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Bayesian Nonparametric Modeling and the
Ubiquitous Ewens Sampling Formula
Yee Whye Teh

I would like to thank Harry Crane for a most enlight-
ening review of the many ways and guises in which the
Ewens sampling formula pops up throughout statistics
and mathematics. Given the simplicity and the almost
inevitability of Ewens’ sampling formula when work-
ing with distributions over partitions, one could say
that it plays a similar role for random partitions as the
normal distribution plays for random real-valued vari-
ables. And just as the normal distribution plays an im-
portant role as a core building block for more complex
models, for example, hierarchical Bayesian models or
graphical models, Ewens’ sampling formula and the
associated Chinese restaurant process distribution over
set partitions and Dirichlet process distribution over
probability measures play increasingly important roles
as building blocks of more complex Bayesian nonpara-
metric models. Crane has noted, and I agree, that this
is “one of the most active areas of statistical research,”
whose “overwhelming activity forbids any possibility
of a satisfactory survey of the topic and promises to
quickly outdate the contents of the present section.” In
this discussion I will attempt to present an (already out-
dated) overview of the use of Ewens’ sampling formula
in Bayesian nonparametrics, specifically focusing on
the many creative ways the community has built more
complex models out of these simpler building blocks.
Much of the work is motivated by recent trends toward
using the analysis of “Big Data” sets to derive scientific
understanding and drive technological progress. Such
modern data sets are often not just tall, they are also
wide, and not just tall and wide, but also complex and
structured, and it is important to model the nontrivial
dependencies hidden behind the data.

Good introductions to Bayesian nonparametrics can
be found in the collection edited by Hjort et al. [14] and
the book by Ghosh and Ramamoorthi [13], while more
recent works can be found in the IEEE TPAMI special
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issue [1] and a number of other forthcoming special
issues. Finally, shorter introductions and tutorials for
less mathematically inclined readers can be found in
[11, 12, 22].

1. NONPARAMETRIC MIXTURE MODELS AND
CLUSTERING

One of the most popular uses of Ewens’ sampling
formula in Bayesian nonparametrics is via the Chi-
nese restaurant process (CRP), a distribution over set
partitions described in Section 4, for mixture model-
ing and clustering. Consider a data set of size n mod-
eled as observations of exchangeable random variables
Y1, . . . , Yn. Assuming that these come from a number
of heterogenous sources or clusters, we can model the
assignment of the observations to different sources us-
ing a partition � of the index set. If the number of
sources is unknown and taking a Bayesian formalism,
a sensible prior should then place positive mass over all
possible partitions. A simple example of such a prior is
given by the Chinese restaurant process CRP([n], θ),
leading to the following model:

� ∼ CRP
([n], θ)

, Yi |� ind.∼ F
(
X∗

c

)
, X∗

c

i.i.d.∼ H,

where i ∈ c ∈ �, X∗
c is the unknown parameters de-

scribing cluster c in �, H is its prior, and CRP([n], θ)

denotes the CRP distribution over partitions of the set
[n] = {1, . . . , n} with parameter θ . Such a model was
first proposed by Lo [17] for density estimation prob-
lems, and rediscovered for clustering in machine learn-
ing [19, 23]. It is now commonly known as the Dirich-
let process mixture model, so named as the de Finetti
measure underlying the CRP mixture is the Dirichlet
process DP(θ,H).

2. NESTED PARTITIONS AND TREES

In certain applications, for example, phylogenetics
and unsupervised categorization learning, it is of inter-
est to model data as arising from a nested collection of
clusters. For example, a beagle is a dog is an animal is a
living organism. These can be modeled as nested parti-
tions, for example, {{{1,4}, {5}}, {{2,6}, {3}}, {{7}}} is
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a two-level nested partition of {1, . . . ,7}. Distributions
over nested partitions can be constructed from CRPs
in two different ways: by subpartitioning or fragment-
ing the clusters of a partition recursively in a top-down
fashion or by coagulating the clusters of a partition re-
cursively in a bottom-up fashion.

