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Abstract: In this paper we explore the problem of constructing two-level
Minimum Generalized Aberration (MGA) orthogonal arrays with strength
t, n runs and q > t columns, using a method that employs the J-characte-
ristics of a two-level design. General results for the construction of MGA
orthogonal arrays with t+1, t+2 and t+3 columns are given, while all MGA
designs with strength t ≥ 2, n ≡ 0 mod 4 runs and q ≤ 6 are constructed.
Results are also given for two-level orthogonal arrays with q = 7 factors, but
with strength greater than two. Projection properties of the MGA designs
that have been identified, are also discussed.
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1. Introduction

When q two-level factors are studied in an experiment, a response of interest
is measured in a collection of runs that are selected out of the 2q different
combinations of the levels of the factors. It is possible for a specific combination
to be selected more than once, or not at all. Such a collection of runs is called a
fractional factorial design and it is the most popular choice for experimentation
in various fields. When all the 2q combinations are selected the same number
of times, a full 2q factorial design with replications is generated. The use of

2689

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1091
mailto:hevangel@unipi.gr


2690 H. Evangelaras

a full 2q factorial design guarantees that all the 2q − 1 factorial effects are
estimated independently from each other and with the same precision, while
an independent estimation of the error variance can be accomplished from the
possible replications. In this manner, any collection of runs out of the 2q different
combinations of the levels of the factors (i.e. an arbitrary fractional factorial
design) does not guarantee an independent estimation of a collection of effects,
a phenomenon that is called aliasing in the literature.

In experiments, it is desirable to use two-level fractional factorial designs that
guarantee no aliasing between effects of low order. This can be accomplished if
the chosen design belongs to the class of two-level orthogonal arrays of a given
strength t ≥ 2. An orthogonal array OA(n, q, 2, t) is a n × q array with entries
from a set of 2 distinct symbols (usually, −1 and +1 are selected), arranged so
that for any collection of t columns of the array each of the 2t row vectors appears
equally often. In application to factorial designs, each column corresponds to
a factor, the two symbols are the levels of each factor and each row represents
a combination of the levels of the factors. So, every OA(n, q, 2, t) is a n-run
factorial design for q two-level factors. For a nice overview of factorial designs
and orthogonal arrays, one may refer to Dey and Mukerjee [7] and Hedayat,
Sloane and Stufken [9].

The strength t of the array, provides information on the aliasing of factorial
effects. When t = 1, main effects are free of aliasing with the mean but not with
each other, when t = 2 main effects are free of aliasing with the mean and with
each other and so on. It is therefore desirable to use an orthogonal array with
the highest possible strength t for running an experiment but, such a choice
becomes expensive with respect to the number of runs needed, since n = λ2t.
This positive integer λ is called the index of the array.

Deng and Tang [5] proposed an effective criterion that can be used to capture
the structure of a two-level fractional factorial design D = {d1, d2, . . . , dq} with
n rows in {±1}q. For every m-subset S = {dj1 , dj2 , . . . , djm} of columns of D,
they defined the J-characteristics of D to be:

Jm(S) ≡ Jm(dj1 , dj2 , . . . , djm) = |
n∑

i=1

dij1 . . . dijm |. (1.1)

Tang [15] generalized the definition of J-characteristics of Deng and Tang [5] by
removing the absolute value, providing a general form of the J-characteristics
of a design D as:

Jm(S) ≡ Jm(dj1 , dj2 , . . . , djm) =
n∑

i=1

dij1 . . . dijm . (1.2)

For the calculation of the J-characteristics of a design D, all possible sets S
of cardinality m, m = 1, 2, . . . , q, should be formed out of the q columns of
the design, in order to apply (1.2). In what follows in this paper, these sets
are formed lexicographically for every selection of m, and the corresponding
values of (1.2) are reported as a column vector Jm. For example, when m = 1,
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J1 = [J1(d1), J1(d2), . . . , J1(dq)]
T , when m = 2, J2 = [J2(d1, d2), J2(d1, d3), . . . ,

J2(dq−1, dq)]
T and so on.

The value of Jm(S) shows the level of aliasing between the m-factor inter-
action that is generated form the specific m columns in the set S, with the
mean column. Clearly, −n ≤ Jm(S) ≤ n. If D is a two-level orthogonal array
of strength t, it is easy to verify that Jm(S) = 0, for 1 ≤ m ≤ t. Furthermore,
Deng and Tang [5] showed that when n is a multiple of four, then Jm(S) is a
multiple of four. The Confounding Frequency Vector (CFV) of D defined by
Deng and Tang [5] has the form

CFV = [(ft+1,1, . . . , ft+1,k+1); (ft+2,1, . . . , ft+2,k+1); . . . ; (fq,1, . . . , fq,k+1)]

where fm,j is the frequency of m > t column combinations that give |Jm(S)| =
4(k + 1 − j), for j = 1, . . . , k, k + 1. It is clear that all the fm,j values are zero
for m ≤ t and j ≤ k and therefore not reported in the vector. Moreover,

k+1∑

j=1

fm,j = q!/[m!(q −m)!]

so the fm,k+1 values can also be omitted from the vector without any loss on
information. Furthermore, Deng and Tang [6] showed that when n is a multiple
of 8, then Jm(S) is also a multiple of 8, but when n is not a multiple of 8 but a
multiple of 4, then Jm(S) is a multiple of 8 for m = 4w+1 and 4w+2, but not
a multiple of 8 for m = 4w + 3 and 4w + 4, where w = 0,1, 2, . . .. Therefore,
the length of the CVF vector can be further manipulated.

