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Abstract: Gaussian concentration graphical models are one of the most
popular models for sparse covariance estimation with high-dimensional
data. In recent years, much research has gone into development of methods
which facilitate Bayesian inference for these models under the standard G-
Wishart prior. However, convergence properties of the resulting posteriors
are not completely understood, particularly in high-dimensional settings.
In this paper, we derive high-dimensional posterior convergence rates for
the class of decomposable concentration graphical models. A key initial step
which facilitates our analysis is transformation to the Cholesky factor of the
inverse covariance matrix. As a by-product of our analysis, we also obtain
convergence rates for the corresponding maximum likelihood estimator.
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1. Introduction

Covariance estimation is a fundamental problem in multivariate statistical in-
ference, and plays a crucial role in many inferential and data analytic methods.
For instance, methods such as principal component analysis (PCA), multivariate
analysis of variance (MANOVA), classification via linear/quadratic discriminant
analysis (LDA/QDA), canonical correlation analysis (CCA) all require estima-
tion of the covariance matrix (or some appropriate function of its entries). In
recent years, advances in science and information technology have led to an
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explosion of “high-dimensional” datasets from a variety of scientific fields. In
such datasets, the number of variables p is either of the same order of, or much
larger than the number of samples n. It is well-known that in high-dimensional
settings, the sample covariance matrix (traditional estimator for the popula-
tion covariance matrix), can perform rather poorly (see [7, 8, 16, 17, 18]). To
address the challenge posed by high-dimensionality, several promising methods
have been proposed in the literature. In particular, methods inducing sparsity
in the covariance matrix, or in an appropriate function of the covariance matrix,
have proven to be very effective in applications.

Perhaps the most well-known and well-studied class of sparsity based mod-
els in this context is the class of concentration graphical models introduced in
[10]. These models induce sparsity in the concentration matrix (or the inverse
covariance matrix). If the underlying distribution is assumed to be multivariate
Gaussian, then zeros in the inverse covariance matrix correspond to conditional
independence. Hence, concentration graphical models achieve parameter reduc-
tion in a naturally interpretable way. To understand the connection with graphs,
consider i.i.d. vectors Y1, · · · ,Yn which are drawn from a p-variate normal dis-
tribution with mean vector 0 and covariance matrix Σ. A given sparsity pattern
on Ω = Σ−1 can be encoded in terms of a graph G on the set of p variables as
follows. If the variables i and j do not share an edge in G, then Ωij = 0. Hence,
a concentration graph model corresponding to a graph G restricts the inverse
covariance matrix Ω to a submanifold of the cone of positive definite matrices
(referred to as PG).

There are two major approaches in the literature for analyzing concentration
graphical models. The first approach is based on regularized likelihood/pseudo-
likelihood using �1 penalization. A variety of methods using this approach have
been proposed (see [3, 7, 12, 13, 15, 20, 24, 27, 29, 35] and the references
therein). These optimization based methods often undertake estimation and
sparsity selection (selection of G) simultaneously, and have fared well in high-
dimensional settings. For a majority of these approaches, high-dimensional es-
timation/selection consistency of the corresponding estimators has been estab-
lished.

The second approach is based on the Bayesian paradigm. Dawid and Lau-
ritzen [9] introduced a class of prior distributions called Hyper Inverse Wishart
distributions for the covariance matrix Σ = Ω−1. The induced class of priors
for Ω (supported on PG) is known as the class of G-Wishart distributions (see
[31]). This class of prior distributions is quite useful and popular, and has sev-
eral desirable properties, including the fact that it forms a Diaconis-Ylvisaker
conjugate class of priors [11] for the concentration graph model corresponding to
the graph G. Subsequently, several techniques for posterior inference using the
G-Wishart distribution have been developed in the literature (see for instance
[1, 22, 25, 31, 32, 34]). The subfamily of decomposable graphs has featured promi-
nently in the Bayesian literature on concentration graph models (see for instance
[9, 23, 28, 31]). In fact, direct sampling and closed form computations of rele-
vant posterior expected values corresponding to the G-Wishart distribution are
in general available only if the underlying graph is decomposable.
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High-dimensional posterior convergence results have been established for some
Bayesian covariance estimation models in the literature. Ghosal [14] proves
asymptotic normality of the posterior for exponential family models (which
include the multivariate normal model) when p grows much slower than n. Pati
et al. [26] establish high-dimensional posterior convergence rates for covariance
estimation using Bayesian factor models. Banerjee and Ghosal [5] derive high-
dimensional posterior convergence rates for Bayesian concentration graphical
models with priors which are obtained by mixing a point mass at zero with an
appropriate continuous distribution. However, despite the great interest and ac-
tivity in Bayesian inference for concentration graphical models with G-Wishart
priors, a complete investigation into the important issue of high-dimensional
posterior consistency in this setting has not been undertaken. To the best of our
knowledge, the only results along these lines can be found in the recent work of
Banerjee and Ghosal [4]. Under standard regularity assumptions, the authors
in [4] provide posterior convergence rates for banded concentration graphical
models (with a G-Wishart prior) in the popular and useful high-dimensional
setting where the “true” concentration matrices generating the data are allowed
to be approximately banded.

