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Abstract: Several new estimation methods have been recently proposed
for the linear regression model with observation errors in the design. Dif-
ferent assumptions on the data generating process have motivated different
estimators and analysis. In particular, the literature considered (1) observa-
tion errors in the design uniformly bounded by some δ̄, and (2) zero-mean
independent observation errors. Under the first assumption, the rates of
convergence of the proposed estimators depend explicitly on δ̄, while the
second assumption has been essentially applied when an estimator for the
second moment of the observational error is available. This work proposes
and studies two new estimators which, compared to other procedures for
regression models with errors in the design, exploit an additional �∞-norm
regularization. The first estimator is applicable when both (1) and (2) hold
but does not require an estimator for the second moment of the observa-
tional error. The second estimator is applicable under (2) and requires an
estimator for the second moment of the observation error. Importantly, we
impose no assumption on the accuracy of this pilot estimator, in contrast
to the previously known procedures. As the recent proposals, we allow the
number of covariates to be much larger than the sample size. We estab-
lish the rates of convergence of the estimators and compare them with the
bounds obtained for related estimators in the literature. These compar-
isons show interesting insights on the interplay of the assumptions and the
achievable rates of convergence.
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1. Introduction

Several new estimation methods have been recently proposed for the linear
regression model with observation errors in the design. Such problems arise in a
variety of applications, see [7, 8, 10, 11]. In this work we consider the following
regression model with observation errors in the design:

y = Xθ∗ + ξ,

Z = X +W.

Here the random vector y ∈ R
n and the random n × p matrix Z are observed,

the n×p matrix X is unknown, W is an n×p random noise matrix, and ξ ∈ R
n

is a random noise vector. The vector of unknown parameters of interest is θ∗

which is assumed to belong to a given convex subset Θ of Rp characterizing
some prior knowledge about θ∗ (potentially Θ = R

p). Similarly to the recent
literature on this topic, we consider the setting where the dimension p can be
much larger than the sample size n and the vector θ∗ is s-sparse, which means
that it has no more than s non-zero components.

The need for new estimators under errors in the design arises from the fact
that standard estimators (e.g. Lasso and Dantzig selector) might become un-
stable, see [8]. To deal with this framework, various assumptions have been
considered, leading to different estimators.

A classical assumption in the literature is a uniform boundedness condition
on the errors in the design, namely,

|W |∞ ≤ δ̄ almost surely, (1)

where | · |q denotes the �q-norm for 1 ≤ q ≤ ∞. Note that this assumption allows
for various dependences between the errors in the design. In this setting, the
Matrix Uncertainty selector (MU selector), which is robust to the presence of

errors in the design, is proposed in [8]. The MU selector θ̂MU is defined as a
solution of the minimization problem

min{|θ|1 : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ)
∣∣
∞ ≤ τ1|θ|1 + τ}, (2)

where the parameters τ1 and τ depend on the level of the noises of W and
ξ respectively. Under appropriate choices of these parameters and suitable as-
sumptions on X, it was shown in [8] that with probability close to 1,

|θ̂MU − θ∗|q ≤ Cs1/q{δ̄ + δ̄2}|θ∗|1 + Cs1/q
√

log p

n
, 1 ≤ q ≤ ∞. (3)

Here and in what follows we denote by the same symbol C (or c′) different
positive constants that do not depend on θ∗, s, n, p, δ̄, but only on the variance
parameters σ2 and σ2

∗ (defined later). The result (3) implies consistency as the
sample size n tends to infinity provided that the error in the design goes to
zero sufficiently fast to offset s1/q|θ∗|1, and the number of variables p and the
sparsity s of θ∗ do not grow too fast relative to the sample size n.
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An alternative assumption considered in the literature is that the entries of
the random matrix W are independent with zero mean, the values

σ2
j =

1

n

n∑
i=1

E(W 2
ij), j = 1, . . . , p,

are finite, and data-driven estimators σ̂2
j of σ2

j are available converging with an
appropriate rate. This assumption motivated the idea to compensate the bias
of using the observable ZTZ instead of the unobservable XTX in (2) thanks
to the estimates of σ2

j . This compensated MU selector, introduced in [9] and

denoted as θ̂C , is defined as a solution of the minimization problem

min{|θ|1 : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ) + D̂θ
∣∣
∞ ≤ τ1|θ|1 + τ},

where D̂ is the diagonal matrix with entries σ̂2
j and τ1 > 0 and τ > 0 are

constants chosen according to the level of the noises and the accuracy of the σ̂2
j .

Rates of convergence of the compensated MU selector were established in [9].
Importantly, the compensated MU selector can be consistent as the sample size
n increases even if the error in the design does not vanish. This is in contrast
to the case of the MU selector, where the bounds are small only if the bound
on the design error δ̄ is small. In particular, under regularity conditions, when
θ∗ is s-sparse, it is shown in [9] that with probability close to 1,

|θ̂C − θ∗|q ≤ Cs1/q
√

log p

n
(|θ∗|1 + 1), 1 ≤ q ≤ ∞. (4)

Under the same alternative assumption, a conic programming based estimator
θ̂Conic has been recently proposed and analyzed in [1]. The estimator θ̂Conic is
defined as the first component of any solution of the optimization problem

min
(θ,t)∈Rp×R+

{|θ|1 +λ2t : θ ∈ Θ,
∣∣ 1
nZ

T (y−Zθ)+ D̂θ
∣∣
∞ ≤ τ2t+ τ, |θ|2 ≤ t}, (5)

where λ2, τ2 and τ are some positive tuning constants. Akin to θ̂C , this estimator
compensates for the bias by using the estimators σ̂2

j of σ2
j . However, it exploits a

combination of �1 and �2-norm regularization to be more adaptive. It was shown
to attain a bound as in (4) and to be computationally feasible since it is cast
as a tractable convex optimization problem (a second order cone programming
problem). Moreover, under mild additional conditions, with probability close to
1, the estimator (5) achieves improved bounds of the form

|θ̂Conic − θ∗|q ≤ Cs1/q
√

log p

n
(|θ∗|2 + 1), 1 ≤ q ≤ ∞, (6)

provided that D̂ converges to D in sup-norm with the rate
√
(log p)/n. It is

shown in [1] that the rate of convergence in (6) is minimax optimal in the
considered model.
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There have been other approaches to the errors-in-variables model, usually
exploiting some knowledge about the vector θ∗, see [2, 3, 7, 10]. Assuming |θ∗|1
is known, [7] proposed an estimator θ̂′ defined as the solution of a non-convex
program which can be well approximated by an iterative relaxation procedure. In
the case where the entries of the regression matrix X are zero-mean subgaussian
and θ∗ is s-sparse, under appropriate assumptions, it is proved that for the error
in �2-norm (q = 2),

|θ̂′ − θ∗|2 ≤ C(θ∗)s1/2
√

log p

n
(|θ∗|2 + 1), (7)

with probability close to 1. Here, the value C(θ∗) depends on θ∗, so that there
is no guarantee that the estimator attains the optimal bound as in (6). Assum-
ing that the sparsity s of θ∗ is known and the non-zero components of θ∗ are
separated from zero in so that

|θ∗j | ≥ C

√
log p

n
(|θ∗|2 + 1),

an orthogonal matching pursuit algorithm to estimate θ∗ is introduced in [2, 3].
Focusing as in [7] on the particular case where the entries of the regression
matrix X are zero-mean subgaussian, it is shown in [2, 3] that this last estimator
satisfies a bound analogous to (6), as well as a consistent support recovery result,
without requiring estimates of σ2

j .
The main purpose of this work is to show that an additional regularization

term based on the �∞-norm leads to improved rates of convergence in several
situations. We propose two new estimators for θ∗. The first proposal is applicable
under a new combination of the assumptions mentioned above. Namely, we
assume that the components of the errors in the design are uniformly bounded
by δ̄ as in (1), and that the rows of W are independent and with zero mean.

