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Abstract. We develop the dichotomy spectrum for random dynamical systems and demonstrate its use in the characterization of
pitchfork bifurcations for random dynamical systems with additive noise.

Crauel and Flandoli (J. Dynam. Differential Equations 10 (1998) 259–274) had shown earlier that adding noise to a system with
a deterministic pitchfork bifurcation yields a unique attracting random equilibrium with negative Lyapunov exponent throughout,
thus “destroying” this bifurcation. Indeed, we show that in this example the dynamics before and after the underlying deterministic
bifurcation point are topologically equivalent.

However, in apparent paradox to (J. Dynam. Differential Equations 10 (1998) 259–274), we show that there is after all a
qualitative change in the random dynamics at the underlying deterministic bifurcation point, characterized by the transition from
a hyperbolic to a non-hyperbolic dichotomy spectrum. This breakdown manifests itself also in the loss of uniform attractivity, a
loss of experimental observability of the Lyapunov exponent, and a loss of equivalence under uniformly continuous topological
conjugacies.

Résumé. Nous développons le spectre de dichotomie pour les systèmes dynamiques aléatoires et nous démontrons son utilité pour
la caractérisation des bifurcations de fourches dans des systèmes dynamiques aléatoires avec du bruit additif.

Crauel et Flandoli (J. Dynam. Differential Equations 10 (1998) 259–274) ont précédemment montré que l’ajout de bruit additif
à un système comprenant une bifurcation de fourche déterministe produit un unique équilibre aléatoire attractif avec un exposant
de Lyapunov négatif partout, « détruisant » ainsi cette bifurcation. En effet, nous montrons dans cet exemple que la dynamique
avant et après le point de bifurcation déterministe sous-jacent sont topologiquement équivalentes.

Cependant, dans un paradoxe apparent avec (J. Dynam. Differential Equations 10 (1998) 259–274), nous montrons qu’il y
a après tout un changement qualitatif du système aléatoire au point du bifurcation déterministe sous-jacent, caractérisé par la
transition du spectre de dichotomie hyperbolique à un spectre non-hyperbolique. Cette rupture se manifeste elle-même aussi dans
une perte d’attractivité uniforme, une perte d’observabilité expérimentale de l’exposant de Lyapunov, et une perte d’équivalence
sous conjugaisons topologiques uniformes et continues.
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1. Introduction

Despite its importance for applications, relatively little progress has been made towards the development of a bifur-
cation theory for random dynamical systems. Main contributions have been made by Ludwig Arnold and co-workers
[1], distinguishing between phenomenological (P-) and dynamical (D-) bifurcations. P-bifurcations refer to qualita-
tive changes in the profile of stationary probability densities [29]. This concept carries substantial drawbacks such as
providing reference only to static properties, and not being independent of the choice of coordinates. D-bifurcations
refer to the bifurcation of a new invariant measure from a given invariant reference measure, in the sense of weak
convergence, and are associated with a qualitative change in the Lyapunov spectrum. They have been studied mainly
in the case of multiplicative noise [4,10,31], and numerically [2,19].

In this paper, we contribute to the bifurcation theory of random dynamical systems by shedding new light on the
influential paper Additive noise destroys a pitchfork bifurcation by Crauel and Flandoli [9], in which the stochastic
differential equation

dx = (
αx − x3)dt + σ dWt, (1.1)

with two-sided Wiener process (Wt)t∈R on a probability space (�,F,P), was studied. In the deterministic (noise-
free) case, σ = 0, this system has a pitchfork bifurcation of equilibria: if α < 0 there is one equilibrium (x = 0) which
is globally attractive, and if α > 0, the trivial equilibrium is repulsive and there are two additional attractive equilibria
±√

α. [9] establish the following facts in the presence of noise, i.e. when |σ | > 0:

(i) For all α ∈R, there is a unique globally attracting random equilibrium {aα(ω)}ω∈�.
(ii) The Lyapunov exponent associated to {aα(ω)}ω∈� is negative for all α ∈ R.

As a result, [9] concludes that the pitchfork bifurcation is destroyed by the additive noise. (This refers to the absence
of D-bifurcation, as (1.1) admits a qualitative change P-bifurcation, see [1, p. 473].) However, we are inclined to
argue that the pitchfork bifurcation is not destroyed by additive noise, on the basis of the following additional facts
concerning the dynamics near the bifurcation point, that we obtain in this paper:

(i) The attracting random equilibrium {aα(ω)}ω∈� is uniformly attractive only if α < 0 (Theorem 4.2).
(ii) At the bifurcation point there is a change in the practical observability of the Lyapunov exponent: when α < 0 all

finite-time Lyapunov exponents are negative, but when α > 0 there is a positive probability to observe positive
finite-time Lyapunov exponents, irrespective of the length of time interval under consideration (Theorem 4.3).

(iii) The bifurcation point α = 0 is characterized by a qualitative change in the dichotomy spectrum associated to
{aα(ω)}ω∈� (Theorem 4.5). In addition, we show that the dichotomy spectrum is directly related to the observ-
ability range of the finite-time Lyapunov spectrum (Theorem 4.6).

In light of these findings, we thus argue for the recognition of qualitative properties of the dichotomy spectrum as an
additional indicator for bifurcations of random dynamical systems. Spectral studies of random dynamical systems have
focused mainly on Lyapunov exponents [1,6], but here we develop an alternative spectral theory based on exponential
dichotomies that is related to the Sacker–Sell (or dichotomy) spectrum for nonautonomous differential equations. The
original construction due to R. J. Sacker and G. R. Sell [27] requires a compact base set (which can be obtained, for
instance, from an almost periodic differential equation). Alternative approaches to the dichotomy spectrum [3,5,25,
26,28] hold in the general non-compact case, and we use similar techniques for the construction of the dichotomy
spectrum by combining them with ergodic properties of the base flow. We note that the relationship between the
dichotomy spectrum and Lyapunov spectrum has also been explored in [18] in the special case that the base space of
a random dynamical system is a compact Hausdorff space, but our setup does not require a topological structure of
the base.

In analogy to the corresponding bifurcation theory for one-dimensional deterministic dynamical systems, we finally
study whether the pitchfork bifurcation with additive noise can be characterized in terms of a breakdown of topological
equivalence. We recall that two random dynamical systems (θ,ϕ1) and (θ,ϕ2) are said to be topologically equivalent
if there are families {hω}ω∈� of homeomorphisms of the state space such that ϕ2(t,ω,hω(x)) = hθtω(ϕ1(t,ω, x)),
almost surely. We establish the following results for the stochastic differential equation (1.1):

(i) Throughout the bifurcation, i.e. for |α| sufficiently small, the resulting dynamics are topologically equivalent
(Theorem 5.2).
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(ii) There does not exist a uniformly continuous topological conjugacy between the dynamics of cases with positive
and negative parameter α (Theorem 5.5).

These results lead us to propose the association of bifurcations of random dynamical systems with a breakdown of
uniform topological equivalence, rather than the weaker form of general topological equivalence with no requirement
on uniform continuity of the involved conjugacy. Note that uniformity of equivalence transformations plays an impor-
tant role in the notion of equivalence for nonautonomous linear systems (i.e. in contrast to random systems, the base
set of nonautonomous systems is not a probability but a topological space), see [23].

This paper is organised as follows. In Section 2, invariant projectors and exponential dichotomies are introduced
for random dynamical systems. Section 3 is devoted to the development of the dichotomy spectrum. In Section 4,
we discuss the pitchfork bifurcation with additive noise, reviewing the results of [9] and develop our main results in
relationship to the dichotomy spectrum. Finally, in Section 5, we discuss the existence (and absence) of (uniform)
topological equivalence of the dynamics in the neighbourhood of the bifurcation point. Important preliminaries on
random dynamical systems are provided in the Appendix.

2. Exponential dichotomies for random dynamical systems

In this section, we define invariant projectors and exponential dichotomies as tools to describe hyperbolicity and
(un)stable manifolds of linear random dynamical systems.

Let (�,F,P) be a probability space and (X,d) be a metric space. A random dynamical system (θ,ϕ) (RDS for
short) consists of a metric dynamical system θ : T × � → �, where T = R or T = Z (which models the noise, see
Appendix) and a (B(T) ⊗F ⊗ B(X),B(X))-measurable mapping ϕ : T× � × X → X (which models the dynamics
of the system) fulfilling

(i) ϕ(0,ω, x) = x for all ω ∈ � and x ∈ X,
(ii) ϕ(t + s,ω, x) = ϕ(t, θsω,ϕ(s,ω, x)) for all t, s ∈ T, ω ∈ � and x ∈ X.

We assume throughout the document that the mapping x �→ ϕ(t,ω, x) is continuous for all t ∈ T and ω ∈ �. Note that
we frequently use the abbreviation ϕ(t,ω)x for ϕ(t,ω, x) (even if the random dynamical system under consideration
is nonlinear). We also say that a random dynamical system (θ,ϕ) is ergodic if θ is ergodic.

For the spectral theory part of this paper, suppose that the phase space X is given by the Euclidean space R
d .

A random dynamical system (θ,ϕ) is called linear if for given α,β ∈ R, we have

ϕ(t,ω)(αx + βy) = αϕ(t,ω)x + βϕ(t,ω)y

for all t ∈ T, ω ∈ � and x, y ∈ R
d . Given a linear random dynamical system (θ,ϕ), there exists a corresponding

matrix-valued function 	 : T× � →R
d×d with 	(t,ω)x = ϕ(t,ω)x for all t ∈ T, ω ∈ � and x ∈R

d .
Given a linear random dynamical system (θ,	), an invariant random set M (see Appendix) is called a linear

random set if for each ω ∈ �, the set M(ω) is a linear subspace of Rd . Given linear random sets M1,M2,

ω �→ M1(ω) ∩ M2(ω) and ω �→ M1(ω) + M2(ω)

are also linear random sets, denoted by M1 ∩ M2 and M1 + M2, respectively. A finite sum M1 + · · · + Mn of linear
random sets is called a Whitney sum M1 ⊕ · · · ⊕ Mn if M1(ω) ⊕ · · · ⊕ Mn(ω) =R

d holds for almost all ω ∈ �.
An invariant projector of (θ,	) is a measurable function P : � → R

d×d with

P(ω) = P(ω)2 and P(θtω)	(t,ω) = 	(t,ω)P (ω) for all t ∈ T and ω ∈ �.