Banded models form a subclass of decomposable concentration graphical
models. Furthermore, quantities such as the posterior mean, normalizing con-
stant etc. are available in closed form for decomposable graphical models with
G-Wishart priors. These facts led us to investigate whether one can prove con-
sistency results similar to [4] for the class of decomposable concentration graph-
ical models. In this paper we achieve this goal by providing high-dimensional
posterior convergence rates for decomposable concentration graphical models
with G-Wishart priors, where the “true” concentration matrices generating the
data are approximately decomposable (Theorem 3.1). A key initial step in our
analysis is expressing the concentration matrix Ω in terms of its Cholesky pa-
rameter. The main result is then established using a combination of extensive
analytic arguments and distributional results for the Cholesky parameter of
decomposable G-Wishart matrices. This approach is quite different from the
one taken in [4]. Based on a reviewer’s comment, we investigated and found
that the approach used in [4] can be easily and directly generalized to decom-
posable graphs, thereby providing another route to prove Theorem 3.1. Never-
theless, our extensive set on intermediate lemmas (Lemmas 3.2, 3.3, 3.5, 3.6,
3.9) regarding posterior convergence properties of the Cholesky parameter are
of independent interest, and may serve as useful tools in other related prob-
lems.

The rest of the paper is organized as follows. Section 2 contains a brief
overview of relevant concepts from graph theory and matrix theory. In Sec-
tion 3, we provide the required assumptions, and then state and prove the main
result (Theorem 3.1) regarding posterior convergence rates for decomposable
concentration graphical models. The proof of Theorem 3.1 is preceded by a se-
ries of lemmas which pave the way for establishing Theorem 3.1. One of these
lemmas (Lemma 3.7) establishes convergence rates for the maximum likelihood
estimator. The proofs of all the lemmas are provided in the appendix.
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2. Preliminaries

In this section, we provide required background material from graph theory and
graphical models.

2.1. Decomposable graphs and Cholesky decomposition

An undirected graph G = (V,E) consists of a vertex set V = {1, ...., p} with an
edge set E ⊆ {(i, j) ∈ V × V, i �= j}, with (i, j) ∈ E if and only if (j, i) ∈ E.
Two vertices v, v′ ∈ V are called adjacent if there is an edge between v and v′.
An undirected graph G = (V,E) is called a complete graph if all pairs of distinct
vertices in V are adjacent, and is called a cycle if there exists a permutation
{v1, v2, · · · , vp} of V such that (vi, vj) ∈ E if and only if |i− j| = 1 or |i− j| =
p − 1. The induced subgraph of G = (V,E) corresponding to V ′ ⊆ V is an
undirected graph with vertex set V ′ and edge set given by E′ = E ∩ (V ′ × V ′).
A subset V ′ of V is called a clique if the induced subgraph corresponding to V ′

is a complete graph. See [21, 23] for more details.
For an undirected graph G = (V,E), we denote by MG the set of all |V |×|V |

matrices A = (Aij)1≤i,j≤|V | satisfying Aij = Aji = 0 for all pairs (i, j) /∈ E, i �=
j, and by PG the set of all |V |×|V | symmetric positive definite matrices that are
in MG. A graph G′ = (V ′, E′) is defined as an induced subgraph of G = (V,E)
if V ′ ⊆ V and E′ = (V ′ × V ′) ∩ E, and is denoted by G′ ⊆ G. We now recall
the definition of decomposable graphs.

Definition 2.1. ([21]) A graph G is defined to be decomposable if it does not
contain a cycle of length ≥ 4 as an induced subgraph.

