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Abstract: The literature on statistical learning for time series often as-
sumes asymptotic independence or “mixing” of the data-generating pro-
cess. These mixing assumptions are never tested, nor are there methods
for estimating mixing coefficients from data. Additionally, for many com-
mon classes of processes (Markov processes, ARMA processes, etc.) general
functional forms for various mixing rates are known, but not specific coeffi-
cients. We present the first estimator for beta-mixing coefficients based on
a single stationary sample path and show that it is risk consistent. Since
mixing rates depend on infinite-dimensional dependence, we use a Markov
approximation based on only a finite memory length d. We present con-
vergence rates for the Markov approximation and show that as d → ∞,
the Markov approximation converges to the true mixing coefficient. Our
estimator is constructed using d-dimensional histogram density estimates.
Allowing asymptotics in the bandwidth as well as the dimension, we prove
L1 concentration for the histogram as an intermediate step. Simulations
wherein the mixing rates are calculable and a real-data example demon-
strate our methodology.
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1. Introduction

The ordinary theory of statistical inference is overwhelmingly concerned with
independent observations, but the exact work done by assuming independence
is often mis-understood. It is not, despite a common impression, to guarantee
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that large samples are representative of the underlying population, ensemble, or
stochastic source. If that were all that were needed, one could use the ergodic
theorem for dependent sources equally well. Rather, assuming independence
lets statistical theorists say something about the rate at which growing sam-
ples approximate the true distribution. Under statistical independence, every
observation is completely unpredictable from every other, and hence provides a
completely new piece of information about the source. Consequently, the most
common measures of information — including the Kullback-Leibler divergence
between probability measures, the Fisher information about parameters, and
the joint Shannon entropy of random variables — are all strictly proportional
to the number of observations for i.i.d. sources. Under dependence, later events
are more or less predictable from earlier ones, hence they do not provide com-
pletely new observations, and information accumulates more slowly. Assuming
ergodicity alone, the convergence of samples on the source can be arbitrarily
slow, and statistical theory is crippled. Without more stringent assumptions
than ergodicity, one is always effectively in an n = 1 situation no matter how
many observations one has.

To go beyond independence, statistical theory needs assumptions on the data-
generating processes which control the rate at which information accumulates.
For time series analysis, the most natural replacement for independence is re-
quiring the asymptotic independence of events far apart in time, or mixing.
Mixing quantifies the decay in dependence as the future moves farther from the
past. There are many definitions of mixing of varying strength with matching
dependence coefficients [see 11, 9, 5, for reviews], but many of the results in the
statistical literature focus on β-mixing or absolute regularity. Roughly speaking
(see Definition 2 below for a precise statement), the β-mixing coefficient at lag
a is the total variation distance between the actual joint distribution of events
separated by a time steps and the product of their marginal distributions, i.e.,
the L1 distance from independence.

Much of the theoretical groundwork for the analysis of mixing processes was
laid years ago [36, 4, 12, 26, 1, 30, 38, 39], but it remains an active topic in prob-
ability, statistics and machine learning. Among the many works on this topic,
we may mention the study of non-parametric inference under mixing conditions
by Bosq [3], consistent time series forecasting by support vector machines [29],
probably approximately correct learning algorithms with mixing inputs [33, 20]
and stability-based generalization error bounds [23]. To actually use such results,
however, requires knowing the β-mixing coefficients, β(a).

Many common time series models are known to be β-mixing, and the rates
of decay are known up to constant factors given the true parameters of the
process. Among the processes for which such results exist are ARMA models
[24], GARCH models [6], and certain Markov processes — see Doukhan [11]
for an overview of such results. (Fryzlewicz and Subba Rao [15] derive upper
bounds for the α- and β-mixing rates of non-stationary ARCH processes.) With
few exceptions, however, these results do not give the actual mapping from
parameters to mixing coefficients. For example, it is known that the mixing
coefficients of the ARMA process at time lag a are O(ρa) for some 0 < ρ < 1.
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While knowledge of the ARMA parameters determine the joint distribution, no
one has yet figured out how to map from these parameters to the constants,
or even to ρ. To our knowledge, only Nobel [25] approaches a solution to the
problem of estimating mixing rates by giving a method to distinguish between
different polynomial mixing rate regimes through hypothesis testing. Thus the
theoretical results which presume that the mixing coefficients are known cannot
actually be applied to assist in the analysis of data, or even of parametric models.

These issues also arise in interpreting the output of Markov chain Monte Carlo
(MCMC) algorithms. Even when the Markov chain is in equilibrium, sampling
from the desired invariant distribution, the samples are dependent. How much
dependence persists across samples is a very important issue for users wishing
to control Monte Carlo error, or planning how long a run they need. In some
rare cases, theoretical results show that certain MCMC algorithms are rapidly
mixing, meaning again roughly that β(a) = O(ρa). Such results generally do
not give ρ, let alone β(a), which is what users would need.

We present the first method for estimating the β-mixing coefficients for sta-
tionary time series data given a single sample path. Our methodology can be
applied to real data assumed to be generated from some unknown β-mixing pro-
cess. Additionally, it can be used to examine known mixing processes, thereby
determining exact mixing rates via simulation. (This includes, but is not limited
to, MCMC algorithms.) Section 2 defines the β-mixing coefficient, our estimator
of it, and states our main results on convergence rates and consistency for the
estimator. Section 3 gives an intermediate result on the L1 convergence of the
histogram estimator with β-mixing inputs which is asymptotic in the dimension
of the target distribution in addition to the bandwidth. Some of our results
and techniques here are of independent interest for high-dimensional density
estimation. Section 4 proves the main results from Section 2. Section 5 demon-
strates the performance of our estimator in three simulated examples, providing
good recovery of known rates in simple settings as well as providing insight into
unknown mixing regimes, and also examines a dataset containing recession indi-
cators for developed economies. Section 6 concludes and lays out some avenues
for future research.

2. Estimator and consistency results

In this section, we present one of many equivalent definitions of absolute regu-
larity and state our main results, deferring proof to §4.

To fix notation, let X = {Xt}∞t=−∞ be a sequence of random variables where
each Xt is a measurable function from a probability space (Ω,F ,P) into R

q

with the Borel σ-field B. A block of this random sequence will be given by
Xi:j ≡ {Xt}jt=i where i and j are integers, and either may be infinite. We use
similar notation for the sigma fields generated by these blocks. In particular,
σi:j will denote the sigma field generated by Xi:j , and the joint distribution of
Xi:j will be denoted Pi:j . We denote products of marginal distributions as, e.g.,
Pi:j ⊗ Pk:l.
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2.1. Definitions

In this paper, we will consider only the case of stationary data.

Definition 1 (Stationarity). A sequence of random variables X is stationary
when all its finite-dimensional distributions are invariant over time: for all in-
tegers t, t′ and all non-negative integers i, the distribution of Xt:t+i is the same
as that of Xt′:t′+i.

There are many equivalent definitions of β-mixing (see for instance [11], or [5]
as well as [22] or [39]), however the most intuitive is that given in Doukhan [11].