The Confounding Frequency Vector of a design D provides essential informa-
tion on how the effects are confounded and, in the way it is structured, takes
into consideration the hierarchy principle. This fact led to the justification of
a powerful criterion for evaluating competitive designs. Let D1 and D2 be two
designs under evaluation and fp(D1), fp(D2) be the p-th entries in their con-
founding frequency vectors, p = 1, . . . , (q−t)(k+1). Let � be the smallest integer
such that f�(D1) �= f�(D2). If f�(D1) < f�(D2) we say that D1 has less gen-
eralized aberration than D2. If no design has less generalized aberration than
D1, then D1 is said to have Minimum Generalized Aberration (MGA). Tang
and Deng [16] proposed a related criterion, called Minimum G2 Aberration. For
m = 1, 2, . . . , q, the Jm(S) values of a design D with n runs are summarized in
a single value, Ag

m = n−2
∑

J2
m(S). The vector (Ag

1, A
g
2, . . . , A

g
q) of length q, is

called the Generalized Wordlength Pattern of D and minimum G2-aberration
designs are those that sequentially minimize Ag

1, A
g
2,. . ., A

g
q . Ma and Fang [11]

and Xu and Wu [19] provided results on the Generalized Wordlength Pattern
of designs with factors with more than two levels.

The construction or the identification of MGA designs with n runs and q
columns has received great attention in the last decades. A popular technique
is the evaluation of all non-isomorphic orthogonal arrays for specific values of
n and q, using a selected criterion and the identification of the best of them
with respect to the criterion used. However, this technique depends heavily
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on the knowledge of a full list of non-isomorphic orthogonal arrays. For the
aforementioned techniques, one may refer to the work of Deng and Tang [6], of
Butler [3, 4], of Evangelaras, Koukouvinos and Lappas [8], of Schoen, Eendebak
and Nguyen [12], of Lin, Sitter and Tang [10] and of Bulutoglu and Ryan [2]
among others. For a nice overview on recent progress to this field, see Xu, Phoa
and Wong [18].

Tang and Deng [17] completely solved the problem of constructing two-level
MGA designs for any run size n ≡ 0 mod 4 and up to q = 5 factors. In this paper,
we address the same problem by using a different method that also captures the
projection properties of the constructed designs. In Section 2, we describe the
method and give results for the construction of two-level MGA orthogonal arrays
with strength t and up to t+ 3 columns. In Section 3, we provide construction
results for designs with n = 4k runs and up to q = 7 two-level factors. We also
discuss the projection properties of these best designs, by taking advantage of
their J-characteristics.

2. MGA designs of strength t with up to t + 3 columns

For a given q, we make use of the first 2q −1 natural numbers and we take their
q dimensional binary representation. We then create 2q vectors of length q by
replacing ‘0’ with ‘−1’. Let i be the vector obtained by the i-th natural number,
i = 0, 1, . . . , 2q − 1. Clearly, the 2q × q matrix

Fq = (0,1, . . . ,2q − 1)T

is a full 2q factorial design.
Let now Fm

q , j = 1, 2, . . . , q, denote the 2q×
(
q
m

)
matrix that has as columns

the element-wise product of all subsets of columns of Fq that have cardinality m.
Similar to the calculation of the J-characteristics, these subsets of cardinality m
are taken lexicographically and their element-wise product is calculated. Clearly,
F 1
q = Fq. Moreover, the matrix

H2q = [I, Fq, F
2
q , . . . , F

q
q ]

is a Hadamard matrix of order 2q, where I is a column vector with all its elements
equal to 1. Consequently, H2q ·HT

2q = 2qI2q .
Let ai, i = 0, 1, . . . , 2q − 1 be the number of times the vector i is selected

as a run in the design. Then, the J-characteristics of D are written as linear
combinations of the quantities ai’s, as

Jm = (Fm
q )T · a.

Furthermore, let J = [n,JT
1 ,J

T
2 , . . . , Jq]

T be the column vector that summarizes
the number of runs n, and all the J-characteristics of D. Then, HT

2q · a = J or
equivalently,

a =
1

2q
H2q · J. (2.1)
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This connection has been pointed out by Tang [15] and Stufken and Tang [14]
in justifying that the vector of J-characteristics uniquely determines a facto-
rial design. Moreover, Stufken and Tang [14] noted that the vector J is simply
the Hadamard transform of the vector a. It is therefore tempting to try to set
the values of the vectors Jm to take their minimum acceptable (absolute) val-
ues for every m = 1, 2, . . . , q, in order to construct MGA designs with n runs
and q factors. Once such vectors are established, the MGA design can then be
constructed using (2.1). The selection of optimal J vectors can be done by tak-
ing into account valuable properties of the J-characteristics. These properties
are summarized in the following lemmas. Lemma 2.1 was stated and proven in
Stufken and Tang [14] and Lemma 2.2, which generalizes the results of Stufken
and Tang [14], was proven in Bulutoglu and Ryan [2].

Lemma 2.1. In a two-level OA(λ2t, q, 2, t) of strength t, it holds that Jm(S) =
μm2t for some integer μm.

(i) If λ is even, then μm is even.
(ii) If λ is odd and t is even, then μm is odd for m = t+ 1 and t+ 2.
(iii) if λ is odd and t is odd, then μm is odd for m = t + 1 and even for

m = t+ 2.

Lemma 2.2. In a two-level OA(λ2t, q, 2, t) of strength t and q ≥ t+2, it holds
that Jm(S) = μm2t for some integer μm.

(i) If λ is even, then μm is even.
(ii) If λ is odd then μm is odd if

(
m−1

m−t−1

)
≡ 1 mod 2 and even otherwise.

Lemma 2.3. Let D be a two-level OA(λ2t, q, 2, t) of strength t and Jm denote
the sum of the elements of the Jm vector, m = 1, 2, . . . , q.

(i) The sum λ2t +
∑

Jm of all Jm(S) values, is a nonegative multiple of 2q.
(ii) The sum

∑
m odd

Jm of all Jm(S) values for odd m, is a multiple of 2q−1.

(iii) The sum λ2t +
∑

m even

Jm of all Jm(S) values for even m, is a multiple of

2q−1.

Proof. From (2.1) we have that a0 = 1
2q (λ2

t +
∑q

m=1(−1)mJm) and a2q−1 =
1
2q (λ2

t +
∑q

m=1 J
m), where a0 and a2q−1 are nonnegative integers. Then, it

easily comes out that (λ2t +
∑

m even

Jm) = 2q−1(a0 + a2q−1) and (
∑

m odd

Jm) =

2q−1(a2q−1 − a0).

