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The generalized Pólya urn (GPU) models and their variants have been
investigated in several disciplines. However, typical assumptions made with
respect to the GPU do not include urn models with a diagonal replacement
matrix, which arise in several applications, specifically in clinical trials. To
facilitate mathematical analyses of models in these applications, we intro-
duce an adaptive randomly reinforced urn model that uses accruing statistical
information to adaptively skew the urn proportion toward specific targets. We
study several probabilistic aspects that are important in implementing the urn
model in practice. Specifically, we establish the law of large numbers and
a central limit theorem for the number of sampled balls. To establish these re-
sults, we develop new techniques involving last exit times and crossing time
analyses of the proportion of balls in the urn. To obtain precise estimates in
these techniques, we establish results on the harmonic moments of the total
number of balls in the urn. Finally, we describe our main results in the con-
text of an application to response-adaptive randomization in clinical trials.
Our simulation experiments in this context demonstrate the ease and scope of
our model.

1. Introduction. A generalized Pólya urn (GPU) model [4] is characterized
by a pair (Y1,n, Y2,n) of random variables representing the number of balls of two
colors, red and white, for instance. The process evolves as follows: at time n = 0,
the process starts with (y1,0, y2,0) balls. A ball is drawn at random. If the color is
red, the ball is returned to the urn along with the random numbers (D11,1,D12,1)

of red and white balls, respectively; otherwise, the ball is returned to the urn
along with the random numbers (D21,1,D22,1) of red and white balls. Let Y1,1 =
y1,0 +D11,1 and Y2,1 = y2,0 +D12,1 denote the urn composition when the sampled
ball is red; similarly, let Y1,1 = y1,0 +D21,1 and Y2,1 = y2,0 +D22,1 denote the urn
composition when the sampled ball is white. The process is repeated yielding the
collection {(Y1,n, Y2,n);n ≥ 1}. The quantities R1 = {(D11,n,D12,n);n ≥ 1} and
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R2 = {(D21,n,D22,n);n ≥ 1} are collections of independent and identically dis-
tributed (i.i.d.) nonnegative integer valued random variables, and R1 is assumed to
be independent of R2. We refer to

Dn =
[
D11,n D12,n

D21,n D22,n

]

as a replacement matrix.
In this paper, we focus on an extension of the randomly reinforced urn (RRU)

model, a variant of the randomized Pólya urn (RPU) models, whose replacement
matrix is given by

Dn =
[
D11,n D12,n

D21,n D22,n

]
≡

[
D1,n 0

0 D2,n

]
,

where the random variables D1,n and D2,n are supported on [0,∞), rather than
on the set of nonnegative integers. Let m1 := E[D1,n] and m2 := E[D2,n]. For the
RRU model, the law of large numbers (LLN) was established in [18], that is,

(1.1) Zn = Y1,n

Y1,n + Y2,n

a.s.→
{

1 · 1{m1>m2} + 0 · 1{m1<m2}, if m1 �= m2,

Z∞, if m1 = m2,

where
a.s.→ stands for almost sure convergence and Z∞ is a random variable sup-

ported on (0,1). The properties of the distribution of Z∞ were studied in [2, 3].
Denoting {(N1,n,N2,n);n ≥ 1}, the number of balls of red and white colors sam-
pled from the urn, one can deduce from the above LLN that N1,n/n converges to
the same limit as Zn.

From (1.1), the limit of Zn is either 1 or 0 when m1 �= m2. However, in ap-
plications it is common to target a specific value ρ ∈ (0,1) for the limit of Zn.
This was achieved in [1], where the modified randomly reinforced urn (MRRU)
model was introduced. The MRRU model is an RRU model with two fixed thresh-
olds 0 < ρ2 ≤ ρ1 < 1, such that if Zn < ρ2, no white balls are replaced in the
urn, while if Zn > ρ1, no red balls are replaced in the urn. These changes occur at
random times that, in general, depend on m1 and m2. Thus, even if the sequences
{D1,n;n ≥ 1} and {D2,n;n ≥ 1} are i.i.d., the replacement matrices of the MRRU
model are not i.i.d., since they have the following representation:

Dn =
[
D1,n · 1{Zn−1≤ρ1} 0

0 D2,n · 1{Zn−1≥ρ2}

]
.

The LLN for the MRRU when m1 �= m2 is established in [13] and has the following
form:

Zn
a.s.→ ρ1 · 1{m1>m2} + ρ2 · 1{m1<m2}.

A second-order result for Zn, namely the asymptotic distribution of Zn after ap-
propriate centering and scaling, was derived in [13]. However, the validity of the
central limit theorem (CLT) for N1,n/n in the MRRU model is not known.
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A critical issue in the implementation of the MRRU model is that ρ1 and ρ2

are typically unknown. In this paper, we use the accruing information concerning
the balls in the urn to provide random thresholds which converge a.s. to specified
targets. Specifically, our replacement matrix becomes adaptive in the sense that it
reduces to

(1.2) Dn =
[
D1,n · 1{Zn≤ρ̂1,n} 0

0 D2,n · 1{Zn≥ρ̂2,n}

]
,

where ρ̂1,n and ρ̂2,n represent the random thresholds which depend on the accruing
information. We call this urn model an adaptive randomly reinforced urn (ARRU),
to distinguish it from the RRU and the MRRU. In this paper, we investigate the
asymptotic properties of the ARRU model when m1 �= m2. Specifically, we estab-
lish the LLN for Zn and N1,n/n, and the CLT for N1,n/n. Before concluding this
section, we describe recent literature which is similar in spirit to the present work
but is different from the above proposed model.

Let Hn := E[Dn|Fn−1], where Fn−1 is the “information” up to time (n − 1).
This is referred to as the generating matrix. Asymptotic properties of the urn com-
position for homogeneous GPU, that is, Hn = H for all n ≥ 1, have been studied
in [4] under the assumption that H is irreducible. In [22], the extended Pólya urn
(EPU) is defined as a GPU such that all the rows of H sum to the same positive
constant, that is,

(1.3) H1 = c1.

Under the additional assumption that H has simple eigenvalues, second-order
asymptotic properties on the proportion of sampled color extracted from the urn
are obtained. In [16], the limiting distribution of the proportion of sampled balls
for homogeneous urn models are derived. In [5], weak consistency and asymptotic
normality of the urn composition for the nonhomogeneous GPU are established.
However, in [5], the sequence {Hn;n ≥ 1} is deterministic and converges to a ma-
trix H satisfying (1.3). Bai et al. [7] and Bai and Hu [6] extended [5] to random
generating matrices and established the almost sure convergence of the proportion
of sampled balls. They also investigate the second-order properties. A key assump-
tion in [6, 7] is (1.3). In [25], the sequence of generating matrices is defined as a
function of adaptive estimators, which guarantees the convergence of Hn to a lim-
iting matrix H satisfying (1.3). For “immigrated” urn models, theoretical results
have been obtained in [26] under the assumptions (1.3), or H1 < 0. These exten-
sions do not include the RRU model, where Hn is diagonal, nonnegative and (1.3)
is not satisfied. For distributional results concerning large Pólya urns, see [8]. We
now describe an application to the clinical trial literature (see [11]). For applica-
tions to computer science, we refer the reader to [17].
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1.1. Applications to clinical trials. Urn models have a long history of appli-
cations in clinical trials, by providing randomization procedures that target cer-
tain objectives (for a review, see [19]). In this context, patients are sequentially
allocated to treatments according to the sampled colors and the associated re-
sponses are used to update the urn. This is referred to as response-adaptive, since
the probability of assignment depends on information about the treatment perfor-
mance. For a literature review on response-adaptive designs in clinical trials, see
[15, 20]. In an RRU model, responses to treatments are transformed by a utility
function to obtain the reinforcement values, in such a way that the better treatment
has higher reinforcement values. Hence, in this context, as can be seen from (1.1)
treatment allocation to patients using the RRU yields a more ethically appealing
allocation. However, in some situations, especially when the superiority of a cer-
tain treatment is not absolutely clear, response-adaptive designs can be used to
target a certain proportion ρ ∈ (0,1) of patients to be allocated to a better perform-
ing treatment and, at the same time, obtain improved inferential properties at the
end of the experiment. The inferential properties depend on the optimality crite-
ria chosen and several of these are described in [21]. For this reason, in [1] the
RRU was modified (yielding MRRU) to asymptotically attain any target allocation
proportion, ρ ∈ (0,1). This guarantees that the MRRU design has an asymptotic
allocation within (0,1) thereby incorporating ethical constraints (namely, assign-
ing more subjects to the superior treatment) and improving inferential properties
as shown in [14]. The main issue is that, in the MRRU, ρ1 and ρ2 are functions of
unknown parameters (see [21]). The ARRU model presented in this paper allows
ρ1 and ρ2 to be functions of such unknown parameters, and adaptively updates
by substituting sequential estimates of the parameters. The limiting results in this
paper demonstrate that such procedures target the unknown optimal allocation and
provide an appropriate randomization procedure for use in practice. We demon-
strate, using simulations, that the limit properties hold even for moderate sample
sizes.

1.2. Structure of the paper. The paper is organized as follows. In Section 2,
we present the notation and assumptions concerning the ARRU model and related
main results. Specifically, in Section 2.1, we present the LLN; in Section 2.2, we
present the CLT under the assumption that the thresholds are updated at exponen-
tially changing times. Section 2.3 is devoted to the implications of the main results
in the context of clinical trials.

In Section 3, we describe several fundamental results concerning the ARRU
model that are needed in the proof of the CLT. Specifically, we prove that the har-
monic moments of the total number of balls in the ARRU are uniformly bounded.
Then we use this to obtain a uniform L1-bound for the distance between the urn
proportion at successive update times and the adaptive thresholds. In Section 4,
the proofs of the main results are provided, while Section 5 contains results of a
simulation study. Section 6 contains extensions to multi-color urn models.
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Finally, some remarks concerning proofs are in order. The LLN and CLT for
N1,n/n are deduced using the asymptotic properties of Zn. For this reason, in
several results of this paper, we will provide a detailed probabilistic description of
the sequence {Zn;n ≥ 1}.

2. Model assumptions, notation and main results. We begin by describ-
ing our model precisely. Let ξ1 = {ξ1,n;n ≥ 1} and ξ2 = {ξ2,n;n ≥ 1} be two se-
quences of i.i.d. random variables, with probability distributions μ1 and μ2, re-
spectively. Without loss of generality, we assume that the support S of ξ1,n and
ξ2,n to be the same. Consider an urn containing y1,0 > 0 red balls and y2,0 > 0
white balls, and define y0 = y1,0 + y2,0. At time n = 1, a ball is drawn at random
from the urn and its color is observed. Let the random variable X1 be such that

X1 =
{

1, if the extracted ball is red,

0, if the extracted ball is white.

We assume X1 to be independent of the sequences ξ1 and ξ2. Note that X1 is a
Bernoulli random variable with parameter z0 = y1,0/y0.

Let ρ̂1,0 and ρ̂2,0 be two random variables such that ρ̂1,0, ρ̂2,0 ∈ (0,1) and
ρ̂1,0 ≥ ρ̂2,0 a.s. Let u : S → [a, b], 0 < a ≤ b < ∞. If X1 = 1 and z0 ≤ ρ̂1,0,
we return the extracted ball to the urn together with D1,1 = u(ξ1,1) new red balls.
While, if X1 = 0 and z0 ≥ ρ̂2,0, we return it to the urn together with D2,1 = u(ξ2,1)

new white balls. If X1 = 1 and z0 > ρ̂1,0, or if X1 = 0 and z0 < ρ̂2,0, the urn
composition is not modified. To ease notation, let us denote W1,0 = 1{z0≤ρ̂1,0} and
W2,0 = 1{z0≥ρ̂2,0}. Formally, the extracted ball is always replaced in the urn together
with

X1D1,1W1,0 + (1 − X1)D2,1W2,0

new balls of the same color; now, the urn composition becomes{
Y1,1 = y1,0 + X1D1,1W1,0,

Y2,1 = y2,0 + (1 − X1)D2,1W2,0.

Set Y1 = Y1,1 +Y2,1 and Z1 = Y1,1/Y1. Now, by iterating the above procedure, we
define ρ̂1,1 and ρ̂2,1 to be two random variables, measurable with respect to the σ -
algebra F1 = σ(X1,X1ξ1,1 +(1−X1)ξ2,1), with ρ̂1,1, ρ̂2,1 ∈ (0,1) and ρ̂1,1 ≥ ρ̂2,1
a.s.

Let ρ̂1,n and ρ̂2,n be two random variables, measurable with respect to the σ -
algebra:

Fn = σ
(
X1,X1ξ1,1 + (1 − X1)ξ2,1, . . . ,Xn,X1ξ1,n + (1 − Xn)ξ2,n

)
,

with ρ̂1,n, ρ̂2,n ∈ (0,1) and ρ̂1,n ≥ ρ̂2,n a.s. We will refer to ρ̂j,n j = 1,2 as thresh-
old parameters. At time (n + 1), a ball is extracted and let Xn+1 = 1 if the ball is
red and Xn+1 = 0 otherwise. Then the ball is returned to the urn together with

Xn+1D1,n+1W1,n + (1 − Xn+1)D2,n+1W2,n
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balls of the same color, where D1,n+1 = u(ξ1,n+1), D2,n+1 = u(ξ2,n+1), W1,n =
1{Zn≤ρ̂1,n}, W2,n = 1{Zn≥ρ̂2,n}, and Zn = Y1,n/(Y1,n + Y2,n). Formally,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y1,n+1 = y1,0 +
n+1∑
i=1

XiD1,iW1,i−1,

Y2,n+1 = y2,0 +
n+1∑
i=1

(1 − Xi)D2,iW2,i−1,

and to simplify the notation let Yn+1 = Y1,n+1 + Y2,n+1. If Xn+1 = 1 and Zn >

ρ̂1,n, that is, W1,n = 0, or if Xn+1 = 0 and Zn < ρ̂2,n, that is, W2,n = 0, the urn
composition does not change at time (n + 1). Note that condition ρ̂1,n ≥ ρ̂2,n a.s.,
which implies W1,n + W2,n ≥ 1, ensures that the urn composition can change with
positive probability for any n ≥ 1, since the replacement matrix (1.2) is never a
zero matrix. Since, conditionally on the σ -algebra Fn, Xn+1 is assumed to be
independent of ξ1, ξ2, Xn+1 is conditionally Bernoulli distributed with parame-
ter Zn.

We will denote by N1,n and N2,n the number of red and white sampled balls,
respectively, after the first n draws, that is N1,n = ∑n

i=1 Xi and N2,n = ∑n
i=1(1 −

Xi). Let ρ1 and ρ2 be two constants such that 0 < ρ2 ≤ ρ1 < 1. We will adopt the
following notation:

ρ̂n ≡ ρ̂1,n1{m1>m2} + ρ̂2,n1{m1<m2}, ρ ≡ ρ11{m1>m2} + ρ21{m1<m2}.

Let m1 = ∫
u(y)μ1(dy) and m2 = ∫

u(y)μ2(dy) be the means of {D1,n;n ≥ 1}
and {D2,n;n ≥ 1}, respectively. The urn process is then repeated for all n ≥ 1. We
assume throughout the paper that the following condition holds:

(2.1) m1 �= m2.