Definition 2 (β-mixing). For each a ∈ N, the coefficient of absolute regularity,
or β-mixing coefficient, β(a), is

β(a) := ‖P−∞:0 ⊗ Pa:∞ − P−∞:0,a:∞‖TV (1)

where ‖ · ‖TV is the total variation norm, and P−∞:0, a:∞ is the joint distribu-
tion of the blocks (X−∞:0, Xa:∞). A stochastic process is said to be absolutely
regular, or β-mixing, if β(a) → 0 as a → ∞.

Loosely speaking, Definition 2 says that the coefficient β(a) measures the
total variation distance between the joint distribution of random variables sep-
arated by a time units, P−∞:0,a:∞ and the distribution under which random
variables separated by a time units are independent, P−∞:0 ⊗ Pa:∞. We note
that in the most general setting in the literature, β(a) = supt‖P−∞:t⊗Pt+a:∞−
P−∞:t,t+a:∞‖TV , however, this additional generality is unnecessary for station-
ary random processes X, which is the only case we consider here.

As stationarity implies that distributions of blocks of random variables are
the same, and we will frequently require notation for these distributions, we
will employ the following simplifications: the distribution of a d-block will be
notated P[d] = Pi:i+d = Pj:j+d and the joint distribution of two blocks of length
d separated by a timepoints, (Xi:(i+d−1),X(i+d+a−1):(i+2d+a−1)), will be given
by P[d],a. In particular, P−∞:0,a:∞ will be written as P[∞],a and similarly for the
associated sigma-fields when necessary.

2.2. Constructing the estimator

Our result emerges in two stages. First, we recognize that the distribution of
a finite sample depends only on finite-dimensional distributions. This leads to
an estimator of a finite-dimensional version of β(a). Next, we let the finite-
dimension increase to infinity with the size of the observed sample.

For positive integers d, and a, define

βd(a) = ‖P[d] ⊗ P[d] − P[d],a‖TV . (2)

Also, let f̂d be the histogram estimator of the joint density of d consecutive
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observations, that is

f̂d(x) =
1

(n− d+ 1)hd
n

n−d+1∑
i=1

I(Xi:i+d−1 ∈ B(x))

where B(x) is the bin containing x and I(·) is the indicator function. Similarly,

let f̂2d
a be the 2d-dimensional histogram estimator of the joint density of two

sets of d consecutive observations separated by a time points, i.e

f̂2d
a (x)

=
1

(n− 2d− a+ 1)h2d
n

n−2d−a+1∑
i=1

I((Xi:(i+d−1),X(i+d+a−1):(i+2d+a−1)) ∈ B(x)).

Note that as we have assumed Xi ∈ R
q, in the above definitions, x ∈ R

dq

and x ∈ R
2dq respectively with h = hq. As we assume q fixed throughout, we

suppress this dependence. We discuss this issue further in a remark following
our main result in the next subsection.

We construct an estimator of βd(a) based on these two histograms.1 Define

β̂d(a) =
1

2

∫ ∣∣∣f̂2d
a − f̂d ⊗ f̂d

∣∣∣ (3)

We will show that, by having d = dn grow (slowly) with n, this estimator will
converge to β(a). This can be seen most clearly by bounding the risk of the
estimator with its estimation and approximation errors:

|β̂d(a)− β(a)| ≤ |β̂d(a)− βd(a)|+ |βd(a)− β(a)|.

The first term is the error of estimating βd(a) from a random sample. The
second term is the non-stochastic error induced by approximating the infinite
dimensional coefficient, β(a), by its d-dimensional counterpart, βd(a).

2.3. Assumptions and main results

The results of this paper require two main assumptions. The first is that the
process Xn

1 is generated by a stationary, β-mixing distribution with density f .
Second, we must place some conditions on the density f to ensure that the
histogram estimators f̂d and f̂2d will actually converge to the densities fd and
f2d. Specifically, we will assume continuity and regularity conditions as in [13]2:

1. f ∈ L2 and f is absolutely continuous on its support, with a.e. partial
derivatives fi =

∂
∂yi

f(y)

1While it is clearly possible to replace histograms with other choices of density estima-
tors (most notably kernel density estimators), histograms in this case are more convenient
theoretically and computationally. See §6 for more details.

2We discuss modifications for discrete distributions below, p. 2861.
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2. fi ∈ L2 and fi is absolutely continuous on its support, with a.e. partial
derivatives fik = ∂

∂yk
fi(y)

3. fik ∈ L2 for all i, k.

We will presume below that f has a bounded domain, but we do not list that
as a separate assumption, for two reasons. First, even if f has unbounded sup-
port, we can always smoothly and invertibly map R

q into (say) [0, 1]q, without
disturbing any of the assumptions above, and without changing β(a), since to-
tal variation distance is invariant under invertible transformations. Second, the
unbounded-domain case could be handled by, basically, a remainder argument:
the support of the histogram density estimate is effectively set by the empiri-
cal range of the Xn

1 , and, with high and growing probability, this includes the
overwhelming majority of the f probability-mass. Following this through would
however needlessly complicate our proofs.

Under these conditions, we can state the two main results of this paper. Our
first theorem in this section establishes consistency of β̂dn(a) as an estimator of
β(a) for all β-mixing processes.

Theorem 3. Let Xn
1 be a sample from an arbitrary β-mixing process satisfying

the conditions above. Provided that nhdn
n → ∞, dnhn → 0, dn → ∞, and hn → 0

as n → ∞, then for any ε > 0,

lim
n→∞

P

(∣∣∣β̂dn(a)− β(a)
∣∣∣ > ε

)
= 0.

In this general case, we need doubly asymptotic results about the histogram
estimator, that is, the histogram estimators require shrinking bin widths in in-
creasingly higher dimensions. In Lemma 12, we give appropriate rates for hn

and dn to achieve the optimal rate of convergence for the estimation error. Of
course, with discrete data or Markov models, we may not need doubly asymp-
totic results since either the maximum number of bins or the memory length of
the process is fixed.

For a Markov process of order d or less, βd(a) = β(a). In this case, we can
give the convergence rate of our estimator.

Theorem 4. Let Xn
1 be a sample from a Markov process of order no larger

than d. Then, taking the bandwidths to be hn = O((W (n)/n)2d/(2d+1)) for f̂d

and hn = O((W (n)/n)4d/(4d+1)) for f̂2d,

E[|β̂d(a)− β(a)|] = O

(√
W (n)

n

)
. (4)

Here, W (n) is the Lambert W function, i.e., the (multivalued) inverse of
g(w) = w exp{w} [7]. As O(W (n)) is bigger than O(log logn) but smaller than
O(log n), our estimator attains nearly parametric convergence rates when the
data come from a Markov process of order ≤ d. Likewise, if we were interested
in estimating only the finite dimensional mixing coefficients βd(a) rather than
β(a), Theorem 4 gives the rate of convergence.
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The proof of these two theorems requires showing the L1 convergence of
the histogram density estimator with β-mixing data. We present this result in
Section 3. First, we discuss some important details regarding these theorems
and provide a method for choosing the number of bins in the histogram.