Lemmas 2.1, 2.2 and 2.3 can be used to construct MGA OA(λ2t, q, 2, t) of
strength t having q = t+ 1, q = t+ 2 and q = t+ 3 columns, for any choice of
t and when λ is odd. This restriction for odd λ is made to guarantee that the
strength of the produced MGA array is strictly t and not larger. In what follows
in this section we use 1 and 0 to denote vectors of appropriate length that have
all their elements equal to one or zero.
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2.1. Construction of MGA designs of strength t, with t+ 1 columns

Two-level orthogonal arrays of strength t having t+ 1 columns have been com-
pletely enumerated by Seiden and Zemach [13]. The following result can be
utilized to directly construct a MGA orthogonal array OA(λ2t, t + 1, 2, t) for
any choice of t and an odd λ.

Theorem 2.1. Let λ be a nonnegative odd integer. A MGA OA(λ2t, t+1, 2, t)
is constructed using (2.1) and Jt+1 = 2t.

Proof. By Lemma 2.1, it is obvious that the value of Jt+1 that is set, is the
minimum acceptable absolute value for a MGA design. It remains to justify
that this selection guarantees the production of nonnegative integers, when using
equation (2.1). Since the array is of strength t, equation (2.1) relaxes to

a =
1

2t+1
[I, F t+1

t+1 ] · [λ2t, 2t].

Let x denote the number of ‘−1’ in the i-th row of Ft+1. Then, the i-th element
of vector a is

ai = [λ+ (−1)x]/2.

This is a nonnegative integer for every odd value of λ.

2.2. Construction of MGA designs of strength t, with t+ 2 columns

Two-level orthogonal arrays of strength t having t+ 2 columns have been com-
pletely enumerated by Stufken and Tang [14]. Stufken and Tang also provide a
systematic way of constructing these arrays. In this section we provide a result
that can be applied to directly construct a MGA OA(λ2t, t + 2, 2, t) for any
choice of t, without exploiting the full list of non-isomorphic arrays. Lemma 2.4
is used in Theorem 2.2 to verify that the vector a of the multiplicities of the
runs of the full 2t+2 factorial design will be integers.

Lemma 2.4. Let q = t + 2. The sum of the elements of row i in the matrices
F t+1
t+2 and F t+2

t+2 is St+1
t+2 = (−1)x(t + 2 − 2x) and St+2

t+2 = (−1)x respectively,
where x is the number of ‘−1’s in the i-th row of Ft+2.

Proof. On the i-th row of F t+1
t+2 there are x −(−1)xs and (t+2−x) (−1)xs. The

i-th element of F t+2
t+2 is equal to (−1)x.

Theorem 2.2. A minimum generalized aberration OA(λ2t, t + 2, 2, t) is con-
structed via (2.1), when

i) t ≡ 0 mod 4 and λ ≡ 1 mod 4, or t ≡ 2 mod 4 and λ ≡ 3 mod 4, for
λ ≥ t+ 1, by using Jt+1 = 2t1T and Jt+2 = 2t.

ii) t ≡ 0 mod 4 and λ ≡ 3 mod 4 or t ≡ 2 mod 4 and λ ≡ 1 mod 4, for
λ ≥ t+ 3, by using Jt+1 = 2t1T and Jt+2 = −2t.

iii) t ≡ 1 mod 4 and λ ≡ 1 mod 4 or t ≡3 mod 4 and λ ≡ 3 mod 4, for λ ≥ t,
by using Jt+1 = 2t1T and Jt+2 = 0.
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iv) t ≡ 1 mod 4 and λ ≡ 3 mod 4 or t ≡3 mod 4 and λ ≡1 mod 4, for λ ≥ t+2,
by using Jt+1 = −2t1T and Jt+2 = 0.

Proof. By Lemma 2.1, the values of J-characteristics that are set for every case
considered, are the minimum acceptable absolute values for MGA designs. It
remains to be proven that these selections guarantee the production of non-
negative integers, when using equation (2.1). Since the array is of strength t,
equation (2.1) becomes

a =
1

2t+2
[I, F t+1

t+2 , F
t+2
t+2 ] · [λ2t,Jt+1, Jt+2]

T .

When Jt+1 = [2t, 2t, . . . , 2t]T and Jt+2 = 2t are used, by Lemma 2.4 the i-th
element of vector a is

ai = [λ+ St+1
t+2 + St+2

t+2 ]/4 = [λ+ (−1)x(t+ 3− 2x)]/4.

Similarly, if Jt+1 = [2t, 2t, . . . , 2t]T and Jt+2 = −2t, then

ai = [λ+ St+1
t+2 − St+2

t+2 ]/4 = [λ+ (−1)x(t+ 1− 2x)]/4.

If Jt+1 = [2t, 2t, . . . , 2t]T and Jt+2 = 0, then

ai = [λ+ St+1
t+2 ]/4 = [λ+ (−1)x(t+ 2− 2x)]/4

and if Jt+1 = [−2t,−2t, . . . ,−2t]T and Jt+2 = 0, then

ai = [λ− St+1
t+2 ]/4 = [λ− (−1)x(t+ 2− 2x)]/4.

The result follows by taking into account the restrictions on t and λ that are
given in every case considered.

Theorem 2.2 can be applied for the construction of a MGA orthogonal array
of strength t having t+ 2 columns, for any selection of an odd value of λ since
the constraint on the minimum values of λ that are set in the result, satisfies the
condition λ ≥ t that should be true for the existence of an OA(λ2t, t + 2, 2, t)
for all the cases we study, see Theorem 2.29, page 30 of Hedayat, Sloane and
Stufken [9]. Furthermore, the stated result shows that we can always construct
a MGA two-level orthogonal array with strength t and t + 2 columns that has
equal values of J-characteristics in each Jm vector, m = t+ 1, t+ 2.