There are several other characterizations of decomposable graphs. Here is a
recursive characterization. A graph G = (V,E) is decomposable if and only if it
is either complete (no missing edges) or if there exist non-empty disjoint subsets
A,B,C of V such that (i) A∪B∪C = V (ii) the graph induced by B is complete
(iii) any path from A to C passes through B, and (iv) the graphs induced by
A ∪B and B ∪ C are decomposable.

Recall that for every positive definite matrix A, there exists a unique lower
triangular matrix L (with positive diagonal elements) such that A = LLT . This
decomposition of A is known as the Cholesky decomposition and we refer to
L as the Cholesky factor of A. The following characterization of decomposable
graphs (see [31, Theorem 1]), in terms of Cholesky decomposition, will be useful
for our analysis.

Lemma 2.1. ([31]) An undirected graph G = (V,E) is decomposable if and only
if there exists a permutation of vertices V such that after reordering the vertices
based on this permutation, every A ∈ PG factors as A = LLT where L ∈ MG

and L is lower triangular with positive diagonal entries. Such a permutation is
called a perfect vertex elimination scheme for G.

The above lemma says that for a decomposable graph G, if the vertices are
ordered according to a perfect vertex elimination scheme and Ω = LLT , Ω ∈ PG,
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then L has the same zero pattern as Ω in its lower triangle. Note that a perfect
vertex elimination scheme is not unique and several of them can exist for a
given graph G. A variety of algorithms for obtaining perfect vertex elimination
schemes (or perfect elimination orderings, as they are known in the computer
science literature) are available in the literature. See [30, 33] for instance.

2.2. The G-Wishart distribution

Let Y1, · · · ,Yn be independent, identically distributed MVNp(0,Σ = Ω−1) ran-
dom vectors, where Yi = (Yi1, ..., Yip)

T , 1 ≤ i ≤ n and MVN stands for the
multivariate Gaussian distribution. For an undirected graph G = (V,E) (with
V = {1, ..., p}), the Gaussian concentration graphical model corresponding to
G assumes that Ω ∈ PG. Dawid and Lauritzen [9] developed the class of Hyper
Inverse Wishart distributions for Σ = Ω−1. The class of induced priors for Ω are
known as the G-Wishart distributions on PG. In particular, the G-Wishart dis-
tribution with parameter δ > 0 and D positive definite, denoted by WG(δ,D),
has density proportional to

(det(Ω))δ/2exp[−tr(DΩ)/2], Ω ∈ PG. (2.1)

The class of G-Wishart distributions on PG form a conjugate family of priors
under the Gaussian concentration graphical model corresponding to G. In par-
ticular, if the priors on Ω ∈ PG is WG(δ,D), then it can be easily shown that
the posterior on Ω is WG(δ+n,D+nS), where S = 1/n

∑n
i=1 YiY

T
i is the sam-

ple covariance matrix. If G is decomposable, then quantities such as the mean,
mode and normalizing constant for WG(δ,D) are available in closed form (see
for instance [28]), but if G is non-decomposable, one has to resort to MCMC to
estimate these quantities (see for instance [1, 2, 25, 32, 34]).

3. Main results

In this section, we will provide the main high-dimensional posterior convergence
result. We start by introducing some required notation. For x ∈ R

p, ‖x‖r =
(
∑p

j=1 |xj |r)1/r and ‖x‖∞ = maxj |xj | denote the standard lr and l∞ vector
norms. For a p×p matrix A = (Aij)1≤i,j≤p with ordered eigenvalues |eig1(A)| ≤
... ≤ |eigp(A)|, we denote

‖A‖max = max
1≤i,j≤p

|Aij |,

‖A‖(r,s) = sup{‖Ax‖s : ‖x‖r = 1},

where 1 ≤ r, s ≤ ∞. In particular, we have

‖A‖(1,1) = max
j

∑
i

|Aij |, ‖A‖(∞,∞) = max
i

∑
j

|Aij |, ‖A‖(2,2) = {eigp(ATA)}1/2.
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Also, for a symmetric matrix A, we have ‖A‖(1,1) = ‖A‖(∞,∞) and ‖A‖(2,2) =
|eigp(A)|. Now, given the graph G = (V,E), with V = {1, ..., p}, we denote
A>i = (Ajk)i<j,k≤p,(i,j)∈E,(i,k)∈E , the column vectors A>

·i = (Aji)j>i,(i,j)∈E and

A≥
·i = (Aii, (A

>
·i )

T )T . Also,

A≥i =

[
Aii (A>

·i )
T

A>
·i A>i

]
.

