
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2017, Vol. 53, No. 2, 997–1005
DOI: 10.1214/16-AIHP746
© Association des Publications de l’Institut Henri Poincaré, 2017

Homogenization via sprinkling

Itai Benjaminia and Vincent Tassionb

aThe Weizmann Institute, Rehovot 76100, Israel. E-mail: itai.benjamini@weizmann.ac.il
bDépartement de Mathématiques Université de Genève, 2-4 rue du lievre Case postale 64, 1211 Genève 4, Switzerland.

E-mail: vincent.tassion@unige.ch

Received 12 June 2015; revised 13 November 2015; accepted 7 February 2016

Abstract. We show that a superposition of an ε-Bernoulli bond percolation and any everywhere percolating subgraph of Zd , d ≥ 2,
results in a connected subgraph, which after a renormalization dominates supercritical Bernoulli percolation. This result, which
confirms a conjecture from (J. Math. Phys. 41 (2000) 1294–1297), is mainly motivated by obtaining finite volume characterizations
of uniqueness for general percolation processes.

Résumé. On considère un sous-graphe de Zd , d ≥ 2, dont toutes les composantes connexes sont infinies. On montre que la
superposition d’un tel sous-graphe avec une ε-percolation forme un graphe connexe qui, convenablement renormalisé, domine une
percolation de Bernoulli surcritique. Ce résultat confirme une conjecture énoncée dans (J. Math. Phys. 41 (2000) 1294–1297),
et sa motivation principale est d’obtenir des caractérisations en volume fini de l’unicité de l’amas infini pour des processus de
percolation généraux.
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1. Introduction

Consider a deterministic subset X of the edges of the standard d-dimensional lattice Zd , d ≥ 2. Assume that X is
percolating everywhere, meaning that every vertex of Zd is in an infinite connected component of the graph (Zd ,X).
Example of such graphs are foliation by lines or spanning forests. Consider then the random set of edges Y = X ∪ ω,
obtained by adding to X the open edges ω of a Bernoulli percolation with density ε > 0. We prove that for every
choice of X and every ε > 0, the graph Y is almost surely connected and has large scale geometry similar to that
of supercritical Bernoulli percolation. In [2], this result was already proved in dimension d = 2, and conjectured for
higher dimensions. The proof of [2] for d = 2 relies strongly on planar duality, and cannot extend to higher dimensions.
In this paper, we develop new robust methods that allow us to extend the result of [2] to any dimension d ≥ 2. This is
the content of Theorem 1 below. The main step in our proof is of independent interest (see Lemma 1.1). We obtain a
finite-volume characterization for the uniqueness of the infinite connected component in Y . More precisely, we show
that with high probability, all the points in the ball of radius n are connected by a path of Y which lies inside the ball
of radius 2n. This finite-size criterion approach to uniqueness is in the same spirit of the original proof of uniqueness
for Bernoulli percolation (see [1] and the recent work of [6]).

As a consequence of the finite-size criterion mentioned above, we show that a renormalized version of Y dominates
highly supercritical percolation. In particular, Y percolates in sufficiently thick slabs and in half-spaces. This result is
analogous to the Grimmett–Marstrand theorem [8], and we expect most of the properties of supercritical percolation
to hold for Y (see [7], Chapters 7 and 8). The Grimmett–Marstrand theorem is a fundamental and powerful tool in
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supercritical Bernoulli percolation, but its proof does not provide directly quantitative estimates and relies on the
specific symmetries of Zd (see [12] for an extension to some graphs with less symmetries than the canonical Zd ). We
hope that the method in the present paper could be useful to obtain quantitative and robust proofs of the Grimmett–
Marstrand theorem.

We do not require any symmetry hypothesis on the set X. Thus, the percolation process Y is not necessarily
invariant under the symmetries of Zd . Therefore, the uniqueness of the infinite cluster cannot be derived from the
Burton–Keane theorem [5]. In this sense, our result can be seen as a generalization of the Burton–Keane theorem. Re-
cently, Teixeira [14] considered general percolation processes with high marginals on graphs with polynomial volume
growth. Under some additional assumptions but without requiring symmetries or invariance, he obtains uniqueness of
the infinite cluster. Since Y does not necessarily have high marginals, our uniqueness result is not implied by Teixeira’s
work.