However, we will neither assume that a data-driven estimator D̂ is available, nor
that specific features of θ∗ are known (e.g. s or |θ∗|1). The estimator is defined as
a solution of a regularized optimization problem which uses simultaneously �1, �2
and �∞ regularization functions. It can be cast as a convex optimization problem
and the solution can be easily computed. We study its rates of convergence in
various norms in Section 3. One of the conclusions is that for δ̄ � {(log p)/n}1/2,
the new estimator has improved rates of convergence compared to the MU
selector. Furthermore, note that the conic estimator θ̂Conic studied in [1] can

also be applied. Indeed, our setting can be embedded into that of [1] with D̂
being the identically zero p× p matrix, which means that we have an estimator
of each σ2

j with an error bounded by δ̄2. Comparing the bounds yields that

the conic estimator θ̂Conic achieves the same rate as our new estimator if δ̄
is smaller than or of the order {(log p)/n}1/4. However, there is no bound for

θ̂Conic available when δ̄ � {(log p)/n}1/4.
The second estimator we propose applies to the same setting as in [1]. The

idea of taking advantage of an additional �∞-norm regularization can be used
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to improve the conic estimator θ̂Conic of [1] whenever the rate of convergence

of the estimator D̂ for σ2
j , j = 1, . . . , p, is slower than {(log p)/n}1/2. This mo-

tivated us to propose and analyze a modification of the conic estimator. We
derive new rates of convergence that can lead to improvements. However, we
acknowledge that in the case considered in [1], where the rate of convergence

of D̂ is {(log p)/n}1/2, there is no gain in the rates of convergence when using
the additional �∞-norm regularization. Therefore the proposed estimator is of
particular interest in applications where it is costly and disruptive to generate
precise measurements of Xi (the i-th row of X: the couple (Xi, Zi) is observed
in that case, and yi is unobserved), while observations on (yk, Zk) are readily
available. For example, interventions in experiments can be used to precisely
measure a particular covariate of subjects but such interventions can invalidate
the use of the outcome yi for that particular subject. This is relevant in epi-
demiological research, where accurate measurements are commonly difficult to
achieve without expensive interviews and tests which tend to impact the future
behavior of the subject invalidating the associated outcome, see [4]. In such
settings, we observe n observations of (yk, Zk) and n∗ observations of the pair
(Xi, Zi). When the (Xi, Zi) are iid, the later can be typically used to construct

estimates σ̂2
j for σ̂2

j so that |D̂ −D|∞ = b(ε) ≤ C
√
{log(p/ε)}/n∗ with proba-

bility 1− ε. Nonetheless, given the sampling cost structure, it is often the case
that n∗ � n and b(ε) �

√
(log p)/n.

We emphasize that the new use of the �∞-norm in the first order condi-
tion is precisely what drives our new rates of convergence. In the settings we
are concerned with, the rates of convergence are dominated by the “crude” es-
timators D̂ of D. The impact of using D̂ instead of D is well controlled by
|(D̂−D)θ∗|∞ ≤ b(ε)|θ∗|∞ since D is diagonal. Previous estimators that rely on
�1 or �2-regularization terms would not be able to fully exploit this structure and
would not be sharp if b(ε) �

√
(log p)/n. Furthermore, the �∞-regularization

allows us to achieve a convex formulation for the problem. We view the use of
the �∞-regularization as a new way to increase the adaptivity of an estimator
that can be of independent interest in other applications.

The paper is organized as follows. Section 2 contains the notation, main
assumptions and some preliminary lemmas needed to determine threshold con-
stants in the algorithms. The definition and properties of our first estimator
are given in Section 3 whereas those of our second procedure can be found
in Section 4. Section 5 contains simulation results. Some auxiliary lemmas are
relegated to an appendix.

2. Notation, assumptions, and preliminary lemmas

In this section, we introduce the assumptions which will be required to derive
the rates of convergence of the proposed estimators. One set of conditions per-
tains to the design matrix and the second to the errors in the model. We also
state preliminary lemmas related to the stochastic error terms. We start by
introducing some notation.
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2.1. Notation

Let J ⊂ {1, . . . , p} be a set of integers. We denote by |J | the cardinality of J .
For a vector θ = (θ1, . . . , θp) in R

p, we denote by θJ the vector in R
p whose j-th

component satisfies (θJ)j = θj if j ∈ J , and (θJ)j = 0 otherwise. For γ > 0,
the random variable η is said to be sub-gaussian with variance parameter γ2 (or
shortly γ-sub-gaussian) if, for all t ∈ R,

E[exp(tη)] ≤ exp(γ2t2/2).

A random vector ζ ∈ R
p is said to be sub-gaussian with variance parame-

ter γ2 if the inner products (ζ, v) are γ-sub-gaussian for any v ∈ R
p with

|v|2 = 1.

2.2. Design matrix

The performance of the estimators that we consider below is influenced by the
properties of the Gram matrix

Ψ =
1

n
XTX.

We will assume that:

(A1) The matrix X is deterministic.

In order to characterize the behavior of the design matrix, we set

m2 = max
j=1,...,p

1

n

n∑
i=1

X2
ij ,

where Xij are the elements of matrix X and we consider the sensitivity charac-
teristics related to the Gram matrix Ψ. For u > 0, define the cone

CJ(u) =
{
Δ ∈ R

p : |ΔJc |1 ≤ u|ΔJ |1
}
,

where J is a subset of {1, . . . , p}. For q ∈ [1,∞] and an integer s ∈ [1, p], the
�q-sensitivity (cf. [5]) is defined as follows:

κq(s, u) = min
J: |J|≤s

(
min

Δ∈CJ (u): |Δ|q=1
|ΨΔ|∞

)
.

Like in [5], we use here the sensitivities to derive the rates of convergence of
estimators under sparsity. Importantly, as shown in [5], the approach based on
sensitivities is more general than that based on the restricted eigenvalue or the
coherence condition, see also [1, 6, 9]. In particular, under those conditions, we
have κq(s, u) ≥ c s−1/q for some constant c > 0, which implies the usual optimal
bounds for the errors.
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2.3. Disturbances

Next we turn to the error W in the design and the error ξ in the regression
equation. We will make the following assumptions:

(A2) The elements of the random vector ξ are independent zero-mean sub-
gaussian random variables with variance parameter σ2.

(A3) The rows of the noise matrix W are independent zero-mean subgaussian
random vectors with variance parameter σ2

∗, and E[WijWik] = 0 for all
1 ≤ j < k ≤ p. Furthermore, W is independent of ξ.

2.4. Bounds on the stochastic error terms

We now state some useful lemmas from [1] and [9] that provide bounds to various
stochastic error terms that play a role in our analysis. We state them here
because they introduce the thresholds δi, δ

′
i that will be used in the definition of

the estimators. In what follows, D is the diagonal matrix with diagonal elements
σ2
j , j = 1, . . . , p, and for a square matrix A, we denote by Diag{A} the matrix

with the same dimensions as A, the same diagonal elements, and all off-diagonal
elements equal to zero.

Lemma 1. Let 0 < ε < 1 and assume (A1)–(A3). Then, with probability at
least 1− ε (for each event),∣∣ 1

nX
TW

∣∣
∞ ≤ δ1(ε),

∣∣ 1
nX

T ξ
∣∣
∞ ≤ δ2(ε),

∣∣ 1
nW

T ξ
∣∣
∞ ≤ δ3(ε),∣∣ 1

n (W
TW −Diag{WTW})

∣∣
∞ ≤ δ4(ε),

∣∣ 1
nDiag{WTW} −D

∣∣
∞ ≤ δ5(ε),

where

δ1(ε) = σ∗

√
2m2 log(2p2/ε)

n
, δ2(ε) = σ

√
2m2 log(2p/ε)

n
,

δ3(ε) = δ5(ε) = �(ε, 2p), δ4(ε) = �(ε, p(p− 1)),

and for an integer N ,

�(ε,N) = max

(
γ0

√
2 log(N/ε)

n
,
2 log(N/ε)

t0n

)
,

where γ0, t0 are positive constants depending only on σ, σ∗.