In particular, A≥
·p = A≥p = App.

We now provide the model specification and required assumptions. We con-
sider a setting when the number of variables p = pn increases with the sample
size n. Suppose that Y n

1 , ...,Y n
n are independent and identically distributed

random vectors drawn from a MVNpn(0, Ω̄
−1
n ) distribution. Hence, {Ω̄n}n≥1

denotes the sequence of true concentration matrices. Let Gn = (Vn, En) (with
Vn = {1, ..., pn}) be a decomposable graph with vertices ordered according to a
perfect vertex elimination scheme. We define the matrix Ω̃n by

(Ω̃n)ij =

{
(Ω̄n)ij if (i, j) ∈ En

0 otherwise,

and An = Ω̄n − Ω̃n. Hence, Ω̃n ∈ MGn . The assumption that the vertices of
Gn are ordered according to a perfect vertex elimination scheme does not lead
to any loss of generality, as ‖Ω − Ω̄n‖(∞,∞) (see statement of Theorem 3.1) is
invariant with respect to any reordering of vertices. Let dn denote the maximum
number of non-zero entries in any row (column) of the symmetric matrix Ω̃n.
Also, P̄ and Ē respectively denote the probability measure and expected value
corresponding to the “true” Gaussian model specified above. With the model
specification in place, we now provide the required assumptions.

Assumption 1. The eigenvalues of {Ω̄n}n≥1 are uniformly bounded, i.e., there
exists ε0 > 0 such that 0 < ε0 ≤ eig1(Ω̄n) ≤ eigp(Ω̄n) ≤ ε−1

0 < ∞, for every
n ≥ 1.

Assumption 2. For n ≥ 1, we use the prior WGn(δ,Dn) for the concentration
matrix Ω. Here δ > 0 and Dn is a positive definite matrix which satisfies:
eigp(Dn) ≤ a < ∞, for every n ≥ 1.

Assumption 3. d5n log pn/n → 0 and pn → ∞.

Assumption 4. ‖An‖(∞,∞) ≤ γ(dn), where d
3/2
n γ(dn) → 0.

Henceforth, for notational and expositional convenience, we will refer to pn, Ω̄n,
Ω̃n, Gn, dn, Dn, An as p, Ω̄, Ω̃, G, d,D,A. Note also that ε0, δ and a above do
not depend on n.

The following theorem is the main contribution of this paper and provides
the convergence rate for the posterior distribution of Ω. As in [4], we provide
the convergence rate under the (∞,∞) norm, which is a stronger norm than
the more standard (2, 2) norm.
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Theorem 3.1. Under Assumptions 1 - 4, for a large enough constant K (not
depending on n), the posterior distribution of Ω satisfies:

Ē[Pr{‖Ω− Ω̄‖(∞,∞) ≥ Kεn|Y }] → 0, (3.1)

where εn = d5/2(log p/n)1/2 + d3/2γ(d).

Remark 3.1. Based on a reviewer’s comment, we investigated and found that
Theorem 3.1 for approximate decomposable models can be obtained (with the
exact same convergence rate) by a direct extension of the approach in [4].

We now provide a series of lemmas which will play a crucial role in the proof
of Theorem 3.1. The proofs of these lemmas are provided in the appendix. The
first lemma provides inequalities involving the various matrix norms introduced
earlier in this section, in the context of sparse matrices.

Lemma 3.1. For any p × p matrix A = (Aij)1≤i,j≤p with at most d nonzero
elements in each row and each column, we have

‖A‖(∞,∞) ≤
√
d‖A‖(2,2), (3.2)

‖A‖(2,2) ≤ d‖A‖max. (3.3)

The next lemma provides an expression for the Cholesky parameter L̃ of Ω̃ in
terms of Σ̃ = Ω̃−1. Note that by Assumption 4, for large enough n,

‖Ω̃‖(2,2) ≤ ‖Ω̄−A‖(2,2) ≤ ‖Ω̄‖(2,2) + ‖A‖(2,2) ≤ ε−1
0 + γ(d) ≤ 2ε−1

0 , and

eig1(Ω̃) ≥ eig1(Ω̄) + eig1(−A) ≥ ε0 − γ(d) ≥ ε0/2. (3.4)

Thus, Ω̃ ∈ PG for large enough n.