2.1. Law of large numbers. Our first result is concerned with the LLN.

THEOREM 2.1. Under the assumptions (2.1) and ρ̂n
a.s.→ ρ, we have that

(2.2) lim
n→∞Zn = ρ a.s.

From Theorem 2.1, we can obtain the convergence of sampled balls, namely
N1,n/n.

COROLLARY 2.1. Under the assumptions (2.1) and ρ̂n
a.s.→ ρ, we have that

(2.3) lim
n→∞

N1,n

n
= ρ a.s.
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2.2. Central limit theorem. We next study the limit distribution of proportion
of sampled balls N1,n

n
. By the description of the model, N1,n

n
depends on the se-

quence ρ̂j,n, j = 1,2. However, frequent changes to ρ̂j,n may lead to an erratic

behavior of the sequence N1,n

n
. To stabilize the behavior of {N1,n

n
;n ≥ 1}, we fix a

constant q > 1 and introduce the sequence {ρ̃j,n;n ≥ 0}, where

(2.4) ρ̃j,n := ρ̂j,[qi ] where
[
qi] ≤ n <

[
qi+1], j = 1,2, i ∈ N;

that is, we update the threshold parameters only at exponential times {[qi], i =
1,2, . . .}. An alternative definition of ρ̃j,n j = 1,2, which is used in some proofs,
is the following: for n ≥ 1,

(2.5) (ρ̃1,n, ρ̃2,n) ≡ (ρ̂1,[qkn ], ρ̂2,[qkn ]), kn := [
logq(n)

]
.

We will denote by ρ̃n = ρ̃1,n1{m1>m2}+ ρ̃2,n1{m1<m2}. We now turn to the statement

of the CLT. In the following,
d→ represents the convergence in distribution.

THEOREM 2.2. Let ρ̃1,n and ρ̃2,n be as in (2.4). Assume that for any ε > 0
and j = 1,2, there exists 0 < c1 < ∞ such that for large n

(2.6) P
(|ρ̂j,n − ρj | > ε

) ≤ c1 exp
(−nε2).

Then, under the assumption (2.1), we have that

(2.7)
√

n

(
N1,n

n
− ρ̄n

)
d→ N

(
0, ρ(1 − ρ)

)
,

where ρ̄n =
∑n

i=1 ρ̃i−1
n

.

REMARK 2.1. The result of Theorem 2.2 continues to hold if (2.6) is not
satisfied, but ρ̂n

a.s.→ ρ and the following conditions hold:

(c1) lim supn→∞
√

nE[|ρ̂n − ρ|] < ∞.
(c2) There exists ε ∈ (0,1/2) such that ρ̂j,n ∈ [ε,1 − ε] a.s. for any n ≥ 1,

j = 1,2.

REMARK 2.2. The asymptotic distribution established in (2.7) does not de-
pend on the value of q > 1, and its main role is to reduce the frequency of updates
in ρ̂j,n, j = 1,2. This has practical significance since, in real time implementation
of the model, updates to the database (which contains the accruing information)
are performed a limited number of times to reduce cost. In a clinical trial, a data
and safety monitoring board meets periodically to examine the updated database
and make decisions about the future course of the trial. Interim decisions can be
made using available responses collectively, rather than one-by-one. For additional
technical remarks, see Remark 4.1 below.
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Theorem 2.2 introduces an asymptotic bias for N1,n/n given by (ρ̄n − ρ). We
show that this bias is exactly of order O(n−1/2); our next proposition makes this
observation precise.

PROPOSITION 2.1. Let ρ̃1,n and ρ̃2,n be as in (2.4). Assume also that (2.1)
holds. Then, if either (2.6) or lim supn→∞ nE[|ρ̂n − ρ|2] < ∞ holds, then

(2.8) lim sup
n→∞

n · E[|ρ̄n − ρ|2] < ∞.

In the case when ρ̂1,n = ρ1 and ρ̂2,n = ρ2 for any n ≥ 0, Theorem 2.2 provides
a CLT for the allocation proportion of MRRU model. This is summarized in the
following corollary.

COROLLARY 2.2. In a MRRU, under the assumption (2.1), we have that

√
n

(
N1,n

n
− ρ

)
d→ N

(
0, ρ(1 − ρ)

)
.

2.3. Application to clinical trials (revisited). Consider two competing treat-
ments T1 and T2. The random variables ξ1,n and ξ2,n are interpreted as the potential
responses to treatments T1 and T2, respectively, given by subjects that sequentially
enter the trial. At all times n ≥ 1, a subject is allocated to a treatment according
to the color of the sampled ball and a new response is collected. Note that only
one response is observable from every subject, that is, Xnξ1,n + (1 − Xn)ξ2,n. The
function u maps the responses into reinforcement values D1,n and D2,n that up-
date the urn. Typically, u is chosen such that T1 (or T2) is considered the superior
treatment when m1 > m2 (m1 < m2). We assume there exists a unique superior
treatment, which is formally stated in assumption (2.1).

We now describe the role of the sequences {ρ̂1,n;n ≥ 1} and {ρ̂2,n;n ≥ 1} in
clinical trails. Assume the distributions μ1 and μ2 are parametric, depending on
the vectors θ1 and θ2, respectively, with θ = (θ1, θ2) ∈ � ⊂ Rd , with d ≥ 1. Let
θ̂n = (θ̂1,n, θ̂2,n) be an estimator of θ after the first n allocations, so that θ̂n is
measurable with respect to the σ -algebra Fn. We assume that the distributions μ1
and μ2 are parametrically independent, in the sense that μ1 does not depend on θ2

and μ2 does not depend on θ1. Hence, θ̂1,n is computed with the N1,n observations
{ξ1,i : Xi = 1, i ≤ n}, while θ̂2,n is computed with the N2,n observations {ξ2,i :
Xi = 0, i ≤ n}. Thus, {ρ̂1,n;n ≥ 1} and {ρ̂2,n;n ≥ 1} are defined as follows:

(2.9) ρ̂1,n := f1(θ̂n) and ρ̂2,n := f2(θ̂n), ∀n ≥ 1,

where f1 : � → (0,1) and f2 : � → (0,1) are two continuous functions such that

f1(x) ≥ f2(x), ∀x ∈ �;
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this implies ρ̂1,n ≥ ρ̂2,n a.s. for every n ≥ 1. Moreover, set

ρ1 := f1(θ) and ρ2 := f2(θ).

The LLN presented in Theorem 2.1 suggests a direct interpretation for the func-
tions f1 and f2 in a clinical trial context: f1(θ) and f2(θ) represent the desired
limiting allocations for the sequence N1,n/n, in case the superior treatment is T1
(m1 > m2) or T2 (m1 < m2), respectively. This is a great improvement, since the
design can target an arbitrary known function of all the parameters of the response
distributions.

Ideally, f1 and f2 are chosen to obtain good statistical properties from the de-
sign. Typically, in clinical trials, a design is constructed to satisfy certain opti-
mality criteria related to its statistical performances (e.g., power; see [21]). Let-
ting η(θ) denote the limit proportion of subjects to be allocated to treatment T1,
this design can be obtained by the urn model described in Section 2 by choos-
ing f1(θ) = f2(θ) = η(θ). However, in some experiments, ethical aspects are im-
portant and the main goal may be to assign fewer subjects to the inferior treat-
ment; in this case we choose f1(θ) 
 1 and f2(θ) 
 0. Designs requiring both
ethical and statistical goals can also be obtained from our design, by setting
f1(θ) ≥ η(θ) ≥ f2(θ). For instance, we may take

f1(θ) = p · η(θ) + (1 − p) · 1,
(2.10)

f2(θ) = p · η(θ) + (1 − p) · 0, p ∈ (0,1],
where p is a biasing term, which introduces a trade-off between the ethics and
statistical properties.

Finally, it is worth emphasizing that conditions ρ̂n
a.s.→ ρ and (2.6) required in

the LLN of Theorem 2.1 and in the CLT of Theorem 2.2, respectively, are straight-
forwardly satisfied when we take θ̂n to be maximum likelihood estimators (MLEs)
for θ .

Moreover, condition (c2) in Remark 2.1 is equivalent of the assumption that the
ranges of f1 and f2 are subsets of [ε,1 − ε], for some ε ∈ (0,1/2).

3. Harmonic moments and related asymptotics.

3.1. Harmonic moments. In this subsection, we show that the harmonic mo-
ments of the total number of balls in the urn are uniformly bounded. This is a
key result which is needed in several probabilistic estimates, and in particular in
the proof of the CLT. More specifically, as explained previously the results con-
cerning the asymptotic behavior of N1,n/n, depend critically on the behavior of
(Zn − ρ̂n). In Section 3.2, we provide bounds for Yn(Zn − ρ̂n), by using compar-
ison arguments with the MRRU model. Now, to replace the random scaling Yn by
the deterministic scaling n, one needs to investigate the behavior of n/Yn. Our next
theorem provides a precise estimates of the j th moment of n/Yn for any j ≥ 0.
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THEOREM 3.1. Under the assumptions (2.1) and (2.6), for any j > 0, we have
that

sup
n→∞

E

[(
n

Yn

)j]
< ∞.

In the proof of Theorem 3.1, we need the following lemma that provides an
upper bound on the increments of the urn process Zn, by imposing a condition on
the total number of balls in the urn Yn. Hence, the proof of Theorem 3.1 is reported
after the following result.

LEMMA 3.1. For any ε ∈ (0,1), we have that

(3.1)
{
Yn > b

(
1 − ε

ε

)}
⊆ {|Zn+1 − Zn| < ε

}
.

PROOF. The difference (Zn+1 − Zn) can be expresses as follows:

Y1,n + Xn+1W1,nD1,n+1

Yn + Xn+1W1,nD1,n+1 + (1 − Xn+1)W2,nD2,n+1
− Y1,n

Yn

.

Consider {Zn+1 > Zn}, since the case {Zn+1 < Zn} is analogous. Note that
{Zn+1 > Zn} implies {Xn+1 = 1} and {W1,n = 1}. Then, since D1,n+1 < b a.s.,
on the set {Zn+1 > Zn} we have

Zn+1 − Zn ≤ Y1,n + D1,n+1

Yn + D1,n+1
− Y1,n

Yn

= D1,n+1

D1,n+1 + Yn

(1 − Zn) ≤ b

b + Yn

< ε,

where the last inequality follows from {Yn > b(1 − ε)/ε} in (3.1). �

PROOF OF THEOREM 3.1. In this proof, when we have a set of integers
{[a1], . . . , [b1]} with a1, b1 /∈ N, to ease notation we will just write {a1, . . . , b1},
omitting the symbol [·]. First, note that, since D1,i ,D2,i ≥ a a.s. for any i ≥ 1 and
Y0 > 0, we have that

Yn = Y0 +
n∑

i=1

(
D1,iXiW1,i−1 + D2,i(1 − Xi)W2,i−1

)

≥ Y0 + a ·
n∑

i=1

(
XiW1,i−1 + (1 − Xi)W2,i−1

)
(3.2)

≥ Y0 + a ·
n∑

i=nβ

(
XiW1,i−1 + (1 − Xi)W2,i−1

)
,
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for any β ∈ (0,1). To keep calculation transparent, we choose β = 1/2. We recall
that, by construction, we have that W1,i−1,W2,i−1 ∈ {0;1} and W1,i−1 +W2,i−1 ≥
1 for any i ≥ 1; hence, the random variables XiW1,i−1 + (1 − Xi)W2,i−1 are,
conditionally on the σ -algebra Fi−1, Bernoulli distributed with parameter greater
than or equal to min{Zi−1;1 − Zi−1}. Hence, the behavior of Yn is intrinsically
related to the behavior of Zn.

Thus, let us introduce the sets Ad,n (down), Ac,n (center) and Au,n (up) as fol-
lows:

Ad,n :=
{ ⋃

n/2≤i≤n

{Zi < c}
}
,

Ac,n :=
{ ⋂

n/2≤i≤n

{
Zi ∈ [c,1 − c]}},

Au,n :=
{ ⋃

n/2≤i≤n

{Zi > 1 − c}
}
,

where c ∈ (0,1) will be appropriately fixed more ahead in the proof. Then we
perform the following decomposition on the behavior of {Zi;n/2 ≤ i ≤ n}:

E

[(
n

Yn

)j]
≤
(

n

Y0

)j

· P (Ad,n) + E

[(
n

Yn

)j

1Ac,n

]
+
(

n

Y0

)j

· P (Au,n).

On the set Ac,n the process {Zi;n/2 ≤ i ≤ n} is bounded away from the ex-
treme values {0;1}. Hence, we can use comparison arguments with a sequence
of i.i.d. Bernoulli random variables with parameter c to get the boundedness of
E[(n/Yn)

j 1Ac,n]. After that, we will focus on proving that P (Ad,n) and P (Au,n)

converge to zero with a sub-exponential rate.
First, note that on the set Ac,n the random variables

XiW1,i−1 + (1 − Xi)W2,i−1

are, conditionally on the σ -algebra Fi−1, Bernoulli with parameter greater than or
equal to c for any i = n/2, . . . , n. Hence, if we introduce {Bi; i ≥ 1} a sequence of
i.i.d. Bernoulli random variables with parameter c, from (3.2) we have that

E

[(
n

Yn

)j

1Ac,n

]
≤ 1

aj
E

[(
n

Y0/a +∑n
i=n/2 Bi

)j]
.

We now show that

lim sup
n→∞

E

[(
n

K0 +∑n
i=1 Bi

)j]
< ∞,

with K0 = Y0/a. To this end, we apply Theorem 2.1 of [12], with n0 = 1, p = j ,
Zi,n = Bi +Y0/n for i ≤ n. All the assumptions of the theorem are satisfied in our
case. In fact, at first we have E[Z̄−p

n0 ] < ∞ because E[(Y0 +B1)
−j ] ≤ K

−j
0 < ∞.
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Next, note that Zi,n are identically distributed for all i ≤ n, since Bi are
i.i.d. Bernoulli with parameter c. Finally, Z̄n converges in distribution, since
Z̄n = ∑n

i=1 Bi/n + K0
a.s.→ c + K0. Hence, by Theorem 2.1 of [12], it follows that

E[Z̄−p
n ] is uniformly integrable. As a consequence,

lim sup
n→∞

E

[(
n

K0 +∑n
i=1 Bi

)j]
= lim sup

n→∞
E
[
Z̄−p

n

]
< ∞.

Now, we will prove that P (Ad,n) and P (Au,n) converge to zero with a sub-
exponential rate. To this end, we will show that ρ̂1,n and ρ̂2,n are bounded away
from 0 and 1 with a probability that converges to 1 with a sub-exponential rate.
Formally, fix ε > 0, such that ρ1 + ε < 1 and ρ2 − ε > 0, let α ∈ (0,1) and for any
n ≥ 1 define the following sets:

A1,n :=
{

sup
i≥α

√
n

{ρ̂1,i} > ρ1 + ε
}
,

A2,n :=
{

inf
i≥α

√
n
{ρ̂2,i} < ρ2 − ε

}
,

A3,n :=
{

inf
i≥α

√
n

{
min{1 − ρ̂1,i; ρ̂2,i}} ≥ min{1 − ρ1;ρ2} − ε

}
,

where we recall that ρ̂1,i and ρ̂2,i are the adaptive thresholds. Note that A1,n ∪
A2,n ∪ A3,n = 
. We have that

P (Ad,n) ≤ P (A1,n) + P (A2,n) + P (A3,n ∩ Ad,n),

P (Au,n) ≤ P (A1,n) + P (A2,n) + P (A3,n ∩ Au,n).