We also obtain that the critical value for Bernoulli percolation on Y satisfies pc(Y ) < 1. This is related to the initial
motivation in [2] for introducing the random set Y . Proving that pc(Y ) < 1 can be seen as an intermediate question
in order to understand under which conditions a random infinite subgraph G of Zd has pc(G) < 1. Finding such
conditions is very challenging, and related to famous open problems in percolation, e.g. the absence of infinite cluster
at criticality for Bernoulli percolation (see [2] for more details). We give related questions in Section 1.2.

1.1. Main results

We prove the following theorem, which confirms a conjecture of Benjamini, Häggström and Schramm [2]. (If needed,
see Section 1.4 for notation and definitions.)

Theorem 1. Let X be a fixed everywhere percolating subgraph of Zd , and let Y = X ∪ ω be obtained from X by
adding an ε-percolation ω. For any ε > 0, the following hold.

(i) The subgraph Y is connected a.s.
(ii) The critical parameter for Bernoulli percolation on Y satisfies pc(Y ) < 1 a.s.

(iii) The subgraph Y percolates in the upper half-space a.s.
(iv) There exists L = L(ε, d) such that Y percolates in the slab Z2 × {0, . . . ,L} a.s.
(v) For every fixed p < 1, a renormalized version of Y stochastically dominates a p-Bernoulli percolation.

The precise meaning of Item (v) is the following. For n ≥ 0, set �n = [−n,n]d ∩Zd . Define the percolation process
Y (n) on Zd by declaring an edge e = {x, y} ∈ Ed open if the vertex 2nx is Y -connected to 2ny inside n(x + y)+�2n.
Item (v) occurs if for every p < 1, there exists n ≥ 1 such that the process Y (n) dominates stochastically a p-Bernoulli
percolation (see [10] for more details on stochastic domination).

Remarks.

(a) As in [2], a straightforward extension of our proof shows that an analogue of Theorem 1 holds if we only
assume that X is densely percolating. A subgraph X is said to be densely percolating if there exists R such that every
box 2R.z + �R , z ∈ Z2, intersects an infinite component of X. In this framework, Item (i) needs to be replaced by
uniqueness of the infinite cluster, and the definition of renormalization in Item (v) has to be slightly adapted.

(b) Once we know that a rescaled version of Y dominates supercritical Bernoulli percolation, one could use the
known results for Bernoulli percolation to obtain other properties of Y (see [7], Chapters 7 and 8).

1.2. Questions

Let us begin by rewriting the question of [2] that motivates the problem studied here.

Question 1. Is there an invariant, finite energy percolation X on Zd , which a.s. percolates and satisfies pc(X) = 1?

An invariant percolation is a probability measure on the percolation configuration that is invariant under the symme-
tries of Zd . The finite energy property was considered in [13]. In the sense of Lyons and Schramm [11], it corresponds
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to insertion and deletion tolerance: given an edge e, the conditional probability that e is present (resp. absent) given
the status of all the other edges is positive. Benjamini, Häggström and Schramm [2] showed that Question 1 has a
positive answer if we replace the finite energy condition by the insertion tolerance. They construct an insertion tolerant
invariant process X (obtained by adding and ε-percolation to a well-chosen invariant percolation), that percolates but
satisfies pc(X) = 1.

Adding an ε-percolation to a percolation process is an easy way to build insertion tolerant processes. Of course,
one may add a more general process instead. Our proof of Theorem 1 uses strongly that our process was constructed
by adding an ε-percolation. With Question 1 in mind, it would be interesting to understand the effect of adding a more
general process. We suggest the following question.

Question 2. Let X be a fixed everywhere percolating subgraph of Zd . Let η be a percolation process such that
η �= ∅ almost surely. Assume that η is ergodic with respect to the translations and invariant with respect to the whole
automorphisms of the grid. Which properties among (i), (ii), (iii), (iv) and (v) are satisfied by Y := X ∪ η?

Let us give a particular case. In Z3, consider a superposition of two independent ergodic invariant spanning forests.
It is a.s. connected?

Another natural generalization of the problem treated in this paper is to consider graphs other than the hypercubic
lattice. In [3] it is shown that non-amenable graphs, admit a spanning forest that stays disconnected after adding the
edges of an ε-percolation, for ε sufficiently small. A positive answer to the following question would show that, in
the context of transitive graphs with pc < 1, the existence of an everywhere percolating disconnected subgraph that
remains disconnected after adding an ε-sprinkling is equivalent to non-amenability.