Lemma 3.2. For large enough n, let Ω̃ = L̃L̃T be the Cholesky decomposition
of Ω̃ ∈ PG. Let Σ̃ = Ω̃−1. Then L̃ji = 0 for 1 ≤ i < j ≤ p and (i, j) /∈ E, and

L̃ii =

√
1

Σ̃ii − (Σ̃>
·i )

T (Σ̃>i)−1Σ̃>
·i
, L̃>

·i = −L̃ii(Σ̃
>i)−1Σ̃>

·i , (3.5)

for 1 ≤ i ≤ p.

The next lemma establishes distributional properties for the Cholesky parameter
of a matrix following a G-Wishart distribution.

Lemma 3.3. Let Ω = LLT be the Cholesky decomposition of Ω ∈ PG, where L
is a lower triangular matrix. Under the prior distribution WG(δ,D) on Ω, the

posterior distribution of L is: Lji = 0 for 1 ≤ i < j ≤ p and (i, j) /∈ E; L≥
·i are

independent for 1 ≤ i ≤ p and

L>
·i |Lii ∼ MVN(−(

←−
S >i)−1←−S >

·iLii, (
←−
S >i)−1/n), for 1 ≤ i ≤ p− 1, (3.6)

L2
ii ∼ Gamma((n+ vi + δ)/2 + 1, nci/2), for 1 ≤ i ≤ p, (3.7)

where
←−
S = S +D/n, vi = dim(L>

·i ) and ci =
←−
S ii − (

←−
S >

·i )
T (

←−
S >i)−1←−S >

·i .
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After a careful comparison, it can be argued that the above lemma follows
from [23, Theorem 4.4]. Nevertheless, we provide a proof of this lemma in the
appendix for completeness. The next three lemmas show that the difference

between relevant functions of
←−
S = S +D/n and the same functions applied to

Σ̃, converges to zero in P̄ -probability at a certain rate.

Lemma 3.4. For a large enough constant M1 (not depending on n), we have

P̄ (‖←−S − Σ̃‖max ≥ M1(
√
log p/n+ γ(d))) ≤ m1p

2−m2M
2
1 /4 → 0 (3.8)

as n → ∞, where m1 and m2 are constants which depend only on ε0 (from
Assumption 1).

Lemma 3.5. For large enough constants M1 (same as in Lemma 3.4) and M2

(not depending on n),

P̄ ( max
1≤i≤p

‖←−S ≥i − Σ̃≥i‖(2,2) ≥ M1(d
√

log p/n+ γ(d))) → 0, (3.9)

P̄ ( max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) ≥ 2ε−1
0 ) → 0, (3.10)

P̄ ( max
1≤i≤p

‖(←−S ≥i)−1 − (Σ̃≥i)−1‖(2,2) ≥ M2(d
√

log p/n+ γ(d))) → 0, (3.11)

as n → ∞.

Lemma 3.6. Let c̃i = Σ̃ii − (Σ̃>
·i )

T (Σ̃>i)−1Σ̃>
·i . Then

ε0/2 ≤ min
1≤i≤p

c̃i ≤ max
1≤i≤p

c̃i ≤ 2ε−1
0 . (3.12)

Let ci =
←−
S ii − (

←−
S >

·i )
T (

←−
S >i)−1←−S >

·i . Then

P̄ ( max
1≤i≤p

ci ≥ 2ε−1
0 ) → 0, P̄ ( min

1≤i≤p
ci ≤ ε0/2) → 0, (3.13)

as n → ∞. Also, for a large enough constant M3 (not depending on n), we have

P̄ ( max
1≤i≤p

|ci − c̃i| ≥ M3(d
√

log p/n+ γ(d))) → 0. (3.14)

Note that by Assumption 1, d ≤ n for large enough n. Hence the size of any
clique in G is bounded by n. In this case, it is known that the maximum likeli-
hood estimator exists and is unique (see for instance [21]). Although the main
goal of this paper is derivation of the convergence rate for the posterior dis-
tribution, using the previous lemmas we derive the convergence rate for the
maximum likelihood estimator under Assumptions 1 - 4.

