok−1 is the zonotope generated by g1, . . . , gk−1 and normalized by
(p̃C,k)

−1/2 and v is some vector in Rm. By use of the Anderson inequality [5], the non-centered zonotope (Z̃ok−1 +
vz) has a smaller standard Gaussian measure than the centered one (see Figure 6), so

P(k, p̃C,k,m) ≤
∫ 〈ek ,gk 〉√

p̃C,k

− 〈ek ,gk 〉√
p̃C,k

ϕk−1(Z̃ok−1)ϕ(z) dz

≤
∫

R

ϕ(z1) · · ·ϕ(zk) dz1 · · · dzk =: Q(k, p̃C,k,m).

The last inequality is due to the induction hypothesis. It achieves the proof.
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(b) We use the relation above and deconditioning on the gi . Note the dimension of the edges of the rectangle R are
independent with distribution:

2χ(m),2χ(m − 1), . . . ,2χ(m − k + 1),

where the law χ(d) is defined as the square root of a χ2(d). As a consequence, using the independence of the
components of ξ in the basis e1, . . . , ek and the fact that a Student density T is uniformly bounded by (2π)−1/2, we
get that:

Q(k, p̃C,k,m) =P(ξ ∈ R) =
k−1∏
�=0

P

[∣∣T (m − �)
∣∣ ≤

√
m − �

p̃C,k

]

=
m∏

�=m−k+1

P

[∣∣T (�)
∣∣ ≤

√
�

p̃C,k

]
.

Suppose that πp̃C,k ≥ 2m, then a convenient bound is obtained by using the fact that a Student density is uniformly
bounded by (2π)−1/2:

(
Q(k, p̃C,k,m)

)2 ≤
(

2

πp̃C,k

)k
m!

(m − k)! .

In the other case, set Hk = �(πp̃C,k)/2	, where �·	 is the integer part. Observe that Hk > m − k + 1 for k ≥ 1 to
remove factors that are greater than 1 in the computation and obtain

(
Q(k, p̃C,k,m)

)2 ≤
(

2

πp̃C,k

)Hk+k−m
Hk!

(m − k)! ,

which conclude the proof. �

Eventually, summing up over the
(
p
k

)
sets of size k, we get Theorem 4.

4. Influence of smaller spheres

4.1. General bound on the sum

In this part, we simplify the general bound of Theorem 4 to derive a simpler one, exponentially decreasing in n, as
presented in Theorem 2. Considering (7), we have:

� ≤ √
π

m∑
k=1

Bk(s, n,p), (13)

where:

Bk(s, n,p) =
(

p

n + k

)(
n + k

s

)(
C2s

p̃m−k

) k+1
2 �( n

2 + k − 1
2 )

�( n+k
2 )�( k

2 )

×
(

C24s

π

) n+k−s
2 �( n+k

2 )
√

Hm−k!
�( s

2 )(n + k − s)!√k!
(

2

πp̃C,m−k

)Hm−k−k

2

.

In order to derive a lower bound (the aforementioned bound goes exponentially fast towards zero), we limit our
attention to the case described by
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• (H1) ρ ≤ 1/2,
• (H2) 1

δ
≤ 1 + π/2(1 + ρ(C2 − 1)).

Observe that (H1) is not a restriction since we know that NSP does not hold for ρ ≥ 0.2. Under (H2), note that
∀k,Hk = m, and hence

� ≤ R(s, n,p)
p!

s!√m!�(s/2)

(
4C2s

π

) n−s
2

m∑
i=1

(
m

k

)
(2C2s)k�( n

2 + k)

(n − s + k)!2
(

2

πp̃C,m−k

)m
2

≤ R(s, n,p)
p!

s!(n − s)!√m!�(s/2)

(
4C2s

π

) n−s
2

×
m∑

i=1

(
m

k

)
(2C2s)k�( n

2 + k)

(n − s)k(n − s + k)!
(

2

πp̃C,m−k

)m
2

,

where R(s, n,p) is a polynomial term in (s, n,p). Consider now the quantity

α(k) := �(n
2 + k)

(n − s + k)!
which is a decreasing function of k under assumption (H1) and the fact that p̃C,k is an increasing function of k, then
we obtain

� ≤ R(s, n,p)
p!�(n/2)

s!(n − s)!2√m!�(s/2)

(
4C2s

π

) n−s
2

m∑
i=1

(
m

k

)
(2C2s)k

(n − s)k

(
2

πp̃C,m−1

)m
2

.

At last, using Stirling Formula (see Lemma 3), it yields

� ≤ R(s, n,p)
p!�(n/2)

s!(n − s)!2�(s/2)

(
4C2s

π

) n−s
2

(
2e

π(n + (C2 − 1)s)m

)m
2
(

1 + 2C2s

n − s

)m

.

Gathering the piece, one has:

� ≤ R(s, n,p)

(√
π

2eC2

(n − s)2

s2

)s(
Ce

√
nsm(n + (C2 − 1)s)

(n − s)(n + (2C2 − 1)s)

)n

×
(√

2

eπ

p(n + (2C2 − 1)s)

(n − s)
√

m(n + (C2 − 1)s)

)p

,

which gives the result of Theorem 2.