Question 3. Let G be a transitive amenable graph with critical value for Bernoulli percolation satisfying pc(G) < 1.
Let X be an everywhere percolating subgraph of G, and let Y = X ∪ ω be obtained from X by adding an ε-
percolation ω. Is Y connected almost surely?

As an intermediate step toward Question 3, one can first consider the question for transitive graphs of polynomial
volume growth (a framework in which our methods are more likely to be adapted).

Another perspective is to study the simple random walk on a superposition of an everywhere percolating subgraph
of the lattice and an independent sprinkling (for example, verify diffusivity in this framework). Adding the sprinkling
can be viewed as homogenisation, this suggests to study spaces of harmonic functions on this environment (in the
spirit of [4]).

1.3. Organization of the paper

For the rest of the paper, we fix the values of d ≥ 2 and ε > 0. In the proof, we will introduce constants, denoted by
C0,C1, . . . By convention, the constants are elements of (0,∞), they may depend on d and ε, but never depend on
any other parameter of the model. In particular, they never depend on the chosen everywhere percolating subgraph X,
or the size of the box n.

In Section 2, we study the effect of an ε-percolation on a finite highly connected multigraph. More precisely we
consider a multigraph G with O(N2d) vertices, possibly with multi-edges, that is N -connected (G is connected and
remains connected if we erase any set of N edges). We show that an ε-percolation on such a multigraph is connected
with high probability.

The main new ideas are presented in Section 3, where we prove the following lemma.

Lemma 1.1. Let X be a fixed everywhere percolating subset of edges of Zd . Let Y = X ∪ ω be obtained from X by
adding an ε-percolation ω. For every n ≥ 1, we have

P[For all x, y ∈ �n, x is Y -connected to y inside �2n] ≥ 1 − C3e
−C1

√
n. (1.1)

Let us present the strategy used to prove Lemma 1.1. The general idea is to interpret the process Y inside the box
�2n as an ε-percolation on a highly connected finite multigraph G, and then apply the result of Section 2.
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We give the construction of G in a particular case. Consider an everywhere percolating subgraph X of Zd . Its
restriction to the finite box �2n gives a partition �2n = K1 	 · · · 	 K� of the box �2n into finite clusters. Assume
that each cluster Ki , i = 1, . . . , �, intersects the box �2n−√

n: roughly speaking, each cluster Ki must “cross” the
annulus �2n \ �2n−√

n. This assumption is very strong but illustrates well the general idea we are using. In this
special case, contracting each cluster K1, . . . ,K� into one point results in a

√
n-connected multigraph G (we keep the

multiple edges during the contraction procedure). Indeed, consider a set S = ⋃
i∈I Ki , where I is a nonempty strict

subset of {1, . . . , �} (the edge-boundary of S separates the multigraph into at least two connected pieces). This set S

must “cross” the annulus �2n \ �2n−√
n, which implies that its edge-boundary must satisfy |�S| ≥ √

n. The result of
Section 2 implies that an ε-percolation on G results in a connected graph with high probability, which directly gives
(1.1).

In the general case, we use the same strategy except that we cannot guarantee that all the clusters get connected
after one ε-sprinkling: we first show that one sprinkling in �2n shrinks the number of clusters intersecting �n by a
large factor with high probability. Then we use a finite number of sprinklings in �2n to reduce the number of clusters
intersecting �n to one, with high probability.

In Section 4, we deduce Theorem 1 from Lemma 1.1. That section uses standard renormalization and stochastic
domination tools, which were already used by Benjamini, Häggström and Schramm [2] to treat the case d = 2.

1.4. Notation, definitions

Let (Zd ,Ed), d ≥ 2, be the standard d-dimensional hypercubic lattice. For r,R > 0 (not necessarily integer), we write
�r := [−r, r]d ∩Zd and Ar,R := �R \ �r . For z ∈ Zd , we denote by �r(z) := z + �r the translate of �r by vector z.

In this paper, we call subgraph of Zd a set of edges X ⊂ Ed , and identify it to the graph (Zd ,X). (Notice that
the vertex set of every subgraph of Zd considered here will always be the entirety of Zd .) We say that two vertices
x, y ∈ Zd are X-connected, if there exists a sequence of disjoint vertices x1, . . . , x� ∈ Zd , such that x1 = x, x� = y,
and for every 1 ≤ i < � the edge {xi, xi+1} belongs to X. We say that x and y are X-connected inside S ⊂ Zd if, in
addition, all the xi ’s belong to S.