First, we prove that P (A1,n) and P (A2,n) converge to zero with a sub-
exponential rate. Consider the term P (A1,n). From the definition of A1,n, we ob-
tain

P (A1,n) = P

( ⋃
i≥α

√
n

{ρ̂1,i > ρ1 + ε}
)

≤ ∑
i≥α

√
n

P (ρ̂1,i > ρ1 + ε).

From (2.6), for large i we have that

P (ρ̂1,i > ρ1 + ε) ≤ c1 exp
(−iε2),

with 0 < c1 < ∞. Hence, using the fact that Yn is increasing, we have that

P (A1,n) ≤ ∑
i≥α

√
n

P (ρ̂1,i > ρ1 + ε)

≤ c1
∑

i≥α
√

n

exp
(−iε2)

= c1 exp
(−α

√
nε2).
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Similar arguments can be applied to prove P (A2,n) → 0 with a sub-exponential
rate. Finally, we show that P (A3,n ∩ Ad,n) and P (A3,n ∩ Au,n) converge to zero
with a sub-exponential rate. Consider P (A3,n∩Ad,n), since the proof for P (A3,n∩
Au,n) is analogous. First, let us introduce φ := min{ρ2;1 − ρ1}, and rewrite A3,n

as follows:

A3,n =
{

inf
i≥α

√
n
{ρ̂2,n;1 − ρ̂1,n} ≥ φ − ε

}
.

Define the set Ãd,n as follows:

Ãd,n :=
{ ⋂

α
√

n≤i≤n/2

{Zi < c}
}
.

We now set an appropriate value of c such that

(3.3) {A3,n ∩ Ad,n} ⊂ {A3,n ∩ Ãd,n},
for any n ≥ 1. To this end, we need to find c such that {Zi ≥ c} ⊂ {Zi+1 ≥ c} for
any i ≥ α

√
n. First, note that on the set A3,n, {ρ̂2,i ≥ (φ − ε)} for any i ≥ α

√
n.

Hence, for any c < (φ − ε), if {c ≤ Zi ≤ (φ − ε)} we have W2,i = 0, that implies
Zi+1 ≥ Zi and so Zi+1 ≥ c. Alternatively, if {Zi ≥ (φ − ε) > c}, the set {Zi+1 ≤
Zi} is possible, and hence we have to bound the increments of Zn to guarantee that
Zi+1 ≥ c, that is, find c such that

|Zi+1 − Zi | < (φ − ε) − c, ∀i ≥ 0.

Using (3.1), we obtain

(3.4) c ≤ p0 := Y0

Y0 + b
· (φ − ε).

This guarantees that (3.3) holds for any n ≥ 1.
Next, we show that P (A3,n ∩ Ãd,n) converges to zero with a sub-exponential

rate. To this end, first note that on the set A3,n, we have ρ̂2,i > ρ2 − ε for
any i = α

√
n, . . . , n/2; moreover, on the set Ãd,n, we have Zi < p0 for any

i = α
√

n, . . . , n/2. These considerations imply that W2,i = 0 and W1,i = 1 for
any i = α

√
n, . . . , n/2, on the set A3,n ∩ Ãd,n. Hence, we can write

(3.5) Zn/2 =
Y1,α

√
n +∑n/2

i=α
√

n
XiD1,i

Yα
√

n +∑n/2
i=α

√
n
XiD1,i

≥
y1,0 + a

∑n/2
i=α

√
n
Xi

(y0 + α
√

nb) + a
∑n/2

i=α
√

n
Xi

,

where the inequality is because Y1,α
√

n ≥ y1,0, Yα
√

n ≤ y0 + α
√

nb and D1,i ≥ a

a.s. for any i ≥ 1. Now, define for any n ≥ 1 the set A4,n as follows:

A4,n :=
{ n/2∑

i=α
√

n

Xi >
p0

a(1 − p0)
(y0 + α

√
nb)

}
,
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and consider the set A3,n ∩ Ãd,n ∩ A4,n. On the set A3,n ∩ Ãd,n we can use the
definition of A4,n in (3.5), obtaining

{A3,n ∩ Ãd,n ∩ A4,n} ⊂ {{Zn/2 > p0} ∩ Ãd,n

}
.

However, {Zn/2 > p0}∩ Ãd,n = ∅. Hence, P (A3,n ∩ Ãd,n ∩A4,n) = 0 and it is suf-
ficient to show that P (A3,n∩Ãd,n∩AC

4,n) converges to zero with a sub-exponential
rate.

Toward this, note that on the set A3,n ∩ Ãd,n we have Zi+1 ≥ Zi for any
i = α

√
n, . . . , n/2, since we previously showed that W2,i = 0 and W1,i = 1.

Hence, on the set A3,n ∩ Ãd,n, {Xi, i = α
√

n, . . . , n/2} are conditionally Bernoulli
random variables with parameter pi ≥ Zα

√
n a.s. Now, let us denote by {�i,n; i =

1, . . . , n/2 −α
√

n} a sequence of i.i.d. Bernoulli random variables with parameter
z0,n, defined as

z0,n := y1,0

y0 + α
√

nb
≤ Zα

√
n a.s.;

it follows that P (A3,n ∩ Ãd,n ∩ AC
4,n) is less than or equal than

(3.6) P

(n/2−α
√

n∑
i=1

�i,n ≤ p0

a(1 − p0)
(y0 + α

√
nb)

)
.

Finally, we use the following Chernoff’s upper bound for i.i.d. random variables
in [0,1] (see [10]):

(3.7) P
(
Sn ≤ c0 · E[Sn]) ≤ exp

(
−(1 − c0)

2

2
· E[Sn]

)
,

with c0 ∈ (0,1) and Sn = ∑n
i Xi . In our case, we have that (3.6) can be written as

P (Sn ≤ cn · E[Sn]), where Sn = ∑n/2−α
√

n

i=1 �i,n and

E[Sn] =
(

n

2
− α

√
n

)
y1,0

(y0 + α
√

nb)
and cn = p0

a(1 − p0)

(y0 + α
√

nb)2

y1,0(n/2 − α
√

n)
;

since α > 0 can be chosen arbitrary small, we can define an integer n0 such that
cn < c0 for any n ≥ n0, so that

P
(
Sn ≤ cn · E[Sn]) ≤ P

(
Sn ≤ c0 · E[Sn]).

Hence, by using (3.7), for any n ≥ n0 we have that

P
(
A3,n ∩ AC

4,n

) ≤ exp
(
−(1 − c0)

2

2
· E[Sn]

)
,

which converges to zero with a sub-exponential rate since

E[Sn] = y1,0(n/2 − α
√

n)

y0 + α
√

nb
∼ n√

n
= √

n.

This completes the proof. �
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REMARK 3.1. The result of Theorem 3.1 can also be obtained by relax-
ing assumption (2.6). In that case, we need conditions ρ̂n

a.s.→ ρ and (c2) to be
satisfied. Then the proof is similar by taking A1,n = {supi≥α

√
n{ρ̂1,i} > 1 − ε},

A2,n = {infi≥α
√

n{ρ̂2,i} < ε}, and A3,n = {infi≥α
√

n{min{1 − ρ̂1,i; ρ̂2,i}} ≥ ε}.
Then, P (A1,n) = P (A2,n) = 0 for any n ≥ 1.

3.2. A uniform bound. In this subsection, we provide a uniform bound for
the scaled difference between Zt and ρ̃t . To make precise statements, we start by
introducing additional notation. Set 
j,k := sign(m1 − m2)(ρ̃qj+k − Zqj+k) and

T̃j,k := Yqj+k
j,k , for any j ≥ 1 and any k = 1, . . . , dj , where dj := qj+1 − qj .
Note that, using (2.4) for any k ∈ {1, . . . , dj } 
j,k = sign(m1 −m2)(ρ̂qj −Zqj+k).
Let {τj ; j ≥ 1} be a sequence of stopping times defined as follows:

(3.8) τj :=
{

inf
{
k ≥ 1 : T̃j,k ∈ [−b,0]}, if

{
k ≥ 1 : T̃j,k ∈ [−b,0]} �= ∅;

∞, otherwise.

In Theorem 3.2, we provide a L1-uniform bound for the scaled distance between
the urn proportion Zqj+k and the threshold ρ̃qj+k , on the set {τj ≤ k}.

THEOREM 3.2. Let ρ̃1,n and ρ̃2,n be as in (2.4). Then, under the assump-
tions (2.1) and (2.6), there exists a constant C > 0 such that

(3.9) sup
j≥1

sup
1≤k≤dj

E
[
qj · |
j,k|1{τj≤k}

]
< C,

where dj = qj+1 − qj .

The proof uses comparison arguments with the MRRU model and related
asymptotic results. Hence, we first present the results concerning the MRRU model
in Section 3.2.1. The proof of Theorem 3.2 is then reported in Section 3.2.2.

3.2.1. Estimates for the MRRU model. In this subsection, we present some
probabilistic estimates concerning the MRRU model which are needed in the proof
of Theorem 3.2. We recall that for the MRRU the threshold are fixed, that is, ρ̂j,n =
ρj for any n ≥ 1, j = 1,2. Hence, in this subsection we consider W1,n = 1{Zn≤ρ1}
and W2,n = 1{Zn≥ρ2}. We start by introducing some quantities related to the MRRU
model. Let {Tn;n ≥ 0} be the process defined as

(3.10) Tn := sign(m1 − m2) · Yn(ρ − Zn),

which is sometimes useful to represent it as follows:

Tn = sign(m1 − m2) · (ρY2,n − (1 − ρ)Y1,n

)
.

Then, let t0 be the following stopping time:

(3.11) t0 := inf
{
k ≥ 0 : Tk ∈ [−b,0]}.
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Let

Ln := {
0 ≤ k ≤ n : Tn−k ∈ [−b,0]},

and let {sn;n ≥ 1} be a sequence of random times defined as follows:

(3.12) sn =
{

inf{Ln}, if Ln �= ∅;
∞, otherwise,

where we recall that b is the maximum value of the urn reinforcements, that is,
D1,n,D2,n ≤ b a.s. for any n ≥ 1. Note that by definition {sn = ∞} = {t0 > n}.
In Theorem 3.3, we provide the L2-uniform bound for Yn(Zn − ρ), on the set
{t0 ≤ n}.

THEOREM 3.3. For an MRRU, under the assumption (2.1), there exists a con-
stant C > 0 such that

(3.13) sup
n≥1

E
[(

Yn|ρ − Zn|)2|t0 ≤ n
] ≤ C.

The proof of the above theorem uses the boundedness of the moments of the
excursion times sn, which is provided in Theorem 3.4 below.

THEOREM 3.4. For an MRRU, under the assumption (2.1), there exists a con-
stant C > 0 such that

sup
n≥1

{
E
[
s2
n|t0 ≤ n

]} ≤ C.

In the proof of Theorem 3.4, we need to couple the MRRU model with a par-
ticular urn model {Z̃n;n ≥ 1}. The processes are coupled, in the sense that: (i) the
potential reinforcements are the same, that is, D̃1,n = D1,n and D̃2,n = D2,n a.s.;
(ii) the drawing process is defined on the same probability space, that is, Ũn = Un

a.s. where {Un;n ≥ 1} and {Ũn;n ≥ 1} are i.i.d. uniform random variables such
that Xn+1 := 1{Un+1<Zn} and X̃n+1 := 1{Ũn+1<Z̃n} for any n ≥ 1, respectively.

We now describe the urn model {Z̃n;n ≥ 1}. Fix a constant ỹ0 ∈ (0, Y0] and
z0 = ρ1. The process {Z̃n;n ≥ 1} evolves as follows: if sn−1 = 0, that is, Zn−1 ≥
ρ1, then X̃n = 1{Ũn<ρ1} and

(3.14)

{
Ỹ1,n = ρ1 · ỹ0 + X̃nD̃1,n,

Ỹ2,n = (1 − ρ1) · ỹ0 + (1 − X̃n)D̃2,n;
if sn−1 = k ≥ 1, that is, Zn−1 < ρ1, then X̃n = 1{Ũn<Z̃n−1} and

(3.15)

{
Ỹ1,n = Ỹ1,n−1 + X̃nD̃1,n,

Ỹ2,n = Ỹ2,n−1 + (1 − X̃n)D̃2,n;
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where Ỹn := Ỹ1,n + Ỹ2,n and Z̃n := Ỹ1,n/Ỹn. The urn model is well-defined since
sn−1 is Fn−1-measurable. It is worth noticing that Z̃n represents a generalized
Pólya urn evaluated after exactly (sn−1+1) steps, with initial composition ρ1ỹ0 red
and ρ1(1− ỹ0) white balls. In the next lemma, we state an important relation among
the MRRU model and the process {Z̃n;n ≥ 1}, needed in the proof of Theorem 3.4.

LEMMA 3.2. Consider the urn model {Z̃n;n ≥ 1} defined in (3.14) and (3.15)
coupled with the MRRU process {Zn;n ≥ 1}. Let T̃n := sign(m1 −m2) · Ỹn(ρ− Z̃n)

for any n ≥ 1. Then, on the set {∃j < n : Tj ≤ 0}, we have that

{Tn > 0} ⊂ {T̃n ≥ Tn}.
PROOF. Without loss of generality, assume m1 > m2, which implies ρ = ρ1

and Tn = Yn(ρ1 − Zn). Noting T̃n = ρ1Ỹ2,n − (1 − ρ1)Ỹ1,n, we now use induction
to complete the proof of the lemma. Note that, on the set {there exists j < n :
Tj ≤ 0}, sn is almost surely finite. On the set {sn = 0}, that is, {Tn ≤ 0}, we can
immediately see that {Tn+1 > 0} implies {T̃n+1 ≥ Tn+1} and {Z̃n+1 ≤ Zn+1}. In
fact, from {Tn ≤ 0} and {Tn+1 > 0} we have Xn+1 = 0 and W2,n = 1, so that

Tn+1 = Tn + ρ1D2,n+1 ≤ ρ1D2,n+1 = ρ1D̃2,n+1 = T̃n+1,

Zn+1 = ZnYn

Yn + D2,n+1
≥ ρ1ỹ0

ỹ0 + D̃2,n+1
= Z̃n+1.

Now, consider the set {sn ≥ 1} and assume by induction hypothesis that

(3.16) {T̃i ≥ Ti > 0, Z̃i ≤ Zi < ρ1,∀i = n − sn + 1, . . . , n} ∩ {Tn+1 > 0}.
Then we will show that T̃n+1 ≥ Tn+1 and Z̃n+1 ≤ Zn+1. Since Tn = ρ1Y2,n − (1 −
ρ1)Y1,n, we note that

Tn+1 = Tn−sn +
n+1∑

i=n−sn+1

[
ρ1(1 − Xi)D2,iW2,i−1 − (1 − ρ1)XiD1,iW1,i−1

]
,

where we recall that for the MRRU model W1,i = 1{Zi≤ρ1} and W2,i = 1{Zi≥ρ2}.
Since Tn−sn ≤ 0, W2,i−1 ≤ 1, by (3.16) W1,i = 1 for any i = n − sn + 1, . . . , n,
Xn−sn+1 = 0, and by construction D̃1,i = D1,i and D̃2,i = D2,i , we have

Tn+1 ≤
n+1∑

i=n−sn+1

[
ρ1(1 − Xi)D̃2,i − (1 − ρ1)XiD̃1,i

]
.