Remarks on discrete-valued processes An important special case is that
of discrete-valued β-mixing processes, including Markov chains in the strict
sense. The symbols of any finite alphabet can be represented by points in R,
and β-mixing coefficients are invariant to the choice of representation. Of course,
the resulting distributions in R

q will be mixtures of delta functions, and so not
absolutely continuous. However, for a finite number of points, there will exist
a maximum bin-width below which each bin of the histogram will contain at
most one positive-probability point. While the corresponding histogram density
estimator is always absolutely continuous, it is easily seen that below this bin-
width, the histogram estimator has the same β-mixing coefficient as the true
distribution. Moreover, the errors of estimation and approximation dealt with
in the proofs of our theorems and lemmas are, if anything, even smaller for
finite-alphabet processes, making our results somewhat conservative.

Remarks on the interaction between q, dn, and hn The interaction be-
tween the dimension of the data and the bandwidth of the histogram (equiva-
lently the number of bins used) is important for applications. However, we use
dn to represent more than the “dimension” of the dataset: dn is the product of
the dimension of the range of X, q, and the length of the Markov approximation.
For example, suppose that the data consist of q time-series (we will use a data
set with q = 6 in Section 5) which is known to be first-order Markov. Then,
d = dn = q×1 for all n is sufficient for our estimator to achieve the convergence
rate specified in Theorem 4 provided hn is chosen appropriately. However, if
this same dataset is non-Markovian but still β-mixing, then in order to estimate
β(a) consistently, we must use successively larger Markov approximations as
n → ∞. This means taking dn = q × γ(n) for an increasing function γ. Thus,
even though the data are of fixed dimension q, the dimension over which the
histogram is constructed must increase to infinity to give estimation consistency
as in Theorem 3. Lemma 12 shows that if γ(n) ∼ exp{W (logn)}, then there is a
polynomial rate for the bandwidth which satisfies the conditions of Theorem 3.
Of course for a fixed dataset application, one must choose the bandwidth and
potentially the Markov approximation. One could fix the Markov approximation
and use cross-validation for the bandwidth selection, but we have found that
this procedure tends to choose bandwidths which are too small, resulting in a
positive estimation bias. In the remainder of this paper, we suppress q and work
directly with dn. In the next section, we present a procedure for choosing the
bandwidth for a fixed dimension d.

2.4. Choosing the bandwidth

We need some way to pick the bandwidth of our histograms, or, equivalently, the
number of bins. If we were doing density estimation for its own sake, the natural
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thing to do would be some sort of cross-validation with a loss based on the
density. However, we do not really care about the density. Instead, we suggest an
approach which might be called “calibration with surrogate data”.3 In outline,
we construct an artificial stochastic process which shares many distributional
features with the data, but where β is known exactly. This lets us see which
bandwidth leads to the most accurate estimation of the reference value of β, and
this is at least a reasonable guess at the appropriate bandwidth on the data. To
flesh this out, we first describe the construction of the surrogate process with
known β, and then the full bandwidth-selection procedure.

We regard d, the order of the Markov approximation, as fixed, and note that,
by our error analysis in Theorem 4, the lag a should not affect the appropriate
bandwidth.4 We thus proceed to construct a process where, for a given d, the
mixing coefficient βd(1) has a known value and then try to optimize the variance
of our estimator.

To generate the surrogate process, we sample blocks of length d from the
data X1:n. We start with a random d-block Z1 then repeat that block with
probability 1/2 and resample a new d-block with the remaining probability. We
continue this process M = n/d times (rounding up or down as desired) until we
have a new sequence Y of length Md. Notice that the Y process has the same
marginal distribution as the empirical marginal distribution of X. Its higher-
dimensional marginal distributions are not guaranteed to match those of the
data, because of the abrupt change from one block to the next, and because of
the random repetition of blocks. However, if d 
 n, the d-dimensional marginals
should be close. Based on this intuition, we present Algorithm 1 for choosing
the bandwith in the histograms for continuous data X1:n. We then prove two
results justifying its use.

The first result presents the exact mixing coefficient for Y.

Proposition 5. Suppose that the marginal density f of X is absolutely contin-
uous. Fix d, and let u be the set of unique length-d sequences appearing in X1:n,
where sequence w ∈ u appears nw times. Set

κ =
∑
w∈u

(
nw

n− d+ 1

)2

Then for Y constructed as in Algorithm 1,

βd(1) = 0.5(1− κ).

Proof. First, let Q = P[d] ⊗ P[d] be the product measure of d-blocks and call P
the joint distribution of 2d-blocks associated to a hypothetical, infinite sequence

3“Surrogate data” methods are used extensively in nonlinear time series analysis for hy-
pothesis testing, especially testing the hypothesis that there is some nonlinear deterministic
structure [19]. Note that we are using the word “calibration” here in the sense in which
measuring instruments are calibrated against standards, not the sense in which it is used in
evaluating probabilistic forecasts [16], or the estimation technique from econometrics [18].

4Apart from leading to slight changes to the effective n.
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Algorithm 1: Method to choose the bandwidth h via calibration with
surrogate data
input : A timeseries X1:n; a finite approximation length d; desired number of

replications K; candidate bandwidths h = {h1, . . . , hH}
output: A bandwidth h

M ← �n/d�;
Calculate the d-dimensional histogram of X1:n, [p̂1h, . . . , p̂

J
h ] for each h;

Estimate p̂h =
∑J

j=1(p̂
j
h)

2;

Calculate κ as in Theorem 5;
for k = 1 to K do

generate a new series Y(k);
for m = 1 to M do

Draw U standard uniform;
if m = 1 or U > 1/2 then

Draw a random index i ∈ {1, . . . , n− d+ 1};
Set Z

(m)
1:d ← Xi:i+d and append this to Y(k);

else

Set Z
(m)
1:d = Z

(m−1)
1:d and append this to Y(k);

end

end

estimate the mixing coefficient β̂d
(k)

(1) for each h;

end
Return the h which minimizes the estimated variance∑K

k=1

[
β̂d
(k)

(1)− 0.5(1− κ)(1− p̂h)
]2

.

Y generated, say, by draws of d-blocks from the distribution of X rather than
its empirical counterpart. The total variation distance between the joint distri-
bution of two identical copies of the same block, and the joint distribution of
two independent blocks, is therefore 1 (since the P measure of this set is 0).5

By the same reasoning, two blocks which share some coordinates (even if not in
the same positions within a block) have a TV distance of 1 from independence.
For the diagonal D, we therefore have that P (D) = 1/2 while Q(D) = 0. Thus,
the total variation between P and Q is at least 1/2. To show that it is no more
than 1/2, suppose that there was another set A where |P (A) − Q(A)| > 1/2.
Without loss of generality, say P (A) > Q(A). (If the inequality went the other
way, use Ac.) Then P (A) > 1/2+Q(A), so A must intersect the diagonal D; let
A = (A∩D)∪(A∩Dc) = B∪C. As disjoint sets, P (A) = P (B)+P (C), likewise
for Q, so P (A) −Q(A) = P (B) −Q(B) + P (C) −Q(C), but P (C) = 0.5Q(C)
and Q(B) = 0, thus P (A)−Q(A) = P (B)−0.5Q(C). But P (B) ≤ P (D) = 1/2,
and Q(C) ≥ 0, so P (A) − Q(A) ≤ 1/2. Therefore, the total variation distance
between P and Q is 1/2.