A subgraph X is said to be everywhere percolating if all its connected components are infinite. In other words, a
subgraph is everywhere percolating if for every vertex x in Zd , x is X-connected to infinity. We say that X percolates
in S ⊂ Zd if the graph induced by X on S contains an infinite connected component.

We call p-Bernoulli percolation (or simply p-percolation) the random subgraph ω of Zd , constructed as follows:
each edge of Ed is examined independently of the other and is declared to be an element of ω with probability p.

2. Percolation on a highly connected finite graph

In this section, we show that an ε-percolation on any N -connected finite multigraph with O(N2d) vertices connects
all the vertices with large probability. Let us begin with the definitions needed to state the result. A finite multigraph
is given by a pair G = (V ,E): V is a finite set of vertices, and E is a multiset of pairs of unordered vertices (multiple
edges and loops are allowed). We work with multigraphs rather than standard graphs because we will consider multi-
graphs obtained from other graphs by contraction, and we want to keep track of the multiple edges created by the
contraction procedure. A multigraph G = (V ,E) is said to be N -connected1 if it is connected, and removing any set
of N edges does not disconnect it. In other words, for any subset F ⊂ E such that |F | ≤ N , the multigraph (V ,E \F)

is connected. An ε-percolation on G is defined equivalently as on Zd : it is a random set of edges ω ⊂ E such that the
events {e ∈ ω} are independent, each of them having probability equal to ε.

Proposition 2. Let N ∈ N. Let G = (V ,E) be an N -connected multigraph with |V | ≤ N2d . Let ω ⊂ E be an ε-
percolation on G. Then

P
[
The graph (V ,ω) is connected

] ≥ 1 − C2e
−C1N.

1In graph theory, the terminology “N -edge-connected” is used in this case to distinguish with vertex-connectivity.
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We begin with the following lemma, which says that adding an (ε/4d)-percolation on a subgraph of G either
connects all the vertices or shrinks the number of connected components by a factor smaller than 1/

√
N (with large

probability). We will then prove the proposition by applying this lemma 4d times. Given X ⊂ E, we write K(X) for
the number of connected components in the graph (V ,X).

Lemma 2.1. Let N ∈ N. Let G = (V ,E) be a N -connected multigraph with |V | ≤ N2d . Let ω1 be an (ε/4d)-
percolation on G. For every X ⊂ E, we have

P

[
K(X ∪ ω1) > 1 ∨ K(X)√

N

]
≤ C0e

−C1N. (2.1)

Proof. We can assume that K(X) > 1 (if K(X) = 1, then Equation (2.1) is trivially true). We say that a set of vertices
S ⊂ V is generated by X, if it can be exactly written

S = S1 ∪ · · · ∪ Sm, (2.2)

where S1, . . . , Sm are disjoint connected components of X. For such a set S, we define m(S) := m as the number
of connected components in the decomposition (2.2). Notice that every non-empty set generated by X satisfies 1 ≤
m(S) ≤ K(X). The case m(S) = 1 corresponds to S being a single connected component of (V ,X), and m(S) = K(X)

corresponds to S = V .
If K(X ∪ ω1) > 1 ∨ K(X)/

√
N , then there must exist a connected component S � V of X ∪ ω1 that satisfies

1 ≤ m(S) <
√

N . By the union bound, we obtain

P

[
K(X ∪ ω1) > 1 ∨ K(X)√

N

]
≤

∑
S�V

1≤m(S)<
√

N

P[S is a connected component of X ∪ ω1]. (2.3)

Now, if a non-empty set S � V is a connected component of X ∪ ω1, then all the edges connecting a vertex of S to
a vertex in V \ S must be ω1-closed. Since the multigraph G is N -connected there are at least N such edges, and we
obtain

P[S is a connected component of X ∪ ω1] ≤ (1 − ε/4d)N . (2.4)

Plugging Equation (2.4) in (2.3), we find

P

[
K(X ∪ ω1) > 1 ∨ K(X)√

N

]
≤ ∣∣{S : 1 ≤ m(S) <

√
N

}∣∣(1 − ε/4d)N

≤
∑

1≤k<
√

N

(
K(X)

k

)
(1 − ε/4d)N

≤ √
NN2d

√
N(1 − ε/4d)N

≤ C0e
−C1N.