Moreover, by (3.16) we have Xi+1 = 1{Ui+1<Zi} ≥ 1{Ũi+1<Z̃i} = X̃i+1 for any i =
n − sn + 1, . . . , n. Hence, we can write

Tn+1 ≤ ρ1

n+1∑
i=n−sn+1

(1 − X̃i)D̃2,i − (1 − ρ1)

n+1∑
i=n−sn+1

X̃iD̃1,i = T̃n+1.
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Similarly, we can prove that Z̃n+1 ≤ Zn+1. Note that

Zn+1 = Zn−snYn−sn +∑n+1
i=n−sn+1 XiD1,iW1,i−1

Yn−sn +∑n+1
i=n−sn+1 XiD1,iW1,i−1 +∑n+1

i=n−sn+1(1 − Xi)D2,iW2,i−1
.

Now, since Zn−sn ≥ ρ1, Yn−sn ≥ ỹ0 and Xi+1 ≥ X̃i+1 for any i = n−sn+1, . . . , n,
it follows that

Zn+1 ≥ ρ1Y0 +∑n+1
i=n−sn+1 X̃iD̃1,i

ỹ0 +∑n+1
i=n−sn+1 X̃iD̃1,i +∑n+1

i=n−sn+1(1 − X̃i)D̃2,i

= Z̃n+1,

which completes our proof by induction. �

PROOF OF THEOREM 3.4. Without loss of generality, assume m1 > m2,
which implies ρ = ρ1 and Tn = Yn(ρ1 − Zn). The structure of the proof is the
following. The aim is to show that P (sn = k|t0 ≤ n) converges to zero fast
enough such that E[s2

n|t0 ≤ n] is bounded. To this end, we consider the urn model
{Z̃n;n ≥ 1} defined in (3.14) and (3.15) coupled with the MRRU model, such that
P (sn = k|t0 ≤ n) can be expressed in terms of {Z̃n;n ≥ 1}. After some calcula-
tions, this is provided by Lemma 3.2. Moreover, we compare {Z̃n;n ≥ 1} with a
generalized Pólya urn model, whose moments are uniformly bounded. First, for
any n ≥ 1 note that

E
[
s2
n|t0 ≤ n

] =
n∑

k=1

k2P (sn = k|t0 ≤ n),

since P (sn = ∞|t0 ≤ n) = P (t0 > n|t0 ≤ n) = 0. In fact, by definition t0 ≤ n − sn
a.s.

Before considering the urn model {Z̃n;n ≥ 1}, we express P (sn = k|t0 ≤ n) in
terms of {Tn;n ≥ 1}. Note that in the MRRU, if Tj ≥ −b for some j ≥ 0, then
P (Tn < −b) = 0 for any n ≥ j . In fact, when Tn ≥ 0 (Zn ≤ ρ1) we have Tn+1 ≥
−b, because the reinforcements are bounded by b and so |Tn+1 − Tn| < b a.s.;
while when −b ≤ Tn < 0 (Zn > ρ1) we have Tn+1 ≥ Tn ≥ −b, because Zn > ρ1
implies W1,n = 0 and so the urn is not reinforced by red balls, that is, Tn+1 ≥ Tn.
As a consequence, since Tt0 ≥ −b by definition, on the set {n ≥ t0}, we have {Tn /∈
[−b,0]} ⊂ {Tn > 0}. Hence, since t0 ≤ n − sn, we have for all 1 ≤ k ≤ n

P (sn = k|t0 ≤ n) = P

(
k−1⋂
i=0

{Tn−i > 0} ∩ {Tn−k ≤ 0}
∣∣∣t0 ≤ n

)

≤ P

(
k−1⋂
i=0

{Tn−i > 0}
∣∣∣{Tn−k ≤ 0} ∩ {t0 ≤ n}

)
(3.17)

≤ P

(
k−1⋂
i=0

{Tn−i > 0}
∣∣∣Tn−k ≤ 0

)
,
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where the last inequality follows using {Tn−k ≤ 0} ⊆ {t0 ≤ n}. To deal with (3.17),
we consider the urn model {Z̃n;n ≥ 1} defined in (3.14) and (3.15). From
Lemma 3.2, we have that, on the set {there existsj < n : Tj ≤ 0}, the event {Tn > 0}
implies {T̃n ≥ Tn}. Hence, we have that

P

(
k−1⋂
i=0

{Tn−i > 0}
∣∣∣Tn−k ≤ 0

)
≤ P

(
k−1⋂
i=0

{T̃n−i > 0}
∣∣∣Tn−k ≤ 0

)

(3.18)

= P

(
k⋂

i=1

{
ZG

i < ρ1
})

,

by construction, where {ZG
i ; i ≥ 1} is the proportion of red balls of a generalized

Pólya urn, starting with a proportion of ZG
0 = ρ1 and an initial number of balls

YG
0 = ỹ0, and the same reinforcements distributions as D1,n and D2,n.

Now, let sG be the first time the process ZG
i is above ρ1, that is,

sG :=
{

inf
{
i ≥ 1 : ZG

i ≥ ρ1
}
, if

{
i ≥ 1 : ZG

i ≥ ρ1
} �= ∅;

∞, otherwise.

It can be shown using standard arguments that there exists k0 ∈ N such that for any
k ≥ k0, there exist 0 < c1, c2 < ∞,

P
(
sG = k

) ≤ c1 exp(−c2k),

which implies that E[exp(γ sG)] < ∞ for some γ > 0.
Now, returning to (3.18), we have that

P

(
k⋂

i=1

{
ZG

i < ρ1
}) = P

(
sG > k

) ≤ E[(sG)4]
k4 = C4

k4 .

Thus, we have for any k ≥ 1,

P (sn = k|t0 ≤ n) ≤ C4

k4 ,

and hence

E
[
s2
n|t0 ≤ n

] =
n∑

k=1

k2P (sn = k|t0 ≤ n)

≤ C4 ·
n∑

k=1

1

k2 < C < ∞.

This completes the proof. �

PROOF OF THEOREM 3.3. Without loss of generality, assume m1 > m2,
which implies ρ = ρ1. Since Tn = Yn(ρ1 − Zn), we want to prove

supn≥1 E
[
T 2

n |t0 ≤ n
]
< ∞.
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Let sn be the random time defined in (3.12). Then, since |Ti+1 − Ti | ≤ b a.s. for
any i ≥ 1 and from (3.12) Tn−sn ∈ [−b,0], we have

E
[
T 2

n |t0 ≤ n
] =

n∑
l=0

E
[
T 2

n |{sn = l} ∩ {t0 ≤ n}]P (sn = l|t0 ≤ n)

= b2 +
n∑

l=1

E

[(
n−1∑

i=n−l

(Ti+1 − Ti) + Tn−l

)2∣∣∣{sn = l}
]

× P (sn = l|t0 ≤ n)

≤
n∑

l=0

(l + 1)2b2P (sn = l|t0 ≤ n).

Now, using (l + 1)2 ≤ 4l2, we have that
n∑

l=0

(l + 1)2b2P (sn = l|t0 ≤ n) ≤ 4b2 · E[
s2
n|t0 ≤ n

]
.

Finally, using Theorem 3.4 we have that the last quantity is uniformly bounded by
a constant C independent of n, so the proof is concluded. �

REMARK 3.2. From the proof of Theorem 3.4, we have that the constant C is
independent of the initial proportion Z0. Moreover, C provides a uniform bound
for any other MRRU with initial number of balls ≥ Y0.

3.2.2. Proof of Theorem 3.2.

PROOF. Without loss of generality, assume m1 > m2, which implies ρ = ρ1.
First, fix j ∈ N and apply Cauchy–Schwarz, so obtaining

(
E
[
qj · |
j,k|1{τj≤k}

])2 ≤ E
[
(T̃j,k)

21{τj≤k}
]
E

[(
qj

Yqj

)2]
.

Since E[(qj /Yqj )2] is uniformly bounded by Theorem 3.1, it remains to prove
that

E
[
(T̃j,k)

21{τj≤k}
]
< C,

for any j ≥ 1 and any k = 1, . . . , dj . To this end, fix j ∈ N and note that since
ρ̃1,qj+k = ρ̂1,qj for any k ∈ {1, . . . , dj }, the process {Zqj+k;k = 1, . . . , dj } can be
considered as the urn proportion of the MRRU model, with initial composition
(Y1,qj ,Y2,qj ) and fixed threshold parameters ρ̂1,qj and ρ̂2,qj . Then, for each j ∈ N

we can apply Theorem 3.3, with t0 defined in (3.11) equal to τj , so obtaining

E
[
(T̃j,k)

21{τj≤k}
] ≤ Cj ,(3.19)
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where Cj is a constant depending on the initial composition (Y1,qj ,Y2,qj ). How-
ever, from Remark 3.2 we have that there exists a uniform bound C > 0 such that
Cj ≤ C for any j ≥ 1, since all the processes {Zqj+k, k = 1, . . . , dj } j ≥ 1 can
be considered as an MRRU with initial number of balls ≥ Y0. This completes the
proof. �

4. Proofs of the main results. Here, we present the proofs of the results de-
scribed in Section 2. Section 4.1 is dedicated to the proof of Theorem 2.1 (LLN)
and the related preliminary results. Then, in Section 4.2 we report the proof of
Theorem 2.2 (CLT) together with Theorem 4.1, a new result needed to complete
that proof. In the last subsections, the proofs of the remaining results of Section 2
are gathered.

4.1. Proof of the LLN. We start by reporting some preliminary results needed
in the proof of the LLN. Initially, we show that the number of balls sampled from
the urn N1,n, N2,n and the total number of balls in the urn Yn, increase to infinity
almost surely. To this end, we first need to show a lower bound for the increments
of the process Yn, which is given by the following.

LEMMA 4.1. For any i ≥ 1, we have that

E[Yi − Yi−1|Fi−1] ≥ a ·
(

min{y1,0;y2,0}
y0 + (i − 1)b

)
.

PROOF. First, note that

Yi − Yi−1 = XiD1,iW1,i−1 + (1 − Xi)D2,iW2,i−1.

Since Xi and D1,i are conditionally independent with respect to Fi−1, and W1,i−1
is Fi−1-measurable, we have that

E[Yi − Yi−1|Fi−1] = (
m1Zi−1W1,i−1 + m2(1 − Zi−1)W2,i−1

)
≥ a · (Zi−1W1,i−1 + (1 − Zi−1)W2,i−1

)
,

where the last inequality is because m1,m2 ≥ a. We recall that the variables W1,i−1
and W2,i−1 can only take the values 0 and 1, and by construction we have that
W1,i−1 + W2,i−1 ≥ 1 for any i ≥ 1; then we can give a further lower bound

(4.1) E[Yi − Yi−1|Fi−1] ≥ a · (min{Zi−1;1 − Zi−1}).
Finally, the result follows by noting that

min{Zi−1;1 − Zi−1} = min{Y1,i−1;Y2,i−1}
Yi−1

≥ min{y1,0;y2,0}
y0 + (i − 1)b

. �

Here, we present the lemma on the divergence of the sequences Yn, N1,n and
N2,n. This result is obtained by using the conditional Borel–Cantelli lemma.
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LEMMA 4.2. Consider the urn model presented in Section 2. Then:

(a) Yn
a.s.→ ∞;

(b) min{N1,n;N2,n} a.s.→ ∞.

PROOF. We begin with the proof of part (a). First, notice that Yn = ∑n
i=1(Yi −

Yi−1) + y0. Then, by Theorem 1 in [9], it is sufficient to show that{
ω ∈ 
 :

∞∑
i=1

[Yi − Yi−1|Fi−1] = ∞
}

occurs with probability one. To this end, we will now use the lower bound of
Lemma 4.1, so obtaining

n∑
i=1

E[Yi − Yi−1|Fi−1] ≥ a

(
n∑

i=1

min{y1,0;y2,0}
y0 + (i − 1)b

)
a.s.→ ∞.

Hence, we have that Yn
a.s.→ ∞. We now turn to the proof of part (b).

We will show that N1,n
a.s.→ ∞, since the proof for N2,n is analogous. Since

N1,n = ∑n
i=1 Xi , by Theorem 1 in [9], it is sufficient to show that{

ω ∈ 
 :
∞∑
i=1

P (Xi |Fi−1) = ∞
}

occurs with probability one. Then we obtain

n∑
i=1

P (Xi |Fi−1) =
n∑

i=1

Zi ≥
n∑

i=1

y1,0

y0 + (i − 1)b

a.s.→ ∞.

Hence, we have that N1,n
a.s.→ ∞. �

The following lemma corresponds to Theorem 2.1 of [1], and it is needed in
the proof of Theorem 2.1. This result provides multiple equivalent ways to show
the almost sure convergence of a real-valued process. We consider a general real-
valued process {Zn;n ≥ 0} and two real numbers d (down) and u (up), with d <

u. The result requires two sequences of times tj (d, u) and τj (d, u) defined as
follows: for each j ≥ 0, tj (d, u) represents the time of the first up-cross of u after
τj−1(d, u), and τj (d, u) represents the time of the first down-cross of d after tj .
Note that tj (d, u) and τj (d, u) are stopping times, since the events {tj (d, u) = k}
and {τj (d, u) = k} depend on {Zn;n ≤ k}, which are measurable with respect to
Fk . We omit the proof since it is reported in Theorem 2.1 of [1], using the same
notation.
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LEMMA 4.3. Let {Zn;n ≥ 0} be a real-valued process in [0,1]. Let
τ−1(d, u) = −1 and define for every j ≥ 0 two stopping times:

tj (d, u) =
{

inf
{
n > τj−1(d, u) : Zn > u

}
, if

{
n > τj (d,u) : Zn > u

} �=∅;
+∞, otherwise,

(4.2)

τj (d, u) =
{

inf
{
n > tj (d,u) : Zn < d

}
, if

{
n > tj−1(d, u) : Zn < d

} �=∅;
+∞, otherwise.

Then the following are equivalent:

(a) Zn converges a.s.;
(b) for any 0 < d < u < 1,

lim
j→∞P

(
tj (d, u) < ∞) = 0;

(c) for any 0 < d < u < 1,∑
j≥1

P
(
tj+1(d, u) = ∞|tj (d, u) < ∞) = ∞;

using the convention that P (tj+1(d, u) = ∞|tj (d, u) < ∞) = 1 when P (tj (d,

u) = ∞) = 1.

The following lemma provides lower bounds for the total number of balls in
the urn at the times of up-crossings Ytj . The lemma gets used in the proof of
Theorem 2.1, where conditioning on a fixed number of up-crossing ensures to
have at least a number of balls Yn determined by the lower bounds of this lemma.
This result has been taken by Lemma 2.1 of [1]. We omit the proof since adaptive
thresholds does not play any role during up-crossings and the proof reported in
Lemma 2.1 of [1] carries over to our model, with Dn replaced by Yn.