Lemma 2. Let 0 < ε < 1, θ∗ ∈ R
p and assume (A1)–(A3). Then, with proba-

bility at least 1− ε, ∣∣ 1
nX

TWθ∗
∣∣
∞ ≤ δ′1(ε)|θ∗|2,

where δ′1(ε) = σ∗

√
2m2 log(2p/ε)

n . In addition, with probability at least 1− ε,∣∣ 1
n (W

TW −Diag{WTW})θ∗
∣∣
∞ ≤ δ′4(ε)|θ∗|2,
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where

δ′4(ε) = max

(
γ2

√
2 log(2p/ε)

n
,
2 log(2p/ε)

t2n

)
,

and γ2, t2 are positive constants depending only on σ∗.

The proofs of Lemmas 1 and 2 can be found in [9] and [1] respectively.

3. {�1, �2, �∞}-MU selector

In this section, we define and analyze our first estimator. It can be seen as a
compromise between the MU selector (2) and the conic estimator (5) achieved
thanks to an additional �∞-norm regularization. In the setting that we consider
now, the estimate D̂ is not available but the rows of the design error matrix W
are independent with mean 0, and its entries are uniformly bounded. Formally,
in this section we make the following assumption:

(A4) Almost surely, |W |∞ ≤ δ̄.

Assumptions (A1)–(A4) imply the assumptions in [8]. However, they neither
imply or are implied by the assumptions in [9]. That is, it is an intermediary
set of conditions relative to the original assumptions for the MU selector in [8]
and to those for the compensated MU selector in [9]. Importantly, we do not
assume that there are some accurate estimators of σ2

j .

Similar to [8], consistent estimates require δ̄ → 0 as the sample size grows.
The bound δ̄ does not necessarily scale with p as δ̄ is not derived from (A3).
Assumption (A4) is motivated from sampling schemes where the precision with
which the covariate Xij is measured can be controlled by the practitioner to
some degree and the technology allows |Zij −Xij | ≤ δ̄; in principle δ̄ could be
made smaller if more expensive measurements were performed. Our finite sample
analysis keeps track of the dependence of δ̄ explicitly allowing to capture its
impact as a potential function of the sample size. A simple illustrative example
is when the Wij , i = 1, . . . , n, j = 1, . . . , p are independent zero-mean random
variables that are a.s. bounded by δ̄. Then the vector Wi is sub-gaussian with
parameter σ̄2

∗ = δ̄2.

We consider the estimator θ̂ such that (θ̂, t̂, û) ∈ R
p ×R+ ×R+ is a solution

of the following minimization problem:

minθ,t,u |θ|1 + λ2t+ λ∞u
(θ, t, u) ∈ Θ,∣∣ 1
nZ

T (y − Zθ)
∣∣
∞ ≤ τ2t+ δ̄2u+ τ,

|θ|2 ≤ t, |θ|∞ ≤ u,

(8)

where λ2 > 0 and λ∞ > 0 are tuning constants and we allow for (θ, t, u) ∈ Θ
where Θ is a pre-specified convex set that contains (θ∗, |θ∗|2, |θ∗|∞) and char-
acterizes some prior knowledge (a trivial choice is Θ = R

p × R+ × R+). This

estimator θ̂ will be further referred to as the {�1, �2, �∞}-MU selector.
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Remark 1 (Safeguard constraints). In order to further bound t and u, we can
add constraints that exploit that | · |q ≤ |· |1 for q ≥ 1. Therefore, the constraints

θ = θ+ − θ−, θ+ ≥ 0, θ− ≥ 0, w =

p∑
j=1

{θ+j + θ−j }, u ≤ t, and t ≤ w

preserve the convexity of the optimization problem and can potentially yield
additional performance. We note that our theoretical results allow for such safe-
guard constraints to be included in the estimation.

The estimator above attempts to mimic the conic estimator (5) without es-
timators σ̂2

j for σ2
j , j = 1, . . . , p. In order to make θ∗ feasible for (8), the con-

tribution of the unknown term 1
nDiag(WTW )θ∗ needs to be bounded. This is

precisely the role of the extra term δ̄2u in the constraint since |θ|∞ ≤ u and
| 1nDiag(WTW )|∞ ≤ δ̄2 almost surely. Note that the use of u and t instead of
|θ|∞ and |θ|2 in the constraint makes (8) a convex programming problem.

This new estimator exploits Assumptions (A2)–(A4) to achieve a rate of
convergence that is intermediary relative to the rate of the MU selector and to
that of the conic estimator.

Set τ2 = δ′1(ε) + δ′4(ε) and τ = δ2(ε) + δ3(ε). Note that τ2 and τ are of
the order

√
(log p)/n. The next theorem summarizes the performance of the

estimator defined by solving (8).

Theorem 1. Let Assumptions (A1)–(A4) hold. Assume that the true parameter
θ∗ is s-sparse and (θ∗, |θ∗|2, |θ∗|∞) belongs to Θ. Let 0 < ε < 1, 1 ≤ q ≤ ∞ and

0 < λ2, λ∞ < ∞. Let θ̂ be the {�1, �2, �∞}-MU selector. If κq(s, 1 + λ2 + λ∞) ≥
cs−1/q for some constant c > 0, then with probability at least 1− 7ε,

|θ̂ − θ∗|q ≤ Cs1/q
√

log(c′p/ε)

n
(|θ∗|1 + 1) + Cs1/q δ̄2|θ∗|1, (9)

for some constants C > 0 and c′ > 0 (here we set s1/∞ = 1).
If in addition, (1+λ2+λ∞){δ̄2λ−1

∞ +λ−1
2

√
log(p/ε)/n} ≤ c1κ1(s, 1+λ2+λ∞)

for some small enough constant c1, then, with the same probability, we have

|θ̂ − θ∗|q ≤ Cs1/q
√

log(c′p/ε)

n
(|θ∗|2 + 1) + Cs1/q δ̄2|θ∗|∞ (10)

for some constants C > 0 and c′ > 0.

Proof. We proceed in three steps. Step 1 establishes initial relations and the
fact that Δ = θ̂ − θ∗ belongs to CJ(1 + λ2 + λ∞). Step 2 provides a bound on
| 1nXTXΔ|∞. Step 3 establishes the rates of convergence stated in the theorem.
We work on the event of probability at least 1 − 7ε where all the inequalities
in Lemmas 1 and 2 are realized. Throughout the proof, J = {j : θ∗j 
= 0}. We
often make use of the inequalities |θ|∞ ≤ |θ|2 ≤ |θ|1, ∀θ ∈ R

p.

Step 1. We first note that

| 1nZT (y − Zθ∗)|∞ ≤ | 1nZT ξ|∞ + | 1nZTWθ∗|∞
≤ δ2(ε) + δ3(ε) + | 1nZTWθ∗|∞

(11)
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with probability at least 1− 2ε by Lemma 1. Next, Lemma 2 and the fact that,
due to (1), we have | 1nDiag(WTW )|∞ ≤ δ̄2 imply

| 1nZTWθ∗|∞ ≤ | 1nXTWθ∗|∞ + | 1nWTWθ∗|∞
≤ | 1nXTWθ∗|∞ + | 1n (WTW −Diag(WTW ))θ∗|∞
+| 1nDiag(WTW )θ∗|∞
≤ δ′1(ε)|θ∗|2 + δ′4(ε)|θ∗|2 + δ̄2|θ∗|∞.