In the third line we use that K(X) ≤ |V | ≤ N2d to bound the binomial coefficient by N2d
√

N . �

Proof of Proposition 2. Let ω1, . . . ,ω4d be 4d independent (ε/4d)-percolations on G. Set η0 = ∅ and ηk := ω1 ∪
· · · ∪ ωk . By Lemma 2.1 we have, for all 1 ≤ k ≤ 4d ,

P
[
K(ηk) > 1 ∨ (

K(ηk−1)/
√

N
)] ≤ C0e

−C1N.

Since K(η0) = |V | ≤ N2d , we find by induction

P
[
K(ηk) > N2d−k/2] ≤ kC0e

−C1N.
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Setting k = 4d in the equation above, we obtain that η4d is connected with probability larger than 1 − C2e
−C1N . This

concludes the proof, since η4d is stochastically dominated by an ε-percolation. �

3. Proof of Lemma 1.1

Let X be an everywhere percolating subgraph of Zd , let n ≥ 1. We define C8dn(X) as the set of connected components
for the graph induced by X on the box �8dn (two vertices are in the same connected component if they are X-
connected inside �8dn). Fix n0 such that, for every n ≥ n0, the size the boundary of �8dn is smaller than nd . (We call
boundary of �n the set �n \ �n−1.) Notice that n0 depends only on the dimension d . Since any element of C8dn(X)

contains at least a vertex at the boundary of �8dn, we also have, for every n ≥ n0,

∣∣C8dn(X)
∣∣ ≤ nd. (3.1)

For 0 < a ≤ b ≤ 8dn, define Ua,b(X) as the number of sets C ∈ C8dn(X) such that C ∩ �a = ∅ and C ∩ �b �= ∅. In
other words,

Ua,b(X) = Card
{
C ∈ �8dn : a < d(0,C) ≤ b

}
,

where d(0,C) denotes the L∞-distance between the origin and the set C. Define U0,b as the number of sets C ∈
C8dn(X) such that C ∩ �b �=∅. That is

U0,b(X) = Card
{
C ∈ �8dn : d(0,C) ≤ b

}
.

Notice that Ua,b(X) depends on n, but we keep this dependence implicit to lighten the notation.

Lemma 3.1. Fix an everywhere percolating subgraph X of Zd . Let n0 ≤ n ≤ m ≤ m + √
n ≤ 8dn. Let ω be an

ε-percolation restricted to Am,m+2
√

n, then

P
[
U0,m(X ∪ ω) > 1 ∨ Um,m+2

√
n(X)

] ≤ C2e
−C1

√
n.

(In the statement of the lemma, the ε-percolation restricted to Am,m+2
√

n is defined by ω = η ∩ Am,m+2
√

n, where

η is an ε-percolation in Zd .)

Proof. Let us first assume Um,m+√
n(X) = 0. In this case, the proof is easier and we directly show that

P
[
U0,m

(
X ∨ ω′) > 1

] ≤ C2e
−C1

√
n, (3.2)

where ω′ = ω ∩ Am,m+√
n is the restriction of ω to the annulus Am,m+√

n.
Let G be the multigraph obtained from �m+√

n by the following contraction procedure.

1. Start with �m+√
n, with the standard graph structure induced by Zd .

2. Examine the elements of C8dn(X) one after the other. For every C ∈ C8dn(X), contract all the points x ∈ C∩�m+√
n

into one vertex.

Since Um,m+√
n(X) = 0, the multigraph G has exactly U0,m(X) vertices, and U0,m(X ∨ ω′) corresponds the number

of connected components resulting from an ε-percolation on G. Therefore, Equation (3.2) follows from Proposition 2,
applied to G with N = √

n. Indeed, the multigraph G has at most (
√

n)2d vertices by (3.1), and is
√

n-connected. To
see that G is

√
n-connected, observe that any non-trivial union of elements of C8dn(X) that intersect �m+√

n must
“cross” the annulus Am,m+√

n (this follows from the hypothesis Um,m+√
n(X) = 0).