LEMMA 4.4. For any 0 < d < u < 1, we have that

Ytj (d,u) ≥
(

u(1 − d)

d(1 − u)

)
Ytj−1(d,u) ≥ · · · ≥

(
u(1 − d)

d(1 − u)

)j

Yt0(d,u).

The following lemma provides a uniform bound for the generalized Pólya urn
with same reinforcement means, which is needed in the proof of Theorem 2.1.
This result has been taken from Lemma 3.2 of [1]. The proof is omitted since it is
reported in [1].

LEMMA 4.5. Consider a generalized Pólya urn with m1 = m2. If Y0 ≥ 2b, for
every h > 0 we have that

P
(
sup
n≥1

|Zn − Z0| ≥ h
)

≤ b

Y0

(
4

h2 + 2

h

)
.
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PROOF OF THEOREM 2.1. Without loss of gnerality, assume m1 > m2, which
implies ρ̂n = ρ̂1,n and ρ = ρ1. We divide the proof in two steps:

(a) P (lim supn→∞ Zn = ρ1) = 1,
(b) P (limn→∞ Zn exists) = 1.

Proof of part (a):
We begin by proving that P (lim supn→∞ Zn ≤ ρ1) = 1. To this end, we show that
there cannot exist ε > 0 and ρ′ > ρ1 such that

(4.3) P
(
lim sup
n→∞

Zn > ρ′
1

)
≥ ε > 0.

We prove this by contradiction using a comparison argument with an RRU model.
The proof involves last exit time arguments. Now, suppose (4.3) holds and let
A1 := {lim supn→∞ Zn > ρ′

1}. Let

R1 :=
{
k ≥ 0 : ρ̂1,k ≥ ρ′

1 + ρ1

2

}
,

and denote the last time the process {ρ̂1,n;n ≥ 1} is above (ρ ′
1 + ρ1)/2 by

t ρ′
1+ρ1

2

=
{

sup{R1}, if R1 �= ∅;
0, otherwise.

Since ρ̂1,n
a.s.→ ρ1, then we have that P (t ρ′

1+ρ1
2

< ∞) = 1. Hence, there exists nε ∈ N

such that

(4.4) P (t ρ′
1+ρ1

2

> nε) ≤ ε

2
.

Setting B1 := {t ρ′
1+ρ1

2

> nε} and using (4.4), it follows that

ε ≤ P (A1) ≤ ε/2 + P
(
A1 ∩ Bc

1
)
.

Now, we show that P (A1 ∩ Bc
1) = 0. Setting

C1 =
{
ω ∈ 
 : lim inf

n→∞ Zn <
ρ′

1 + ρ1

2

}
,

we decompose P (A1 ∩ Bc
1) as follows:

P
(
A1 ∩ Bc

1
) ≤ P (E1) + P (E2),

where E1 = A1 ∩ Bc
1 ∩ C1 and E2 = A1 ∩ Bc

1 ∩ Cc
1.

Consider the term P (E2). Note that on the set Cc
1, we have {lim infn→∞ Zn ≥

ρ′
1+ρ1

2 } and on the set Bc
1 we have {ρ̂1,n ≤ ρ′

1+ρ1
2 } for any n ≥ nε . Hence, since

Bc
1 ∩ Cc

1 ⊃ E2, on the set E2 we have that W1,n = 1{Zn≤ρ̂1,n}
a.s.→ 0. Then, letting
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τW := sup{k ≥ 1 : W1,k = 1} we have P (E2 ∩{τW < ∞}) = P (E2) and, on the set
E2, for any n ≥ τW the ARRU model can be written as follows:⎧⎪⎪⎨

⎪⎪⎩
Y1,n+1 = Y1,τW

,

Y2,n+1 = Y2,τW
+

n+1∑
i=τW

(1 − Xi)D2,i ,

where W1,i−1 = 0 for any i ≥ τW , and W2,i−1 = 1 because W2,i−1 + W2,i−1 ≥ 1
by construction. Now, consider an RRU model {ZR

i ; i ≥ 1} with initial composi-
tion (YR

1,0, Y
R
2,0) = (Y1,τW

, Y2,τW
) a.s.; the reinforcements are defined as DR

1,i = 0
and DR

2,i = D2,τW +i for any i ≥ 1 a.s.; the drawing process is modeled by
XR

i+1 := 1{UR
i <ZR

i } and UR
i = UτW +i a.s., where {Un;n ≥ 1} is the sequence such

that Xn+1 = 1{Un<Zn} for any n ≥ 1. Formally, this RRU model can be described
for any n ≥ 1 as follows:⎧⎪⎪⎨

⎪⎪⎩
YR

1,n+1 = YR
1,0 = Y1,τW

,

YR
2,n+1 = YR

2,0 +
n+1∑
i=0

(
1 − XR

i

)
DR

2,i = Y2,τW
+

n+τW +1∑
i=τW

(1 − Xi)D2,i .

Hence, on the set E2 we have that

(Y1,n, Y2,n) = (
YR

1,n−τW
, YR

2,n−τW

)
a.s.,

for any n ≥ τW . Since from [18] P (lim supn→∞ ZR
n = 0) = 1, on the set E2 we

have that {lim supn→∞ Zn = 0}. This is incompatible with the set A1 which in-
cludes E2. Hence, P (E2) = 0.

We now turn to the proof that P (E1) = 0. To this end, let

τε := inf
{
k ≥ nε :

{
Zk <

ρ′
1 + ρ1

2

}
∩
{
Yk >

b

(ρ′
1 − ρ1)/2

}}

and note that, since by Lemma 4.2 Yn
a.s.→ ∞, P (C1 ∩ {τε < ∞}) = P (C1). More-

over, on the set Bc
1 we have that {ρ̂1,n ≤ ρ′

1+ρ1
2 } for any n ≥ nε . We now show

by induction that on the set Bc
1 ∩ C1 we have {Zn < ρ′

1 ∀n ≥ τε}. By definition,

we have Zτε <
ρ′

1+ρ1
2 , and by Lemma 3.1 this implies Zτε+1 < ρ′

1; now, consider

an arbitrary n > τε; if Zn <
ρ′

1+ρ1
2 , then by Lemma 3.1 we have Zn+1 < ρ′

1;

if
ρ′

1+ρ1
2 < Zn < ρ′

1 we have W1,n = 0 and so Zn+1 ≤ Zn < ρ′
1. Hence, since

Bc
1 ∩ C1 ⊂ E1, on the set E1 we have {Zn < ρ′

1 ∀n ≥ τε}. This is incompatible
with the set A1 which also includes E1. Hence, P (E1) = 0.

Combining all together we have ε ≤ ε/2 + P (E1) + P (E2) = ε/2, which is
impossible. Thus, we conclude that P (Ac

1) = P (lim supn→∞ Zn ≤ ρ1) = 1.
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We now prove that P (lim supn→∞ Zn ≥ ρ1) = 1. To this end, we show that
there cannot exist ε > 0 and ρ′ < ρ1 such that

(4.5) P
(
lim sup
n→∞

Zn < ρ′
1

)
≥ ε > 0.

We prove this by contradiction, using a comparison argument with an RRU model.
Now suppose (4.5) holds and let A2 := {lim supn→∞ Zn < ρ′

1}. Let

R2 :=
{
k ≥ 0 : ρ̂1,k <

ρ′
1 + ρ1

2

}
,

and define the last time the process {ρ̂1,n;n ≥ 1} is less than (ρ ′
1 + ρ1)/2 by

τρ′
1+ρ1

2

=
{

sup{R2}, if R2 �= ∅;
0, otherwise.

Since ρ̂1,n
a.s.→ ρ1, then we have that P (τρ′

1+ρ1
2

< ∞) = 1. Hence, there exists nε ∈
N such that

(4.6) P (τ ρ′
1+ρ1

2

> nε) ≤ ε

2
.

Setting B2 := {τρ′
1+ρ1

2

> nε} and using (4.6), it follows that

ε ≤ P (A2) ≤ ε/2 + P
(
A2 ∩ Bc

2
)
.

Let E3 := A2 ∩ Bc
2 . We now show that P (E3) = 0. On the set A2, we have

{lim infn→∞ Zn ≤ ρ′
1} and on the set Bc

2 , we have {ρ̂1,n ≥ ρ′
1+ρ1

2 } for any n ≥ nε .

Hence, on the set E3 we have that W1,n = 1{Zn≤ρ̂1,n}
a.s.→ 1. Then, letting τW :=

sup{k ≥ 1 : W1,n = 0} we have P (E3 ∩{τW < ∞}) = P (E3). Now, analogously to
the proof of P (E2) = 0, we can use comparison arguments with an RRU model to
show that on the set E3 we have {lim supn→∞ Zn = 1}. This is incompatible with
the set A2, which also includes E3. Hence, P (E3) = 0.

Combining all together we have ε ≤ ε/2 + P (E3) = ε/2, which is impossible.
Thus, we conclude that the event Ac

2 = {lim supn→∞ Zn ≥ ρ1} occurs with proba-
bility one.

Proof of part (b):
In part (a), we have shown that P (lim supn→∞ Zn = ρ1) = 1. Therefore, if the
process {Zn;n ≥ 1} converges almost surely, then its limit has to be equal to ρ1.
First, let d , u, γ and ρ′

1 (d < u < γ < ρ ′
1 < ρ1) be four constants in (0,1). Let

{τj (d, u); j ≥ 1} and {tj (d, u); j ≥ 1} be the sequences of random variables de-
fined in (4.2). Since d and u are fixed in this proof, we sometimes denote τj (d, u)

by τj and tj (d, u) by tj . It is easy to see that τn and tn are stopping times with
respect to {Fn;n ≥ 1}.
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Recall that, by Lemma 4.3, we have that for every 0 < d < u < 1

Zn converges a.s. ⇔ P
(
tn(d, u) < ∞) → 0,

⇔
∞∑

n=1

P
(
tn+1(d, u) = ∞|tn(d, u) < ∞) = ∞.

Now, to prove that Zn converges a.s., it is sufficient to show that

P
(
tn(d, u) < ∞) → 0,

for all 0 < d < u < 1. Suppose Zn does not converge almost surely. Since P (tn <

∞) is a nonincreasing sequence, P (tn < ∞) converges to φ1 > 0. We will show
that for large j there exists a constant φ < 1 dependent on φ1, such that

(4.7) P (tj+1 < ∞|tj < ∞) ≤ φ.

This result implies that
∑

n P (tn+1 = ∞|tn < ∞) = ∞, establishing by Lemma 4.3
that P (tn < ∞) → 0, which is a contradiction.

Consider the term P (ti+1 < ∞|ti < ∞). First, let us denote by τρ′
1

the last time
the process ρ̂1,n is below ρ′

1, that is,

τρ′
1
=

{
sup

{
n ≥ 1 : ρ̂1,n ≤ ρ ′

1
}
, if

{
n ≥ 1 : ρ̂1,n ≤ ρ ′

1
} �= ∅;

0, otherwise.

Since ρ̂1,n
a.s.→ ρ1, we have that P (τρ′

1
< ∞) = 1. Hence, for any ε ∈ (0, 1

2) there
exists nε ∈N such that

(4.8)
1

φ1
P (τρ′

1
> nε) ≤ ε.

By denoting P i(·) = P (·|ti < ∞) and using ti ≤ τi ≤ ti+1 we obtain

P (ti+1 < ∞|ti < ∞) ≤ P i(τi < ∞).

Hence,

(4.9) P i(τi < ∞) ≤ P i
({τi < ∞} ∩ {τρ′

1
≤ nε})+ P i(τρ′

1
> nε).

We start with the second term in (4.9). Note that

P i(τρ′
1
> nε) ≤ P (τρ′

1
> nε)

P (ti < ∞)
≤ P (τρ′

1
> nε)

φ1
≤ ε,

where the last inequality follows from (4.8).
Now, consider the first term in (4.9). Since the probability is conditioned on the

set {ti < ∞}, in what follows we will consider the urn process at times n after the
stopping time ti . Since we want to show (4.7) for large i, we can choose an integer
i ≥ nε and

i > log u(1−d)
d(1−u)

(
b

Y0(γ − u)

)
,

so that:
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(i) ti ≥ i ≥ nε a.s.;
(ii) from Lemma 4.4, we have that Yτi

> b/(γ − u) a.s.

These two properties imply that, on the set {n ≥ ti}:
(i) ρ̂1,n ≥ ρ ′

1, since from {τρ′
1
≤ nε} we have that n ≥ τρ′

1
a.s.;

(ii) Zti ∈ (u, γ ), since Zti−1 ≤ u and Zti > u and from Lemma 3.1 we have that
|Zn − Zn−1| < (γ − u).

Now, let us define two sequences of stopping times {t∗n ;n ≥ 1} and {τ ∗
n ;n ≥ 1},

where t∗n represents the first time after τ ∗
n−1 the process Zti+n up-crosses ρ′

1, while
τ ∗
n represents the first time after t∗n the process Zti+n down-crosses γ . Formally,

let τ ∗
0 = 0 and define for every j ≥ 1 the following stopping times:

t∗j =
{

inf
{
n > τ ∗

j−1 : Zτi+n > ρ′
1
}
, if

{
n > τ ∗

j : Zτi+n > ρ′
1
} �=∅;

+∞, otherwise;
(4.10)

τ ∗
j =

{
inf

{
n > t∗j : Zτi+n ≤ γ

}
, if

{
n > t∗j−1 : Zτi+n ≤ γ

} �= ∅;
+∞, otherwise.

Note that, since Zti+τ∗
j −1 ≥ γ and Zti+τ∗

j
< γ , from (ii) we have that Zti+τ∗

j
∈

(u, γ ).
For any j ≥ 0, let {Z̃j

n;n ≥ 1} be an RRU model defined as follows:

(1) (Ỹ
j
1,0, Ỹ

j
2,0) = (Y1,ti+τ∗

j
, Y1,ti+τ∗

j

u+d
2−u−d

) a.s., which implies that Z̃
j
0 = u+d

2 ;

(2) the drawing process is modeled by X̃
j
n+1 = 1{Ũ j

n+1<Z̃
j
n}, where Ũ

j
n+1 =

Uti+τ∗
j +n+1 a.s. and Un is such that Xn = 1{Un<Zn−1};

(3) the reinforcements are defined as D̃
j
2,n+1 = D2,ti+τ∗

j +n+1 + (m1 − m2),

D̃
j
1,n+1 = D1,ti+τ∗

j +n+1 a.s.; this means E[D̃j
1,n] = E[D̃j

2,n] for any n ≥ 1;
(4) the urn process evolves as an RRU model, that is, for any n ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ
j
1,n+1 = Ỹ

j
1,n + X̃

j
n+1D̃

j
1,n+1,

Ỹ
j
2,n+1 = Ỹ

j
2,n + (

1 − X̃
j
n+1

)
D̃

j
2,n+1,

Ỹ
j
n+1 = Ỹ

j
1,n+1 + Ỹ

j
2,n+1,

Z̃
j
n+1 = Ỹ

j
1,n+1

Ỹ
j
n+1

.

We will compare the process {Zti+n;n ≥ 1} with the ARRU process {Zti+n;
n ≥ 1}. Note that at time n, we have defined only the processes Z̃j such that
τ ∗
j < n.
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We will prove, by induction, that on the set {τρ′
1
≤ nε}, for any j ∈ N and for

any n ≤ t∗j+1 − τ ∗
j :

(4.11) Z̃j
n < Zti+τ∗

j +n, Ỹ
j
2,n ≥ Y2,ti+τ∗

j +n, Ỹ
j
1,n < Y1,ti+τ∗

j +n.