(12)

Combining (11) and (12) we get that (θ, t, u) = (θ∗, |θ∗|2, |θ∗|∞) is feasible for
the problem (8), so that

|θ̂|1 + λ2|θ̂|2 + λ∞|θ̂|∞ ≤ |θ̂|1 + λ2t̂+ λ∞û ≤ |θ∗|1 + λ2|θ∗|2 + λ∞|θ∗|∞. (13)

From (13) we easily obtain

|θ̂Jc |1 ≤ (1 + λ2 + λ∞)|θ̂J − θ∗|1.

Arguments similar to (13) lead to

t̂− |θ∗|2 ≤ |Δ|1 + λ∞|Δ|∞
λ2

≤ (1 + λ∞)

λ2
|Δ|1 and

û− |θ∗|∞ ≤ |Δ|1 + λ2|Δ|2
λ∞

≤ (1 + λ2)

λ∞
|Δ|1.

Step 2. We have

| 1nXTXΔ|∞ ≤ | 1nZTXΔ|∞ + | 1nWTXΔ|∞
≤ | 1nZTZΔ|∞ + | 1nZTWΔ|∞ + | 1nWTXΔ|∞
≤ | 1nZT (y − Zθ∗)|∞ + | 1nZT (y − Zθ̂)|∞ + | 1nZTWΔ|∞
+| 1nWTXΔ|∞.

The results of Step 1 and of Lemmas 1 and 2 imply the following bounds

| 1nZT (y − Zθ∗)|∞ ≤ τ2|θ∗|2 + δ̄2|θ∗|∞ + τ,

| 1nZT (y − Zθ̂)|∞ ≤ τ2t̂+ δ̄2û+ τ
≤ τ2|θ∗|2 + δ̄2|θ∗|∞ + τ
+{τ2(1 + λ∞)/λ2 + δ̄2(1 + λ2)/λ∞}|Δ|1,

| 1nWTXΔ|∞ ≤ δ1|Δ|1,
| 1nZTWΔ|∞ ≤ | 1nXTWΔ|∞ + | 1n (WTW −Diag(WTW ))Δ|∞

+| 1nDiag(WTW )Δ|∞
≤ δ1|Δ|1 + δ4|Δ|1 + δ̄2|Δ|∞.

These relations and the inequality |Δ|∞ ≤ |Δ|1 yield that

| 1nXTXΔ|∞ ≤ 2τ2|θ∗|2 + 2δ̄2|θ∗|∞ + 2τ + (δ̄2{(1 + λ2 + λ∞)/λ∞}
+{(1 + λ∞)/λ2}τ2 + 2δ1 + δ4)|Δ|1.

Step 3. Next note that |Δ|1 ≤ |θ̂|1 + |θ∗|1 ≤ (2 + λ2 + λ∞)|θ∗|1. Letting

η = δ̄2{(1 + λ2 + λ∞)/λ∞}+ {(1 + λ∞)/λ2}τ2 + 2δ1 + δ4,
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we have

| 1nX
TXΔ|∞ ≤ 2τ + (2τ2 + 2δ̄2 + (2 + λ2 + λ∞)η)|θ∗|1.

By the definition of the �q-sensitivity,

| 1nX
TXΔ|∞ ≥ κq(s, 1 + λ2 + λ∞)|Δ|q.

Now, (9) follows by combining the last two displays and the assumption on
κq(s, 1 + λ2 + λ∞). To prove (10), we use that

| 1nXTXΔ|∞ ≤ 2τ2|θ∗|2 + 2δ̄2|θ∗|∞ + 2τ + η|Δ|1
≤ 2τ2|θ∗|2 + 2δ̄2|θ∗|∞ + 2τ + η| 1nXTXΔ|∞/κ1(s, 1 + λ2 + λ∞).

Under the condition that (1+λ2+λ∞){δ̄2λ−1
∞ +λ−1

2

√
log(p/ε)/n} ≤ c1κ1(s, 1+

λ2+λ∞) for c1 small enough, by definition of η we have η/κ1(s, 1+λ2+λ∞) ≤ c′

for some 0 < c′ < 1. Thus, we have

| 1nX
TXΔ|∞ ≤ c

(
τ2|θ∗|2 + δ̄2|θ∗|∞ + τ

)
,

which implies (10) in view of the definition of the �q-sensitivity and the assump-
tion on κq(s, 1 + λ2 + λ∞).

Remark 2 (Relaxation of Assumption (A4)). We have stated Theorem 1 under
Assumption (A4) to make the analysis streamlined with the previous literature,
see [8]. However, inspection of the proofs shows that a more general condition
can be used. The results of Theorem 1 hold with probability at least 1− 7ε− ε′

if instead of Assumption (A4) we require W to satisfy:∣∣ 1
nDiag(WTW )

∣∣
∞ ≤ δ̄2,

with probability at least 1− ε′, for some ε′ > 0.

Compared to [8], the results in Theorem 1 exploit the zero-mean condition
on the noise matrix W . As in [8], the estimator is consistent as δ̄ goes to zero.
In order to compare the rates in Theorem 1 with those for the MU selector, we
recall that, by Theorem 3 in [8], the MU selector satisfies

|θ̂MU − θ∗|q ≤ Cs1/q
√

log(c′p/ε)

n
+ Cs1/q(δ̄ + δ̄2)|θ∗|1

with probability close to 1. While both rates share some terms, a term of the
order s1/q δ̄|θ∗|1 appears only in the rate for the MU selector whereas a term of
the order s1/q

√
log(c′p/ε)/n|θ∗|1 appears only for the {�1, �2, �∞}-MU selector.

Therefore, the improvement upon the original MU selector can be achieved when
δ̄ �

√
log(c′p/ε)/n.

If the additional condition in the second part of Theorem 1 holds, we can use
the bound (10) and a better accuracy is achieved by the proposed estimator. In
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particular, |θ∗|1 no longer drives the rate of convergence. The impact of δ̄ on
this rate is in the term

s1/q δ̄2|θ∗|∞ instead of s1/q(δ̄ + δ̄2)|θ∗|1 (14)

for the MU selector. Furthermore, the rate of convergence of the new estimator
also has a term of the form |θ∗|2s1/q

√
log(c′p/ε)/n. Thus the new estimator

obtains a better accuracy by exploiting additional assumptions together with the
fact that δ̄|θ∗|1 is of larger order than

√
log(c′p/ε)/n|θ∗|2, which holds whenever

δ̄ �
√
log(c′p/ε)/n. Finally, the impact of going from the �1-norm to the �2- or

�∞-norms is not negligible neither. For example, if all non-zero components of
θ∗ are equal to the same constant a > 0, we have |θ∗|1 = sa while |θ∗|2 = a

√
s

and |θ∗|∞ = a. Then, the comparison in (14) is reduces to comparing

s1/q δ̄2 versus s1+1/q(δ̄ + δ̄2),

featuring the maximum contrast between the two rates.
Finally, note that the conic estimator θ̂Conic studied in [1] can be also applied

under the assumptions of this section. Indeed, our setting can be embedded into
that of [1] with D̂ being the identically zero p× p matrix, which means that we
have an estimator of each σ2

j with an error bounded by b = δ̄2. The results in

[1] assume b ≤ C
√
(log p)/n but they do not apply to designs with b of larger

order. Comparing the bound (10) in Theorem 1 to the bound (6) yields that the

conic estimator θ̂Conic achieves the same rate as our new estimator whenever δ̄
is smaller than or of the order {(log p)/n}1/4. However, there is no bound for

θ̂Conic available when δ̄ � {(log p)/n}1/4.