A fragmentation process starts with the trivial par-
tition with just one cluster and recursively fragments
clusters using independent CRPs L times to construct
an L level nested partition. Such a fragmentation pro-
cess was called a nested CRP in [5] who explored it as
a model for unsupervised learning of topic hierarchies
in text analysis. Conversely, a coagulation process can
start with another trivial partition with all items in their
own clusters, and recursively coagulate clusters in the
following way: If π is a partition, let κ be a partition
of the clusters in π , say, drawn from CRP(π, θ). The
coagulation of π by κ is then π ′ = {⋃c∈γ c : γ ∈ κ},
where the clusters in π belonging to the same cluster in
κ are merged. This coagulation process can be shown
to be the dual genealogical process of the hierarchical
Dirichlet process [25] (described later), where it is a
simple case of the Chinese restaurant franchise.

Fragmentation and coagulation processes are more
conveniently represented mathematically as Markov
chains on set partitions, with fragmentations being se-
quences of partition refinements (see Section 3.5 of
main article), while coagulations are coarsenings [4].
Viewed in this way, one can also ask for continu-
ous time limits of the Markov chains associated with
the nested CRPs and the Chinese restaurant franchise,
leading to Dirichlet diffusion trees [20] and Kingman’s
coalescents (Section 2.4) respectively. It is also pos-
sible to construct partition-valued Markov chains with
both fragmentations and coagulations in operation. The
mathematical properties of such processes were stud-
ied in [3], and they were applied to haplotype modeling
and genetic imputation in [10, 24].

3. HIERARCHICAL BAYESIAN NONPARAMETRIC
MODELS

A common theme across both frequentist and
Bayesian statistics is when data are separated into
groups and it is important to model groups individually
while sharing statistical strength across groups to pro-
vide more fine-grained control over model flexibility.
In Bayesian statistics this is achieved using hierarchical
Bayesian models where each group has an associated
random parameter with a common prior distribution

across groups parameterized by a random hyperparam-
eter. The randomness of the hyperparameter induces
the sharing of statistical strength across groups.

In a Bayesian nonparametric setting, where the ran-
dom parameter is typically an infinite-dimensional
stochastic process, control over model flexibility is ar-
guably even more important than in parametric models.
For example, if each group is modeled with a Dirich-
let process mixture, with Gj ∼ DP(θ,G0) for group j ,
one can place a hierarchical DP prior on the base dis-
tribution, G0 ∼ DP(θ0,H) [25], which induces sharing
of the mixture components across groups. Such hierar-
chical constructions also arise naturally elsewhere in
Bayesian nonparametrics, for example, Gaussian pro-
cesses for regression [26] and beta processes/Indian
buffet processes for feature allocations [9, 27].

4. DEPENDENT AND RELATIONAL MODELS

Hierarchical models effectively assume exchange-
ability among groups and induce relatively simple
forms of statistical strength sharing across groups. This
can be relaxed to various forms of partial exchange-
ability. For example, if there are group level covariates,
or spatial or temporal structure, then dependent mod-
els reflecting this structure may be appropriate. There
are two levels at which general dependencies can be
induced. At the random measures level, for each co-
variate value t we introduce a random measure Gt

and work with the measure-valued stochastic process
(Gt). When each Gt is a DP, such dependent DPs were
first explored by MacEachern [18]. At the random par-
titions level, one instead works with partition-valued
stochastic processes, for example, [6, 7]. A significant
number of constructions have been provided in the lit-
erature and reviewed in [8].

The random set partitions associated with the Ewens
sampling formula have also been used in modeling re-
lational data such as social networks and collaborative
filtering. These are data where observations (e.g., of
links or friendships) are associated with relations be-
tween two or more objects, rather than with objects
themselves (although there can be object-level covari-
ates). In the infinite relational model [16, 28], objects
are partitioned into clusters via the CRP, and observed
relations between objects are mediated by the clusters
that they belong to. For relational data, de Finetti’s the-
ory of exchangeability is generalized to relational ex-
changeability by Aldous and Hoover [2, 15]; see [21]
for an introduction.
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5. SUMMARY

The Ewens sampling formula and the associated dis-
tributions over partitions, set partitions and probabil-
ity measures have very many mathematically elegant
properties, which have been well explored in the liter-
ature and well reviewed in the present paper. With a
good understanding of such distributions and in a data-
rich world, the Bayesian nonparametrics community
is now engaged in the practical uses of Ewens’ sam-
pling formula for modeling more complex phenom-
ena. Important approaches have included covariate-
dependence, hierarchical Bayesian models, construc-
tions of nested partitions and trees, and applications to
non-i.i.d. settings like relational and network data.
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