Lemma 3.7 (Convergence Rate for MLE). For a large enough constant K̃ (not
depending on n), the maximum likelihood estimator Ω̂ satisfies

P̄ (‖Ω̂− Ω̄‖(∞,∞) ≥ K̃εn) → 0,

as n → ∞.
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The proof is provided in the appendix. We need two more lemmas before pro-
ceeding to prove Theorem 3.1. The next lemma gives a concentration bound
(around the mean value) for the square root of a Gamma random variable.

Lemma 3.8. If X2 ∼ Gamma(α, λ), X > 0. Let μ = E(X) = Γ(α+1/2)√
λΓ(α)

and

α > 1/2. Then

Pr(|X − μ| ≥ x) ≤
√
2e e−λx2

. (3.15)

The final lemma provides the posterior convergence rate for the diagonal entries
of the Cholesky factor of Ω.

Lemma 3.9. For a large enough constant M5 (not depending on n), we have

Pr( max
1≤i≤p

|Lii − L̃ii| ≥ M5(d
√

log p/n+ γ(d))|Y )
P̄→ 0. (3.16)

We would like to remind the reader that the proofs of all the above lemmas are
provided in the appendix. With these lemmas in hand, we now provide a proof
for Theorem 3.1.

Proof of Theorem 3.1. Note that it suffices to show Pr{‖Ω − Ω̄‖(∞,∞) ≥
Kεn|Y } P̄→ 0 to get the required result. Also, since ‖Ω̃ − Ω̄‖(∞,∞) ≤ γ(d), by

the triangle inequality it suffices to show Pr{‖Ω− Ω̃‖(∞,∞) ≥ Kεn|Y } P̄→ 0. By
Lemma 3.1, we have

Pr{‖Ω− Ω̃‖(∞,∞) ≥ Kεn|Y }
≤ Pr{

√
d‖Ω− Ω̃‖(2,2) ≥ Kεn|Y }

≤ Pr{‖LLT − L̃L̃T ‖(2,2) ≥ Kεn/
√
d|Y }

≤ Pr{‖L‖(2,2)‖L− L̃‖(2,2) + ‖L̃‖(2,2)‖L− L̃‖(2,2) ≥ Kεn/
√
d|Y }

≤ Pr{(2‖L̃‖(2,2) + ‖L− L̃‖(2,2))‖L− L̃‖(2,2) ≥ Kεn/
√
d|Y }

≤ Pr

{
‖L− L̃‖(2,2) ≥

Kεn

4‖L̃‖(2,2)
√
d

∣∣∣∣Y
}

+

Pr

{
‖L− L̃‖(2,2) ≥

√
K
√
εn√

2 4
√
d

∣∣∣∣Y
}
. (3.17)

Since ε0/2 ≤ eig1(Ω̃) ≤ eigp(Ω̃) ≤ 2ε−1
0 by (3.4), it follows that

√
ε0/2 ≤

‖L̃‖(2,2) = {eigp(Ω̃)}1/2 ≤ (ε0/2)
−1/2. Also by Assumption 3, it follows that

√
εn/

4
√
d ≥ εn/

√
d for large enough n. In view of these observations and (3.17),

it suffices to show that Pr{‖L− L̃‖(2,2) ≥ K1εn/
√
d|Y } P̄→ 0 for a large enough

constant K1. Now, let δn = εn/d
3/2 = d(log p/n)1/2+γ(d). It follows by Lemma

3.1 and the triangle inequality that

Pr{‖L− L̃‖(2,2) ≥ K1εn/
√
d|Y } ≤ Pr{d‖L− L̃‖max ≥ K1εn/

√
d|Y }
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≤ Pr{‖L−M‖max ≥ K1δn/4|Y }+
Pr{‖M − M̃‖max ≥ K1δn/4|Y }+
Pr{‖M̃ − L̃‖max ≥ K1δn/4|Y }, (3.18)

where M and M̃ are p× p lower triangular matrices defined by

M≥
·i =

[
Lii

−(
←−
S >i)−1←−S >

·iLii

]
, M̃≥

·i =

[
Lii

−(Σ̃>i)−1Σ̃>
·iLii

]
,

for 1 ≤ i ≤ p, and the rest entries in M and M̃ are 0, i.e., Mji = M̃ji = 0 for
(i, j) /∈ E, 1 ≤ i < j ≤ p. We will deal with the three expressions on the RHS of
(3.18) separately.