4. {�1, �2, �∞}-compensated MU selector

In this section, we discuss a modification of the conic estimator proposed in
[1]. We introduce an additional �∞-norm regularization to better adapt to the

estimation error in D̂. As discussed in the introduction, this is beneficial when
the rate of convergence of D̂ toD is slower than

√
(log p)/n, which is not covered

by [1]. Here we consider the same assumptions as in [1] with the only difference

that now we allow for any rate of convergence of D̂ to D. Thus, we replace
Assumption (A4) by the following assumption on the availability of estimators
for σ2

j , j = 1, . . . , p:

(A5) There exist statistics σ̂2
j and positive numbers b(ε) such that for any 0 <

ε < 1, we have

P

(
max

j=1,...,p
|σ̂2

j − σ2
j | ≥ b(ε)

)
≤ ε.

In what follows, we fix ε and set

τ2 = δ′1(ε) + δ′4(ε), τ = δ2(ε) + δ3(ε) and τ∞ = b(ε) + δ5(ε).
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We are particularly interested in cases where the parameter τ∞ is of larger order
than

√
(log p)/n. To define the estimator, we consider the following minimiza-

tion problem:

minθ,t,u |θ|1 + λ2t+ λ∞u
(θ, t, u) ∈ Θ,∣∣ 1
nZ

T (y − Zθ) + D̂θ
∣∣
∞ ≤ τ2t+ τ∞u+ τ,

|θ|2 ≤ t, |θ|∞ ≤ u,

(15)

where λ2 > 0 and λ∞ > 0 are tuning constants and we allow for (θ, t, u) ∈ Θ
where Θ is a pre-specified convex set that contains (θ∗, |θ∗|2, |θ∗|∞), see Re-
mark 1.

Let (θ̂, t̂, û) be a solution of (15). We take θ̂ as estimator of θ∗ and we call
it the {�1, �2, �∞}-compensated MU selector. The rates of convergence of this
estimator are given in the next theorem.

Theorem 2. Let Assumptions (A1)–(A3), and (A5) hold. Assume that the true
parameter θ∗ is s-sparse and (θ∗, |θ∗|2, |θ∗|∞) belongs to Θ. Let 0 < ε < 1 and
1 ≤ q ≤ ∞. Suppose also that

κq(s, 1 + λ2 + λ∞) ≥ cs−1/q (16)

for some constant c > 0 and that

s ≤ c1 min

{
λ2λ∞

(1 + λ2 + λ∞)3

√
n

log(p/ε)
,

λ∞
(1 + λ2 + λ∞)2

1

b(ε)

}
, (17)

for some small enough constant c1 > 0. Let θ̂ be the {�1, �2, �∞}-compensated
MU selector. Then, with probability at least 1− 8ε,

|θ̂ − θ∗|q ≤ Cs1/q
√

log(c′p/ε)

n
(|θ∗|2 + 1) + Cs1/qb(ε)|θ∗|∞, (18)

for some constants C > 0 and c′ > 0 (here we set s1/∞ = 1).

Under the same assumptions with q = 1, the prediction error admits the
following bound, with the same probability:

1
n

∣∣X(θ̂ − θ∗)
∣∣2
2

≤ Cs
log(c′p/ε)

n
(|θ∗|2 + 1)2 + Csb2(ε)|θ∗|2∞ . (19)

Proof. Throughout the proof, we assume that we are on the event of probability
at least 1 − 8ε where the results of Lemmas 3, 4 and 5 in the Appendix hold.
Property (26) in Lemma 4 implies that Δ = θ̂−θ∗ is in the cone CJ(1+λ2+λ∞),
where J = {j : θ∗j 
= 0}. Therefore, by the definition of the �q-sensitivity and
Lemma 5, we have

κq(s, 1 + λ2 + λ∞)|Δ|q ≤
∣∣ 1
nX

TXΔ
∣∣
∞ ≤ μ0 + μ1|θ̂ − θ∗|1 + μ2|θ∗|2 + μ∞|θ∗|∞,
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where μ0 and μ2 are of the order
√

1
n log(c′p/ε), and μ1 and μ∞ are of the order√

1
n log(c′p/ε) + b(ε). Using again (26), we have

|Δ|1 = |ΔJc |1 + |ΔJ |1 ≤ (2 + λ2 + λ∞)|ΔJ |1
≤ (2 + λ2 + λ∞)s1−1/q|ΔJ |q ≤ (2 + λ2 + λ∞)s1−1/q|Δ|q.

It follows that

(κq(s, 1 + λ2 + λ∞)− (2 + λ2 + λ∞)μ1s
1−1/q)|Δ|q ≤ μ0 + μ2|θ∗|2 + μ∞|θ∗|∞,

which implies, by (16),

(c− (2 + λ2 + λ∞)μ1s)s
−1/q|Δ|q ≤ μ0 + μ2|θ∗|2 + μ∞|θ∗|∞,

in view of the assumptions of the theorem. Recall that

μ1 ≤ a
√
log(c′p/ε)/n{1+(1+λ2)λ

−1
∞ +(1+λ∞)λ−1

2 }+ab(ε){1+λ∞+λ2}/λ∞,

where a > 0 is a constant. Therefore, since we assume (17), and {1 + (1 +
λ2)λ

−1
∞ + (1 + λ∞)λ−1

2 } ≤ (1 + λ∞ + λ2)
2/(λ∞λ2), relation (18) follows if c1 is

small enough.
To prove (19), write first

1
n |XΔ|22 ≤ 1

n

∣∣XTXΔ
∣∣
∞ |Δ|1.

Next remark that from (18) with q = 1, we have

|Δ|1 ≤ Cs

√
log(c′p/ε)

n
(|θ∗|2 + 1) + Csb(ε)|θ∗|∞.

Lemma 5 in the Appendix yields∣∣ 1
nX

TXΔ
∣∣
∞ ≤ μ0 + μ1|θ̂ − θ∗|1 + μ2|θ∗|2 + μ∞|θ∗|∞. (20)

Combining the above bound for |Δ|1 and (20), we get

1
n |XΔ|22 ≤ C

s log(c′p/ε)

n
(|θ∗|2 + 1)2 + Csb2(ε)|θ∗|2∞

since μ1s ≤ C ′′ for some constant C ′′ > 0 under our assumptions. This proves
(19).

Theorem 2 generalizes the results in [1] to estimators D̂ that converge with
rate b(ε) of larger order than

√
(log p)/n. At the same time, if b(ε) is smaller

than
√
(log p)/n, both the conic estimator θ̂Conic of [1] and the {�1, �2, �∞}-

compensated MU selector achieve the same rate of convergence.
For such designs that condition (17) does not hold, the conclusions of Theo-

rem 2 need to be slightly modified as shown in the next theorem.
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Theorem 3. Let Assumptions (A1)–(A3), and (A5) hold. Assume that the true
parameter θ∗ is s-sparse and (θ∗, |θ∗|2, |θ∗|∞) belongs to Θ. Let 0 < ε < 1 and

1 ≤ q ≤ ∞. Let θ̂ be the {�1, �2, �∞}-compensated MU selector. Then, with
probability at least 1− 8ε,

|θ̂ − θ∗|q ≤ C

κq(s, 1 + λ2 + λ∞)

{√
log(c′p/ε)

n
(|θ∗|1 + 1) + b(ε)|θ∗|1

}
,

for some constants C > 0 and c′ > 0.

Proof. Again, throughout the proof, we assume that we are on the event of
probability at least 1−8ε where the results of Lemmas 3, 4 and 5 in the Appendix
hold. Property (26) in Lemma 4 implies that Δ = θ̂ − θ∗ is in the cone CJ(1 +
λ2 + λ∞), where J = {j : θ∗j 
= 0}. Since

|Δ|1 ≤ |θ̂|1 + |θ∗|1 ≤ {|θ∗|1 + λ2|θ∗|2 + λ∞|θ∗|∞}+ |θ∗|1 ≤ (2 + λ2 + λ∞)|θ∗|1,

we obtain ∣∣ 1
nX

TXΔ
∣∣
∞ ≤ μ0 + μ1|Δ|1 + μ2|θ∗|2 + μ∞|θ∗|∞

≤ μ0 + (μ1 + μ2 + μ∞)(2 + λ2 + λ∞)|θ∗|1.