Now, observe that κ is the probability that two independently drawn blocks

5Requiring any coordinate to be shared between two d-vectors B and C forces the (B,C)
joint distribution to put probability 1 on a lower-dimensional subspace of the product space,
which would have measure 0 under the product measure, leading to a total variation distance
of 1 from independence.



2864 D. J. McDonald et al.

in Y will, by chance, happen to be equal. Thus, κ simplifies to 1/(n−d+1) when
all the blocks are distinct, as they ought to be when the generating process has
an absolutely continuous distribution. The factor 1−κ corrects for the fact that
the empirical distributions we are using put probability κ on the low-dimensional
subspace D.

With this result in hand, we will resample many time-series Y from our data
and choose the bandwidth by minimizing the variance over some grid of h values
(equivalently number of bins). We do not minimize the mean squared error,
because the bias of the estimator depends on the mixing coefficient. Minimizing
the bias in an attempt to estimate a mixing coefficient near 1/2 may result in
badly biased estimates of coefficients near zero. Our next result calculates the
expectation of this estimator and therefore its bias.

Proposition 6. Suppose that the marginal density fd of X[d] is absolutely con-

tinuous. The expected value of β̂d(1) based on Y is given by

E

[
β̂d(1)

]
= 0.5(1− ph)(1− κ),

where ph =
∑J

j=1(
∫
Bj

fd)2 and {Bj}Jj=1 are the bins for a histogram with band-

width h.

Proof. By discretizing into histograms, the diagonal is no longer a measure 0
set, and in fact contains more mass than 1/2. By construction, the product
distribution Q puts mass ph on the discretized diagonal Dh while the joint
distribution, P , puts mass 0.5(1 + ph) on the discretized diagonal. Therefore,
under the histogram with bandwidth h, the total variation distance between Q
and P is given by

sup
A

|Q(A)− P (A)| = sup
Dh,Dc

h

|Q(Dh)− P (Dh)|

= |ph − 0.5(1 + ph)| ∨ |(1− ph)− 0.5(1 + (1− ph))|
= 0.5|ph − 1| ∨ 0.5|1− ph|
= 0.5(1− ph).

3. L1 convergence of histograms

Convergence of density estimators is thoroughly studied in the statistics and
machine learning literature. Early papers on the L∞ convergence of kernel den-
sity estimators (KDEs) include [37, 2, 28]; Freedman and Diaconis [14] look
specifically at histogram estimators, and Yu [38] considers the L∞ convergence
of KDEs for β-mixing data and shows that the optimal i.i.d. rates can be at-
tained. Tran [31] proves L2 convergence for histograms under α- and β-mixing.
Devroye and Györfi [10] argue that L1 is a more appropriate metric for studying
density estimation, and Tran [30] proves L1 consistency of KDEs under α- and
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Fig 1. The blocking procedure divides X1:n into 2μ alternating blocks Uj (orange) and Vj

(green) each of length m.

β-mixing. As far as we are aware, ours is the first proof of L1 convergence for
histograms under β-mixing.

Our proof requires the method of blocking used in Yu [38, 39] following
earlier results such as Eberlein [12], Volkonskii and Rozanov [34] and going
back to Bernstein. The idea here is to translate i.i.d. results directly to mixing
sequences, with corrections that reflect the β-coefficients and the length of the
process. To do this, one creates an imaginary sequence of independent blocks of
data from the original dependent sequence. Ordinary i.i.d. results apply to the
imaginary sequence, which also approximates the actual dependent sequence, to
within a known tolerance.

Consider a sample X1:n from a stationary β-mixing sequence with density
f . Let m and μ be positive integers such that 2mμ = n. Now imagine dividing
X1:n into 2μ blocks, each of length m. Identify the blocks as follows:

Uj = {Xi : 2(j − 1)m+ 1 ≤ i ≤ (2j − 1)m},
Vj = {Xi : (2j − 1)m+ 1 ≤ i ≤ 2jm},

for 1 ≤ j ≤ μ. Let U be the entire sequence of odd blocks {Uj}μj=1, and let
V be the sequence of even blocks {Vj}μj=1. A visual representation is shown in

Figure 1. Finally, let Ũ be a sequence of blocks which are independent of X1:n

but such that each block has the same distribution as a block from the original
sequence. That is, construct Ũj such that

L(Ũj) = L(Uj) = L(U1), (5)

where L(·) means the probability law of the argument. The blocks Ũ are now an

i.i.d. block sequence, in that for integers i, j ≤ 2μ, i �= j, Ũi ⊥⊥ Ũj so standard
results about i.i.d. random variables can be applied to these blocks. (See [39]
for a more rigorous analysis of blocking.) We now state the main result of this
section.

Theorem 7. Let

f̂(x) :=
1

nhd

n∑
i=1

I(Xi ∈ B(x)) (6)

be a histogram density estimator based on a sample X1:n from a β-mixing se-

quence with stationary density f , then for all ε > E

[∫
|f̂ − f |

]
, and any natural

numbers m and μ such that 2mμ ≤ n,

P

(∫
|f̂ − f | > ε

)
≤ 2 exp

{
−με21

2

}
+ 2μβ(m) (7)

where ε1 = ε− E

[∫
|f̂ − f |

]
.
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This theorem demonstrates a clear tradeoff between the mixing behavior of
the stochastic process and the ability to concentrate the estimator close to the
truth. For arbitrary β-mixing processes, we cannot actually say much about the
quality of this estimator other than that given enough data, it will eventually
do well. For this reason, one generally assumes that the mixing coefficients β(a)
display particular asymptotic behaviors like exponential or polynomial decay.

To prove Theorem 7, we use the blocking method of [39] to transform the
dependent β-mixing sequence into a sequence of nearly independent blocks. We
then apply McDiarmid’s inequality to the blocks to derive asymptotics in the
bandwidth of the histogram as well as the dimension of the target density. For
completeness, we state a version of Yu’s blocking result and McDiarmid’s in-
equality before proving the doubly asymptotic histogram convergence for i.i.d.
data. Combining these lemmas allows us to prove concentration results for his-
tograms based on β-mixing inputs.

Lemma 8 (Lemma 4.1 in [39]). Let φ be an event with respect to the block
sequence U. Then,

|P[φ]− P̃[φ]| ≤ μβ(m), (8)

where the first probability P is with respect to the dependent block sequence, U,
and P̃ is the μ-fold product measure created with the marginal distribution of
each block U, i.e. P̃ = (P[m])

μ.

This lemma essentially gives a method of applying i.i.d. results to β-mixing
data. Because the dependence decays as we increase the separation between
blocks, widely spaced blocks are nearly independent of each other. In partic-
ular, the difference between probabilities of events generated by these nearly
independent blocks and probabilities with respect to blocks which are actually
independent can be controlled by the β-mixing coefficient.

Lemma 9 (McDiarmid Inequality [21]). Let X1, . . . , Xn be independent ran-
dom variables, with Xi taking values in a set Ai for each i. Suppose that the
measurable function f :

∏
Ai → R satisfies

|f(x)− f(x′)| ≤ ci

whenever the vectors x and x′ differ only in the ith coordinate. Then for any
ε > 0,

P(f − Ef > ε) ≤ exp

{
− 2ε2∑

c2i

}
.