Remark. The upper bound on α(k) and the lower bound on p̃C,k may seem weak but they do not change the result
on the phase transition because first terms of the sum give the right order on ρ and δ. To ensure that, see Figure 7,
which compare the numerical bound with the one of Theorem 2.

Appendix A: Stirling’s formula

Lemma 3. Let z > 0 then there exists θ ∈ (0,1) such that:

�(z + 1) = (2πz)
1
2

(
z

e

)z

exp

(
θ

12z

)
.
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Fig. 7. Comparison between the phase transition of Theorem 2 and the numerical approximation given by Theorem 4 (� 
 0 with n = 200,000,
dashed line). From top to bottom, C = 1,2,3,4.

In particular, if z > 1/12,(
z

e

)z

≤ �(z + 1) ≤ √
2πz

(
z

e

)z

.

Proof. See [1], Eq. 6.1.38. �

Appendix B: Concentration ψl(C)

Lemma 4. Let C ≥ 1, then, except with a probability smaller than:

ψl(C) :=
(

l

s

)(
C24s

π

) l−s
2 �(l/2)

�(s/2)�(l − s + 1)
,

a standard Gaussian vector g ∈Rl enjoys for all S ⊂ {1, . . . , l}, |S| ≤ s,

C‖gS‖1 ≤ ‖gSc‖1.

Proof. Let ξC := {v ∈Rl such that Span(v) does not satisfy NSP(s,C)} and consider the joint law of standard Gaus-
sian ordered statistics (W(1), . . . ,W(l)), then

P(ξC) = 2l l!
∫
Rl

1t∈ξC
1t1≥···≥tl ϕ(t1) · · ·ϕ(tl) dt1 · · · dtl

= 2l l!
(l − s)!

∫
Rl−s×Rs

1t∈ξC
1t1≥···≥ts ϕ(t1) · · ·ϕ(ts)ϕ(ts+1) · · ·ϕ(tl) dt1 · · · dtl

≤ 2l l!
(l − s)!

(
1

2π

) l−s
2

∫
Rs

1t1≥···≥ts

λl−s(B1(C(t1 + · · · + tl)))

2l−s
ϕ(t1) · · ·ϕ(ts) dt1 · · · dts,
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where the last inequality relies on P(N (0, Il−s) ∈ B1(t1 + · · · + ts)) is bounded by the density function of N (0, Il−s)

in 0 times the Lebesgue measure of the l1 ball of radius C(t1 + · · · + ts) in Rl−s . Finally, as

λl−s

(
B1(R)

) = (2R)l−s

(l − s)! ,

it implies,

P(ξC) ≤
(

2C2

π

) l−s
2 2s l!

(l − s)!2
∫
Rs

(t1 + · · · + ts)
l−s1t1≥···≥ts ϕ(t1) · · ·ϕ(ts) dt1 · · · dts

=
(

2C2

π

) l−s
2 l!

(l − s)!2s!E
((|W1| + · · · + |Ws |

)l−s)
=

(
2C2

π

) l−s
2

(
l

s

)
1

(l − s)!E
(‖W‖l−s

1

)
,

where W is a standard Gaussian vector in Rs . At last, using bound on l1 norm, it comes,

P(ξC) ≤
(

2C2

π

) l−s
2

(
l

s

)
1

(l − s)! s
l−s

2 E
(‖W‖l−s

2

)
=

(
2C2

π

) l−s
2

(
l

s

)
1

(l − s)! s
l−s

2 2
l−s

2
�(l/2)

�(s/2)
,

where the last equality follows from classical results on the moment of the χ distribution. �

Appendix C: Spherical Hessian

Lemma 5. Denote X′′(·) the Hessian of X(·) along the sphere Sm−1 then

X′′(t) = −X(t)Im−1.

Proof. To compute the spherical Hessian, since every point plays the same role, we can compute it at the “east pole”
t = e1, the first vector of the canonical basis. Consider a basis (w2, . . . ,wn) of the tangent space at t = e1 and use, as
a chart of the sphere, the orthogonal projection on this space.

Let Y(t2, . . . , tm) be the process X(·) written in this chart in some neighborhood of e1. By the Pythagorean theorem,

Y(t2, . . . , tm) = X
(√

1 − t2
2 − · · · − t2

m, t2, . . . , tm

)
.

Plugging this into the order two Taylor expansion of the process X(·) at t = e1 gives

Y(t2, . . . , tm) = X(e1) + t2X
′
2(e1) + · · · + tmX′

m(e1) +
∑

2≤i,j≤m

ti tj

2
X′′

ij (e1)

− X′
1(e1)

t2
2 + · · · + t2

m

2
+ o

(
t2
2 + · · · + t2

m

)
,

where X′
k(e1) = ∂X

∂wk
(e1) and X′′

ij (e1) = ∂X
∂wi ∂wj

(e1). As the process is locally linear, in a small enough neighborhood

of e1, X′′
ij is equal to zero and, by identification,

X′′(e1) = −X′
1(e1)Im−1 = −X(e1)Im−1

giving the desired result. �
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