Therefore

κq(s, 1 + λ2 + λ∞)|Δ|q ≤ μ0 + (μ1 + μ2 + μ∞)(2 + λ2 + λ∞)|θ∗|1,

which implies the result.

The result in Theorem 3 parallels the result for generic designs for the conic
estimator [1]. Indeed, this result states that the additional �∞-regularization
does not worsen the guarantees obtained in [1]. For generic designs, our bounds
do not achieve the previous dependence on |θ∗|2 and |θ∗|∞ and, instead, the
final dependence is on |θ∗|1.

5. Simulations

This section aims to illustrate the finite sample performance of the proposed
estimators. We will focus on the {�1, �2, �∞}-compensated MU selector only. We
consider the following data generating process

yi = xT
i θ

∗ + ξi, zi = xi + wi.

Here, ξi, wi, xi are independent and ξi ∼ N (0, σ2), wi ∼ N (0, σ2
∗Ip×p), xi ∼

N (0,Σ) where Ip×p is the identity matrix and Σ is p × p matrix with el-
ements Σij = ρ|i−j|. We consider the vector of unknown parameters θ∗ =
1.25(1, 1, 1, 1, 1, 0, . . . , 0)T . We set σ = 0.128, σ2

∗ = 0.5, and ρ = 0.25. We

assume that σ is known and we set D̂ = D = σ2
∗Ip×p. The penalty parameters

are set as τ = σ
√

log(p/ε)/n, b(ε) = σ2
∗
√

log(p/ε)/n, for ε = 0.05.
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In our first set of simulations, we illustrate the finite sample performance of
the proposed estimator by setting λ2 =λ∞ ∈ {0.25, 0.5, 0.75, 1}. The {�1, �2, �∞}-
compensated MU selector will be denoted by {�1, �2, �∞}. We compare its perfor-
mance with other recent proposals in the literature, namely the conic estimator
(denoted as Conic (λ2) for λ2 = 0.25, 0.5, 0.75, 1), and the Compensated MU
selector (cMU). We also provide the (infeasible) Dantzig selector which knows X
(Dantzig X) and the Dantzig selector that uses only Z (Dantzig Z) as additional
benchmark for the performance.

Table 1

Simulation results for 100 replications. For each estimator we provide average bias (Bias),
average root-mean squared error (RMSE), and average prediction risk (PR)

n = 300 and p = 10 n = 300 and p = 50
Method (λ2 = λ∞) Bias RMSE PR Bias RMSE PR
Dantzig X 0.026 0.032 0.034 0.030 0.034 0.038
Dantzig Z 0.589 0.621 0.711 0.603 0.724 0.752
cMU 0.600 0.652 0.737 0.668 0.707 0.814
Conic (.25) 1.926 1.956 2.316 1.995 2.019 2.408
{�1, �2, �∞}(.25) 1.792 1.834 2.145 1.903 1.932 2.287
Conic (.5) 0.318 0.416 0.432 0.366 0.439 0.478
{�1, �2, �∞} (.5) 0.213 0.350 0.338 0.348 0.449 0.460
Conic (.75) 0.317 0.415 0.432 0.366 0.439 0.478
{�1, �2, �∞} (.75) 0.208 0.345 0.333 0.269 0.378 0.389
Conic (1) 0.317 0.415 0.432 0.366 0.439 0.477
{�1, �2, �∞} (1) 0.207 0.345 0.332 0.248 0.369 0.373

Table 2

Simulation results for 100 replications. For each estimator we provide average bias (Bias),
average root-mean squared error (RMSE), and average prediction risk (PR)

n = 300 and p = 100 n = 300 and p = 300
Method (λ2 = λ∞) Bias RMSE PR Bias RMSE PR
Dantzig X 0.031 0.036 0.040 0.034 0.038 0.043
Dantzig Z 0.603 0.836 0.791 0.633 1.077 0.882
cMU 0.690 0.735 0.847 0.722 0.765 0.884
Conic (.25) 2.019 2.042 2.442 2.083 2.098 2.528
{�1, �2, �∞}(.25) 1.936 1.964 2.332 2.001 2.024 2.418
Conic (.5) 0.503 0.647 0.639 0.680 0.888 0.836
{�1, �2, �∞} (.5) 0.417 0.520 0.543 0.469 0.550 0.597
Conic (.75) 0.384 0.469 0.508 0.419 0.496 0.542
{�1, �2, �∞} (.75) 0.325 0.431 0.451 0.386 0.474 0.510
Conic(1) 0.3811186 0.467 0.504 0.404 0.484 0.527
{�1, �2, �∞} (1) 0.290 0.415 0.424 0.357 0.456 0.481

Tables 1 and 2 provide the performance of the proposed estimator when
λ2 = λ∞ and the performance of various benchmarks. As discussed in the liter-
ature, ignoring the error-in-variables issue can lead to worse performance as seen
from the performance of Dantzig Z compared to the (infeasible) Dantzig X. The
conic compensated estimator performes better than the compensated MU selec-
tor (cMU) when λ2 ∈ {0.5, 0.75, 1}. The comparison of the proposed estimator
and the conic estimator is easier to establish as we can parametrize them by λ2

(as we set λ2 = λ∞). In this case the conic estimator penalizes more aggressively



{�1, �2, �∞}-regularization for EIV models 1745

the uncertainty of not knowing σ2
j . In essentially all cases1 the proposed esti-

mator yields improvements. The introduction of �∞-norm regularization seems
to alleviate regularization bias. Nonetheless, when setting λ2 = 0.25 both the
conic estimator and the proposed estimator fail in the experiment. This failure
occurs by not having enough penalty to control t−|θ|2 and u−|θ|∞ which leads
to a large right hand side τ2t+ τ∞u+ τ in the constraint∣∣ 1

nZ
T (y − Zθ) + D̂θ

∣∣
∞ ≤ τ2t+ τ∞u+ τ

in (15) and similarly the right hand side τ2t + τ in (5). In turn, this leads
to substantial regularization bias and therefore underfitting. In fact, detailed
inspection of estimators in that case reveals that coefficients are very close to
zero for both conic and the proposed estimator.

In the second set of simulations, we explore the performance of the pro-
posed estimator for the case λ2 
= λ∞. Moreover, we also study a modified
estimator that contains safeguard constraints. These constraints aim to miti-
gate the problem discussed above. The safeguard constraints are described in
Remark 1. We denote by {�1, �2, �∞}∗ the estimator computed with the safe-
guards.

We consider the same design as before and we explore some combinations
of values (λ2, λ∞) ∈ {0.25, 0.5, 0.75, 1} × {0.25, 0.5, 0.75, 1} for both proposed
estimators (with and without the safeguard constraints).