We now turn to the case Um,m+√
n(X) > 0, in which we show

P
[
U0,m(X ∪ ω) ≤ Um,m+2

√
n(X)

] ≥ 1 − C2e
C1

√
n. (3.3)
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The strategy is very similar to the one used in the case Um,m+√
n(X) = 0, except that here we need to consider carefully

the clusters that intersect the annulus Am,m+2
√

n but not the box �m. More precisely, we partition the elements of
C8dn(X) intersecting the box �m+2

√
n, into the following two types:

• the bulk-clusters, defined as the elements C ∈ C8dn(X) such that C ∩ �m �=∅;
• the boundary-clusters, defined as the elements C ∈ C8dn(X) such that C ∩ �m =∅.

Notice that

U0,m+2
√

n(X) = U0,m(X) + Um,m+2
√

n(X),

where U0,m(X) counts the bulk-clusters, and Um,m+2
√

n(X) counts the boundary-clusters.

Define C̃ as the union of all the boundary-clusters. The hypothesis Um,m+√
n(X) > 0 implies that at least one

boundary-cluster intersects the annulus Am,m+√
n. Thus, we have

C̃ ∩ �m+√
n �=∅.

We now construct a
√

n-connected multigraph G by the following contraction procedure.

1. Start with �m+2
√

n, with the graph structure induced by Zd .
2. For every bulk-cluster C ∈ C8dn(X), contract all the points x ∈ C ∩ �m+2

√
n into one vertex.

3. Contract all the vertices x that belong to C̃ ∩ �m+2
√

n into one vertex.

To see that the multigraph is
√

n-connected, observe that all the bulk-clusters and C̃ cross the annulus Am+√
n,m+2

√
n.

Proposition 2 applied with N = √
n, ensures than an ε-percolation on G connects all its vertices with probability larger

than 1 − C2e
−C1

√
n. This proves Equation (3.3), because the ε-percolation ω can be interpreted as an ε-percolation

on G, except that the Um,m+2
√

n(X) boundary-clusters were “artificially” merged into one point in the construction
of G. �

Lemma 3.2. Fix an everywhere percolating subgraph X of Zd . Let n0 ≤ n ≤ m ≤ m + 2n ≤ 8dn. Let ω be an ε-
percolation restricted to the annulus Am,m+2n, then

P

[
U0,m(X ∪ ω) > 1 ∨ U0,m+2n(X)√

n

]
≤ C2e

−C1
√

n. (3.4)

Proof. First observe that

U0,m(X) +
�√n�−1∑

i=0

Um+2i
√

n,m+2(i+1)
√

n(X) ≤ U0,m+2n(X).

Among the 1 + �√n� terms summed on the left hand side, at least one of them must be smaller than or equal to
U0,m+2n(X)/

√
n. If U0,m(X) ≤ U0,m+2n(X)/

√
n, then Equation (3.4) is trivially true. Otherwise, one can fix i such

that Um+2i
√

n,m+2(i+1)
√

n(X) ≤ U0,m+2n(X)/
√

n. By Lemma 3.1, we have

P

[
U0,m+2i

√
n(X ∪ ω) > 1 ∨ U0,m+2n(X)√

n

]
≤ C2e

−C1
√

n.

Then, use the inequality U0,m(X ∪ ω) ≤ U0,m+2i
√

n(X ∪ ω) to conclude the proof. �

Proof of Lemma 1.1. Since n0 depends only on d , it is sufficient to prove Equation (1.1) in Lemma 1.1 for n ≥ n0
(recall that n0 was defined at the beginning of Section 3). We wish to apply Lemma 3.2 recursively in the 2d disjoint
annuli

A(8d−2)n,8dn,A(8d−4)n,(8d−2)n, . . . ,A4dn,(4d+2)n.
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For i = 1, . . . ,2d , set m(i) = (8d − 2i)n, and ωi = ω ∩ �m(i),8dn. By Lemma 3.2, we have for all i < 2d

P

[
U0,m(i+1)(X ∪ ωi+1) > 1 ∨ U0,m(i)(X ∪ ωi)√

n

]
≤ C2e

−C1
√

n. (3.5)

By Equation (3.1), we have U0,8dn(X) ≤ nd for all n ≥ n0. This implies that

P
[
U0,4dn(X ∪ ω) = 1

] ≥ P

[
For all i, U0,m(i+1)(X ∪ ωi+1) ≤ 1 ∨ U0,m(i)(X ∪ ωi)√

n

]

≥ 1 − 2dC2e
−C1

√
n,

where the last line follows from Equation (3.5). This proves that with probability larger than 1 − C3e
−C1

√
n, all the

vertices of �4n are (X ∪ ω)-connected inside �8n. Lemma 1.1 follows straightforwardly. �

4. Proof of Theorem 1

Let X be a fixed everywhere percolating subgraph of Zd , and let Y = X ∪ ω be obtained from X by adding an ε-
percolation ω. In this section, we will show how to derive Theorem 1 from the following estimate, stated in Lemma 1.1.