The range

R(P ) := {
(ω, x) ∈ � ×R

d : x ∈ RP(ω)
}

and the null space

N (P ) := {
(ω, x) ∈ � ×R

d : x ∈NP(ω)
}

of an invariant projector P are linear random sets of (θ,	) such that R(P ) ⊕N (P ) = � ×R
d .
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The following proposition says that, provided ergodicity, the dimensions of the range and the null space of an
invariant projector are almost surely constant.

Proposition 2.1. Let P : � →R
d×d be an invariant projector of an ergodic linear random dynamical system (θ,	).

Then

(i) the mapping ω �→ rkP(ω) is measurable, and
(ii) rkP(ω) is almost surely constant.

Proof. (i) We first show that the mapping A �→ rkA on R
d×d is lower semi-continuous. For this purpose, let {Ak}k∈N

be a sequence of matrices in R
d×d which converges to A ∈ R

d×d , and define r := rkA. Then there exist non-zero
vectors x1, . . . , xr such that Ax1, . . . ,Axr are linearly independent, which implies that det[Ax1, . . . ,Axr, xr+1, . . . ,

xd ] 	= 0 for some vectors xr+1, . . . , xd ∈ R
d . Since limk→∞ Ak = A, one gets

lim
k→∞ det[Akx1, . . . ,Akxr , xr+1, . . . , xd ] = det[Ax1, . . . ,Axr , xr+1, . . . , xd ].

Hence, there exists a k0 ∈N such that vectors Akx1, . . . ,Akxr are linearly independent for k ≥ k0, and thus, rkAk ≥ r

for all k ≥ k0. Consequently, the lower semi-continuity of the mapping A �→ rkA is proved. Therefore, the map
R

d×d → N0,A �→ rkA is the limit of a monotonically increasing sequence of continuous functions [30] and thus is
measurable. The proof of this part is complete. (ii) By invariance of P , we get that

P(θtω) = 	(t,ω)P (ω)	(t,ω)−1,

which implies that rkP(θtω) = rkP(ω). This together with ergodicity of θ and measurability of the map ω �→ rkP(ω)

as shown in (i) gives that rkP(ω) is almost constant. �

According to Proposition 2.1, the rank of an invariant projector P can be defined via

rkP := dimR(P ) := dimRP(ω) for almost all ω ∈ �,

and one sets

dimN (P ) := dimNP(ω) for almost all ω ∈ �.

The following notion of an exponential dichotomy describes uniform exponential splitting of linear random dy-
namical systems.

Definition 2.2 (Exponential dichotomy). Let (θ,	) be a linear random dynamical system, and let γ ∈ R and Pγ :
� → R

d×d be an invariant projector of (θ,	). Then (θ,	) is said to admit an exponential dichotomy with growth
rate γ ∈R, constants α > 0, K ≥ 1 and projector Pγ if for almost all ω ∈ �, one has∥∥	(t,ω)Pγ (ω)

∥∥ ≤ Ke(γ−α)t for all t ≥ 0,∥∥	(t,ω)
(
1 − Pγ (ω)

)∥∥ ≤ Ke(γ+α)t for all t ≤ 0.

The following proposition shows that the ranges and null spaces of invariant projectors are given by sums of
Oseledets subspaces.

Proposition 2.3. Let (θ,	) be an ergodic linear random dynamical system which satisfies the integrability condition
of Oseledets Multiplicative Ergodic Theorem (see Appendix). Let λ1 > · · · > λp and O1(ω), . . . ,Op(ω) denote the
Lyapunov exponents and the associated Oseledets subspaces of (θ,	), respectively, and suppose that 	 admits an
exponential dichotomy with growth rate γ ∈ R and projector Pγ . Then the following statements hold:

(i) γ /∈ {λ1, . . . , λp}.
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(ii) Define k := max{i ∈ {0, . . . , p} : λi > γ } with the convention that λ0 = ∞. Then for almost all ω ∈ �, one has

NPγ (ω) =
k⊕

i=1

Oi(ω) and RPγ (ω) =
p⊕

i=k+1

Oi(ω).

Proof. (i) Suppose to the contrary that γ = λk for some k ∈ {1, . . . , p}. Because of the Multiplicative Ergodic Theo-
rem, we have

lim
t→∞

1

t
ln

∥∥	(t,ω)v
∥∥ = λk = γ for all v ∈ Ok(ω) \ {0}. (2.1)

On the other hand, for all v ∈ RPγ (ω) we get ‖	(t,ω)v‖ ≤ Ke(γ−α)t‖v‖ for all t ≥ 0. Thus,

lim sup
t→∞

1

t
ln

∥∥	(t,ω)v
∥∥ ≤ γ − α for all v ∈ RPγ (ω),

which together with (2.1) implies that Ok(ω) ∩RPγ (ω) = {0}. Similarly, using the fact that

lim
t→−∞

1

t
ln

∥∥	(t,ω)v
∥∥ = λk = γ for all v ∈ Ok(ω) \ {0}

and Definition 2.2, we obtain that Ok(ω)∩NPγ (ω) = {0}. Consequently, Ok(ω) = {0} and it leads to a contradiction.
(ii) Let v ∈RPγ (ω) \ {0} be arbitrary. Then, according to Definition 2.2 and the definition of k we obtain that

lim
t→∞

1

t
ln

∥∥	(t,ω)v
∥∥ ≤ γ − α < λk. (2.2)

Now we write v in the form v = vi + vi+1 + · · · + vp , where i ∈ {1, . . . , p} with vi 	= 0 and vj ∈ Oj(ω) for all
j = i, . . . , p. Using the fact that for j ∈ {i, . . . , p} with vj 	= 0

lim
t→∞

1

t
ln

∥∥	(t,ω)vj

∥∥ = λj ≤ λi,

we obtain that

lim
t→∞

1

t
ln

∥∥	(t,ω)v
∥∥ = λi,

which together with (2.2) implies that i ≥ k + 1 and therefore RPγ (ω) ⊂ ⊕p

i=k+1 Oi(ω). Similarly, we also get that

NPγ (ω) ⊂ ⊕k
i=1 Oi(ω). On the other hand,

R
d =NPγ (ω) ⊕RPγ (ω) =

k⊕
i=1

Oi(ω) ⊕
p⊕

i=k+1

Oi(ω).

Consequently, we have RPγ (ω) = ⊕p

i=k+1 Oi(ω) and NPγ (ω) = ⊕k
i=1 Oi(ω). The proof is complete. �

The monotonicity of the exponential function implies the following basic criteria for the existence of exponential
dichotomies.

Lemma 2.4. Suppose that the linear random system (θ,	) admits an exponential dichotomy with growth rate γ and
projector Pγ . Then the following statements are fulfilled:

(i) If Pγ ≡ 1 almost surely, then (θ,	) admits an exponential dichotomy with growth rate ζ and invariant projector
Pζ ≡ 1 for all ζ > γ .
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(ii) If Pγ ≡ 0 almost surely, then (θ,	) admits an exponential dichotomy with growth rate ζ and invariant projector
Pζ ≡ 0 for all ζ < γ .

Given γ ∈ R, a function g : R → R
d is called γ +-exponentially bounded if supt∈[0,∞) ‖g(t)‖e−γ t < ∞. Accord-

ingly, one says that a function g :R→ R
d is γ −-exponentially bounded if supt∈(−∞,0] ‖g(t)‖e−γ t < ∞.

We define for all γ ∈R

Sγ := {
(ω, x) ∈ � ×R

d : 	(·,ω)x is γ +-exponentially bounded
}
,

and

Uγ := {
(ω, x) ∈ � ×R

d : 	(·,ω)x is γ −-exponentially bounded
}
.

It is obvious that Sγ and Uγ are linear invariant random sets of (θ,	), and given γ ≤ ζ , the relations Sγ ⊂ Sζ and
Uγ ⊃ U ζ are fulfilled.

The relationship between the projectors of exponential dichotomies with growth rate γ and the sets Sγ and Uγ

will now be discussed.

Proposition 2.5. If the linear random dynamical system (θ,	) admits an exponential dichotomy with growth rate γ

and projector Pγ , then N (Pγ ) = Uγ and R(Pγ ) = Sγ almost surely.

Proof. Suppose that (θ,	) admits an exponential dichotomy with growth rate γ , constants α, K and projector Pγ .
This means that for almost all ω ∈ �, one has∥∥	(t,ω)Pγ (ω)

∥∥ ≤ Ke(γ−α)t for all t ≥ 0,
(2.3)∥∥	(t,ω)

(
1 − Pγ (ω)

)∥∥ ≤ Ke(γ+α)t for all t ≤ 0.

We now prove the relation N (Pγ ) = Uγ almost surely. (⊃) Choose (ω, x) ∈ Uγ with ω in the full measure set F ∈F
where both (2.3) and Birkhoff’s Ergodic Theorem hold, and with x arbitrary. We have that ‖	(t,ω)x‖ ≤ Ceγ t for all
t ≤ 0 and some real constant C > 0. Write x = x1 + x2 with x1 ∈ RPγ (ω) and x2 ∈ NPγ (ω). By Birkhoff’s Ergodic
Theorem there exists a sequence ti → −∞ such that for all i ∈ N one has θti ω ∈ F , and hence

‖x1‖ = ∥∥	(−ti , θti ω)	(ti ,ω)Pγ (ω)x
∥∥

= ∥∥	(−ti , θti ω)Pγ (θti ω)	(ti ,ω)x
∥∥

≤ Ke−(γ−α)ti
∥∥	(ti,ω)x

∥∥ ≤ CKe−(γ−α)ti eγ ti = CKeαti .