Since we will need the dimension of the histograms to grow with n, we prove
the following lemma which provides the doubly asymptotic convergence of the
histogram estimator for i.i.d. data. It differs from standard histogram conver-
gence results in the bias calculation. In this case we need to be more careful
about the interaction between d and hn.

Lemma 10. For an i.i.d. sample X1, . . . , Xn from some density f on R
d,

E

∫
|f̂ − Ef̂ |dx = O

(
1/
√
nhd

n

)
(9)
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|Ef̂ − f |dx = O(dhn) +O(d2h2

n), (10)

where f̂ is the histogram estimate using a grid with sides of length hn.

Proof of Lemma 10. Let pj be the probability of falling into the jth bin Bj .
Denote the total number of bins by J = h−d

n . Then,

E

∫
|f̂ − Ef̂ | = hd

n

J∑
j=1

E

∣∣∣∣∣ 1

nhd
n

n∑
i=1

I(Xi ∈ Bj)−
pj
hd

∣∣∣∣∣
≤ hd

n

J∑
j=1

1

nhd
n

√√√√V

[
n∑

i=1

I(Xi ∈ Bj)

]
= hd

n

J∑
j=1

1

nhd
n

√
npj(1− pj)

=
1√
n

J∑
j=1

√
pj(1− pj) = O(n−1/2)O(h−d/2

n ) = O

(
1/
√
nhd

n

)
.

Using a Taylor expansion

f(x) = f(c) +
d∑

i=1

(xi − ci)fi(c) +O(d2h2
n),

where fi(y) =
∂

∂yi
f(y). Therefore, pj is given by

pj =

∫
Bj

f(x)dx = hd
nf(c) +O(d2hd+2

n )

since the integral of the second term over the bin is zero. This means that for
the jth bin,

Ef̂n(x)− f(x) =
pj
hd
n

− f(x) = −
d∑

i=1

(xi − ci)fi(c) +O(d2h2
n).

Therefore,∫
Bj

∣∣∣Ef̂n(x)− f(x)
∣∣∣ = ∫

Bj

∣∣∣∣∣−
d∑

i=1

(xi − ci)fi(c) +O(d2h2
n)

∣∣∣∣∣
≤
∫
Bj

∣∣∣∣∣−
d∑

i=1

(xi − ci)fi(c)

∣∣∣∣∣+
∫
Bj

O(d2h2)

=

∫
Bj

∣∣∣∣∣
d∑

i=1

(xi − ci)fi(c)

∣∣∣∣∣+O(d2h2+d
n )

= O(dhd+1
n ) +O(d2h2+d

n )
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Since each bin is bounded, we can sum over all J bins. The number of bins is
J = h−d

n by definition, so∫
|Ef̂n(x)− f(x)|dx = O(h−d

n )
(
O(dhd+1

n ) +O(d2h2+d
n )

)
= O(dhn) +O(d2h2

n).

The dimension of the target density is analogous to the order of the Markov
approximation. Therefore, the convergence rates we give are asymptotic in the
bandwidth hn which shrinks as n increases, but also in the dimension d which
increases with n. Even under these asymptotics, histogram estimation in this
sense is not a high dimensional problem. The dimension of the target density
considered here is on the order of exp{W (logn)}, a rate somewhere between
logn and log logn.

We can combine the above lemmas to prove the main result of this section.
Essentially, we use Lemma 8 to transform the problem from one about depen-
dent data points to one involving independent blocks, we then apply Lemma 9
to the blocks to get one-sided concentration inequalities, and finally, we use
Lemma 10 to ensure that certain expectations are bounded.

Proof of Theorem 7. Let g be the L1 loss of the histogram estimator, g =
∫
|f−

f̂ | where f̂ is defined in (6). Let f̂U, f̂V, and f̂Ũ be histograms based on the

block sequences U, V, and Ũ respectively. Then

f̂(x) =
1

nhd

n∑
i=1

I(Xi ∈ B(x))

=
1

nhd

μ∑
j=1

(2j−1)m∑
i=2(j−1)m+1

I(Xi ∈ B(x)) +
1

nhd

μ∑
j=1

2jm∑
i=(2j−1)m+1

I(Xi ∈ B(x))

=
1

2
(f̂U + f̂V).

Now,

P(g > ε) = P

(∫
|f − f̂ | > ε

)
= P

(∫ ∣∣∣∣∣f − f̂U
2

+
f − f̂V

2

∣∣∣∣∣ > ε

)

≤ P

(
1

2

∫
|f − f̂U|+ 1

2

∫
|f − f̂V| > ε

)
= P(gU + gV > 2ε)

≤ P(gU > ε) + P(gV > ε) = 2P(gU − E[gU] > ε− E[gU])

= 2P(gU − E[gŨ] > ε− E[gŨ]) = 2P(gU − E[gŨ] > ε1),

where the equality in the last line (using E[gU] = E[gŨ]) is implicit in the

construction of Ũ from (5) and ε1 = ε− E[gŨ]. Here,

E[gŨ] ≤ Ẽ

∫
|f̂Ũ − Ẽf̂Ũ|dx+

∫
|Ẽf̂Ũ − f |dx,
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so by Lemma 10, as long as for μ → ∞, hn ↓ 0 and μhd
n → ∞, then for all ε

there exists n0(ε) such that for all n > n0(ε), ε > E[g] = E[gŨ]. Now applying
Lemma 8 to the event {gU − E[gŨ] > ε1} gives

2P(gU − E[gŨ] > ε1) ≤ 2P(gŨ − E[gŨ] > ε1) + 2μβ(m)

where the probability on the right is for the σ-field generated by the independent
block sequence Ũ. Since these blocks are independent, showing that gŨ satisfies
the bounded differences requirement allows for the application of Lemma 9 to
the blocks. For any two block sequences z1, . . . , zμ and z′1, . . . , z

′
μ with z� = z′�

for all 
 �= j, then∣∣gŨ(z1, . . . , zμ)− gŨ(z′1, . . . , z
′
μ)
∣∣

=

∣∣∣∣∫ |f̂(y; z1, . . . , zμ)− f(y)|dy −
∫

|f̂(y; z′1, . . . , z′μ)− f(y)|dy
∣∣∣∣

≤
∫

|f̂(y; z1, . . . , zμ)− f̂(y; z′1, . . . , z
′
μ)|dy =

2

μhd
n

hd
n =

2

μ
.

Therefore,

P(g > ε) ≤ 2P(gŨ − E[gŨ] > ε1) + 2μβ(m)

≤ 2 exp

{
−με21

2

}
+ 2μβ(m).

4. Proofs of results in Section 2.3

With the structure from the previous section, we can state a concentration
inequality for β̂d(a).

Lemma 11. Consider a sample X1:n from a stationary β-mixing process. Let
μ and m be positive integers such that 2μm ≤ n and μ ≥ d > 0. Then

P(|β̂d(a)− βd(a)| > ε) ≤ 2 exp

{
−με21

2

}
+ 2 exp

{
−με22

2

}
+ 4μβ(m),

where ε1 = ε/2− E

[∫
|f̂d − fd|

]
and ε2 = ε− E

[∫
|f̂2d

a − f2d
a |
]
.