Table 3

Simulation results for 100 replications. For each estimator we provide average bias (Bias),
average root-mean squared error (RMSE), and average prediction risk (PR)

n = 300 and p = 10 n = 300 and p = 50
Method (λ2, λ∞) Bias RMSE PR Bias RMSE PR
{�1, �2, �∞} (1,1) 0.207 0.345 0.332 0.248 0.369 0.373
{�1, �2, �∞}∗ (1,1) 0.207 0.345 0.332 0.248 0.369 0.373
{�1, �2, �∞} (1,.5) 0.253 0.399 0.372 0.521 0.708 0.651
{�1, �2, �∞}∗ (1,.5) 0.239 0.362 0.356 0.398 0.472 0.511
{�1, �2, �∞} (.5,1) 0.207 0.345 0.332 0.244 0.369 0.372
{�1, �2, �∞}∗ (.5,1) 0.207 0.345 0.332 0.244 0.369 0.372
{�1, �2, �∞} (.75,.75) 0.208 0.345 0.333 0.269 0.378 0.389
{�1, �2, �∞}∗ (.75,.75) 0.208 0.345 0.333 0.269 0.378 0.389
{�1, �2, �∞} (.25,1) 0.207 0.345 0.332 0.243 0.368 0.371
{�1, �2, �∞}∗ (.25,1) 0.207 0.345 0.332 0.243 0.368 0.371
{�1, �2, �∞} (.5,.5) 0.213 0.350 0.338 0.348 0.449 0.460
{�1, �2, �∞}∗ (.5,.5) 0.213 0.350 0.338 0.338 0.422 0.449
{�1, �2, �∞} (.25,.5) 0.211 0.350 0.336 0.318 0.408 0.431
{�1, �2, �∞}∗ (.25,.5) 0.211 0.350 0.336 0.318 0.408 0.431
{�1, �2, �∞} (.25,.25) 1.792 1.834 2.145 1.903 1.932 2.287
{�1, �2, �∞}∗ (.25,.25) 0.547 0.605 0.678 0.615 0.657 0.753

Tables 3 and 4 show the performance for different values of λ2 and λ∞. We
note that these parameters seem to have different impact on the finite sample

1The conic compensated estimator performes slightly better only with respect to RMSE in
the case of λ2 = 0.5. For all other parameters and metrics, the proposed estimator performed
slightly better or substantially better.
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Table 4

Simulation results for 100 replications. For each estimator we provide average bias (Bias),
average root-mean squared error (RMSE), and average prediction risk (PR)

n = 300 and p = 100 n = 300 and p = 300
Method (λ2, λ∞) Bias RMSE PR Bias RMSE PR
{�1, �2, �∞} (1,1) 0.290 0.415 0.424 0.357 0.456 0.481
{�1, �2, �∞}∗ (1,1) 0.290 0.415 0.424 0.357 0.456 0.481
{�1, �2, �∞} (1,.5) 0.670 0.868 0.826 1.099 1.284 1.322
{�1, �2, �∞}∗ (1,.5) 0.471 0.546 0.599 0.581 0.644 0.721
{�1, �2, �∞} (.5,1) 0.281 0.412 0.418 0.343 0.450 0.470
{�1, �2, �∞}∗ (.5,1) 0.281 0.412 0.418 0.343 0.450 0.470
{�1, �2, �∞} (.75,.75) 0.325 0.431 0.451 0.386 0.474 0.510
{�1, �2, �∞}∗ (.75,.75) 0.325 0.431 0.451 0.386 0.474 0.510
{�1, �2, �∞} (.25,1) 0.279 0.411 0.416 0.339 0.448 0.467
{�1, �2, �∞}∗ (.25,1) 0.279 0.411 0.416 0.338 0.447 0.466
{�1, �2, �∞} (.5,.5) 0.417 0.520 0.543 0.469 0.550 0.597
{�1, �2, �∞}∗ (.5,.5) 0.397 0.481 0.521 0.459 0.531 0.586
{�1, �2, �∞} (.25,.5) 0.372 0.464 0.498 0.432 0.508 0.556
{�1, �2, �∞}∗ (.25,.5) 0.371 0.463 0.497 0.435 0.511 0.560
{�1, �2, �∞} (.25,.25) 1.936 1.964 2.332 2.001 2.024 2.418
{�1, �2, �∞}∗ (.25,.25) 0.636 0.685 0.785 0.666 0.712 0.819

performance even if λ2 + λ∞ is kept constant. Importantly, we observe that
the addition of safeguard constraints virtually always leads to improvements
although small (even zero sometimes) for most of the tested parameter values.
In the case λ2 < λ∞ using safeguard constraints makes almost no difference
and overall performance of both estimators is better. In contrast, the estimators
perform worse when λ2 > λ∞ and the safeguard constraints lead to improve-
ments. Finally, as expected, the safeguard constraints improve substantially the
performance when λ2 = λ∞ = 0.25. In that case, the performance becomes
comparable to that of the cMU estimator. Essentially, the safeguard constraints
help to avoid severe underfitting. They are very helpful when the performance
is below of what can be achieved. Nonetheless, we recommend to keep them
in all cases as it does not impact negatively the estimator and the additional
computational burden seems minimal.

In our third set of simulations, we consider a situation with a “crude” es-
timator of D. The design is the same as in our first set of simulations, how-
ever, in order to compute the estimator of D, we have independent observa-
tions of (Xi, Zi), i = 1, . . . , n∗ where n∗ ≤ n. We consider p ∈ {50, 100} and
n∗ = {100, 250, 500} and n = 500. Table 5 shows how the performance of the
estimators change as less precise estimates of D are used. For example, consider
the average prediction risk (PR) for p = 50 as n∗ goes from 500 to 100 so that
the quality of the estimator worsens. Table 5 shows that the cMU deteriorates
by 0.51 (from 1.23 to 0.72), the conic deteriorates by 0.41 (from 0.82 to 0.41),
and the proposed estimator deteriorates by 0.24 (from 0.55 to 0.31). Similarly
when p = 100, we observe that cMU deteriorates by 0.52, the conic deterio-
rates by 0.47, and the proposed estimator deteriorates by 0.35. In both cases
the findings are aligned with the theoretical results that the {�1, �2, �∞}-based
estimator is less sensitive to the use of a crude estimator for D.
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Table 5

Simulation results for 100 replications. For each estimator we provide average bias (Bias),
average root-mean squared error (RMSE), and average prediction risk (PR)

n = 500, n∗ = 100, p = 50 n = 500, n∗ = 100, p = 100
Method Bias RMSE PR Bias RMSE PR
cMU 1.0175038 1.040 1.228 1.064 1.090 1.284
Conic (1) 0.666 0.746 0.815 0.749 0.851 0.915
{�1, �2, �∞} (.5,1) 0.427 0.500 0.547 0.545 0.620 0.682

n = 500, n∗ = 250, p = 50 n = 500, n∗ = 250, p = 100
Method Bias RMSE PR Bias RMSE PR
cMU 0.752 0.779 0.915 0.788 0.815 0.956
Conic (1) 0.417 0.471 0.532 0.444 0.496 0.562
{�1, �2, �∞} (.5,1) 0.261 0.350 0.369 0.284 0.369 0.393

n = 500, n∗ = 500, p = 50 n = 500, n∗ = 500, p = 100
Method Bias RMSE PR Bias RMSE PR
cMU 0.592 0.622 0.726 0.625 0.656 0.763
Conic (1) 0.313 0.376 0.416 0.339 0.397 0.439
{�1, �2, �∞} (.5,1) 0.196 0.302 0.309 0.221 0.321 0.329

Appendix: Auxiliary lemmas

In what follows, we write for brevity δi = δi(ε), δ
′
i = δ′i(ε), and we set Δ = θ̂−θ∗,

J = {j : θ∗j 
= 0}.
Lemma 3. Assume (A1)–(A3) and (A5). Then with probability at least 1− 6ε,
the pair (θ, t, u) = (θ∗, |θ∗|2, |θ∗|∞) belongs to the feasible set of the minimization
problem (15).

Proof. First, note that ZT (y − Zθ∗) + nD̂θ∗ is equal to

−XTWθ∗ +XT ξ +WT ξ − (WTW −Diag{WTW})θ∗

− (Diag{WTW} − nD)θ∗ + n(D̂ −D)θ∗.