In other words, we will show, provided that ti > τρ′
1
, that for each j ≥ 1 the process

Z̃
j
n is always dominated by the original process Zti+τ∗

j +n, as long as Zti+τ∗
j +n is

dominated by ρ′
1 (i.e., for n ≤ t∗j+1 − τ ∗

j ). By construction, we have that

Z̃
j
0 = d + u

2
< u < Zti+τ∗

j
, Ỹ

j
1,0 = Y1,ti+τ∗

j
,

which immediately implies Ỹ
j
2,0 > Y2,ti+τ∗

j
. To this end, we assume (4.11) by

induction hypothesis. First, we will show that Ỹ
j
2,n+1 > Y2,ti+τ∗

j +n+1. Since

from (4.11) Z̃
j
n < Zti+τ∗

j +n for n ≤ t∗j+1 − τ ∗
j , by construction we obtain that

X̃
j
n+1 = 1{Ũ j

n <Z̃
j
n} ≤ 1{Uti+τ∗

j
+n<Zti+τ∗

j
+n} = Xti+τ∗

j +n+1.

As a consequence, since Wn ≤ 1 for any n ≥ 1, we have that

(Y2,ti+τ∗
j +n+1 − Y2,ti+τ∗

j +n) = (1 − Xti+τ∗
j +n+1)D2,ti+τ∗

j +n+1W2,ti+τ∗
j +n

≤ (
1 − X̃

j
n+1

)
D̃

j
2,n+1

= (
Ỹ

j
2,n+1 − Ỹ

j
2,n

)
,

which using hypothesis (4.11) implies Ỹ
j
2,n+1 > Y2,ti+τ∗

j +n+1. Similarly, we now

show that Ỹ
j
1,n+1 ≤ Y1,ti+τ∗

j +n+1. We have

(Y1,ti+τ∗
j +n+1 − Y1,ti+τ∗

j +n) = Xti+τ∗
j +n+1D1,ti+τ∗

j +n+1W1,ti+τ∗
j +n.

From (i), we have that, as long as Z remains below ρ′
1, Z is also above the process

ρ̂1,n. Since we consider the behavior of Zti+τ∗
j +n when it is below ρ ′

1, that is,
n ≤ τ ∗

j+1 − t∗j , we have that W1,ti+τ∗
j +n = 1. Thus,

(Y1,ti+τ∗
j +n+1 − Y1,ti+τ∗

j +n) ≥ X̃
j
n+1D̃

j
1,n+1 = (

Ỹ
j
1,n+1 − Ỹ

j
1,n

)
,

which using hypothesis (4.11) implies Ỹ
j
1,n+1 ≤ Y1,ti+τ∗

j +n+1. Thus, we have

shown that, on the set {τρ′
1

≤ nε}, for any n ≤ t∗j+1 − τ ∗
j , Z̃

j
n+1 < Zti+τ∗

j +n+1,

Ỹ
j
1,n+1 ≤ Y1,ti+τ∗

j +n+1 and Ỹ
j
2,n+1 > Y2,ti+τ∗

j +n+1 hold.

Now, for any j ≥ 1, let Tj be the stopping time for Z̃
j
n to exit from (d, u), that

is,

Tj =
{

inf{R3}, if R3 �=∅;
+∞, otherwise,
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where R3 := {n ≥ 1 : Z̃j
n ≤ d or Z̃

j
n ≥ u}. Note that, on the set {τρ′

1
≤ nε},

{τi < ∞} =
{

inf
n≥1

{Zti+n} < d
}

⊂
{ ⋃

j :τ∗
j ≤n

{
inf
n≥1

{
Z̃

j

n−τ∗
j

}
< d

}}

⊂
{ ∞⋃

j=0

{Tj < ∞}
}
.

Hence,

P i
({τi < ∞} ∩ {τρ′

1
≤ nε}) ≤ P i

({ ∞⋃
j=0

{Tj < ∞}
}

∩ {τρ′
1
≤ nε}

)

≤
∞∑

j=0

P i
({Tj < ∞} ∩ {τρ′

1
≤ nε}).

Consider a single term of the series; by setting h = u−d
2 we get

P i
({Tj < ∞} ∩ {τρ′

1
≤ nε}) ≤ P i

({
sup
n≥1

∣∣Z̃j
n − Z̃

j
0

∣∣ ≥ h
}

∩ {τρ′
1
≤ nε}

)

≤ P i

(
sup
n≥1

∣∣Z̃j
n − Z̃

j
0

∣∣ ≥ h
)
.

Note that {Z̃j
n;n ≥ 1} is the proportion of red balls in an RRU model with same

reinforcement means. Then, using Lemma 4.5, we obtain

P i

(
sup
n≥1

∣∣Z̃j
n − Z̃

j
0

∣∣ ≥ h
)

= Ei

[
P
({

sup
n≥1

∣∣Z̃j
n − Z̃

j
0

∣∣ ≥ h
}
|Fτi+t∗j

)]

≤ Ei

[
b

Yt∗j

](
4

h2 + 2

h

)
,

where Ei[·] = E[·|ti < ∞]. Moreover, using Lemma 4.4, the right-hand side can
be expressed as

Ei

[
b

Yti

](
ρ′

1(1 − γ )

γ (1 − ρ′
1)

)j( 4

h2 + 2

h

)
.

Since from Lemma 4.2 Yn converges a.s. to infinity, and since τi → ∞ a.s. because
τi ≥ i, we have that Ei[Y−1

ti
] tends to zero as i increases. As a consequence, we

can choose an integer i large enough such that

Ei

[
b

Yti

](
4

h2 + 2

h

)(
1 − ρ′

1

1 − ρ′
1/γ

)
<

1

2
,

which setting φ = 1/2 + ε implies (4.7), that is,

P (ti+1 < ∞|ti < ∞) ≤ φ < 1.

This completes the proof. �
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PROOF OF COROLLARY 2.1. This corollary has been proved in Proposi-
tion 2.1 of [13] for the MRRU. That proof is only based on the fact that the urn
proportion Zn converges a.s. to a value within the interval (0,1), while the rein-
forcement rules do not play any role. Hence, the proof used in [13] can be applied
to the ARRU, since Zn

a.s.→ ρ ∈ (0,1) for ARRU using Theorem 2.1. �

4.2. Proof of the central limit theorem. Before the proof of Theorem 2.2, we
recall that {τj ; j ≥ 1} is the sequence defined in (3.8) as follows:

τj :=
{

inf
{
k ≥ 1 : T̃j,k ∈ [−b,0]}, if

{
k ≥ 1 : T̃j,k ∈ [−b,0]} �=∅;

∞, otherwise.

Fix ν ∈ (0,1/2) and, for any j ≥ 1, let rj := qj 1+ν
2 and Rj := {τj > rj }. The

following theorem is critical to the proof of Theorem 2.2.

THEOREM 4.1. Let ρ̃1,n and ρ̃2,n be as in (2.4). Then, under the assump-
tions (2.1) and (2.6), we have that

(4.12) P (Rj , i.o.) = 0.

We delay the proof of this theorem to Section 4.2.1.

PROOF OF THEOREM 2.2. Without loss of generality, assume m1 > m2,
which implies ρ = ρ1. To prove the main result, we establish

(a)
√

n(
N1,n

n
−

∑n
i=1 Zi−1

n
)

d→ N (0, ρ1(1 − ρ1)), and

(b)
√

n(
∑n

i=1 Zi−1
n

−
∑n

i=1 ρ̃1,i−1
n

)
a.s.→ 0.

Finally, result (2.7) is obtained by using Slutsky’s theorem to combine (a) and (b)
together.

Proof of part (a): Let us define a random variable Jni := 1√
n
(Xi −E[Xi |Fi−1]),

for any n, i ∈ N with i ≤ n. Then, for each n ∈ N, the sequence {Snj =∑j
i=1 Jni;1 ≤ j ≤ n} is a martingale. Now we apply the Martingale CLT (MCLT).

First, note that J 2
ni ≤ 1/n for any n ∈N and |Jni | < ε for any n ≥ ε−2; thus,

n∑
i=1

E
[
J 2

ni1{|Jni |>ε}|Fi−1
] ≤

[ε−2]+1∑
i=1

1/n = [ε−2] + 1

n
→ 0.

Also,

E
[
J 2

ni |Fi−1
] = 1

n
· E[(

Xni − E[Xni |Fi−1])2|Fi−1
]

= Zi−1(1 − Zi−1)

n
;
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since ρ̂1,n
a.s.→ ρ1, from Theorem 2.1 we get Zn

a.s.→ ρ1, which implies

n∑
i=1

E
[
J 2

ni |Fi−1
] =

∑n
i=1 Zi−1(1 − Zi−1)

n

a.s.→ ρ1(1 − ρ1).

From MCLT [15], it follows that

1√
n

·
n∑

i=1

(
Xi − E[Xi |Fi−1]) = √

n

(∑n
i=1 Xi

n
−

∑n
i=1 Zi−1

n

)

d→ N
(
0, ρ1(1 − ρ1)

)
.

We now turn to the proof of part (b). We first express

√
n

(∑n
i=1 Zi−1

n
−

∑n
i=1 ρ̃1,i−1

n

)
= 1√

n

n−1∑
i=0

(Zi − ρ̃1,i)

= B1n + B2n,

where

B1n := 1√
n

[qkn ]∑
i=0

(Zi − ρ̃1,i), B2n := 1√
n

n−1∑
i=[qkn ]+1

(Zi − ρ̃1,i),

and we recall kn is defined in (2.5) as kn := [logq(n)], with q > 1. We begin with
B1n. Note that

[qkn ]∑
i=0

(Zi − ρ̃1,i) =
kn−1∑
j=1

dj∑
i=1

(Zqj+i − ρ̂1,qj ) =
kn−1∑
j=1

dj∑
i=1

(−
j,i),

where we recall that dj = qj+1 − qj and 
j,i = ρ̂1,qj − Zqj+i for any j ≥ 1 and
1 ≤ i ≤ dj . Hence,

|B1n| = 1√
n

·
∣∣∣∣∣
kn−1∑
j=1

dj∑
i=1

(−
j,i)

∣∣∣∣∣ ≤ 1√
n

·
kn−1∑
j=1

(∑dj

i=1 |
j,i |√
dj

)√
dj ;

similarly,

|B2n| ≤ 1√
n

·
(∑dkn

i=1 |
kn,i |√
dkn

)√
dkn.

Now, defining for any j ≥ 1

(4.13) bj :=
∑dj

i=1 |
kn,i |√
dj

,
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it follows that

|B1n| + |B2n| ≤ 1√
n

·
kn∑

j=1

bj

√
dj .

Now, we have

|B1n| + |B2n| ≤ 1√
n

·
kn/2−1∑

j=1

bj

√
dj + 1√

n
·

kn∑
j=kn/2

bj

√
dj

≤
(supi≥1{bi}

4
√

n

)
· H1n +

(
sup

i≥kn/2
{bi}

)
· H2n,

where

H1n := 1
4
√

n

kn/2−1∑
j=1

√
dj , H2n := 1√

n

kn∑
j=1

√
dj .

Using dj = (q − 1)qj , we express

H1n =
√

q − 1
4
√

n
·
kn/2−1∑

j=1

(
√

q)j =
(√

qkn/2 − 1
4
√

n

)
·
(√

q − 1√
q − 1

)
,

H2n =
√

q − 1√
n

·
kn∑

j=1

(
√

q)j =
(√

qkn+1 − √
qkn/2

√
n

)
·
(√

q − 1√
q − 1

)
.

Since n ≥ qkn , it follows that H1n ≤ C and H2n ≤ √
qC, where C = (

√
q−1√
q−1). Thus,

|B1n| + |B2n| ≤
(supi≥1{bi}

4
√

n

)
· C +

(
sup

i≥kn/2
{bi}

)
· √qC.

To conclude the proof, we will show that bj
a.s.→ 0.

First, fix an arbitrary constant ν ∈ (0,1/2) and let rj := qj 1+ν
2 for any j ≥ 1;

then write

bj = 1√
dj

dj∑
i=1

|
j,i | =
(

1√
dj

rj∑
i=1

|
j,i |
)

+
(

1√
dj

dj∑
i=rj+1

|
j,i |
)

= F1j + F2j .

Let us consider term F1j , we have that

F1j = rj√
dj

·
(

1

rj

rj∑
i=1

|
j,i |
)

= [qj ν
2 ]√

q − 1
·
(

1

rj

rj∑
i=1

|
j,i |
)
,
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since dj = (q − 1)qj and rj /
√

qj = qj ν
2 . Now, for any i = 1, . . . , rj we note that

|
j,i | ≤ |Zqj+i − Zqj | + |
j−1,dj−1 | + |ρ̂1,qj−1 − ρ̂1,qj |;
hence, we have F1j ≤ E1j + E2j + E3j , where

E1j := [qj ν
2 ]√

q − 1
·
(

1

rj

rj∑
i=1

|Zqj+i − Zqj |
)
,

E2j := [qj ν
2 ]√

q − 1
· |
j−1,dj−1 |,

E3j := [qj ν
2 ]√

q − 1
· |ρ̂1,qj−1 − ρ̂1,qj |.

Let us consider the term E1j . By Lemma 3.1 we have |Zk − Zk−1| ≤ b/Yk−1, and
hence

E1j ≤ [qj ν
2 ]√

q − 1
· brj

Yqj

=
(

b√
q − 1

)
·
(

qj ( 1
2 +ν)

Yqj

)
.

Then by using Markov’s inequality we obtain, since q > 1,

∞∑
j=1

P

(
qj ( 1

2 +ν)

Yqj

> ε

)
≤ 1

ε

∞∑
j=1

E

[
qj

Yqj

]
q−j ( 1

2 −ν) ≤ C

ε

∞∑
j=1

q−j ( 1
2 −ν) < ∞,

where C = supk≥1{E[k/Yk]} is finite from Theorem 3.1. Thus, from the Borel–

Cantelli lemma it follows that E1j
a.s.−→ 0.

Now, consider the term E2j . We have

P

(
lim

k→∞
⋃
j≥k

{E2j > ε}
)

≤ P

(
lim

k→∞
⋃
j≥k

Rj

)

+ P

(
lim

k→∞
⋃
j≥k

{ [q(j+1) ν
2 ]√

q − 1
· |
j,dj

| > ε

}
∩Rc

j

)
,

where the term P (limk→∞
⋃

j≥k Rj ) = 0 from Theorem 4.1. Then, by using
Markov’s inequality we obtain

∞∑
j=1

P

({ [q(j+1) ν
2 ]√

q − 1
· |
j,dj

| > ε

}
∩Rc

j

)
≤ M,

where

M := 1

ε

∞∑
j=1

E

[ [q(j+1) ν
2 ]√

q − 1
· |
j,dj

|1RC
j

]
.
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Now, for any j ≥ 1 let us introduce the set Qj := {τj > dj }. Using RC
j ⊆ QC

j from

rj ≤ dj , and by multiplying and dividing by qj+1, we have that

M = 1

ε
√

q − 1

∞∑
j=1

E
[
qj+1|
j,dj

|1RC
j

] · q−(j+1)(1− ν
2 )

≤ 1

ε
√

q − 1

∞∑
j=1

E
[
qj+1|
j,dj

|1QC
j

] · q−(j+1)(1− ν
2 )

≤ 1

ε
√

q − 1

(
sup
k≥1

{
E
[
qk+1|
k,dk

|1QC
k

]}) ∞∑
j=1

q−(j+1)(1− ν
2 ) < ∞,

where the finiteness follows from Theorem 3.2 and the result follows from the
Borel–Cantelli lemma since q > 1.