2.3. Construction of MGA designs of strength t, with t+ 3 columns

Two-level orthogonal arrays of strength t having t + 3 columns have not been
completely enumerated yet. The construction of MGA OA(λ2t, t+3, 2, t) for any
strength t and odd λ cannot be handled as efficiently as the previous cases, due
to the increased complexity of the problem. However, a construction method
that directly produces a MGA OA(λ2t, t + 3, 2, t) for various λ and t can be
achieved. The following lemma is useful in identifying the minimum absolute
value of Jt+3 when the minimum allowed absolute values of Jt+1 are achieved.
A more general result that covers also the case we consider, has been given in
Bulutoglu and Kaziska [1].
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Lemma 2.5. Let q = t + 3 and λ be odd. If a MGA OA(λ2t, t + 3, 2, t) with
|Jt+1| = 2t1T exists, then Jt+3 �= 0, when t ≡ 1 mod 4 or t ≡ 0 mod 4 but Jt+3

can be equal to zero, when t ≡ 3 mod 4 or t ≡ 2 mod 4.

Proof. The vector Jt+1 consists of (t + 3)(t + 2)/2 elements. Let y of them be
equal to −2t and the remaining [(t+ 3)(t+ 2)− 2y]/2 are equal to 2t.

Let t be odd, so t+1 and t+3 are even numbers and assume that Jt+3 = 0.
By Lemma 2.3, we have that λ2t +

∑
m even

Jm ≡ 0 mod 2t+2 and therefore,

[λ+
(t+ 3)(t+ 2)− 4y

2
]2t ≡ 0 mod 2t+2

or,

[λ+
(t+ 3)(t+ 2)− 4y

2
] ≡ 0 mod 4.

Then λ is even when t ≡ 1 mod 4, a contradiction. When t ≡ 3 mod 4, the last
relation can be achieved for odd values of λ so, in this case Jt+3 can be zero.

Similarly, let t be even, so t+ 1 and t+ 3 are odd numbers and assume that
Jt+3 = 0. By Lemma 2.3, we have that

∑
m odd

Jm ≡ 0 mod 2t+2 and therefore,

[(t+ 3)(t+ 2)− 4y] ≡ 0 mod 8,

which is false when t ≡ 0 mod 4, since t+3 is odd and (t+2) ≡ 2 mod 4. When
t ≡ 2 mod 4, t+1 and t+3 are still odd numbers and if Jt+3 = 0, we have from
Lemma 2.3, that

∑
m odd

Jm ≡ 0 mod 2t+2 and therefore,

[(t+ 3)(t+ 2)− 4y] ≡ 0 mod 4,

which can hold true for t ≡ 2 mod 4.

In what follows, we investigate the construction of MGA orthogonal arrays
OA(λ2t, t+ 3, 2, t), when the elements in each Jm vector, m = t+ 1, t+ 2 and
t + 3 are identical. Lemma 2.6 is useful to verify that the components of the
vector a are integers, in Theorem 2.3.

Lemma 2.6. Let q = t + 3. The sum of the elements of row i in the matrices

F t+1
t+3 , F

t+2
t+3 and F t+3

t+3 is St+1
t+3 = (−1)x

2 [(t + 3)(t + 2) − 4x(t + 3 − x)], St+2
t+3 =

(−1)x(t+3− 2x) and St+3
t+3 = (−1)x, where x is the number of ‘−1’s in the i-th

row of Ft+3.

Proof. On the i-th row of Ft+3 there are x(t+3−x) −(−1)xs and
(
x
2

)
+

(
t+3−x

2

)

(−1)xs. On the i-th row of F t+2
t+3 there are x −(−1)xs and (t + 3 − x) (−1)xs.

Finally, the i-th element of F t+3
t+3 is (−1)x.

Theorem 2.3. A minimum generalized aberration OA(λ2t, t + 3, 2, t) is con-
structed via (2.1), when

i) t ≡ 0 mod 16 and λ ≡ 1 mod 8, or t ≡ 8 mod 16 and λ ≡ 5 mod 8, for
λ ≥ (t+ 1)(t+ 2)/2, by using Jt+1 = 2t1T , Jt+2 = 2t1t and Jt+3 = 2t.
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ii) t ≡ 0 mod 16 and λ ≡ 7 mod 8, or t ≡ 8 mod 16 and λ ≡ 3 mod 8, for
λ ≥ (t2 + 7t+ 14)/2, by using Jt+1 = 2t1T , Jt+2 = −2t1t and Jt+3 = 2t.

iii) t ≡ 4 mod 16 and λ ≡ 5 mod 8, or t ≡ 12 mod 16 and λ ≡ 1 mod 8, for
λ ≥ (t2 + 3t− 2)/2, by using Jt+1 = 2t1T , Jt+2 = 2t1t and Jt+3 = −2t.

iv) t ≡ 4 mod 16 and λ ≡ 3 mod 8, or t ≡ 12 mod 16 and λ ≡ 7 mod 8, for
λ ≥ (t+2)(t+5)/2, by using Jt+1 = 2t1T , Jt+2 = −2t1t and Jt+3 = −2t.

v) t ≡ 6 mod 16 and λ ≡ 3 mod 8, or t ≡ 14 mod 16 and λ ≡ 7 mod 8, for
λ ≥ t(t+ 3)/2, by using Jt+1 = 2t1T , Jt+2 = 2t1t and Jt+3 = 0.

vi) t ≡ 6 mod 16 and λ ≡ 5 mod 8, or t ≡ 14 mod 16 and λ ≡ 1 mod 8, for
λ ≥ (t2 + 7t+ 12)/2, by using Jt+1 = 2t1T , Jt+2 = −2t1t and Jt+3 = 0.

vii) t ≡ 5 mod 16 and λ ≡ 5 mod 8, or t ≡ 13 mod 16 and λ ≡ 1 mod 8, for
λ ≥ (t2 + t− 4)/2, by using Jt+1 = 2t1T , Jt+2 = 0t and Jt+3 = −2t.

viii) t ≡ 5 mod 16 and λ ≡ 3 mod 8, or t ≡ 13 mod 16 and λ ≡ 7 mod 8, for
λ ≥ (t+ 1)(t+ 4)/2, by using Jt+1 = −2t1T , Jt+2 = 0t and Jt+3 = 2t.