By definition of δi and b, with probability at least 1− 4ε, we have

| 1nX
T ξ|∞ + | 1nW

T ξ|∞ ≤ δ2 + δ3 (21)

|( 1nDiag{WTW} −D)θ∗|∞ ≤ | 1nDiag{WTW} −D|∞|θ∗|∞ ≤ δ5|θ∗|∞ (22)

|(D̂ −D)θ∗|∞ ≤ b(ε)|θ∗|∞, (23)

where in (22) and (23) we have used that the considered matrices are diagonal.
Also, by Lemma 2, with probability at least 1− 2ε, we have

| 1nX
TWθ∗|∞ ≤ δ′1|θ∗|2 (24)

| 1n (W
TW −Diag{WTW})θ∗|∞ ≤ δ′4|θ∗|2. (25)

Combining the decomposition of ZT (y −Zθ∗) + nD̂θ∗ together with (21)–(25),
we find that ∣∣ 1

nZ
T (y − Zθ∗) + D̂θ∗

∣∣
∞ ≤ τ2|θ∗|2 + τ∞|θ∗|∞ + τ,

with probability at least 1− 6ε, which implies the lemma.
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Lemma 4. Let θ̂ be the {�1, �2, �∞}-compensated MU-selector. Assume (A1)–
(A3) and (A5). Then with probability at least 1 − 6ε (on the same event as in
Lemma 3), we have

|(θ̂ − θ∗)Jc |1 ≤ (1 + λ2 + λ∞)|(θ̂ − θ∗)J |1, (26)

t̂− |θ∗|2 ≤ {(1 + λ∞)/λ2}|θ̂ − θ∗|1 and û− |θ∗|∞ ≤ {(1 + λ2)/λ∞}|θ̂ − θ∗|1.
(27)

Proof. Set Δ = θ̂ − θ∗. On the event of Lemma 3, (θ∗, |θ∗|2, |θ∗|∞) belongs to
the feasible set of the minimization problem (5). Consequently,

|θ̂|1 + λ2|θ̂|2 + λ∞|θ̂|∞ ≤ |θ̂|1 + λ2t̂+ λ∞û ≤ |θ∗|1 + λ2|θ∗|2 + λ∞|θ∗|∞. (28)

This implies

|ΔJc |1 + λ2|ΔJc |2 + λ∞|ΔJc |∞ ≤ |ΔJ |1 + λ2|ΔJ |2 + λ∞|ΔJ |∞
≤ (1 + λ2 + λ∞)|ΔJ |1,

and so
|ΔJc |1 ≤ (1 + λ2 + λ∞)|ΔJ |1.

and (26) follows. To prove (27), it suffices to note that (28) implies

λ2t̂ ≤ |θ∗|1 − |θ̂|1 + λ2|θ∗|2 + λ∞|θ∗|∞ − λ∞û

≤ |θ̂ − θ∗|1 + λ2|θ∗|2 + λ∞|θ̂ − θ∗|∞

and the result follows since |θ̂|∞ ≤ û and |θ̂− θ∗|∞ ≤ |θ̂− θ∗|1. Similar calcula-
tions yield the bound for û.

Lemma 5. Let θ̂ be the {�1, �2, �∞}-compensated MU-selector. Assume (A1)–
(A3) and (A5). Then, on a subset of the event of Lemma 3 having probability
at least 1− 8ε, we have∣∣ 1

nX
TX(θ̂ − θ∗)

∣∣
∞ ≤ μ0 + μ1|θ̂ − θ∗|1 + μ2|θ∗|2 + μ∞|θ∗|∞,

where μ0 = τ + δ2 + δ3, μ1 = 2δ1 + δ4 + δ5 + b(ε) + {(1 + λ∞)/λ2}τ2 + {(1 +
λ2)/λ∞}τ∞, μ2 = τ2 + δ′1, μ∞ = τ∞ + b(ε) + δ′4 + δ5.

Note that μ0 and μ2 are of the order
√

1
n log(c′p/ε), and μ1 and μ∞ are of

the order
√

1
n log(c′p/ε) + b(ε).

Proof. Throughout the proof, we assume that we are on the event of probability
at least 1−6ε where inequalities (21)–(25) hold and (θ∗, |θ∗|2, |θ∗|∞) belongs to
the feasible set of the minimization problem (15). We have

| 1nX
TXΔ|∞ ≤| 1nZ

T (Zθ̂ − y)− D̂θ̂|∞ + |( 1nZ
TW −D)θ̂|∞

+|(D̂ −D)θ̂|∞ + | 1nZ
T ξ|∞ + | 1nW

TXΔ|∞.
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Using the fact that (θ̂, t̂, û) belongs to the feasible set of the minimization prob-
lem (5) together with (27), we obtain

| 1nZ
T (Zθ̂ − y)− D̂θ̂|∞ ≤ τ2t̂+ τ∞û+ τ

≤ {(1 + λ∞)/λ2}τ2|Δ|1 + τ2|θ∗|2
+ {(1 + λ2)/λ∞}τ∞|Δ|1 + τ∞|θ∗|∞ + τ.

Using that θ̂ = θ∗ +Δ, Assumption (A5) together with (23) yields that

| 1nX
TXΔ|∞ ≤{(1 + λ∞)/λ2}τ2|Δ|1 + τ2|θ∗|2 + {(1 + λ2)/λ∞}τ∞|Δ|1

+ τ∞|θ∗|∞ + τ + |( 1nZ
TW −D)θ̂|∞ + |(D̂ −D)θ̂|∞

+ | 1nZ
T ξ|∞ + | 1nW

TXΔ|∞
≤{(1 + λ∞)/λ2}τ2|Δ|1 + τ2|θ∗|2 + {(1 + λ2)/λ∞}τ∞|Δ|1
+ τ∞|θ∗|∞ + τ + |( 1nZ

TW −D)θ̂|∞ + b(ε)|θ∗|∞ + b(ε)|Δ|1
+ δ2 + δ3 + | 1nW

TXΔ|∞.

Now remark that |( 1nZTW −D)θ̂|∞ ≤ |( 1nZTW −D)Δ|∞+ |( 1nZTW −D)θ∗|∞.
In view of Lemma 2 and (22), on the initial event of probability at least 1− 6ε,

|( 1nZ
TW −D)θ∗|∞

≤| 1n (W
TW −Diag{WTW})θ∗|∞ + |( 1nDiag{WTW} −D)θ∗|∞ (29)

+ | 1nX
TWθ∗|∞

≤(δ′4 + δ5)|θ∗|∞ + δ′1|θ∗|2. (30)

Moreover, we have

|( 1nZ
TW −D)Δ|∞ ≤ | 1nZ

TW −D|∞|Δ|1
≤

(
| 1n (W

TW −Diag{WTW})|∞+ | 1nDiag{WTW}−D|∞+ | 1nX
TW |∞

)
|Δ|1.

Therefore,
|( 1nZ

TW −D)Δ|∞ ≤ (δ1 + δ4 + δ5)|Δ|1, (31)

with probability at least 1−8ε (since we intersect the initial event of probability
at least 1− 6ε with the event of probability at least 1− 2ε where the bounds δ1
and δ4 hold for the corresponding terms). Next, on the same event of probability
at least 1− 8ε,

| 1nW
TXΔ|∞ ≤ | 1nX

TW |∞|Δ|1 ≤ δ1|Δ|1. (32)

To complete the proof, it suffices to plug (30)–(32) in the last inequality for
| 1nXTXΔ|∞ and to obtain

| 1nX
TXΔ|∞

≤ [2δ1 + δ4 + δ5 + b(ε) + {(1 + λ∞)/λ2}τ2 + {(1 + λ2)/λ∞}τ∞]|Δ|1
+ {τ2 + δ′1}|θ∗|2 + {τ∞ + b(ε) + δ′4 + δ5}|θ∗|∞ + τ + δ2 + δ3.
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