Let us consider the term E3j . For any ε > 0, by using Markov’s inequality we
have

P (E3j > ε) ≤ 1

ε
√

q − 1
E
[
qj ν

2 · |ρ̂1,qj − ρ̂1,qj−1 |].
The right-hand side of the above expression can be rewritten as follows:

q−j ( 1−ν
2 )

ε
√

q − 1
E
[
q

j
2 · |ρ̂1,qj − ρ̂1,qj−1 |].

Now, by decomposing the last expectation into

E
[
q

j
2 · |ρ̂1,qj − ρ̂1,qj−1 |] = E

[
q

j
2 · |ρ1 − ρ̂1,qj−1 |]+ E

[
q

j
2 · |ρ1 − ρ̂1,qj |],

we can see that

∞∑
j=1

P (E3j > ε) ≤
(2 supk≥1{E[q k

2 · |ρ1 − ρ̂1,qk |]}
ε
√

q − 1

) ∞∑
j=1

q−j ( 1−ν
2 ),

which is finite because of (2.6). Hence, by another application the Borel–Cantelli
lemma, E3j

a.s.−→ 0; then we have F1j
a.s.−→ 0.

Finally, let us consider term F2j . First, we multiply and divide by (dj − rj )q
− j

2

to obtain F2j = cjF3j , where

cj = dj − rj

q
j
2
√

dj

, F3j = 1

dj − rj

dj∑
i=rj+1

q
j
2 |
j,i |.

Since cj → √
q − 1, let us focus on F3j . Since P (Rj , i.o.) = 0 (Theorem 4.1), it

is sufficient to show that F3j 1Rc
j

a.s.−→ 0. For any ε > 0, by Markov’s inequality it
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follows that

P
({F3j > ε} ∩RC

j

) ≤ 1

ε

(
1

dj − rj

dj∑
i=rj+1

E
[
q

j
2 |
j,i |1RC

j

])
.

Now, since

dj∑
i=rj+1

E
[
q

j
2 |
j,i |1RC

j

] ≤ (dj − rj )
(

max
i=rj+1,...,dj

{
E
[
q

j
2 |
j,i |1RC

j

]})
,

we have that

P
({F3j > ε} ∩RC

j

) ≤ 1

ε

(
max

i=rj+1,...,dj

{
E
[
q

j
2 |
j,i |1RC

j

]})

= 1

ε

(
max

i=rj+1,...,dj

{
E
[
qj |
j,i |1RC

j

]})
q− j

2

≤ 1

ε

(
sup
k≥1

{
max

i=[rk]+1,...,dk

{
E
[
qk|
k,i |1RC

k

]}})
q− j

2

≤ Cq− j
2 ,

where the last inequality follows from Theorem 3.2. Now, summing over j we
have that

n∑
j=1

P
({F3j > ε} ∩RC

j

) ≤ C

n∑
j=1

q− j
2 < ∞.

Finally, using the Borel–Cantelli lemma we get that F2j
a.s.−→ 0, which concludes

the proof. �

REMARK 4.1. As a follow up to Remark 2.2, the condition q > 1 allows us to

establish
√

n(
∑n

i=1 Zi−1
n

− ρ̄n)
a.s.→ 0. As q decreases to 1, the behavior is not clear

and requires further analysis. Evidently, the remaining term
√

n(
N1,n

n
−

∑n
i=1 Zi−1

n
)

converges to a normal random variable which does not depend on the value of q ,
and hence the asymptotic distribution in (2.7) is the same for any q > 1.

4.2.1. Proof of Theorem 4.1.

PROOF. Without loss of generality, assume m1 > m2, which implies ρ̂n = ρ̂1,n

and ρ = ρ1. To prove (4.12), we need to study the sequence of sets {Rj ; j ≥ 1}. On
the set Rj , the urn proportions do not cross the thresholds at times qj , . . . , qj + rj ,
where, as before, q > 1. Hence, Rj will be included in Aj ∪ Bj , where Aj and
Bj represent the events in which the urn proportion is always above and below,
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respectively, the thresholds at times qj , . . . , qj + rj . To show that Aj and Bj

cannot occur i.o., we need to appropriately express them by using the following
scaling processes:

(a) T̃j,k = Yqj+k
j,k = Yqj+k(ρ̂1,qj − Zqj+k), defined for any j ≥ 1 and any
k = 1, . . . , dj . This process describes the closeness between the urn proportions
and the adaptive thresholds.

(b) Tn = Yn(ρ1 − Zn), defined for any n ≥ 1. This process describes the close-
ness between the urn proportions and the limit of the threshold’s sequence.

(c) T
(ρ1)
j,k := Yqj+k(ρ1 − ρ̂1,qj ), defined for any j ≥ 1 and k = 1, . . . , dj . This

process describes the closeness between the adaptive thresholds and their limit.

Let us now define formally the sets Aj and Bj . First, note that if the urn proportion
crosses the threshold at time (qj + k), then T̃qj+k · T̃qj+k−1 < 0, since only one

among T̃qj+k and T̃qj+k−1 is within the interval [−b,0]. Thus, from the definition
of τj in (3.8), we have that

{
j,k−1 · 
j,k < 0} ⊆ {τj ≤ k}.
This implies that

Rj ⊂
{ rj⋂

k=1

{
j,k−1 · 
j,k > 0}
}

=
{ rj⋂

k=1

{
j,k < 0}
}

∪
{ rj⋂

k=1

{
j,k > 0}
}
.

Since Yqj+k
j,k = Tqj+k − T
(ρ1)
j,k , we can write Rj ⊆ Aj ∪Bj , where

Aj :=
rj⋂

k=1

Dj,k, Bj :=
rj⋂

k=1

DC
j,k,

Dj,k := {
Tqj+k < T

(ρ1)
j,k

}
, k = 1, . . . , rj .

The idea is to prove that these events cannot occur infinitely often; to this end,
consider Aj (for instance) and rewrite the set Dj,rj as

(4.14) Dj,rj = {
Tqj+rj

< T
(ρ1)
j,rj

} =
{ rj∑

i=1

(Tqj+i − Tqj+i−1) < T
(ρ1)
j,rj

− Tqj

}
,

where the last inequality follows using telescopic series. In the set Dj,rj we have
a sum of bounded random variables, that is, (Tqj+i − Tqj+i−1), whose means are

strictly positive on Aj , because Aj in included in
⋂rj−1

k=1 Dj,k ; hence, provided

that the difference (T
(ρ1)
j,rj

− Tqj ) increases with j slower than rj , we could prove
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that the set cannot occur infinitely often. Roughly speaking, it means that, if the
adaptive threshold ρ̂1,qj is not far enough from the urn proportion Zqj , then the
average increments of the urn proportion make very likely that Zqj+k crosses ρ̂1,qj

before qj +rj . Similar arguments apply for Bj . More formally, fix ε > 0 and define
the set Cj as follows:

Cj := {∣∣T (ρ1)
j,rj

− Tqj

∣∣ > εj2q
j
2
}
,

so that CC
j is the set where the difference |T (ρ1)

j,rj
− Tqj | increases with j slower

than rj . Hence, it follows that

Rj ⊆ {Aj − Cj } ∪ {Bj − Cj } ∪ Cj ,

and the result (4.12) is obtained by showing that

P (Aj − Cj , i.o.) = P (Bj − Cj , i.o.) = P (Cj , i.o.) = 0.

We will now prove that P (Aj − Cj , i.o.) = P (Bj − Cj , i.o.) = 0. From (4.14)
we note that, on the set CC

j ,

Dj,rj ⊆
{ rj∑

i=1

(Tqj+i − Tqj+i−1) < εj2q
j
2

}
= Ej ,

DC
j,rj

⊆
{ rj∑

i=1

(Tqj+i − Tqj+i−1) > −εj2q
j
2

}
= Fj .

As a consequence, we have

Aj − Cj ⊆
{rj−1⋂

k=1

Dj,k ∩ Ej

}
,

Bj − Cj ⊆
{rj−1⋂

k=1

DC
j,k ∩Fj

}
.

Now, consider the increments (Tqj+i − Tqj+i−1) for i = 1, . . . , rj contained in the
sets Ej and Fj above; recall that

(Tqj+i − Tqj+i−1) = ρ1(1 − Xqj+i)D2,qj +iW2,qj+i−1

− (1 − ρ1)Xqj+iD1,qj+iW1,qj +i−1.

Fix an arbitrarily small ε1 > 0 and introduce two collections of i.i.d. random vari-
ables (A1, . . . ,Arj ) and (B1, . . . ,Brj ) defined as follows:

Ai := ρ1(1 − 1{U
qj +i

<ρ1+ε1})D2,qj +i ,

Bi := ρ1(1 − 1{U
qj +i

<ρ1−ε1})D2,qj +i − (1 − ρ1)1{U
qj +i

<ρ1−ε}D1,qj+i ,
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where (Uqj+1, . . . ,Uqj+1) are the i.i.d. (0,1) uniform random variables such that
Xqj+i := 1{U

qj +i
<Z

qj +i−1}.
First note that, by construction, on the set Aj we have

⋂rj
k=1{Zqj+k > ρ̃1,qj+k},

and hence Aj ⊂ ⋂rj
k=1{W1,qj +k = 0}. Thus, since using (2.6) we have Zn

a.s.→ ρ1
by Theorem 2.1, on the set Aj we have that{

(Tqj+i − Tqj+i−1) ≥ Ai

}
, i ∈ 1, . . . , rj ,

occurs with probability 1 as n → ∞. Similarly, by construction, on the set Bj we
have

⋂rj
k=1{Zqj+k < ρ̃1,qj+k}, and hence Bj ⊂ ⋂rj

k=1{W1,qj+k = 1}. Thus, using

Zn
a.s.→ ρ1, on the set Aj we have that the event{

(Tqj+i − Tqj+i−1) ≤ Bi

}
, i ∈ 1, . . . , rj ,

occurs with probability 1 as n → ∞. As a consequence, for large j , we have that

P (Aj − Cj , i.o.) ≤ P

( rj∑
i=1

Ai < εj2q
j
2 , i.o.

)
and

P (Bj − Cj , i.o.) ≤ P

( rj∑
i=1

Bi > −εj2q
j
2 , i.o.

)
.

Set

PAj := P

( rj∑
i=1

Ai < εj2q
j
2

)
and PBj := P

( rj∑
i=1

Bi > −εj2q
j
2

)
.

We will now use Chernoff’s upper bounds for i.i.d. bounded random variables Ai

and Bi [see (3.7)]. First, notice that:

(1) E[Ai] = ρ1(1 − ρ1 − ε)m2 > 0,
(2) E[Bi] = ρ1(1 − ρ1 + ε)m2 − (1 − ρ1)(ρ1 − ε)m1 < 0,
(3) |Ai |, |Bi | < b a.s. for any i ≥ 1.

Note that PAj can be written as P (Sj ≤ cj · E[Sj ]), where Sj = ∑rj
i=1(Ai/b) and

cj = εj2q
j
2

rjE[A1]/b ;

since cj → 0, we can define an integer j0 such that cj < c0 for any j ≥ j0, so that

P
(
Sj ≤ cj · E[Sj ]) ≤ P

(
Sj ≤ c0 · E[Sj ]).

Hence, by using (3.7), for any j ≥ j0 we have that

PAj ≤ exp
(
−(1 − c0)

2

2
· E[Sj ]

)
,
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which converges to zero exponentially fast since

E[Sj ] = rj
E[A1]

b
∼ qj 1+ν

2 .

We can repeat the same arguments for PBj , with the i.i.d. random variables (−Bi +
b)/2b ∈ (0,1) for i = 1, . . . , rj ; in this case, cj tends to a constant c < 1, so that
the proof follows with c0 ∈ (c,1). Thus,

∞∑
j=1

(PAj + PBj ) < ∞,

yielding

P (Aj − Cj , i.o.) = P (Bj − Cj , i.o.) = 0.

We will now show that P (Cj , i.o.) = 0. Note that since |T (ρ1)
j,rj

| ≤ |T (ρ1)
j,dj

| and

Tqj = Yqj (ρ1 − ρ̂1,qj−1) + Yqj (ρ̂1,qj−1 − Zqj ) = T
(ρ1)
j−1,dj−1

+ T̃j−1,dj−1,

it follows that ∣∣T (ρ1)
j,rj

− Tqj

∣∣ ≤ ∣∣T (ρ1)
j,dj

∣∣+ ∣∣T (ρ1)
j−1,dj−1

∣∣+ |T̃j−1,dj−1 |,
which implies that

{Cj , i.o.} ⊂
{∣∣T (ρ1)

j,dj

∣∣ > ε

3
j2q

j
2 , i.o.

}
∪
{
|T̃j,dj

| > ε

3
j2q

j
2 , i.o.

}
.

Now, since Yn ≤ Y0 + bn, it follows that

{Cj , i.o.} ⊂ {G1j , i.o.} ∪ {G2j , i.o.},
where

G1j :=
{(

Y0

bqj+1 + 1
)
q

j
2 |ρ1 − ρ̂1,qj | > j2 ε

3qb

}
,

G2j :=
{(

Y0

bqj+1 + 1
)
q

j
2 |Zqj+1 − ρ̂1,qj | > j2 ε

3bq

}
.

We will now show that P (G1j , i.o.) = 0. By using the Markov’s inequality we
have

∞∑
j=1

P (G1j ) ≤ 3qb

ε

∞∑
j=1

(
Y0

bqj+1 + 1
)

E[q j
2 |ρ1 − ρ̂1,qj |]

j2

= 3qb

ε

(
Y0

bq
+ 1

)
C

∞∑
j=1

1

j2 < ∞,
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where

C := sup
k≥1

E
{[

q
k
2 |ρ1 − ρ̂1,qk |]} < ∞

from (2.6). Hence, using the Borel–Cantelli lemma, it follows that P (G1j ,

i.o.) = 0.

Now, consider G2j . Let Hj := {j−2q
j
2 · |
j,dj

| > ε} and since

P (G2j , i.o.) = P (Hj , i.o.)

we now focus on Hj . First, for each j ≥ 1, we recall that Qj = {τj > dj } and we
decompose Hj as follows:

Hj ⊆ Qj ∪ {
Hj ∩QC

j

}
,

which leads to

P (Hj , i.o.) ≤ P (Qj , i.o.) + P
(
Hj ∩QC

j , i.o.
)
.

First, consider P (Hj ∩QC
j , i.o.). By using Markov’s inequality, we have

∞∑
j=1

P
(
Hj ∩QC

j

) ≤
∞∑

j=1

E
[
qj · |
j,dj

|1QC
j

]q− j
2

εj2

≤
(supk≥1{E[qk · |
k,dk

|1QC
k
]})

ε

∞∑
j=1

q− j
2

j2 ,

which is finite from Theorem 3.2. Hence, again from the Borel–Cantelli lemma we
have that

P
(
Hj ∩QC

j , i.o.
) = 0.