ix) t ≡ 7 mod 16 and λ ≡ 3 mod 8, or t ≡ 15 mod 16 and λ ≡ 7 mod 8, for
λ ≥ (t2 + t− 2)/2 by using Jt+1 = 2t1T , Jt+2 = 0t and Jt+3 = 0.

x) t ≡ 7 mod 16 and λ ≡ 5 mod 8, or t ≡ 15 mod 16 and λ ≡ 1 mod 8, for
λ ≥ (t2 + 5t+ 6)/2, by using Jt+1 = −2t1T , Jt+2 = 0t and Jt+3 = 0.

xi) t ≡ 1 mod 16 and λ ≡ 1 mod 8, or t ≡ 9 mod 16 and λ ≡ 5 mod 8, for
λ ≥ t(t+ 1)/2, by using Jt+1 = 2t1T , Jt+2 = 0t and Jt+3 = 2t.

xii) t ≡ 1 mod 16 and λ ≡ 7 mod 8, or t ≡ 9 mod 16 and λ ≡ 3 mod 8, for
λ ≥ (t2 + 5t+ 8)/2, by using Jt+1 = −2t1T , Jt+2 = 0t and Jt+3 = −2t.

Proof. From Lemmas 2.1, 2.2 and 2.5, it is obvious that the nonzero values
of J-characteristics that are set for every case considered, are the minimum ac-
ceptable absolute values. It remains to be proven that these selections guarantee
the production of nonnegative integers in (2.1). Since the array is of strength t,
equation (2.1) becomes

a =
1

2t+3
[I, F t+1

t+3 , F
t+2
t+3 , F

t+3
t+3 ] · [λ2t,Jt+1,Jt+2, Jt+3]

T .

For case (i), using Lemma 2.6, it follows that the i-th element of vector a is

ai = [λ+ St+1
t+3 + St+2

t+3 + St+3
t+3 ]/8 = [2λ+ (−1)x[(t+ 4− 2x)2 − (t+ 2)]]/16.

In the second case, the i-th element of vector a becomes

ai = [λ+ St+1
t+3 − St+2

t+3 + St+3
t+3 ]/8 = [2λ+ (−1)x[(t+ 2− 2x)2 − (t+ 2)]]/16.

In case (iii), it comes out that the i-th element of vector a is

ai = [λ+ St+1
t+3 + St+2

t+3 − St+3
t+3 ]/8 = [2λ+ (−1)x[(t+ 4− 2x)2 − (t+ 6)]]/16.

In case (iv), the i-th element of vector a takes the form

ai = [λ+ St+1
t+3 − St+2

t+3 − St+3
t+3 ]/8 = [2λ+ (−1)x[(t+ 2− 2x)2 − (t+ 6)]]/16.

For the case (v), we have that the i-th element of vector a is

ai = [λ+ St+1
t+3 + St+2

t+3 ]/8 = [2λ+ (−1)x[(t+ 4− 2x)2 − (t+ 4)]]/16.
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Similarly, for the case (vi), the i-th element of vector a is

ai = [λ+ St+1
t+3 − St+2

t+3 ]/8 = [2λ+ (−1)x[(t+ 2− 2x)2 − (t+ 4)]]/16.

In case (vii), the i-th element of vector a becomes

ai = [λ+ St+1
t+3 − St+3

t+3 ]/8 = [2λ+ (−1)x[(t+ 3− 2x)2 − (t+ 5)]]/16.

For the case (viii), the i-th element of vector a is

ai = [λ− St+1
t+3 + St+3

t+3 ]/8 = [2λ+ (−1)x[(t+ 5)− (t+ 3− 2x)2]]/16.

In case (ix), the i-th element of vector a becomes

ai = [λ+ St+1
t+3 ]/8 = [2λ+ (−1)x[(t+ 3− 2x)2 − (t+ 3)]]/16.

For the case (x), the i-th element of vector a becomes

ai = [λ− St+1
t+3 ]/8 = [2λ+ (−1)x[(t+ 3)− (t+ 3− 2x)2]]/16.

In case (xi) the i-th element of vector a is

ai = [λ+ St+1
t+3 + St+3

t+3 ]/8 = [2λ+ (−1)x[(t+ 3− 2x)2 − (t+ 1)]]/16.

Finally, for the last case, the i-th element of vector a becomes

ai = [λ− St+1
t+3 − St+3

t+3 ]/8 = [2λ+ (−1)x[(t+ 1)− (t+ 3− 2x)2]]/16.

Taking into account the restrictions on t and λ that are given in every case
considered, it is easy to verify that ai are nonnegative integers.

For the unlisted values of t, a MGA orthogonal array of strength t with
t + 3 columns that has identical elements in each Jm vector, m = t + 1, t + 2
and t + 3, does not exist and therefore cannot be constructed. However, most
likely there are Jm vectors with the minimum acceptable absolute values that
cater for odd values of λ, but further investigation on the distribution of the
acceptable negative and positive values over each of the vectors Jm for these
cases is needed.

3. Construction of MGA designs with up to seven factors

In this section, we construct MGA designs with n ≡ 0 mod 4 runs and with 3 ≤
q ≤ 7 factors, by taking advantage of the notable properties of J-characteristics
as summarized in Lemmas 2.1, 2.2 and 2.3. These lemmas are taken into consid-
eration for establishing a quick and complete search on acceptable values for the
vector J = [4k,JT

1 ,J
T
2 , . . . , Jq]

T , that lead to the construction of MGA designs
with n = 4k runs and 3 ≤ q ≤ 7 factors. For q ≤ 6 the solution to the problem
is complete and extends the work of Tang and Deng [17], while for q = 7 we
construct MGA designs of strength t ≥ 3. We also discuss similarities of the
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Confounding Frequency Vectors of the produced designs, as well as their pro-
jection properties. Since all produced arrays are of strength t ≥ 2, sub-vectors
JT
1 and JT

2 have zero elements and are not reported in the optimal solutions. In
what follows, we use 0T to denote a column vector with elements equal to zero.