The proof of Lemma 11 relies on the triangle inequality and the relationship
between total variation distance and the L1 distance between densities.

Proof of Lemma 11. For any two probability measures ν and λ defined on the
same probability space with associated densities fν and fλ with respect to some
dominating measure π,

‖ν − λ‖TV =
1

2

∫
d(π)|fν − fλ|.

Recall that P[d] is the d-dimensional stationary distribution of the dth-order
Markov approximation in the notation of (2), and P[d],a is the joint distribution
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of the bivariate random process created by the initial process and itself separated
by a time steps. By the triangle inequality, we can upper bound βd(a) for any d =

dn. Let P̂[d] and P̂[d],a be the distributions associated with histogram estimators

f̂d and f̂2d
a respectively. Then,

βd(a) = ‖P[d] ⊗ P[d] − P[d],a‖TV

= ‖P[d] ⊗ P[d] − P̂[d] ⊗ P̂[d] + P̂[d] ⊗ P̂[d] − P̂[d],a + P̂[d],a − P[d],a‖TV

≤ ‖P[d] ⊗ P[d] − P̂[d] ⊗ P̂[d]‖TV

+ ‖P̂[d] ⊗ P̂[d] − P̂[d],a‖TV + ‖P̂[d],a − P[d],a‖TV

≤ 2‖P[d] − P̂[d]‖TV + ‖P̂[d] ⊗ P̂[d] − P̂[d],a‖TV + ‖P̂[d],a − P[d],a‖TV

=

∫
|fd − f̂d|+ 1

2

∫
|f̂d ⊗ f̂d − f̂2d

a |+ 1

2

∫
|f2d

a − f̂2d
a |

where 1
2

∫
|f̂d ⊗ f̂d − f̂2d

a | is our estimator β̂d(a) and the remaining terms are
the L1 distance between a density estimator and the target density. Thus,

βd(a)− β̂d(a) ≤
∫

|fd − f̂d|+ 1

2

∫
|f2d

a − f̂2d
a |.

A similar argument starting from β̂d(a) = ‖P̂[d] ⊗ P̂[d] − P̂[d],a‖TV shows that

β̂d(a)− βd(a) ≤
∫

|fd − f̂d|+ 1

2

∫
|f2d

a − f̂2d
a |,

so we have that∣∣∣βd(a)− β̂d(a)
∣∣∣ ≤ ∫ |fd − f̂d|+ 1

2

∫
|f2d

a − f̂2d
a |.

Therefore,

P

(∣∣∣βd(a)− β̂d(a)
∣∣∣ > ε

)
≤ P

(∫
|fd − f̂d|+ 1

2

∫
|f2d

a − f̂2d
a | > ε

)
≤ P

(∫
|fd − f̂d| > ε

2

)
+ P

(
1

2

∫
|f2d

a − f̂2d
a | > ε

2

)
≤ 2 exp

{
−με21

2

}
+ 2 exp

{
−με22

2

}
+ 4μβ(m),

where ε1 = ε/2− E

[∫
|f̂d − fd|

]
and ε2 = ε− E

[∫
|f̂2d

a − f2d
a |
]
.

Proof of Theorem 4. By Lemma 11, we have

E[|β̂(a)− β(a)|] =
∫ 1

0

dε P(|β̂d(a)− βd(a)| > ε)

≤
∫ 1

0

dε

[
2 exp

{
−με21

2

}
+ 2 exp

{
−με22

2

}
+ 4μβ(m)

]
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= O(μ−1/2) + 4μβ(m).

To balance both terms, one needs β(m) = O(μ−3/2). Since β(m) = O(ρ−m) for
Markov processes, then taking m = 3

2 logρ μ is sufficient. Now, solving

n = 2μ
3

2

log μ

log ρ

gives μ = O(n/W (n)) giving the result.

The proof of Theorem 3 requires two steps which are given in the following
Lemmas. The first specifies the histogram bandwidth hn and the rate at which
dn (the dimensionality of the target density) goes to infinity. If the dimensional-
ity of the target density were fixed, we could achieve rates of convergence similar
to those for histograms based on i.i.d. inputs as shown in Theorem 4. However,
we wish to allow the dimensionality to grow with n, so the rates are much slower
as shown in the following lemma.

Lemma 12. For the histogram estimator in (3), let dn ∼ exp{W (logn)} and
hn ∼ n−kn with

kn =
W (logn) + 1

2 logn

logn
(
1
2 exp{W (logn)}+ 1

) .
Then, for all ε > 0, limn→∞ P(|β̂dn(a)− βdn(a)| > ε) = 0.

Proof of Lemma 12. Let hn = n−kn for some kn to be determined. Then from

Lemma 10 we want n−1/2h
−dn/2
n = n(kndn−1)/2 → 0, dnhn = dnn

−k → 0, and
d2nh

2
n = d2nn

−2k → 0 all as n → ∞. Call these A, B, and C. Taking A and B
first gives

n(kndn−1)/2 ∼ dnn
−kn

⇒ 1

2
(kndn − 1) logn ∼ log dn − kn logn

⇒ kn logn

(
1

2
dn + 1

)
∼ log dn +

1

2
logn

⇒ kn ∼
log dn + 1

2 logn

logn
(
1
2dn + 1

) . (11)

Similarly, combining A and C gives

kn ∼
2 log dn + 1

2 logn

logn
(
1
2dn + 2

) . (12)

Equating (11) and (12) and solving for dn gives

⇒ dn ∼ exp {W (logn)}
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where W (·) is the Lambert W function. Plugging back into (11) gives that
hn = n−kn where

kn =
W (logn) + 1

2 log n

logn
(
1
2 exp {W (logn)}+ 1

) .
It is also necessary to show that as d grows, we have the nonstochastic con-

vergence βd(a) → β(a). We now prove this result.

Lemma 13. βd(a) converges to β(a) as d → ∞.

Proof of Lemma 13. We can rewrite Definition 2 as

β(a) = sup
C∈σ[∞],a

|P[∞],a(C)− [P−∞:0 ⊗ Pa:∞](C)|.

and βd(a) as

βd(a) = sup
C∈σ[d],a

|P[∞],a(C)− [P−∞:0 ⊗ Pa:∞](C)| (13)

As such βd(a) ≤ β(a) for all a and d. We can rewrite (13) in terms of finite-
dimensional marginals:

βd(a) = sup
C∈σ[d],a

|P[d],a(C)− [P−d+1:0 ⊗ Pa:(a+d−1)](C)|.

Because of the nested nature of these sigma-fields, we have βd1(a) ≤ βd2(a) ≤
β(a) for all finite d1 ≤ d2. Therefore, for fixed a, {βd(a)}∞d=1 is a monotone
increasing sequence which is bounded above, and it converges to some limit
L ≤ β(a). To show that L = β(a) requires some additional steps.