The right-hand side of this inequality converges to zero in the limit i → ∞. This implies x1 = 0, and thus, (ω, x) ∈
N (Pγ ). (⊂) Choose (ω, x) ∈N (Pγ ). Thus, for all t ≤ 0 and almost all ω ∈ �, the relation ‖	(t,ω)x‖ ≤ Ke(γ+α)t‖x‖
is fulfilled. This means that 	(·,ω)x is γ −-exponentially bounded. The proof of the statement concerning the range
of the projector is treated analogously. �

3. The dichotomy spectrum for random dynamical systems

We introduce the dichotomy spectrum for random dynamical systems in this section. For the definition of the di-
chotomy spectra, it is crucial for which growth rates, a linear random dynamical system (θ,	) admits an exponential
dichotomy. The growth rates γ = ±∞ are not excluded from our considerations; in particular, one says that (θ,	)

admits an exponential dichotomy with growth rate ∞ if there exists a γ ∈ R such that (θ,	) admits an exponential
dichotomy with growth rate γ and projector Pγ ≡ 1. Accordingly, one says that (θ,	) admits an exponential di-
chotomy with growth rate −∞ if there exists a γ ∈ R such that (θ,	) admits an exponential dichotomy with growth
rate γ and projector Pγ ≡ 0.
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Definition 3.1 (Dichotomy spectrum). Consider the linear random dynamical system (θ,	). Then the dichotomy
spectrum of (θ,	) is defined by


 := {
γ ∈ R : (θ,	) does not admit an exponential dichotomy with growth rate γ

}
.

The corresponding resolvent set is defined by ρ := R \ 
.

The aim of the following lemma is to analyze the topological structure of the resolvent set.

Lemma 3.2. Consider the resolvent set ρ of a linear random dynamical system (θ,	). Then ρ ∩ R is open. More
precisely, for all γ ∈ ρ ∩ R, there exists an ε > 0 such that Bε(γ ) ⊂ ρ. Furthermore, the relation rkPζ = rkPγ is
(almost surely) fulfilled for all ζ ∈ Bε(γ ) and every invariant projector Pγ and Pζ of the exponential dichotomies of
(θ,	) with growth rates γ and ζ , respectively.

Proof. Choose γ ∈ ρ arbitrarily. Since (θ,	) admits an exponential dichotomy with growth rate γ , there exist an
invariant projector Pγ and constants α > 0, K ≥ 1 such that for almost all ω ∈ �, one has

2
∥∥	(t,ω)Pγ (ω)

∥∥ ≤ Ke(γ−α)t for all t ≥ 0,∥∥	(t,ω)
(
1 − Pγ (ω)

)∥∥ ≤ Ke(γ+α)t for all t ≤ 0.

Set ε := 1
2α, and choose ζ ∈ Bε(γ ). It follows that for almost all ω ∈ �,

2
∥∥	(t,ω)Pγ (ω)

∥∥ ≤ Ke(ζ− α
2 )t for all t ≥ 0,∥∥	(t,ω)

(
1 − Pγ (ω)

)∥∥ ≤ Ke(ζ+ α
2 )t for all t ≤ 0.

This yields ζ ∈ ρ, and it follows that rkPζ = rkPγ for any projector Pζ of the exponential dichotomy with growth
rate ζ . This finishes the proof of this lemma. �

Lemma 3.3. Consider the resolvent set ρ of a linear random dynamical system (θ,	), and let γ1, γ2 ∈ ρ ∩ R such
that γ1 < γ2. Moreover, choose invariant projectors Pγ1 and Pγ2 for the corresponding exponential dichotomies with
growth rates γ1 and γ2. Then the relation rkPγ1 ≤ rkPγ2 holds. In addition, [γ1, γ2] ⊂ ρ is fulfilled if and only if
rkPγ1 = rkPγ2 , and in this case one has that Pγ = Pζ almost surely for all γ, ζ ∈ [γ1, γ2].

Proof. The relation rkPγ1 ≤ rkPγ2 is a direct consequence of Proposition 2.5, since Sγ1 ⊂ Sγ2 and Uγ1 ⊃ Uγ2 . Now
assume that [γ1, γ2] ⊂ ρ. Arguing contrapositively, suppose that rkPγ1 	= rkPγ2 , and choose invariant projectors Pζ ,
ζ ∈ (γ1, γ2), for the exponential dichotomies of (θ,	) with growth rate ζ . Define

ζ0 := sup
{
ζ ∈ [γ1, γ2] : rkPζ 	= rkPγ2

}
.

Due to Lemma 3.2, there exists an ε > 0 such that rkPζ0 = rkPζ for all ζ ∈ Bε(ζ0). This is a contradiction to the
definition of ζ0. Conversely, let rkPγ1 = rkPγ2 , then Proposition 2.5 together with the fact that Sγ1 ⊂ Sγ2 and Uγ1 ⊃
Uγ2 yields that R(Pγ1) =R(Pγ2) and N (Pγ1) =N (Pγ2) almost surely, hence Pγ1 = Pγ2 almost surely and Pγ2 is also
an invariant projector of the exponential dichotomy with growth rate γ1. Thus, one obtains for almost all ω ∈ �,∥∥	(t,ω)Pγ2(ω)

∥∥ ≤ K1e
(γ1−α1)t for all t ≥ 0

for some K1 ≥ 1 and α1 > 0, and∥∥	(t,ω)
(
1 − Pγ2(ω)

)∥∥ ≤ K2e
(γ2+α2)t for all t ≤ 0
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with some K2 ≥ 1 and α2 > 0. For all γ ∈ [γ1, γ2] these two inequalities imply, by setting K := max{K1,K2} and
α := min{α1, α2}, that for almost all ω ∈ �

2
∥∥	(t,ω)Pγ2(ω)

∥∥ ≤ Ke(γ−α)t for all t ≥ 0,∥∥	(t,ω)
(
1 − Pγ2(ω)

)∥∥ ≤ Ke(γ+α)t for all t ≤ 0.

This means that γ ∈ ρ, and thus, [γ1, γ2] ⊂ ρ. Now for arbitrary γ, ζ ∈ [γ1, γ2] with γ ≤ ζ one has rkPγ ≤ rkPζ , and
since the relation rkPγ1 = rkPγ2 also holds, one must have that rkPγ = rkPζ . Then Proposition 2.5 together with the
fact that Sγ ⊂ Sζ and Uγ ⊃ U ζ yields that R(Pγ ) =R(Pζ ) and N (Pγ ) =N (Pζ ) almost surely, and hence Pγ = Pζ

almost surely. �

For an arbitrarily chosen a ∈R, define

[−∞, a] := (−∞, a] ∪ {−∞}, [a,∞] := [a,∞) ∪ {∞}
and

[−∞,−∞] := {−∞}, [∞,∞] := {∞}, [−∞,∞] := R.

The following Spectral Theorem, describes that the dichotomy spectrum consists of at least one and at most d

closed intervals.

Theorem 3.4 (Spectral Theorem). Let (θ,	) be a linear random dynamical system with dichotomy spectrum 
.
Then there exists an n ∈ {1, . . . , d} such that


 = [a1, b1] ∪ · · · ∪ [an, bn]
with −∞ ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn ≤ ∞.

Proof. Due to Lemma 3.2, the resolvent set ρ ∩R is open. Thus, 
 ∩R is the disjoint union of closed intervals. The
relation (−∞, b1] ⊂ 
 implies [−∞, b1] ⊂ 
, because the assumption of the existence of a γ ∈ R such that (θ,	)

admits an exponential dichotomy with growth rate γ and projector Pγ ≡ 0 leads to (−∞, γ ] ⊂ ρ using Lemma 2.4,
and this is a contradiction. Analogously, it follows from [an,∞) ⊂ 
 that [an,∞] ⊂ 
. To show the relation n ≤ d ,
assume to the contrary that n ≥ d + 1. Thus, there exist

ζ1 < ζ2 < · · · < ζd ∈ ρ

such that the d + 1 intervals (−∞, ζ1), (ζ1, ζ2), . . . , (ζd ,∞) have nonempty intersection with the spectrum 
. It
follows from Lemma 3.3 that

0 ≤ rkPζ1 < rkPζ2 < · · · < rkPζd
≤ d

is fulfilled for invariant projectors Pζi
of the exponential dichotomy with growth rate ζi , i ∈ {1, . . . , n}. This implies

either rkPζ1 = 0 or rkPζd
= d . Thus, either

[−∞, ζ1] ∩ 
 =∅ or [ζd,∞] ∩ 
 =∅

is fulfilled, and this is a contradiction. To show n ≥ 1, assume that 
 = ∅. This implies {−∞,∞} ⊂ ρ. Thus, there
exist ζ1, ζ2 ∈ R such that (θ,	) admits an exponential dichotomy with growth rate ζ1 and projector Pζ1 ≡ 0 and an
exponential dichotomy with growth rate ζ2 and projector Pζ2 ≡ 1. Applying Lemma 3.3, one gets (ζ1, ζ2) ∩ 
 	= ∅.
This contradiction yields n ≥ 1 and finishes the proof of the theorem. �

Each spectral interval is associated to a so-called spectral manifold, which generalises the stable and unstable
manifolds obtained by the ranges and null spaces of invariant projectors of exponential dichotomies.



1556 M. Callaway et al.

Theorem 3.5 (Spectral manifolds). Consider the dichotomy spectrum


 = [a1, b1] ∪ · · · ∪ [an, bn]
of the linear random dynamical system (θ,	) and define the invariant projectors Pγ0 := 0, Pγn := 1, and for i ∈
{1, . . . , n − 1}, choose γi ∈ (bi, ai+1) and projectors Pγi

of the exponential dichotomy of (θ,	) with growth rate γi .
Then the sets

Wi := R(Pγi
) ∩N (Pγi−1) for all i ∈ {1, . . . , n}

are fiber-wise linear subsets of Rd , the so-called spectral manifolds, which form a Whitney sum, i.e. for almost all
ω ∈ �

W1(ω) ⊕ · · · ⊕Wn(ω) =R
d,

and moreover, for almost all ω ∈ �, Wi (ω) 	= {0} for i ∈ {1, . . . , n}.