P[For all x, y ∈ �n, x is Y -connected to y inside �2n] ≥ 1 − C3e
−C1

√
n.

Recall that the constants C1,C3 do not depend on the underlying everywhere percolating graph X. Thus, by consid-
ering translates of X, we show that for every z ∈ Zd ,

P
[
For all x, y ∈ �n(z), x is Y -connected to y inside �2n(z)

] ≥ 1 − C3e
−C1

√
n. (4.1)

4.1. Proof of Item (v)

Let p < 1. By Corollary 1.4 in [10], one can pick p′ < 1 such that any 3-dependent2 percolation process Z on Zd ,
satisfying for every edge e ∈ Ed

P[e ∈ Z] > p′

dominates stochastically a p-Bernoulli percolation.
Recall that the process Y (n) is defined by setting {x, y} ∈ Y (n) if 2nx is Y -connected to 2ny inside �4n(nx + ny).

One can easily verify that for every n ≥ 1, the process Y (n) is 3-dependent. Thus, in order to show that for some n,
Y (n) dominates a p-Bernoulli percolation, one only need to prove that for every edge {x, y} ∈ Ed ,

P
[
2nx is Y -connected to 2ny inside �2n(nx + ny)

]
> p′. (4.2)

Since both 2nx and 2ny belong to �n(nx + ny), we get that Equation (4.2) holds for n large enough, by applying
Equation (4.1) with z = nx + ny.

4.2. Proof of Items (iii) and (iv)

Let p > pc(Z
2). By Item (v), one can pick n such that Y (n) dominates a p-Bernoulli percolation on Zd . It is known that

a p-Bernoulli percolation percolates in the half-plane {2,3, . . .}×Z×{0Zd−2} (see e.g. [9]). By stochastic domination,
the same holds for Y (n). This implies that Y percolates in the half space N×Zd−1. When d ≥ 3, it also implies that Y

percolates in the slab Z2 × {−2n, . . . ,2n}d−2.

2A percolation process Z is said to be 3-dependent if, given two sets of edges A and B such that any edge of A is at L∞ distance at least 3 from
any edge of B , the processes Z ∩ A and Z ∩ B are independent.
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4.3. Proof of Item (ii)

We begin as in the proof of Item (v). By stochastic domination arguments, one can fix p′ < 1 such that any 3-dependent
percolation process Z with P[e ∈ Z] > p′ percolates in Zd . Let p′′ ∈ (p′,1). By Equation (4.1), one can fix n such
that for every edge {x, y} ∈ Ed ,

P
[
2nx is Y -connected to 2ny inside n(x + y) + �2n

]
> p′′.

Let ηq be a q-Bernoulli percolation process in Zd , independent of ω, and set Yq = Y ∩ ηq . This way, Yq corresponds
exactly to a q-percolation on Y . Choose q < 1 such that all the edges of �2n belong to ηq with probability larger than
1 − (p′′ − p′). This way, for fixed z, the processes Yq and Y differs in the box z + �2n with probability smaller than
(p′′ − p′). Thus, for every edge {x, y} ∈ Ed , we have

P
[
2nx is Yq -connected to 2ny inside n(x + y) + �2n

]
≥ P

[
2nx is Y -connected to 2ny inside n(x + y) + �2n

] − (
p′′ − p′)

> p′.

By the same stochastic argument that we already used several times, this is enough to guarantee that the process Yq

percolates in Zd . This proves that pc(Y ) ≤ q < 1 almost surely.

4.4. Proof of Item (i)

Let Un be the event that all the pairs of points in �n are Y -connected in Zd . By Lemma 1.1, we have

∑
P
[
Uc

n

]
< ∞.

Thus, by the Borel–Cantelli Lemma, we have P[⋃n

⋂
m≥n Um] = 1, which implies that Y is almost surely connected.
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