Let R = P[∞],a − [P−∞:0 ⊗ Pa:∞], which is a signed measure on σ. Let

Rd = P[d],a − [P−d+1:0 ⊗ Pa:(a+d−1)],

which is a signed measure on σ[d],a. Decompose R into positive and negative

parts as R = Q+−Q− and similarly for Rd = Q+d−Q−d. Notice that since Rd

is constructed using the marginals of P, then R(E) = Rd(E) for all E ∈ σ[d],a.
Now since R is the difference of probability measures, we must have that

0 = R(Ω) = Q+(Ω)−Q−(Ω) = Q+(D) +Q+(Dc)−Q−(D)−Q−(Dc) (14)

for all D ∈ σ.
Define Q = Q+ +Q−. Let ε > 0. Let C ∈ σ be such that

Q(C) = β(a) = Q+(C) = Q−(Cc). (15)

Such a set C is guaranteed by the Hahn decomposition theorem (letting C∗

be a set which attains the supremum in (13), we can throw away any subsets
with negative R measure) and (14) assuming without loss of generality that
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P[∞],a(C) > [P−∞:0 ⊗ Pa:∞](C). We can use the field σf =
⋃

d σ[d],a to approxi-
mate σ in the sense that, for all ε, we can find A ∈ σf such that Q(AΔC) < ε/2
(see Theorem D in Halmos [17, §13] or Lemma A.24 in Schervish [27]). Now,

Q(AΔC) = Q(A ∩ Cc) +Q(C ∩Ac) = Q−(A ∩ Cc) +Q+(C ∩Ac)

by (15) since A ∩ Cc ⊆ Cc and C ∩ Ac ⊆ C. Therefore, since Q(AΔC) < ε/2,
we have

Q−(A ∩ Cc) ≤ ε/2 and Q+(Ac ∩ C) ≤ ε/2. (16)

Also,

Q(C) = Q(A ∩ C) +Q(Ac ∩ C) = Q+(A ∩ C) +Q+(Ac ∩ C) ≤ Q+(A) + ε/2

since A∩C and Ac ∩C are contained in C and A∩C ⊆ A. Therefore Q+(A) ≥
Q(C)− ε/2. Similarly,

Q−(A) = Q−(A ∩ C) +Q−(A ∩ Cc) ≤ 0 + ε/2 = ε/2

since A ∩ C ⊆ C and Q−(C) = 0 by (16). Finally,

Q+d(A) ≥ Q+d(A)−Q−d(A) = Rd(A) = R(A) = Q+(A)−Q−(A)

≥ Q(C)− ε/2− ε/2 = Q(C)− ε = β(a)− ε.

And since βd(a) ≥ Q+d(A), we have that for all ε > 0 there exists d such that
for all d1 > d,

βd1(a) ≥ βd(a) ≥ Q+d(A) ≥ β(a)− ε.

Thus, we must have that L = β(a), so that βd(a) → β(a) as desired.

Proof of Theorem 3. By the triangle inequality,

|β̂dn(a)− β(a)| ≤ |β̂dn(a)− βdn(a)|+ |βdn(a)− β(a)|.

The first term on the right is bounded by the result in Lemma 11, where we have
shown that dn = O(exp{W (logn)}) is slow enough for the histogram estimator

to remain consistent. That βdn(a)
dn→∞−−−−→ β(a) follows from Lemma 13.
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Fig 2. Two-state Markov chain St used for simulations.

5. Performance in examples

To demonstrate the performance of our estimator, we examine three simulated
examples and an example using real data.

5.1. Simulations

The first simulation is a simple two-state Markov chain. Thus, its mixing rate
is known, only two bins are required in the histogram, and we can use d = 1.
The second takes this Markov chain as an unobserved input and outputs a non-
Markovian binary sequence which remains β-mixing, but we must now allow
d to grow with n. Finally, we examine an autoregressive model wherein we
can again use d = 1 as it is Markovian, but there is an uncountable state
space.

5.1.1. Markov process

As shown in [8], homogeneous recurrent Markov chains are geometrically β-
mixing, i.e. β(a) = O(ρa) for some 0 ≤ ρ < 1. In particular, if the Markov chain
has stationary distribution π and a-step transition distribution P a, then

β(a) =

∫
π(dx)‖P a(· | x)− π(·)‖TV . (17)

Consider first the two-state Markov chain St pictured in Figure 2. By direct
calculation using (17), the mixing coefficients for this process are β(a) = 4

9

(
1
2

)a
.

We simulated chains of length n = 1000 from this Markov chain. Figure 3 shows
the performance of the estimator based on 1000 replications. Here, we have used
two bins in all cases (as there are only two states), but we allow the Markov
approximation to vary as d ∈ {1, 2, 3, 4}, even though d = 1 is exact. The
estimator performs well for a ≤ 5, but begins to exhibit a positive bias as a
increases. This is because the estimator is nonnegative, whereas the true mixing
rates are quickly approaching zero. The upward bias is exaggerated for larger
d. This bias goes away as n → ∞. This is demonstrated in Figure 4 which uses
n = 100, 000.
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Fig 3. This figure illustrates the performance of our estimator for the two-state Markov chain
depicted in Figure 2. We simulated length n = 1000 chains and calculated β̂d(a) for d = 1
(circles), d = 2 (diamonds), d = 3 (triangles), and d = 4 (squares). The dashed line indicates
the true mixing coefficients. We show means and 95% confidence intervals based on 1000
replications.

Fig 4. This again shows the two-state Markov chain but with length n = 100, 000 chains.
Again, it shows β̂d(a) for d = 1 (circles), d = 2 (diamonds), d = 3 (triangles), and d = 4
(squares). The dashed line indicates the true mixing coefficients. We show means and 95%
confidence intervals based on 100 replications.
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Fig 5. This figure illustrates the performance of our estimator for the two-state m-Markov
chain generated with the transition probability in equation (18). We simulated length n =

50000 chains and calculated β̂d(a) for d = 1 (circles), d = 2 (diamonds), d = 3 (solid
triangles), d = 4 (squares), and d = 5 (open triangles). The solid line indicates β(a).
Other, lower-dimensional mixing coefficients are given by β1(a) (dot-dash), β2(a) (dotted),
and β3(a) (dashed). We show means and 95% confidence intervals based on 100 replica-
tions.

5.1.2. Markov chain of order m

Before examining a long-memory process, we simulate an intermediate case. We
construct a Markov model of order m on {0, 1} using the following transition
probability:

P (Zt = 1|Zt−m, . . . , Zt−1) =
m− 1

m
(1− ξm) +

1

m
ξm with ξm =

1

m

m∑
i=1

Zt−i.

(18)

Essentially, this process avoids long strings of ones or zeros. In this case, we
have that β(a) = βm(a) = βm+k(a) for all k ∈ N. Therefore, we should be able
to estimate β(a) well by taking d = m. However, for smaller values of d, we
will tend to underestimate β(a). In fact, it is possible, using equation (2), to
calculate βd(a) for each d = 1, . . . ,m. We simulated chains of length n = 50000
from this Markov chain with m = 4. Figure 5 shows the performance of the
estimator based on 100 replications. Here, we allow the Markov approximation
to vary as d ∈ {1, 2, 3, 4, 5}, even though d = m = 4 is exact. As above, the
estimator performs well for a ≤ 5. Note that, for d < m, we can estimate βd(a)
well as we would expect.
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Fig 6. This figure illustrates the performance of our estimator for the even process in
Equation 19. Again, we simulated length n = 1000 chains and calculated β̂d(a) for d = 1
(circles), d = 2 (diamonds), d = 3 (triangles), and d = 4 (squares). The dashed line indicates
an upper bound on the true mixing coefficients. We show means and 95% confidence intervals
based on 1000 replications.