Proof. The sets W1, . . . ,Wn obviously have linear fibers. We first show that Wi (ω) 	= {0} almost surely for all
i ∈ {1, . . . , n}. If W1(ω) 	= {0} does not hold almost surely, then Proposition 2.1 implies that Pγ1(ω) = 0 almost
surely, and Lemma 2.4 implies [−∞, γ1] ∩
 =∅, which is a contradiction. A similar argument may be used for Wn.
In the case 1 < i < n, using Lemma 3.3, one obtains

dimWi = dim
(
R(Pγi

) ∩N (Pγi−1)
) = rkPγi

+ d − rkPγi−1 − dim
(
R(Pγi

) +N (Pγi−1)
) ≥ 1.

Now the relation W1(ω) ⊕ · · · ⊕ Wn(ω) = R
d
P-a.s. will be proved. For 1 ≤ i < j ≤ n, due to Proposition 2.5, the

relations Wi ⊂R(Pγi
) and Wj ⊂ N (Pγj−1) ⊂N (Pγi

) are almost surely fulfilled. This yields that, almost surely,

Wi (ω) ∩Wj (ω) ⊂R
(
Pγi

(ω)
) ∩N

(
Pγi

(ω)
) = {0}.

One also obtains

R
d = W1(ω) +N

(
Pγ1(ω)

)
= W1(ω) +N

(
Pγ1(ω)

) ∩ (
R

(
Pγ2(ω)

) +N
(
Pγ2(ω)

))
= W1(ω) +N

(
Pγ1(ω)

) ∩R
(
Pγ2(ω)

) +N
(
Pγ2(ω)

) =W1(ω) +W2(ω) +N
(
Pγ2(ω)

)
using the fact that for linear subspaces E,F,G ⊂ R

d with E ⊃ G fulfill E ∩ (F + G) = (E ∩ F) + G. It follows
inductively that

R
d =W1(ω) + · · · +Wn(ω) +N

(
Pγn(ω)

) =W1(ω) + · · · +Wn(ω)

for almost all ω ∈ �. �

Remark 3.6. If the linear random dynamical system (θ,	) under consideration fulfills the conditions of the Mul-
tiplicative Ergodic Theorem, then Proposition 2.3 implies that the spectral manifolds Wi of the above theorem are
given by Whitney sums of Oseledets subspaces.

The remaining part of this section on the dichotomy spectrum will be devoted to the study of boundedness proper-
ties of the spectrum. Firstly, a criterion for boundedness from above and below is provided by the following proposi-
tion.

Proposition 3.7. Consider a linear random dynamical system (θ,	), let 
 denote the dichotomy spectrum of (θ,	),
and define

α±(ω) :=
{

ln+(‖	(1,ω)±1‖), T = Z,
ln+(supt∈[0,1] ‖	(t,ω)±1‖), T =R.
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Then 
 is bounded from above if and only if

ess sup
ω∈�

α+(ω) < ∞,

and 
 is bounded from below if and only if

ess sup
ω∈�

α−(ω) < ∞.

Consequently, if the dichotomy spectrum 
 is bounded, then 	 satisfies the integrability condition of the Multiplicative
Ergodic Theorem.

Proof. Suppose that 
 is bounded from above. Then there exist K ≥ 1 and � ∈ R such that for almost all ω ∈ �∥∥	(t,ω)
∥∥ ≤ Ke�t for all t ≥ 0,

which implies that ess supω∈� α+(ω) ≤ ln(K) + |�|. On the other hand, suppose that ess supω∈� α+(ω) < ∞. Then
there exists a full measure set F ∈ F such that for all ω ∈ F we have α+(ω) ≤ β for some positive number β . Define

�̃ :=
⋂
n∈Z

θnF.

Due to the measure preserving property of θ , we get that P(�̃) = 1. Then for all ω ∈ �̃, we have∥∥	(t,ω)
∥∥ ≤ ∥∥	

(
t − �t�, θ�t�ω

)∥∥∥∥	(1, θ�t�−1ω)
∥∥ · · ·∥∥	(1,ω)

∥∥ ≤ eβ(t+1) for all t ≥ 0.

Let γ > β be arbitrary and ε < γ − β . Then∥∥	(t,ω)
∥∥ ≤ eβe(γ−ε)t for all t ≥ 0,

which implies that 	 admits an exponential dichotomy with growth rate γ and projector Pγ ≡ 1, and hence 
 ⊂
[−∞, β]. Similarly, we get that 
 is bounded from below if and only if ess supω∈� α−(ω) < ∞. This finishes the
proof of this proposition. �

The following example shows that there exist linear random dynamical systems which satisfy the integrability
condition of the Multiplicative Ergodic Theorem, but which have no bounded dichotomy spectrum.

Example 3.8. Let (�,F,P) be a non-atomic probability space and θ : Z × � → � be a metric dynamical system
which is ergodic. Then there exists, by using [14, Lemma 2, p. 71], a measurable set U of the form

U =
∞⋃

k=1

k⋃
j=0

θjUk, (3.1)

where Ui , i ∈N, are measurable sets such that

(i) for all k, � ∈N, i ∈ {0, . . . , k} and j ∈ {0, . . . , �}, we have

θjUk ∩ θiU� =∅ whenever k 	= � or i 	= j,

(ii) 0 < P(Uk) ≤ 1
k3 for all k ∈ N.

We now define a random variable a : � →R by

a(ω) :=
⎧⎨⎩

1, ω ∈ � \ U ,
k, k is even and ω ∈ θjUk ,
1
k
, k is odd and ω ∈ θjUk ,
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with j ∈ {0, . . . , k}. Using the random variable a, we define a discrete-time scalar linear random dynamical system
	 : Z× � → R by

	(n,ω) =
{

a(θn−1ω) · · ·a(ω), n ≥ 1,
1, n = 0,
a(θ−1ω)−1 · · ·a(θnω)−1, n ≤ −1.

A direct computation yields that

E ln+(∥∥	(1,ω)
∥∥) =

∞∑
k=1

(2k + 1)P(U2k) ln(2k) ≤
∞∑

k=1

(2k + 1)
ln(2k)

8k3
< ∞,

and

E ln+(∥∥	(1,ω)−1
∥∥) =

∞∑
k=1

(2k + 2)P(U2k+1) ln(2k + 1)

≤
∞∑

k=1

(2k + 2)
ln(2k + 1)

(2k + 1)3
< ∞.

Then the linear system 	 satisfies the integrability condition of the Multiplicative Ergodic Theorem. The fact that the
dichotomy spectrum of 	 is unbounded from above follows from∥∥	(n,ω)

∥∥ = kn for all ω ∈ Uk with k even and 0 ≤ n ≤ k + 1.

Similarly, one can prove that the spectrum is unbounded from below.

4. Random pitchfork bifurcation

We first review in Section 4.1 the main results of [9], which concern the one-dimensional stochastic differential
equation

dx = (
αx − x3)dt + σ dWt, (4.1)

depending on real parameters α and σ and driven by a two-sided Wiener process (Wt)t∈R. This stochastic differential
equation has a unique random equilibrium {aα(ω)}ω∈� for all α ∈ R. We then show in Section 4.2 that there is a
qualitative change in the random dynamics at the bifurcation point α = 0 in the sense that after the bifurcation, the
attracting random equilibria {aα(ω)}ω∈� have qualitatively different properties for α < 0 and α ≥ 0 with respect
to uniform attraction, which is lost at the bifurcation point. We also associate this bifurcation in Section 4.3 with
non-hyperbolicity of the dichotomy spectrum of the linearization at the bifurcation point.

4.1. Existence of a unique attracting random equilibrium

Consider the stochastic differential equation (4.1). We first look at the deterministic case σ = 0. Then for α < 0, the
ordinary differential equation (4.1) has one equilibrium (x = 0) which is globally attractive. For positive α, the trivial
equilibrium becomes repulsive, and there are two additional equilibria, given by ±√

α, which are attractive. This also
means that the global attractor Kα of the deterministic equation undergoes a bifurcation from a trivial to a nontrivial
object. It is given by

Kα :=
{ {0}, α ≤ 0,

[−√
α,

√
α], α > 0.

It was shown in [9] that such an attractor bifurcation does not persist for random attractors of the randomly per-
turbed system where |σ | > 0, and we will explain the details now.
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The stochastic differential equation (4.1) generates a one-sided random dynamical system (θ : R × � → �,ϕ :
R

+
0 ×�×R→R) which induces a Markov semigroup with transition probabilities T (x,B) for x ∈R and B ∈ B(R).

Note that since solutions of (4.1) explode in backward time, the system is only defined for nonnegative times.
The stochastic differential equation (4.1) induces a Markov semigroup with transition probabilities T (x,B) for

x ∈ R and B ∈ B(R). A probability measure ρ on B(X) is called a stationary measure for the Markov semigroup if

ρ(B) =
∫
R

T (x,B)dρ(x) for all B ∈ B(R).

It can be shown [1, p. 474] that for any α ∈ R and |σ | > 0, the Markov semigroup associated with (4.1) admits a
unique stationary measure ρα,σ with density

pα,σ (x) = Nα,σ exp

(
1

σ 2

(
αx2 − 1

2
x4

))
, (4.2)

where Nα,σ is a normalization constant. This stationary measure corresponds to an invariant measure μ of the random
dynamical system (θ,ϕ) generated by (4.1). The invariant measure μ has the disintegration given by

μω = lim
t→∞ϕ(t, θ−tω)ρ for almost all ω ∈ �.

It was shown in [9] that μω is a Dirac measure concentrated on aα(ω), and linearizing along this invariant measure μ

yields a negative Lyapunov exponent, given by

λα = − 2

σ 2

∫
R

(
αx − x3)2

pα,σ (x)dx.

Moreover, the family {aα(ω)}ω∈� is the global random attractor (see Appendix), which implies that the attractor
bifurcation associated with a deterministic pitchfork bifurcation (that is, Kα bifurcates from a singleton to a non-
trivial object) is destroyed by noise, and μ is the unique invariant measure for the random dynamical system. Also
{aα(ω)}ω∈� is the only solution to (θ,ϕ) which does not explode and exists for all times.

4.2. Qualitative changes in uniform attractivity

In order to establish qualitative changes in the attractivity of the unique attracting random equilibrium {aα(ω)}ω∈�, a
detailed understanding about the location of this attractor is needed.