MGA designs with q = 3 factors for n ≡ 0 mod 4, have been extensively
studied in the literature. We present the well known results in Proposition 3.1.

Proposition 3.1. The vector J = [4k,0T ,0T , 0]T produces a MGA design with
n = 4k runs and q = 3 factors, when k ≡ 0 mod 2 while the vector J =
[4k,0T ,0T , 4]T produces a MGA design with n = 4k runs and q = 3 factors,
when k ≡ 1 mod 2.

MGA designs with q = 4 factors can be constructed for n ≡ 0 mod 4, using
the following result.

Proposition 3.2. The vector J = [4k,0T ,0T ,JT
3 , J4]

T whose values are listed
in Table 1 for every selection of k, produces a MGA design with n = 4k runs
and q = 4 factors.

Table 1

J vectors for MGA designs with q = 4 factors

Sets S (in lexicographical order)
d1d2d3 d1d2d4 d1d3d4 d2d3d4 d1d2d3d4

k JT
3 J4

0 mod 4 0 0 0 0 0
1 mod 41 4 4 4 4 -4
2 mod 4 0 0 0 0 8
3 mod 4 4 4 4 4 4

1 k > 1

Vectors J that are listed in Table 1 for designs with q = 4 factors makes the
proof of Corollary 3.1 evident.

Corollary 3.1. MGA designs with n = 4k runs and q = 4 factors share the
same Confounding Frequency Vector when k ≡ 1 mod 4 and k ≡ 3 mod 4, k > 1.

For q = 5 factors and n ≡ 0 mod 4, we can construct a MGA design using
Proposition 3.3.

Proposition 3.3. The vector J = [4k,0T ,0T ,JT
3 ,J

T
4 , J5]

T whose values are
listed in Table 2 for every selection of k, produces a MGA design with n = 4k
runs and q = 5 factors.

Corollary 3.2 for designs with q = 5 factors comes out easily by observing
the vectors J that are listed in Table 2.

Corollary 3.2. Minimum generalized aberration designs with n = 4k runs and
q = 5 factors share the same Confounding Frequency Vector when:

(i) k ≡ 1 mod 8, k ≡ 3 mod 8, k ≡ 5 mod 8 and k ≡ 7 mod 8, k > 1.
(ii) k ≡ 2 mod 8 and k ≡ 6 mod 8 , k > 2.
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Table 2

J vectors for MGA designs with q = 5 factors

Sets S (in lexicographical order)
hline JT

3 JT
4 J5

k = 1 An OA(4, 5, 2, 2) does not exist
k = 2 0 0 8 0 0 0 0 0 0 8 8 0 0 0 0 0
k ≡0 mod 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
k ≡1 mod 81 4 4 4 4 4 4 4 4 4 -4 -4 -4 -4 4 4 0
k ≡2 mod 82 0 0 0 0 0 0 0 0 0 0 -8 -8 -8 -8 -8 0
k ≡3 mod 8 4 4 4 4 4 -4 4 -4 4 -4 4 -4 -4 4 4 0
k ≡4 mod 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16
k ≡5 mod 8 4 4 4 4 4 -4 4 -4 4 -4 -4 4 4 -4 -4 0
k ≡6 mod 8 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 0
k ≡7 mod 8 4 4 4 4 4 4 4 4 4 -4 4 4 4 -4 -4 0

1 k > 1; 2 k > 2

Proposition 3.4 covers the construction of MGA designs with q = 6 factors.

Proposition 3.4. The vector J = [4k,0T ,0T ,JT
3 ,J

T
4 ,J

T
5 , J6]

T whose values are
listed in Table 3 for every selection of k, produces a MGA design with n = 4k
runs and q = 6 factors.

Next, properties of the Confounding Frequency Vector of MGA designs with
q = 6 factors are established.

Corollary 3.3. The MGA designs with n = 4k runs and q = 6 factors share
the same Confounding Frequency Vector when:

(i) k ≡ 1 mod 16, k ≡ 3 mod 16, k ≡ 13 mod 16 and k ≡ 15 mod 16, k > 1.
(ii) k ≡ 2 mod 16, k ≡ 6 mod 16, k ≡ 10 mod 16 and k ≡ 14 mod 16, k > 2.
(iii) k ≡ 5 mod 16, k ≡ 7 mod 16, k ≡ 9 mod 16 and k ≡ 11 mod 16, k > 5.
(iv) k ≡ 4 mod 16 and k ≡ 12 mod 16, k > 12.

For q = 7 factors, we can apply the following result in order to obtain MGA
designs of strength t ≥ 3.

Proposition 3.5. The vector J = [4k,0T ,0T ,JT
3 ,J

T
4 ,J

T
5 ,J

T
6 , J7]

T whose values
are listed in Table 4 for every selection of k, produces a MGA design of strength
t ≥ 3 with n = 4k runs and q = 7 factors.

Corollary 3.4 states relations between the Confounding Frequency Vector of
MGA designs with q = 7 factors.

Corollary 3.4. The MGA designs with n = 4k runs and q = 7 factors share
the same Confounding Frequency Vector when:

(i) k ≡ 2 mod 32, k ≡ 6 mod 32, k ≡ 26 mod 32 and k ≡ 30 mod 32, k �= 2.
(ii) k ≡ 10 mod 32, k ≡ 14 mod 32, k ≡ 18 mod 32 and k ≡ 22 mod 32,

k > 18.
(iii) k ≡ 4 mod 32, k ≡ 12 mod 32, k ≡ 20 mod 32 and k ≡ 28 mod 32, k > 28.
(iv) k ≡ 8 mod 32 and k ≡ 24 mod 32, k > 24.
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Table 3. J vectors for MGA designs with q = 6 factors