5.1.3. Long-memory discrete process

As an example of a long memory process, we construct, following Weiss [35], a
partially observable Markov process which we call the “even process”. Let Xt be
the observed sequence which takes as input the Markov process St constructed
above. We observe

Xt =

{
1 (St, St−1) = (A,B) or (B,A)

0 else.
(19)

Since St is Markovian, the joint process (St, St−1) is as well, so we can calcu-
late its mixing rate β(a) = 8

9

(
1
2

)a
. The even process must also be β-mixing,

and at least as fast as the joint process, since it is a measurable function of a
mixing process. However, Xt itself is non-Markovian: runs of ones must have
even lengths, so we need to know how many ones have been observed to know
whether the next observation can be zero or must be a one. Thus, the true mix-
ing coefficients are bounded above, though unknown. Using the same procedure
as above, Figure 6 shows the estimated mixing coefficients. Again we observe a
bias for a large due to the nonnegativity of the estimator.
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Fig 7. This figure illustrates the performance of our proposed estimator for the AR(1) model.

We simulated chains of length n ∈ {102, 103, 104, 105, 106} and calculated β̂1(a). The
dashed line indicates the true mixing coefficients calculated via numerical integration. We
show means and 95% confidence intervals based on 250 replications.

5.1.4. Autoregressive process

Finally, we estimate the β-mixing coefficients for an AR(1) model

Zt = 0.5Zt−1 + ηt ηt
iid∼ N(0, 1).

While, this process is Markovian, there is no closed form solution to (17),
so we calculate it via numerical integration. Figure 7 shows the performance
of the estimator for d = 1. Figure 7 shows the performance for varying n ∈
{102, 103, 104, 105, 106}. We select the bandwidth for each n using Algorithm 1.
The selected numbers of bins are 2, 8, 17, 44, 90. As n grows, the bias shrinks,
even for large a while the variance of the estimators also shrinks rapidly. How-
ever, this figure shows that even with large amounts of data, accurate estimation
is difficult.

5.2. Real data

To illustrate the performance of our estimator in applications, we investigate
an economic dataset in larger dimensions than in the simulations above. We
use a q = 6-dimensional macroeconomic time series which tracks recessions
in various countries. In particular, we track recession indicators in Canada,
Germany, France, Great Britain, Japan, and the United States. We chose this
dataset for a number of reasons. First, the data are publicly available from the
Federal Reserve Economic Database using the series presented in Table 1. Sec-

https://research.stlouisfed.org/fred2/
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Table 1

Economic recession data from FRED

Series ID Country
CANRECDM Canada
DEURECDM Germany
FRARECDM France
GBRRECDM Great Britain
JPNRECDM Japan
USARECDM United States

ond, the series is long, providing daily observations from December 1, 1961 until
September of 2014 for a total of n = 19288 observations. This will enable us to
allow d to grow quite quickly. Third, the data are binary, so mixing coefficients
may be a more reasonable measure of temporal dependence than, say, correla-
tion. It also means we can ignore the issue of bin selection. Fourth, the data likely
have high temporal dependence as the indicators are based on a combination of
monthly and quarterly macroeconomic aggregates such as gross domestic prod-
uct, inflation, and unemployment. This means that using both large d and very
large a is necessary. Finally, the data are strongly cross-sectionally dependent
since these are all developed countries likely to enter recession or expansion at
similar times. This cross-sectional dependence makes it unreasonable to examine
each series individually.

With six dimensions, the curse of dimensionality is immediately an issue:
f̂2d with 2 bins along each dimension will have 212γ bins when the Markov
approximation is of length γ (that is d = qγ = 6γ). In Figure 8, we present
estimated mixing coefficients for a between 1 and 360 (giving estimates for 1-

Fig 8. Estimated mixing coefficients for the recession indicators.

https://research.stlouisfed.org/fred2/
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month, 2-month, up to 1-year lag dependence) and γ ∈ {1, 2, 5, 10, 20}. As the
figure illustrates, these data are highly temporally dependent. The coefficients
for γ = 1 decrease smoothly in the lag a while the estimates for larger γ behave
less well. However, only the case of γ = 20 seems to exhibit the strong upward
bias we might expect if γ is large relative to n. Note that in this case we are
estimating the differences in probabilities in 2240 bins, although many of these
will be empty under both distributions.

6. Discussion

We have shown that our estimator of the β-mixing coefficients is consistent for
the true coefficients β(a) under some conditions on the data-generating process.
There are numerous results in the statistics literature which assume knowledge
of the β-mixing coefficients, yet as far as we know, this is the first estimator for
them. An ability to estimate these coefficients will allow researchers to apply
existing results to dependent data without the need to arbitrarily assume their
values. Additionally, it will allow probabilists to recover unknown mixing coeffi-
cients for stochastic processes via simulation. Despite the obvious utility of this
estimator, as a consequence of its novelty, it comes with a number of potential
extensions which warrant careful exploration as well as some drawbacks.

Several other mixing and weak-dependence coefficients also have a total-
variation flavor, perhaps most notably α-mixing [11, 9, 5]. None of them have
estimators, yet, and the same trick might well work for them, too.

The reader will note that Theorem 3 does not provide a convergence rate. The
rate in Theorem 4 applies only to Markov processes or the difference between
β̂d(a) and βd(a). In order to provide a rate in Theorem 3, we would need a
better understanding of the non-stochastic convergence of βd(a) to β(a). It is
not immediately clear that this quantity can converge at any well-defined rate.
In particular, it seems plausible, but is not proven, that the rate of convergence
depends on the tail of the sequence {β(a)}∞a=1.

The use of histograms rather than kernel density estimators for the joint
and marginal densities is surprising and perhaps not ultimately necessary. As
mentioned above, Tran [30] proved that KDEs are consistent for estimating the
stationary density of a time series with β-mixing inputs, so perhaps one could
replace the histograms in our estimator with KDEs. However, this would need an
analogue of the double asymptotic results proven for histograms in Lemma 10.
In particular, we need to estimate increasingly higher dimensional densities as
n → ∞. This does not cause a problem of small-n-large-d since d is chosen as a
function of n, however it will lead to increasingly higher dimensional integration.
For histograms, the integral is always computationally trivial, but in the case of
KDEs, the numerical accuracy of the integration algorithm becomes increasingly
hard to assure. This issue could swamp any statistical efficiency gains obtained
through the use of kernels, though further investigation is warranted.

The main drawback of an estimator based on a density estimate is its com-
plexity. The mixing coefficients are functionals of the joint and marginal dis-
tributions derived from the stochastic process X, however, it is unsatisfying to
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estimate densities and calculate integrals in order to estimate a single number.
Vapnik’s main principle for solving problems using a restricted amount of infor-
mation is “When solving a given problem, try to avoid solving a more general
problem as an intermediate step [32, p. 30].” However, despite our estimator’s
complexity, we are able to obtain nearly parametric rates of convergence to the
Markov approximation departing only by logarithmic factors. While the sim-
plicity principle is clearly violated, perhaps our seed will precipitate a more
aesthetically pleasing solution.
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