Proposition 4.1. Consider (4.1) for α ∈ R, and let {aα(ω)}ω∈� be its unique random equilibrium. Then for any ε > 0
and T ≥ 0, there exists a measurable set A ∈FT−∞ (see Appendix) of positive measure such that

aα(θsω) ∈ (−ε, ε) for all s ∈ [0, T ] and ω ∈A.

Proof. The unique stationary measure ρα,σ for the Markov semigroup associated to (4.1) with |σ | > 0 is equivalent to
the Lebesgue measure with the density function given by (4.2). The invariant measure δa(ω) and stationary measure ρ

are in correspondence by the following relations: the invariant measure is obtained as the limit of the pullback images
of the stationary measure, i.e.

δa(ω) = lim
t→∞ϕ(t, θ−tω)ρ for almost all ω ∈ �,

and the stationary measure is obtained as the expectation of the invariant measure, i.e.

ρ(·) =
∫

�

δa(ω)(·)dP(ω) (4.3)
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(see [9]). Now define

η := εe−|α|T

2(1 + |σ |) .

Since the support of ρ is the entire real line, it follows from (4.3) that the set

A1 := {
ω ∈ �:aα(ω) ∈ (−η,η)

}
(4.4)

has positive probability for any α ∈R. The global pullback attractor {aα(ω)} is measurable with respect to the past of
the noise F0−∞ (again see [9]), and hence A1 ∈F0−∞. Define

A2 :=
{
ω ∈ �: sup

t∈[0,T ]
∣∣ω(t)

∣∣ ≤ η

2

}
∈FT

0

which, by [15, Section 6.8], has positive probability. Since the sets A1 and A2 are independent, the set A := A1 ∩
A2 ∈ FT−∞ also has positive probability. Choose and fix an arbitrary ω ∈ A. By the definition of A1 we have that
|aα(ω)| < η. Since aα(ω) is a random equilibrium of ϕ it follows, using the integral from of (4.1), that

aα(θtω) = aα(θsω) +
∫ t

s

(
αaα(θrω) − aα(θrω)3)dr + σ

(
ω(t) − ω(s)

)
. (4.5)

Choose and fix an arbitrary t ∈ [0, T ]. Define I := {s ∈ [0, t]:aα(θsω) = 0}; by continuity the set I is closed (but
possibly empty). We consider the following three cases:

Case 1. If t ∈ I , then |aα(θtω)| = 0.
Case 2. If I is not empty and t /∈ I , then s := supI < t and aα(θsω) = 0. By the definition of I and continuity, we

have either aα(θrω) > 0 for all r ∈ (s, t] or aα(θrω) < 0 for all r ∈ (s, t]. Using this observation and (4.5), we obtain
that ∣∣aα(θtω)

∣∣ ≤ |σ |η +
∫ t

s

|α|∣∣aα(θrω)
∣∣dr.

Case 3. If I is empty, then either aα(θsω) > 0 for all s ∈ [0, t] or aα(θsω) < 0 for all s ∈ [0, t]. Using (4.5) and
noting that |aα(ω)| < η, we arrive at the following inequality:

∣∣aα(θtω)
∣∣ ≤ (

1 + |σ |)η +
∫ t

0
|α|∣∣aα(θsω)

∣∣ds.

In view of the three cases above, we have that

∣∣aα(θtω)
∣∣ ≤ (

1 + |σ |)η +
∫ t

0
|α|∣∣aα(θsω)

∣∣ds for all t ∈ [0, T ].

Then, using Gronwall’s inequality, we obtain that∣∣aα(θtω)
∣∣ ≤ (

1 + |σ |)ηe|α|t < ε for all t ∈ [0, T ].
Thus we have that for all ω ∈A, aα(θtω) ∈ (−ε, ε) for all t ∈ [0, T ], which completes the proof. �

We now give a detailed description of the random bifurcation scenario for the stochastic differential equation (4.1)
by means of both asymptotic and finite-time dynamical behaviour. The asymptotic description implies that there is
a qualitative change in the uniformity of attraction of the unique random attractor {aα(ω)}ω∈�. On the other hand,
the finite-time description shows that after the bifurcation, even if the time interval is very large, the (asymptotic)
Lyapunov exponent cannot be observed with non-vanishing probability (by a finite-time Lyapunov exponent); how-
ever, before the bifurcation, the (asymptotic) Lyapunov exponent can be approximated by the finite-time Lyapunov
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exponent. Finite-time Lyapunov exponents for random dynamical systems have not been considered in the literature
so far, but play an important role in the description of Lagrangian Coherent Structures in fluid dynamics [13].

Let {aα(ω)}ω∈� denote the unique random equilibrium of the stochastic differential equation (4.1). Then
{aα(ω)}ω∈� is called locally uniformly attractive if there exists δ > 0 such that

lim
t→∞ sup

x∈(−δ,δ)

ess sup
ω∈�

∣∣ϕ(t,ω)
(
aα(ω) + x

) − aα(θtω)
∣∣ = 0.

Theorem 4.2 (Random pitchfork bifurcation, asymptotic description). Consider the stochastic differential equa-
tion (4.1) with the unique attracting random equilibrium {aα(ω)}ω∈�. Then the following statements hold:

(i) For α < 0, the random attractor {aα(ω)}ω∈� is locally uniformly attractive; in fact, it is even globally uniformly
exponential attractive, i.e.∣∣ϕ(t,ω, x) − ϕ

(
t,ω, aα(ω)

)∣∣ ≤ eαt
∣∣x − aα(ω)

∣∣ for all x ∈R. (4.6)

(ii) For α > 0, the random attractor {aα(ω)}ω∈� is not locally uniformly attractive.

Proof. (i) Let x ∈ R be arbitrary such that x 	= aα(ω). Using the monotonicity of solutions, we may assume that
ϕ(t,ω, x) > ϕ(t,ω, aα(ω)) for all t ≥ 0. The integral form of (4.1),

ϕ(t,ω)x = x +
∫ t

0

(
αϕ(s,ω)x − (

ϕ(s,ω)x
)3)ds + σω(t)

yields that

ϕ(t,ω)x − ϕ(t,ω)aα(ω) ≤ x − aα(ω) + α

∫ t

0

(
ϕ(s,ω)x − ϕ(s,ω)aα(ω)

)
ds.

Using Gronwall’s inequality implies (4.6), which finishes this part of the proof.
(ii) Suppose to the contrary that there exists δ > 0 such that

lim
t→∞ sup

x∈(−δ,δ)

ess sup
ω∈�

∣∣ϕ(
t,ω, aα(ω) + x

) − aα(θtω)
∣∣ = 0,

which implies that there exists N ∈N such that

sup
x∈(−δ,δ)

ess sup
ω∈�

∣∣ϕ(
t,ω, aα(ω) + x

) − aα(θtω)
∣∣ <

√
α

4
for all t ≥ N. (4.7)

According to Proposition 4.1, there exists A ∈ F0−∞ of positive probability such that aα(ω) ∈ (− δ
2 , δ

2 ). Note that
−√

α and
√

α are two attractive equilibria for the deterministic differential equation

ẋ = αx − x3.

Let φ(·, x0) denote the solution of the above deterministic equation which satisfies x(0) = x0. Then there exists T > N

such that

φ(T , δ/2) >

√
α

2
and φ(T ,−δ/2) < −

√
α

2
. (4.8)

For any ε > 0, we define

A+
ε :=

{
ω ∈ � : sup

t∈[0,T ]
∣∣ω(t)

∣∣ < ε
}
.
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Clearly, A+
ε ∈ FT

0 has positive probability, and thus, P(A ∩ A+
ε ) = P(A)P(A+

ε ) is positive. Due to the compactness
of [0, T ], there exists ε > 0 such that for all ω ∈ A+

ε , we have

∣∣ϕ(T ,ω, δ/2) − φ(T , δ/2)
∣∣ <

√
α

4
and

∣∣ϕ(T ,ω,−δ/2) − φ(T ,−δ/2)
∣∣ <

√
α

4
,

which implies together with (4.8) that

ϕ(T ,ω, δ/2) >

√
α

4
and ϕ(T ,ω,−δ/2) < −

√
α

4
.

Due to the fact that |aα(ω)| < δ
2 for all ω ∈A∩A+

ε , we get that for all ω ∈ A∩A+
ε

sup
x∈(−δ,δ)

∣∣ϕ(
T ,ω,aα(ω) + x

) − aα(θT ω)
∣∣

≥ max
{∣∣ϕ(T ,ω, δ/2) − aα(θT ω)

∣∣, ∣∣ϕ(T ,ω,−δ/2) − aα(θT ω)
∣∣}.

Consequently,

sup
x∈(−δ,δ)

ess sup
ω∈�

∣∣ϕ(
t,ω, aα(ω) + x

) − aα(θtω)
∣∣ >

√
α

4
,

which contradicts (4.7) and the proof is complete. �

For the description of the bifurcation via finite-time properties, we consider a compact time interval [0, T ] and
define the corresponding finite-time Lyapunov exponent associated with the invariant measure δaα(ω) by

λT,ω
α := 1

T
ln

∣∣∣∣∂ϕα

∂x

(
T ,ω,aα(ω)

)∣∣∣∣.
Clearly, the (classical) Lyapunov exponent λ∞

α associated with the random equilibrium aα(ω) is given by

λ∞
α = lim

T →∞λT,ω
α .

In contrast to the classical Lyapunov exponent, the finite-time Lyapunov exponent is, in general, a non-constant
random variable.

Theorem 4.3 (Random pitchfork bifurcation, finite-time description). Consider the stochastic differential equa-
tion (4.1) with the unique attracting random equilibrium {aα(ω)}ω∈�. For any finite time interval [0, T ], let λT,ω

α

denote the finite-time Lyapunov exponent associated with {aα(ω)}ω∈�. Then the following statements hold:

(i) For α < 0, the random attractor {aα(ω)}ω∈� is finite-time attractive, i.e.

λT,ω
α ≤ α < 0 for all ω ∈ �.

(ii) For α > 0, the random attractor {aα(ω)}ω∈� is not finite-time attractive, i.e.

P
{
ω ∈ � : λT,ω

α > 0
}

> 0.

Proof. (i) follows directly from Theorem 4.2(i).