Sets of columns in lexicographical order
JT
3 JT

4 JT
5 J6

k = 1 An OA(4, 6, 2, 2) does not exist
k = 2 -8 0 0 0 0 0 0 -8 0 0 0 0 0 0 -8 0 0 0 -8 0 0 0 0 0 0 8 0 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0
k = 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 16 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
k = 5 -4 -4 -4 -4 -4 -4 -4 4 -4 4 -4 4 -4 -4 4 4 -4 4 4 4 -4 4 -4 4 4 -4 4 4 -4 4 4 -4 4 4 4 -8 8 -8 0 0 -8 -8
k = 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 16 16 16 0 0 0
k ≡0 mod 16 0 0 0 0
k ≡1 mod 161 4 4 4 4 -4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 4 4 -4 -4 4 4 -4 0 0 0 0 0 0 -8
k ≡2 mod 162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 -8 -8 -8 -8 8 8 0 0 0 0 0 0 0
k ≡3 mod 16 4 4 4 4 -4 -4 4 4 -4 4 -4 4 -4 -4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 4 -4 -4 4 4 -4 -4 4 4 4 0 0 0 0 0 0 -8
k ≡4 mod 163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 16 16 16 16 16
k ≡5 mod 164 4 4 4 4 -4 -4 4 4 -4 4 -4 4 -4 -4 4 4 -4 -4 -4 -4 -4 4 4 4 4 -4 4 4 -4 -4 4 4 -4 -4 -4 0 0 0 0 0 0 -24
k ≡6 mod 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 -8 8 -8 8 -8 8 -8 -8 8 8 0 0 0 0 0 0 0
k ≡7 mod 16 4 4 4 4 -4 -4 -4 -4 -4 4 -4 4 4 4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 4 4 4 -4 -4 4 4 -4 -4 4 0 0 0 0 0 0 -24
k ≡8 mod 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32
k ≡9 mod 16 4 4 4 4 -4 -4 -4 -4 -4 4 4 -4 -4 4 4 -4 -4 -4 4 4 4 -4 -4 4 4 4 -4 -4 -4 -4 -4 -4 4 4 -4 0 0 0 0 0 0 -24
k ≡10 mod 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -8 -8 -8 -8 -8 8 -8 8 -8 8 -8 8 8 -8 -8 0 0 0 0 0 0 0
k ≡11 mod 16 4 4 4 4 -4 -4 4 4 -4 4 -4 4 -4 -4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 4 -4 -4 4 4 -4 -4 4 4 4 0 0 0 0 0 0 24
k ≡12 mod 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 16 16 16 16 -16
k ≡13 mod 16 4 4 4 4 -4 -4 4 4 -4 4 -4 4 -4 -4 4 4 -4 -4 -4 -4 -4 4 4 4 4 -4 4 4 -4 -4 4 4 -4 -4 -4 0 0 0 0 0 0 8
k ≡14 mod 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -8 -8 -8 -8 -8 -8 -8 -8 -8 8 8 8 8 -8 -8 0 0 0 0 0 0 0
k ≡15 mod 16 4 4 4 4 -4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4 4 -4 -4 -4 -4 4 4 4 4 4 4 4 4 -4 -4 4 4 -4 -4 4 0 0 0 0 0 0 8

1 k > 1; 2 k > 2; 3 k > 4; 4 k > 5; 5 k > 12
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Table 4. J vectors for MGA designs of strength t ≥ 3 with q = 7 factors

Sets of columns in lexicographical order
k JT

3 JT
4 JT

5 JT
6 J7

k ≡ 0 mod 32 0 0 0 0 0
k ≡ 8 mod 321 0 0 0 32 32 32 32 32 32 32 0
k ≡16 mod 32 0 0 0 0 64
k ≡24 mod 322 0 0 0 -32 -32 -32 -32 -32 -32 -32 0

1 k > 8; 2 k > 24

Sets of columns in lexicographical order
JT
3 JT

4 JT
5 JT

6 J7
k ≡ 4 mod 321 0 0 -16 -16 -16 -16 -16 -16 -16 -16 -16 16 -16 16 16 16 16 16 16 16 -16 16 16 -16 16 16 16 -16 -16 -16 16
k ≡12 mod 322 0 0 -16 -16 -16 -16 -16 -16 -16 -16 -16 16 -16 16 16 -16 16 16 16 16 16 16 16 16 -16 -16 -16 16 -16 -16 16
k ≡20 mod 323 0 0 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 16 16 16 16 16 16 16 16
k ≡28 mod 324 0 0 -16 -16 -16 -16 -16 -16 -16 -16 -16 16 -16 -16 16 16 16 16 16 16 16 16 16 16 16 -16 16 16 -16 -16 16