We will now show that P (Qj , i.o.) = 0. To this end, we can follow the same
arguments used in the first part of this proof, except that here we define

Cj := {∣∣T (ρ1)
j,dj

− Tqj

∣∣ > εqj }.
In this case, to show P (Cj , i.o.) = 0 we have to prove that the following two events
cannot occur infinitely often:

(i) G3j := {( Y0
bqj+1 + 1)|ρ1 − ρ̂1,qj | > ε

2qb
},

(ii) G4j := {( Y0
bqj + 1)|ρ1 − Zqj | > ε

2b
}.

Result (i) is implied by (2.6), while (ii) follows from Theorem 2.1. Hence, we have
that

P (Cj , i.o.) = 0.
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Then, similar to the first part of the proof, we deal with the sets Aj − Cj and
Bj − Cj by applying Chernoff’s upper bound to the probabilities

PAj = P

( dj∑
i=1

Ai < εqj

)
and PBj = P

( dj∑
i=1

Bi > −εqj

)
,

which implies
∑∞

j=1 PAj < ∞ and
∑∞

j=1 PBj < ∞. Hence, from the Borel–
Cantelli lemma we get

P (Aj − Cj , i.o.) = P (Bj − Cj ) = 0,

which implies P (Qj , i.o.) = 0. This completes the proof. �

REMARK 4.2. The result of Theorem 4.1 continues to hold if (2.6) is not
satisfied, but ρ̂n

a.s.→ ρ and condition (c1) hold. Moreover, since in the proof we
use Theorem 3.1, if (2.6) does not hold condition (c2) must be assumed (see Re-
mark 3.1).

4.3. Proof of Proposition 2.1.

PROOF. Without loss of generality, assume m1 > m2, which implies ρ̂n = ρ̂1,n

and ρ = ρ1. First, we have

(4.15) E
[
n|ρ̄1,n − ρ1|2] = 1

n
E

[∣∣∣∣∣
n−1∑
i=0

(ρ̃1,i − ρ1)

∣∣∣∣∣
2]

,

and note that

n−1∑
i=0

(ρ̃1,i − ρ1) =
kn∑

j=0

dj∑
i=0

(ρ̃1,qj +i − ρ1)1{qkn+i≤n}

=
kn−1∑
j=0

dj (ρ̂1,qj − ρ1) + (
n − qkn

)
(ρ̂1,qkn − ρ1),

where we recall kn is defined in (2.5) as kn := [logq(n)]. Since dj = (q −1)qj , the
LHS of (4.15) is equal to

(q − 1)2

n
E

[∣∣∣∣∣
kn−1∑
j=0

(
√

q)j · (√q
j
(ρ̂1,qj − ρ1)

)+
(

n − qkn

q − 1

)
(ρ̂1,qkn − ρ1)

∣∣∣∣∣
2]

,

and, defining cj := √
qj |ρ̂1,qj −ρ1|, we can rewrite the last expression as follows:

(q − 1)2

n
E

[(
kn−1∑
j=0

(
√

q)j · cj +
[

n − qkn

√
qkn(q − 1)

]
ckn

)2]
.
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Now, using the Cauchy–Schwarz inequality and using (
n−qkn√
qkn(q−1)

) ≤ √
qkn , the

above expectation is less than or equal to

Kn :=
kn∑

j1=0

kn∑
j2=0

(
√

q)j1(
√

q)j2 ·
√

E
[
c2
j1

]
E
[
c2
j2

]
.

Now, by the symmetry in Kn, we can use the following decomposition:

kn∑
j1=0

kn∑
j2=0

(·) =
√

kn∑
j1=0

√
kn∑

j2=0

(·) + 2

√
kn∑

j1=0

kn∑
j2=√

kn

(·) +
kn∑

j1=√
kn

kn∑
j2=√

kn

(·)

≤ 2
kn∑

j1=0

√
kn∑

j2=0

(·) +
kn∑

j1=√
kn

kn∑
j2=√

kn

(·),

we obtain

Kn ≤ sup
j≥1

{
E
[
c2
j

]} · 2
kn∑

j1=0

√
kn∑

j2=0

(
√

q)j1(
√

q)j2

+ max√
kn≤j≤kn

{
E
[
c2
j

]} ·
kn∑

j1=√
kn

kn∑
j2=√

kn

(
√

q)j1(
√

q)j2

= K1n + K2n.

Now, consider K1n; we have that

K1n ≤ sup
j≥1

{
E
[
c2
j

]} · 2
(

(
√

q)
√

kn+1 − 1√
q − 1

)(
(
√

q)kn+1 − 1√
q − 1

)
,

and by multiplying for (q − 1)2/n we obtain

2
(

q − 1√
q − 1

)2
sup
j≥1

{
E
[
c2
j

]} ·
(

(
√

q)
√

kn+1 − 1√
n

)(
(
√

q)kn+1 − 1√
n

)
.

Using (2.6), we have that supj≥1{E[c2
j ]} is finite. Moreover, since n ≤ qkn+1 by

definition of kn, we have that
(

(
√

q)kn+1 − 1√
n

)
≤ √

q,

(
(
√

q)
√

kn+1 − 1√
n

)
→ 0.

Similarly, we can consider K2n and write

K2n ≤ max√
kn≤j≤kn

{
E
[
c2
j

]} ·
(

(
√

q)kn+1 − 1√
q − 1

)2
.
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Then, by multiplying for (q − 1)2/n we obtain(
q − 1√
q − 1

)2
max√

kn≤j≤kn

{
E
[
c2
j

]} ·
(

(
√

q)kn+1 − 1√
n

)2
,

and from (2.6) and n ≤ qkn+1 we have max√
kn≤j≤kn

{E[c2
j ]} is finite and

(
(
√

q)kn+1 − 1√
n

)2
≤ q.

Then, combining all together, we obtain

lim sup
n→∞

E
[
n|ρ̄1,n − ρ1|2] ≤ lim sup

n→∞
(q − 1)2

n
K2n

≤ q(1 + √
q)2 · lim sup

n→∞
E
[
n|ρ̂1,n − ρ1|2],

which is finite because of condition (2.6). �

4.4. Proof of Corollary 2.2. To prove this result, we apply Theorem 2.2 to the
urn model with fixed thresholds, that is, ρ̃1,n = ρ1 and ρ̃2,n = ρ2 for all n ≥ 0,
since in this case ρ̄n = ρ for all n ≥ 0.

5. Simulation studies. In this section we describe some simulation studies
that illustrate the theoretical results presented in Section 2 in the context of clin-
ical trials. We recall from Section 2.3 that the random variables ξ1,n and ξ2,n are
interpreted as potential responses to competing treatments T1 and T2, whose distri-
butions μ1 and μ2 depend on parameters θ1 and θ2, respectively. Let θ = (θ1, θ2).
Now, letting f1 and f2 be two continuous functions, we recall that ρ1 = f1(θ) and
ρ2 = f2(θ), and the adaptive thresholds are ρ̂1,n := f1(θ̂n) and ρ̂2,n := f2(θ̂n) for
all n ≥ 1, where θ̂n is the adaptive estimator of θ after the first n allocations.

The main goal of this section is to illustrate the asymptotic behavior of the al-
location proportion N1,n/n and of the parameter estimator θ̂ n. Simulations are
performed with N = 105 independent urn processes, each that evolves follow-
ing the model described in Section 2 with adaptive thresholds ρ̃1,n and ρ̃2,n that
change at exponential times {qj ; j ≥ 1}, with q = 1.25 [see (2.4)]. For all the N

urn processes, we used as initial composition (y1,0, y2,0) = (2,2) and as sample
size n = 200. The functions f1 and f2 are chosen as in (2.10) with p = 0.75. We
analyze both Bernoulli and Gaussian responses.

5.1. Bernoulli responses. We assume responses to treatments T1 and T2 are
Bernoulli distributed with parameters p1 and p2, respectively. In this case, θ =
(p1,p2). We examine two target allocations:

(a) η(θ) = (1 − p1)/(2 − p1 − p2), proposed by [23];
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TABLE 1
Simulations of N1,n/n and θ̂n are given for different designs, with mean square errors given in
parentheses. The target allocation is ρ1 = (1 − p) · 1 + p · η(θ) with p = 0.75. Simulation used
N = 105 ARRU processes with n = 200 and changes at times {qj ; j ≥ 1} with q = 1.25. Initial

composition (y1,0, y2,0) = (2,2)

Bernoulli responses

p1 p2 ρ1 N1,n/n p̂1,n p̂2,n

(a) η = (1 − p1)/(2 − p1 − p2)

0.9 0.7 0.44 0.44 (0.07) 0.89 (0.03) 0.7 (0.04)
0.9 0.5 0.38 0.41 (0.06) 0.89 (0.03) 0.50 (0.05)
0.9 0.3 0.34 0.40 (0.07) 0.89 (0.03) 0.30 (0.04)
0.9 0.1 0.33 0.43 (0.12) 0.89 (0.03) 0.11 (0.03)
0.7 0.5 0.53 0.50 (0.07) 0.70 (0.05) 0.50 (0.05)
0.7 0.3 0.48 0.48 (0.05) 0.70 (0.05) 0.30 (0.04)
0.7 0.1 0.44 0.48 (0.06) 0.70 (0.05) 0.11 (0.03)
0.5 0.3 0.56 0.53 (0.06) 0.50 (0.05) 0.30 (0.05)
0.5 0.1 0.52 0.53 (0.04) 0.50 (0.05) 0.11 (0.03)
0.3 0.1 0.58 0.56 (0.05) 0.30 (0.04) 0.11 (0.03)

(b) η = √
p1/(

√
p1 + √

p2)

0.9 0.7 0.65 0.57 (0.11) 0.89 (0.03) 0.69 (0.05)
0.9 0.5 0.68 0.63 (0.08) 0.89 (0.03) 0.50 (0.06)
0.9 0.3 0.73 0.69 (0.06) 0.89 (0.03) 0.30 (0.06)
0.9 0.1 0.81 0.76 (0.07) 0.89 (0.02) 0.11 (0.04)
0.7 0.5 0.66 0.58 (0.11) 0.69 (0.04) 0.50 (0.06)
0.7 0.3 0.70 0.66 (0.07) 0.70 (0.04) 0.30 (0.06)
0.7 0.1 0.79 0.74 (0.07) 0.70 (0.04) 0.12 (0.04)
0.5 0.3 0.67 0.60 (0.10) 0.50 (0.05) 0.30 (0.05)
0.5 0.1 0.77 0.70 (0.08) 0.50 (0.04) 0.11 (0.04)
0.3 0.1 0.73 0.64 (0.11) 0.30 (0.04) 0.11 (0.03)

(b) η(θ) = √
p1/(

√
p1 + √

p2), proposed by [21].

Hence, from (2.10) with p = 0.75, we have

ρ1 = 0.25 · 1 + 0.75 · η(p1,p2), and ρ2 = 0.25 · 0 + 0.75 · η(p1,p2).

In Table 1, we report simulation results on the mean and the standard error of the
allocation proportion N1,n/n and of the estimators p̂1,n and p̂2,n, defined as

p̂1,n =
∑n

i=1 Xiξ1,i

N1,n

, and p̂2,n =
∑n

i=1(1 − Xi)ξ2,i

N2,n

.

5.2. Gaussian responses. We now assume responses to treatments T1 and T2
are normal distributed with parameters (m1, σ

2
1 ) and (m2, σ

2
2 ), respectively. In this

case, θ = (m1, σ
2
1 ,m2, σ

2
2 ). We examine two target allocations:



CLT FOR AN ADAPTIVE URN MODEL 3001

TABLE 1
(Continued)

Normal responses

m1 m2 σ 2
1 σ 2

2 ρ1 N1,n/n σ̂ 2
1,n σ̂ 2

2,n

(c) η = σ1/(σ1 + σ2)

10 5 1 1 0.63 0.61 (0.05) 1.01 (0.13) 1.01 (0.16)
8 5 1 1 0.63 0.59 (0.07) 1.01 (0.13) 1.01 (0.16)
6 5 1 1 0.63 0.55 (0.12) 1.01 (0.14) 1.01 (0.15)

10 5 4 1 0.75 0.73 (0.06) 4.00 (0.47) 1.01 (0.20)
8 5 4 1 0.75 0.71 (0.07) 4.00 (0.48) 1.01 (0.19)
6 5 4 1 0.75 0.66 (0.13) 4.03 (0.50) 1.01 (0.18)

10 5 1 4 0.50 0.49 (0.05) 1.01 (0.14) 4.00 (0.57)
8 5 1 4 0.50 0.48 (0.07) 1.01 (0.15) 4.03 (0.56)
6 5 1 4 0.50 0.43 (0.11) 1.01 (0.16) 4.03 (0.54)

(d) η = σ1
√

m2/(σ1
√

m2 + σ2
√

m1)

10 5 1 1 0.56 0.55 (0.05) 1.01 (0.14) 1.01 (0.15)
8 5 1 1 0.58 0.55 (0.07) 1.01 (0.14) 1.01 (0.15)
6 5 1 1 0.61 0.53 (0.12) 1.01 (0.14) 1.01 (0.15)

10 5 4 1 0.69 0.67 (0.06) 4.03 (0.49) 1.01 (0.18)
8 5 4 1 0.71 0.67 (0.07) 4.03 (0.49) 1.01 (0.18)
6 5 4 1 0.73 0.65 (0.13) 4.03 (0.51) 1.01 (0.18)

10 5 1 4 0.45 0.44 (0.05) 1.01 (0.15) 4.03 (0.54)
8 5 1 4 0.46 0.44 (0.07) 1.01 (0.16) 4.03 (0.54)
6 5 1 4 0.48 0.42 (0.11) 1.01 (0.16) 4.03 (0.53)

(c) η(θ) = σ1/(σ1 + σ2), used in [15];
(d) η(θ) = σ1

√
m2/(σ1

√
m2 + σ2

√
m1), proposed by [24].

Hence, from (2.10) with p = 0.75, we have

ρ1 = 0.25 · 1 + 0.75 · η(θ), and ρ2 = 0.25 · 0 + 0.75 · η(θ).

In Table 1, we report simulation results on the mean and the standard error of the
allocation proportion N1,n/n and the parameter estimators σ̂ 2

1,n and σ̂ 2
2,n, defined

as

σ̂ 2
1,n =

∑n
i=1 Xi(ξ1,i − m̂1,n)

2

N1,n

, σ̂ 2
2,n =

∑n
i=1(1 − Xi)(ξ2,i − m̂2,n)

2

N2,n

,

where m̂1,n = ∑n
i=1 Xiξ1,i/N1,n and m̂2,n = ∑n

i=1(1 − Xi)ξ2,i/N2,n.
The results show that our methods target the true parameters effectively. In real

clinical trials, further calibration may be performed to reduce small bias.

6. Extensions to multi-color urn models. It is important to note that all the
results presented in this paper can be extended to the case of K > 2 colors, when
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there exists j ∈ {1, . . . ,K} such that mj > mk for any k �= j . In the context of
clinical trials, the functions fj should be interpreted as the target allocations for
Nj,n/n when Tj is the superior treatment, and the variables Wj,n should be all
defined as 1{Zn≤ρ̂j,n}.
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