(ii) Choose ε :=
√

α

2 > 0. According to Proposition 4.1, there exists a measurable set A ∈ FT−∞ of positive proba-
bility such that for all ω ∈A

aα(θsω) ∈ (−ε, ε) for all s ∈ [0, T ].
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Let ω ∈A be arbitrary and we will estimate λT,ω
α . Let 	α(t,ω) := ∂ϕα

∂x
(t,ω, aα(ω)) denote the linearized random dy-

namical system along the random equilibrium aα(ω). Note that the linearized equation along the random equilibrium
aα(ω) is given by

ξ̇ (t) = (
α − 3aα(θtω)2)ξ(t),

from which we derive that

	α(t,ω) = exp

(∫ t

0

(
α − 3aα(θsω)2)ds

)
.

We thus get

λT,ω
α = α − 1

T

∫ T

0
3aα(θtω)2 dt ≥ α

4
,

which completes the proof. �

Remark 4.4. Finite-time Lyapunov exponents are numerically computable quantities which measure expansion or
contraction rates in a vicinity of a random equilibrium, and the change of the sign of finite-time Lyapunov exponents
marks a bifurcation point observable from a practical point of view. For a system with some specified structures such
as positivity, we refer to [24] for a powerful method to compute the maximal Lyapunov exponent with an explicit
bound.

4.3. The dichotomy spectrum at the bifurcation point

We will compute the dichotomy spectrum of the linearization around the unique attracting random equilibrium {aα(ω)}
of the system (4.1). As a direct consequence, we observe that hyperbolicity is lost at the bifurcation point α = 0.

Theorem 4.5. Let 	α(t,ω) := ∂ϕα

∂x
(t,ω, aα(ω)) denote the linearized random dynamical system along the random

equilibrium aα(ω). Then the dichotomy spectrum 
α of 	α is given by


α = [−∞, α] for all α ∈ R.

Proof. From the linearized equation along aα(ω)

ξ̇ (t) = (
α − 3aα(θtω)2)ξ(t),

we derive that

	α(t,ω) = exp

(∫ t

0

(
α − 3aα(θsω)2)ds

)
. (4.9)

Consequently,∣∣	α(t,ω)
∣∣ ≤ eα|t | for all t ∈ R,

which implies that 
α ⊂ [−∞, α]. Thus, it is sufficient to show that [−∞, α] ⊂ 
α . For this purpose, let γ ∈ (−∞, α]
be arbitrary. Suppose the opposite, that 	α admits an exponential dichotomy with growth rate γ , invariant projector
Pγ and positive constants K,ε. We now consider the two possible cases: (i) Pγ = 1 and (ii) Pγ = 0:

Case (i). Pγ = 1, i.e. we have

	α(t,ω) ≤ Ke(γ−ε)t for all t ≥ 0. (4.10)
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Choose and fix T > 0 such that e
ε
4 T > K . According to Proposition 4.1, there exists a measurable set A ∈ FT−∞ of

positive measure such that

aα(θsω) ∈ (−√
ε/2,

√
ε/2) for all ω ∈A and s ∈ [0, T ].

From (4.9) we derive that∣∣	α(T ,ω)
∣∣ ≥ eT (α− 3ε

4 ) > Ke(γ−ε)T ,

which is a contradiction to (4.10).
Case (ii): Pγ = 0, i.e. we have for almost all ω ∈ �

	α(t, θ−tω) ≥ 1

K
e(γ+ε)t for all t ≥ 0,

which together with (4.9) implies that

lnK + (α − γ )t

3
≥

∫ t

0
aα(θsθ−tω)2 ds. (4.11)

Choose and fix T > 0 such that

(T − 1)3

3
>

lnK + (α − γ )T

3
.

Consider the following integral equation

x(t) =
∫ t

0

(
αx(s) − x(s)3)ds + t4

4
− α

t2

2
+ t.

Clearly, the explicit solution of the above equation is x(t) = t . Due to the compactness of [0, T ], there exists an ε > 0

such that for any x(0) ∈ (−ε, ε) and ω(t) with supt∈[0,T ] |ω(t) − t4

4 + α t2

2 − t | ≤ ε then the solution x(t) of the
following equation

x(t) = x(0) +
∫ t

0

(
αx(s) − x(s)3)ds + ω(t)

satisfies that supt∈[0,T ] |x(t) − t | ≤ 1. According to Proposition 4.1, there exists a measurable set A−
ε ∈ F0−∞ of

positive measure such that aα(ω) ∈ (−ε, ε) for all ω ∈A−
ε . Define A+

ε ∈FT
0 by

A+
ε :=

{
ω ∈ � : sup

t∈[0,T ]

∣∣ω(t) − t4/4 + αt2/2 − t
∣∣ ≤ ε

}
.

Therefore, for all ω ∈A−
ε ∩A+

ε , we get

sup
t∈[0,T ]

∣∣aα(θtω) − t
∣∣ ≤ 1,

which implies that∫ T

0
aα(θsω)2 ds >

(T − 1)3

3
>

lnK + (α − γ )T

3
.

Note that P(A−
ε ∩A+

ε ) = P(A−
ε )P(A+

ε ) > 0. Then for ω ∈ θT (A−
ε ∩A+

ε ), the above leads to a contradiction to (4.11),
and the proof is complete. �
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We have seen in Theorem 4.3 that the bifurcation of (4.1) manifests itself also via finite-time Lyapunov exponents:
before the bifurcation, all finite-time Lyapunov exponents are negative, and after the bifurcation, one observes positive
finite-time Lyapunov exponents with positive probability for arbitrarily large times. This implies in particular that for
positive α the set of all finite-time Lyapunov exponents observed on a set of full measure does not converge to
the (classical) Lyapunov exponent when time tends to infinity. The following theorem makes precise the fact that,
in contrast to the Lyapunov spectrum, the dichotomy spectrum includes limits of the set of finite-time Lyapunov
exponents.

Theorem 4.6. Let (θ,	) be a linear random dynamical system on R
d with dichotomy spectrum 
. Define the finite-

time Lyapunov exponent

λ(T ,ω,x) := 1

T
ln

‖	(T ,ω)x‖
‖x‖ for all T > 0,ω ∈ � and x ∈R

d \ {0}.

Then

lim
T →∞ ess sup

ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x) = sup


provided that sup
 < ∞ and

lim
T →∞ ess inf

ω∈�
inf

x∈Rd\{0}
λ(T ,ω,x) = inf


provided that inf
 > −∞.

Proof. By definition of λ(T ,ω,x), we get that for all T ,S ≥ 0

(T + S) ess sup
ω∈�

sup
x∈Rd\{0}

λ(T + S,ω,x) ≤ T ess sup
ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x) + S ess sup
ω∈�

sup
x∈Rd\{0}

λ(S,ω,x).

This implies that the function [0,∞) ∩ T → R, T �→ T ess supω∈� supx∈Rd\{0} λ(T ,ω,x) is subadditive; we thus
obtain that the limit T → ∞ exists and so

lim
T →∞ ess sup

ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x) = lim sup
T →∞

ess sup
ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x).

We first prove that provided sup
 < ∞, we have

γ := lim sup
T →∞

ess sup
ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x) = sup
.

Since sup
 < ∞ it follows that there exists K > 0 such that∥∥	(t,ω)
∥∥ ≤ Ket sup
 for all t ≥ 0. (4.12)

Assume first that γ < sup
. This means that there exists a t0 > 0 such that for all t ≥ t0 and for almost all ω ∈ �, we
have ‖	(t,ω)‖ ≤ et(γ+sup
)/2. Thus, together with (4.12), we obtain for all t ≥ 0 and for almost all ω ∈ � that∥∥	(t,ω)

∥∥ ≤ K̂et (γ+sup
)/2, K̂ := max
{
1,Ket0(sup
−γ )/2}.

Hence, sup
 ≤ (γ + sup
)/2, which is a contradiction. Assume now that γ > sup
. This means in particular that
sup
 < ∞. Hence, there exists a K > 0 such that for almost all ω ∈ �, we have∥∥	(t,ω)x

∥∥ ≤ Ket(γ+sup
)/2‖x‖ for all x ∈ R
d .
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This leads to λ(t,ω, x) ≤ (γ + sup
)/2 for all x ∈R
d \ {0}, and thus,

γ = lim sup
T →∞

ess sup
ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x) ≤ (γ + sup
)/2,

which proves the first equality. Similarly, one can show that

lim
T →∞ ess inf

ω∈�
inf

x∈Rd\{0}
λ(T ,ω,x) = inf


provided that inf
 > −∞, which finishes the proof of this theorem. �

In the following example, we construct explicitly a linear random dynamical system with sup
 = ∞ but

lim
T →∞ ess sup

ω∈�

sup
x∈Rd\{0}

λ(T ,ω,x) < ∞.

An example of a linear random dynamical system with inf
 = −∞ but

lim
T →∞ ess inf

ω∈�
inf

x∈Rd\{0}
λ(T ,ω,x) > −∞

can be constructed analogously. This example shows the importance of the assumption sup
 < ∞ or inf
 > −∞ in
the above theorem.

Example 4.7. Following the construction in Example 3.8, there exist infinitely many measurable sets {Un}n∈N of
positive measure such that for n ≥ 2, Un, θUn, θ

2Un are pairwise disjoint. We define a random mapping A : � → R

as follows:

A(ω) =
⎧⎨⎩

1
n
, ω ∈ Un ∪ θ2Un,n ≥ 2,

n, ω ∈ θUn,n ≥ 2,
1, otherwise.

Let 	 denote the discrete-time RDS generated by A. Since ln‖A(·)‖ is neither bounded from above nor from below,
we get that 
(	) = [−∞,∞]. On the other hand, it is easy to see that for all T ≥ 2 we get that

ess sup
ω∈�

∣∣	(T ,ω)
∣∣ = 1,

which implies that

lim
T →∞ ess sup

ω∈�

1

T
ln

∣∣	(T ,ω)
∣∣ = 0.

5. Topological equivalence of random dynamical systems

This section deals with topological equivalence of random dynamical systems [1,16,17,21]. This concept has not
been used so far to study bifurcations of random dynamical systems, and the main aim of this section is to discuss
topological equivalence for the stochastic differential equation (4.1) from Section 4, given by

dx = (
αx − x3)dt + σ dWt.