1 k > 4; 2 k > 12; 3 k > 20; 4 k > 28

Sets of columns in lexicographical order
JT
3 JT

4 JT
5 JT

6 J7
k = 2 The unique OA(8, 7, 2, 2)
k = 10 0 8 8 8 8 8 8 8 -8 8 -8 8 -8 8 -8 -8 8 -8 -8 8 -8 -8 8 -8 -8 8 8 -8 8 8 8 8 -8 8 8 8 0 16 -16 16 0 0 16 -16 0
k = 14 0 8 8 8 8 8 8 8 -8 8 8 8 8 8 8 -8 8 8 8 -8 8 8 8 8 -8 -8 8 -8 8 -8 -8 8 -8 -8 -8 -8 0 0 0 0 -16 -16 -16 32 0
k = 18 0 8 8 8 8 -8 -8 8 -8 -8 -8 -8 8 -8 8 -8 8 -8 8 8 8 -8 8 8 8 -8 8 -8 -8 -8 8 -8 8 8 8 8 0 0 0 0 16 16 16 -32 0
k ≡ 2 mod 321 0 8 8 8 8 -8 -8 -8 -8 -8 8 8 -8 -8 -8 -8 -8 8 8 8 8 8 -8 -8 -8 -8 8 8 8 -8 -8 -8 -8 8 8 -8 0 0 0 0 0 0 0 16 0
k ≡ 6 mod 32 0 8 8 8 8 -8 -8 8 8 -8 8 8 -8 8 8 -8 -8 8 8 8 8 -8 8 8 8 8 -8 8 8 -8 -8 -8 -8 8 8 8 0 0 0 0 0 0 0 16 0
k ≡10 mod 322 0 8 8 8 8 8 8 -8 -8 8 -8 8 -8 8 8 -8 -8 -8 -8 -8 -8 -8 8 8 8 8 -8 -8 -8 8 8 -8 -8 8 8 -8 0 0 0 0 0 0 0 16 64
k ≡14 mod 323 0 8 8 8 8 8 8 8 8 8 -8 8 8 8 8 8 -8 -8 -8 -8 -8 8 8 8 8 8 8 -8 -8 8 8 -8 -8 8 8 8 0 0 0 0 0 0 0 16 64
k ≡18 mod 324 0 -8 -8 -8 -8 -8 -8 -8 -8 -8 8 -8 -8 -8 -8 -8 8 8 8 8 8 -8 -8 -8 -8 -8 -8 8 8 -8 -8 8 8 -8 -8 -8 0 0 0 0 0 0 0 -16 64
k ≡22 mod 32 0 -8 -8 -8 -8 -8 -8 8 8 -8 8 -8 8 -8 -8 8 8 8 8 8 8 8 -8 -8 -8 -8 8 8 8 -8 -8 8 8 -8 -8 8 0 0 0 0 0 0 0 -16 64
k ≡26 mod 32 0 -8 -8 -8 -8 8 8 -8 -8 8 -8 -8 8 -8 -8 8 8 -8 -8 -8 -8 8 -8 -8 -8 -8 8 -8 -8 8 8 8 8 -8 -8 -8 0 0 0 0 0 0 0 -16 0
k ≡30 mod 32 0 -8 -8 -8 -8 8 8 8 8 8 -8 -8 8 8 8 8 8 -8 -8 -8 -8 -8 8 8 8 8 -8 -8 -8 8 8 8 8 -8 -8 8 0 0 0 0 0 0 0 -16 0

1 k > 2; 2 k > 10; 3 k > 14; 4 k > 18
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3.1. Projection properties of MGA designs with q ≤ 7 factors

It is well known (Deng and Tang [5], Tang [15]) that the J-characteristics capture
the projection properties of a two-level design D. Therefore, by examining the
values given in Tables 1, 2, 3 and 4 for MGA two-level designs with q ≤ 7
factors, it is easy to verify the following result.

Proposition 3.6. The MGA designs with n = 4k runs and:

a. q ≤ 6 two-level factors provide MGA designs when projected onto less than
q factors, for k �= 4, 5 and 12.

b. q = 7 two-level factors provide MGA designs when projected onto less than
seven factors, for k = 16 or k ≡ 0 mod 4, k > 28.

c. q = 7 two-level factors provide MGA designs when projected onto less than
six factors, for k ≡ 2 mod 4.

4. Concluding Remarks

At this point, we briefly describe the procedure that was followed for imple-
menting the exhaustive search for GMA designs with n = 4k runs and q ≤ 7
factors, for those cases that remain unsolved by Theorems 2.2 and 2.3. From
equation (2.1) it follows that ai = (ci + 4k)/2q, i = 0, 1, . . . , 2q − 1, where ci
is a certain linear combination of the J-characteristics, with coefficients ±1.
Taking into account that ci ≡ 0 mod 4, we have that ci = 4di, where di is a
certain linear combination of the J-characteristics when divided by four. So,
ai = (di + k)/2q−2, i = 0, 2, . . . , 2q − 1. Let k ≡ x mod 2q−2. Since all ai should
be integers, it follows that all the values of the di’s should meet the condition
di ≡ (2q−2 − x) mod 2q−2, i = 0, 1, . . . , 2q − 1. The search for solutions is per-
formed by checking whether all the di values that are produced when certain
J vectors are used, leave the same specific remainder when divided by 2q−2.
Conditions for the minimum value of k that this can happen, are then obtained
in order for all the ai to be nonnegative integers.

As an example, we describe in detail the most interesting and computationally
expensive case we exhaustively explored, which is the search for MGA designs
with q = 7 factors and t = 3. The results of this case are listed in the last seven
rows of the third block of Table 4. Clearly, the values of the vectors J1, J2 and J3

are all zero, the 35 elements of the vector J4 should be either 8 or −8, while the
elements of the vectors J5 and J6 as well as J7 are even multiples of 23, as Lemma
2.2 indicates. Let k ≡ x mod 32, where x is even but not a multiple of 4 and
assume that the vectors J5 and J6 consist of zeros. In such a case, using Lemma
2.3, it follows that the value of J7 should be a multiple of 64. From equation
(2.1), it follows that ai + a127−i = (2ei + 2k)/32, where ei, i = 0, 1, . . . , 63, are
64 specific linear combinations of the 35 values of the vector J4 divided by 4.
Therefore, since ai + a127−i should be an integer and k is constant, it follows
that the value of each ei should leave the same remainder when divided by 16.
An exhaustive search of the 235 possible J4 vectors is needed to find out if there
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is an acceptable solution. This exhaustive search on the remainder of each of
the values of ei, i = 0, 1, . . . , 63, as produced from every J4 vector tested, gave
no solutions and therefore, the vectors J5 and J6 cannot consist only of zeros.
The next step, in order to obtain a MGA design, is to consider J6 vectors with
one nonzero value that, according to Lemma 2.2 should be equal to 16 or −16.
Without loss of generality and since the properties of an OA remain unaffected
when permuting its columns, we may assume that the last entry of J6 is nonzero
while, from Lemma 2.3, J7 should be a multiple of 64. The exhaustive search
of the 235 · 2 possible J vectors with J7 = 0 provides a solution for k ≡ 2, 6, 26
and 30 mod 32 and, the search of the 235 · 2 · 2 possible J vectors with J7 = 64
or J7 = −64 gives a solution for the rest of the cases.

Finally, we note that for each of the cases we study, several optimal J vectors
were produced, a fact that was expected, since all designs that belong to the
isomorphism class of the MGA design will produce an acceptable J vector.
However, there may be J vectors that provide an optimal solution and lead to
the construction of a MGA design that is non-isomorphic to the MGA design
given in the results. This search was beyond the scope of this article and may
be addressed in the future, since an efficient screening of the acceptable optimal
solutions is needed.
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