The concept of topological equivalence for random dynamical systems [1, Definition 9.2.1] differs from the corre-
sponding deterministic notion of topological equivalence in the sense that instead of one homeomorphism (mapping
orbits to orbits), the random version is given by a family of homeomorphisms {hω}ω∈�. The precise definition for
one-sided random dynamical systems is given as follows.
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Definition 5.1 (Topological equivalence). Let (�,F,P) be a probability space, θ : T× � → � a metric dynamical
system and (X1, d1), (X2, d2) be metric spaces. Then two one-sided random dynamical systems (ϕ1 : T+

0 ×�×X1 →
X1, θ) and (ϕ2 : T+

0 × � × X2 → X2, θ) are called topologically equivalent if there exists a conjugacy h : � × X1 →
X2 fulfilling the following properties:

(i) For almost all ω ∈ �, the function x �→ h(ω,x) is a homeomorphism from X1 to X2.
(ii) The mappings (ω, x1) �→ h(ω,x1) and (ω, x2) �→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2
(
t,ω,h(ω,x)

) = h
(
θtω,ϕ1(t,ω, x)

)
for all t ≥ 0, x ∈ X1 and almost all ω ∈ �.

A bifurcation is then described by means of a lack of topological equivalence at the bifurcation point. The following
theorem says that near the bifurcation point α = 0, all systems of (4.1) are equivalent.

Theorem 5.2. Let ϕα denote the one-sided RDS generated by the SDE (4.1). Then there exists an ε > 0 such that for
all α ∈ (−ε, ε) the random dynamical systems ϕα are topologically equivalent to the dynamical system (e−t x)t,x∈R.

Proof. Let aα(ω) denote the unique random equilibrium of (4.1). According to the results in [9], we obtain that

Eaα(ω)2 =
∫ ∞
−∞ u2 exp( 1

σ 2 (αu2 − 1
2u4))du∫ ∞

−∞ exp( 1
σ 2 (αu2 − 1

2u4))du
,

and therefore,

lim
α→0

Eaα(ω)2 =
∫ ∞
−∞ u2 exp(− u4

2σ 2 )du∫ ∞
−∞ exp(− u4

2σ 2 )du
> 0.

Then there exists an ε > 0 such that for all α ∈ (−ε, ε), we have

δ := 3

4
Eaα(ω)2 − α > 0.

For any x ∈ R and (t,ω) ∈ R
+
0 × �, we define

ψ(t,ω, x) := ϕα

(
t,ω, x + aα(ω)

) − aα(θtω). (5.1)

By using the transformation function f (ω,x) := x−aα(ω), the random dynamical systems ϕα and ψ are topologically
equivalent. Hence, it is sufficient to show that ψ is topologically equivalent to the dynamical system (e−t x)t,x∈R; the
proof of this is divided into four parts.

Part 1. We first summarise some properties of ψ :

(1) Since aα(ω) is a random equilibrium of ϕα , it follows that

ψ(t,ω,0) = 0 for all t ≥ 0 and ω ∈ �. (5.2)

(2) Due to the monotonicity of ϕα , for x1 > x2, we have

ψ(t,ω, x1) > ψ(t,ω, x2) for all ω ∈ � and t ≥ 0. (5.3)

(3) From (4.1), we derive that

ψ(t,ω, x) = x +
∫ t

0
ψ(s,ω,x)

(
α − aα(θsω)2 − aα(θsω)ϕα

(
s,ω, aα(ω) + x

)
− ϕα

(
s,ω, aα(ω) + x

)2)ds,
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consequently,

ψ(t,ω, x) = x exp

(∫ t

0
α − aα(θsω)2 − aα(θsω)ϕα

(
s,ω, aα(ω) + x

)
− ϕα

(
s,ω, aα(ω) + x

)2 ds

)
. (5.4)

Part 2. We shall now demonstrate some estimates on ψ . According to Birkhoff’s Ergodic Theorem, there exists an
invariant set �̃ of full measure such that

lim
t→±∞

1

t

∫ t

0
aα(θsω)2 ds = Eaα(ω)2. (5.5)

Choose and fix ω ∈ �̃. From (5.5), there exists T > 0 such that for all |t | > T we have∣∣∣∣1

t

∫ t

0
aα(θsω)2 ds −Eaα(ω)2

∣∣∣∣ ≤ δ. (5.6)

The elementary inequality u2 + uv + v2 ≥ 3
4u2 for u,v ∈ R implies with (5.4) that for x > 0

ψ(t,ω, x) ≤ x exp

(∫ t

0
α − 3

4
aα(θsω)2 ds

)
,

then for t ≥ T , (5.6) implies the following estimate

ψ(t,ω, x) ≤ xe− δ
4 t , for all x > 0. (5.7)

Note that the function ψ as defined in (5.1) can be defined for certain negative times also (as the cocycle ϕα is
invertible locally), and we have

lim
t→κ̃(ω,x)+

ψ(t,ω, x) = ∞ for x > 0 and lim
t→κ̃(ω,x)+

ψ(t,ω, x) = −∞ for x < 0, (5.8)

where κ̃(ω, x) denotes the infimum of the domain of the function t �→ ψ(t,ω, x).
Part 3. We now show the required conjugacy. By (5.2) and (5.3), for x > 0 we have ψ(s,ω,x) > 0 for all s ≥ 0,

and consequently by (5.7) and (5.8) we obtain that

lim
r→∞

∫ ∞

r

ψ(s,ω, x)ds = 0 and lim
r→κ̃(ω,x)+

∫ ∞

r

ψ(s,ω, x)ds = ∞.

Hence there exists a unique r(ω, x) such that∫ ∞

r(ω,x)

ψ(s,ω, x)ds = 1. (5.9)

Similarly, r(ω, x) for x < 0 is defined to satisfy∫ ∞

r(ω,x)

ψ(s,ω, x)ds = −1, (5.10)

and we define r(ω,0) := −∞. Using the cocycle property of ψ , we obtain that

r(ω, x) = r
(
θsω,ψ(s,ω,x)

) + s. (5.11)
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Define the function

g(ω,x) :=
⎧⎨⎩ er(ω,x), x > 0,

0, x = 0,
−er(ω,x), x < 0.

We will now show that g transforms the random dynamical system ψ to the dynamical system (e−t x)t,x∈R. For any
x > 0, we have ψ(s,ω,x) > 0 and thus from the definition of the function g it follows that

g
(
θsω,ψ(s,ω,x)

) = er(θsω,ψ(s,ω,x)),

which implies together with (5.11) that

g
(
θsω,ψ(s,ω,x)

) = er(ω,x)−s = e−sg(ω, x).

Similarly, for x < 0 we also have g(θsω,ψ(s,ω,x)) = e−sg(ω, x) for all s ∈ (κ̃(ω, x),∞), ω ∈ �.
Part 4. We will show that gω : R→R, x �→ g(ω,x) is a homeomorphism, and that g is jointly measurable. Choose

and fix ω ∈ �̃.
Injectivity: From the definition of g, it is easily seen that for x1 > 0 > x2 we have

gω(x1) > 0 > gω(x2).

On the other hand, based on strict monotonicity of ψ we get that for x1 > x2 > 0∫ ∞

r(ω,x2)

ψ(s,ω, x1)ds >

∫ ∞

r(ω,x2)

ψ(s,ω, x2)ds = 1.

Consequently, r(ω, x1) > r(ω,x2) and thus gω(x1) > gω(x2). Similarly, for 0 > x1 > x2 we also have gω(x1) >

gω(x2). Therefore, gω is strictly increasing and thus injective.

Continuity: We first show that limx→0+ gω(x) = 0. Let ε > 0 be arbitrary. Choose T̃ > T such that 4
δ
e− δ

4 T̃ < 1
3

and e−T̃ < ε. By (5.7), for all t ≥ T̃ we have

ψ(t,ω, x) ≤ e− δ
4 t x.

As a consequence, for all x ∈ (0,1) we get∫ ∞

T̃

ψ(s,ω, x)ds ≤
∫ ∞

T̃

e− δ
4 s ds <

1

3
. (5.12)

Since limx→0 ψ(s,ω,x) = 0, [−T̃ , T̃ ] is a compact interval and limx→0 κ̃(ω, x) = −∞, there exists δ∗ > 0 such that∫ T̃

−T̃

ψ
(
s,ω, δ∗)ds <

1

3
,

which together with (5.12) implies that∫ ∞

−T̃

ψ(s,ω, x)ds <
2

3
for all x ∈ (

0,min
{
1, δ∗}).

Therefore, r(ω, x) < −T̃ and thus gω(x) < ε for all x ∈ (0,min{1, δ∗}). Hence, limx→0+ gω(x) = 0. One can simi-
larly show that limx→0− gω(x) = 0, and thus gω is continuous at 0. The continuity of g on the whole real line can be
proved in a similar way.

Surjectivity: It is easy to prove surjectivity from

lim
x→∞gω(x) = ∞ and lim

x→−∞gω(x) = −∞.



1570 M. Callaway et al.

Measurability: By the definition of g, in order to prove the joint measurability of g it is enough to show the joint
measurability of the mapping (ω, x) �→ r(ω, x). Since the map x �→ r(ω, x) is continuous for each fixed ω ∈ �, it
follows from e.g. [7, Lemma 1.1] that it is sufficient to show that the map ω �→ r(ω, x) is measurable for each fixed
x ∈ R. Choose and fix an arbitrary x > 0, and let β ∈R be arbitrary. Then, by the definition of r(ω, x) we have

{
ω : r(ω, x) ≤ β

} =
{
ω :

∫ ∞

β

ψ(t,ω, x)dt ≤ 1

}
=

⋂
n∈N,n≥β

{
ω :

∫ n

β

ψ(t,ω, x)dt < 1

}
.

It should be clear that for each n ∈ N, the map ω �→ ∫ n

β
ψ(t,ω, x)dt is measurable, and consequently the map ω �→

r(ω, x) is measurable. The case x < 0 is similar, and we have defined r(ω,0) = −∞ for all ω ∈ �. Thus we obtain
the measurability of the map ω �→ r(ω, x) for all x ∈R.

This completes the proof of this theorem. �

This theorem implies that the stochastic differential equation (4.1) does not admit a bifurcation at α = 0 which is
induced by the above concept of topological equivalence. In addition, because of the observations in Theorem 4.5, this
concept of equivalence is not in correspondence with the dichotomy spectrum (linear systems which are hyperbolic
and non-hyperbolic can be equivalent).

We will show now that the concept of a uniform topological equivalence is the right tool to obtain the bifurcations
studied in this paper.

Definition 5.3 (Uniform topological equivalence). Let (�,F,P) be a probability space, θ : T × � → � a metric
dynamical system and (X1, d1), (X2, d2) be metric spaces. Then two one-sided random dynamical systems (ϕ1 :
T

+
0 ×�×X1 → X1, θ) and (ϕ2 : T+

0 ×�×X2 → X2, θ) are called uniformly topologically equivalent with respect to
a random equilibrium {a(ω)}ω∈� of ϕ1 if there exists a conjugacy h : �×X1 → X2 fulfilling the following properties:

(i) For almost all ω ∈ �, the function x �→ h(ω,x) is a homeomorphism from X1 to X2.
(ii) The mappings (ω, x1) �→ h(ω,x1) and (ω, x2) �→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2
(
t,ω,h(ω,x)

) = h
(
θtω,ϕ1(t,ω, x)

)
for all t ≥ 0, x ∈ X1 and almost all ω ∈ �.

(iv) We have

lim
δ→0

ess sup
ω∈�

sup
x∈Bδ(a(ω))

d2
(
h(ω,x),h

(
ω,a(ω)

)) = 0

and

lim
δ→0

ess sup
ω∈�

sup
x∈Bδ(h(ω,a(ω)))

d1
(
h−1(ω, x), a(ω)

) = 0.

Note that, in comparison to the concept of topological equivalence (Definition 5.1), we added (iv) to take uniformity
into account.

We show now that uniform topological equivalence preserves local uniform attractivity.

Proposition 5.4. Let (�,F,P) be a probability space, θ : T × � → � a metric dynamical system and (X1, d1),
(X2, d2) be metric spaces, and let (ϕ1 : T+

0 × � × X1 → X1, θ) and (ϕ2 : T+
0 × � × X2 → X2, θ) be two one-

sided random dynamical systems which are uniformly topologically equivalent with respect to a random equilibrium
{a(ω)}ω∈� of ϕ1. Let h : � × X1 → X2 denote the conjugacy. Then {a(ω)}ω∈� is locally uniformly attractive for ϕ1

if and only if {h(ω,a(ω))}ω∈� is locally uniformly attractive for ϕ2.
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Proof. Suppose that {a(ω)}ω∈� is locally uniformly attractive for ϕ1 and let η > 0. Then there exists a γ > 0 such
that

ess sup
ω∈�

sup
x∈Bγ (a(ω))

d2
(
h(ω,x),h

(
ω,a(ω)

)) ≤ η.

Since {a(ω)}ω∈� is locally uniformly attractive for ϕ1, there exists a δ > 0 and a T > 0 such that

ess sup
ω∈�

sup
x∈Bδ(a(ω))

d1
(
ϕ1(t,ω, x), a(θtω)

) ≤ γ

2
for all t ≥ T .

Hence, for all t ≥ T , we have

ess sup
ω∈�

sup
x∈Bδ(a(ω))

d2
(
h
(
θtω,ϕ1(t,ω, x)

)
, h

(
θtω, a(θtω)

)) ≤ η.

This means that for all t ≥ T , we have

ess sup
ω∈�

sup
x∈Bδ(a(ω))

d2
(
ϕ2

(
t,ω,h(ω,x)

)
, h

(
θtω, a(θtω)

)) ≤ η,

and there exists a β > 0 such that

ess sup
ω∈�

sup
x∈Bβ(h(ω,a(ω)))

d1
(
h−1(ω, x), a(ω)

) ≤ δ

2
.

Finally, this means that for all t ≥ T , we have

ess sup
ω∈�

sup
x∈Bβ(h(ω,a(ω)))

d2
(
ϕ2(t,ω, x),h

(
θtω, a(θtω)

)) ≤ η,

which finishes the proof that {h(ω,a(ω))}ω∈� is locally uniformly attractive for ϕ2; the converse is proved similarly. �

As a consequence of this proposition, it follows that (4.1) admits a bifurcation.

Theorem 5.5. The stochastic differential equation (4.1) admits a random bifurcation at α = 0 which is induced by
the concept of uniform topological equivalence.

Proof. This is a direct consequence of Theorem 4.2 and Proposition 5.4. �

Appendix

A.1. Metric dynamical systems

Let B(Y ) denote the Borel σ -algebra of a metric space Y . Consider a time set T =R or T = Z, and let (�,F,P) be a
probability space. A (B(T) ⊗F,F)-measurable function θ : T× � → � is called a measurable dynamical system if
θ(0,ω) = ω and θ(t + s,ω) = θ(t, θ(s,ω)) for all t, s ∈ T and ω ∈ �. We use the abbreviation θtω for θ(t,ω). A mea-
surable dynamical system is said to be measure preserving or metric if Pθ(t,A) = PA for all t ∈ T and A ∈ F , and
such a dynamical system is called ergodic if for any A ∈F satisfying θtA = A for all t ∈ T, one has PA ∈ {0,1}. A par-
ticular metric dynamical system, which naturally is used when dealing with (one-dimensional) stochastic differential
equations, is generated by the Brownian motion. More precisely, � := C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0}. Let �

be equipped with the compact-open topology and the Borel σ -algebra F := B(C0(R,R)). Let P denote the Wiener
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probability measure on (�,F). The metric dynamical system is then given by the Wiener shift θ : R × � → �, de-
fined by θ(t,ω(·)) := ω(· + t) − ω(t), and it is well-known that θ is ergodic [1]. On (�,F), we have the natural
filtration

F t
s := σ

(
ω(u) − ω(v) : s ≤ u,v ≤ t

)
for all s ≤ t,

with θ−1
u F t

s =F t+u
s+u .

A.2. Invariant measures

For a given random dynamical system (θ,ϕ), let � : T × � × X → � × X denote the corresponding skew product
flow, given by �(t,ω,x) := (θtω,ϕ(t,ω)x). This is a measurable dynamical system on the extended phase space
� × X. A probability measure μ on (� × X,F ⊗B) is said to be an invariant measure if

(i) μ(�tA) = μ(A) for all t ∈ T and A ∈ F ⊗B,
(ii) π�μ = P,

where π�μ denotes the marginal of μ on (�,F). If the metric space X is separable and complete, then an invari-
ant measure μ admits a P-almost surely unique disintegration [1, Proposition 1.4.3], that is a family of probability
measures (μω)ω∈� with

μ(A) =
∫

�

∫
X

1A(ω,x)dμω(x)dP(ω).

A.3. Random sets

A function ω �→ M(ω) taking values in the subsets of the phase space X of a random dynamical system is called
a closed (compact, respectively) random set if M(ω) is closed (compact, respectively) for all ω ∈ � and the map
ω �→ d(x,M(ω)) is measurable for each x ∈ X. We use the term ω-fiber of M for the set M(ω). Note that if X is
a Polish space, then closed (compact, respectively) random sets are measurable sets of the product σ -algebra F ⊗ B
[11, Remark after Definition 14]. A random set M is called invariant with respect to the random dynamical system
(θ,ϕ) if ϕ(t,ω)M(ω) = M(θtω) for all t ∈R and ω ∈ �.

A.4. Random attractors

A nonempty, compact and invariant random set ω �→ A(ω) is called global random attractor [11,20] for a random
dynamical system (θ,ϕ) with metric state space (X,d), if it attracts all bounded sets in the sense of pullback attraction,
i.e., for all bounded sets B ⊂ X, one has

lim
t→∞ dist

(
ϕ(t, θ−tω)B,A(ω)

) = 0 for almost all ω ∈ �,

where dist(C,D) := supc∈C d(c,D) is the Hausdorff semi-distance of C and D. A global random attractor (given it
exists) is always unique [8]. The existence of random attractors is proved via so-called absorbing sets [12]. A compact
random set B(ω) is called a compact random absorbing set if for almost all ω ∈ � and any bounded set D ⊂ X, there
exists a time T > 0 such that

ϕ(t, θ−tω)D ⊂ B(ω) for all t ≥ T .

Suppose that φ(t,ω, ·), t ∈ T,ω ∈ �, is continuous. Given a compact random absorbing set B(ω), it follows that there
exists a global random attractor {A(ω)}ω∈�, given by

A(ω) :=
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω)B(ω) for almost all ω ∈ �.
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A.5. Lyapunov exponents and multiplicative ergodic theory

Given a linear random dynamical system (θ,	) in R
d , a Lyapunov exponent is given by

λ = lim
t→±∞

1

|t | ln
∥∥	(t,ω)x

∥∥ for some ω ∈ � and x ∈R
d \ {0}.

The Multiplicative Ergodic Theorem [1,22] shows that there are only finitely many Lyapunov exponents provided the
random dynamical system is ergodic and fulfills an integrability condition. More precisely, consider a linear random
dynamical system (θ : T × � → �,	 : T × � → R

d×d), suppose that θ is ergodic and 	 satisfies the integrability
condition

sup
t∈[0,1]

ln+(∥∥	(t, ·)±1
∥∥) ∈ L1(P),

here ln+(x) := max{0, ln(x)}. Then the Multiplicative Ergodic Theorem states that almost surely, there exist at most
d Lyapunov exponents λ1 < λ2 < · · · < λp and fiber-wise decomposition

R
d = O1(ω) ⊕ O2(ω) ⊕ · · · ⊕ Op(ω) for almost all ω ∈ �

into Oseledets subspaces Oi ⊂R
d such that for all i ∈ {1, . . . , p} and almost all ω ∈ �, one has

lim
t→±∞

1

|t | ln
∥∥	(t,ω)x

∥∥ = λi for all x ∈ Oi(ω) \ {0}.
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