First, by the union-sum inequality, we have

Pr{‖L−M‖max ≥ K1δn/4|Y }

= Pr

{
max

(i,j)∈E,1≤i<j≤p
|Lji −Mji| ≥ K1δn/4|Y

}

= Pr

⎧⎨
⎩

⋃
(i,j)∈E,1≤i<j≤p

{|Lji −Mji| ≥ K1δn/4}|Y

⎫⎬
⎭

≤ pd max
(i,j)∈E,1≤i<j≤p

Pr{|Lji −Mji| ≥ K1δn/4|Y }, (3.19)

where the last inequality follows from the fact that there are at most d neighbors

for each vertex i, 1 ≤ i ≤ p. Let c = max1≤i≤j≤p(
←−
S ≥i)−1

jj , where (
←−
S ≥i)−1

jj , j ≥ i

stands for the diagonal element of (
←−
S ≥i)−1 corresponding to the vertex j. Then

it follows from (3.19) that

Pr{‖L−M‖max ≥ K1δn/4|Y }

≤ pd max
(i,j)∈E,1≤i<j≤p

Pr

⎧⎨
⎩

√
n|Lji −Mji|√
(
←−
S ≥i)−1

jj

≥
√
nK1δn
4
√
c

∣∣∣∣Y
⎫⎬
⎭

= pd max
(i,j)∈E,1≤i<j≤p

E

[
Pr

{
|zji| ≥

√
nK1δn
4
√
c

∣∣∣∣Y , Lii

}]
, (3.20)

where zji =
√
n(Lji−Mji)√
(
←−
S ≥i)−1

jj

∣∣∣∣(Y , Lii) ∼ N(0, 1) by Lemma 3.3 and the expectation

in the last equality is taken with respect to the posterior distribution of Lii.
Hence,

Pr{‖L−M‖max ≥ K1δn/4|Y }

≤ pd max
(i,j)∈E,1≤i<j≤p

E

[
Pr

{
|zji| ≥

√
nK1δn
4
√
c

∣∣∣∣Y , Lii

}]

= 2pd

(
1− Φ

(√
nK1δn
4
√
c

))
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≤ 2pd exp{−nK2
1δ

2
n/(8c)}

≤ 2p2−K2
1/(8c), (3.21)

where Φ is the standard normal cdf and the second inequality follows from
1− Φ(t) ≤ exp{−t2/2} for t ≥ 0. Note that for any η > 0,

P̄ (2p2−K2
1/(8c) > η)

≤ P̄ (2p2−K2
1/(8c) > η, c < 2ε−1

0 ) + P̄ (c ≥ 2ε−1
0 )

≤ P̄ (2p2−K2
1ε0/16 > η) + P̄ (c ≥ 2ε−1

0 ).

With K1 chosen large enough such that 2 − K2
1 ε0/16 < 0, it follows from As-

sumption 3 that 2p2−K2
1ε0/16 → 0 as n → ∞. It now follows from (3.10) in

Lemma 3.5 that

2p2−K2
1/(8c)

P̄→ 0.

Thus, by (3.21), we get Pr{‖L − M‖max ≥ K1δn/4|Y } P̄→ 0. Hence, the first
term in (3.18) has been dealt with.

We now focus on the second term in (3.18). Let [(
←−
S >i)−1←−S >

·i ]j , j > i be

the component of (
←−
S >i)−1←−S >

·i corresponding to vertex j. Recall that ci =
←−
S ii − (

←−
S >

·i )
T (

←−
S >i)−1←−S >

·i and c̃i = Σ̃ii − (Σ̃>
·i )

T (Σ̃>i)−1Σ̃>
·i . Note that

max
1≤i<j≤p,(i,j)∈E

|[(←−S >i)−1←−S >
·i ]j − [(Σ̃>i)−1Σ̃>

·i ]j |

= max
1≤i<j≤p,(i,j)∈E

∣∣∣∣ [(
←−
S >i)−1←−S >

·i ]j
ci

ci −
[(Σ̃>i)−1Σ̃>

·i ]j
c̃i

c̃i

∣∣∣∣
≤ max

1≤i<j≤p,(i,j)∈E

∣∣∣∣ [(
←−
S >i)−1←−S >

·i ]j
ci

∣∣∣∣|ci − c̃i|+

max
1≤i<j≤p,(i,j)∈E

c̃i

∣∣∣∣ [(
←−
S >i)−1←−S >

·i ]j
ci

− [(Σ̃>i)−1Σ̃>
·i ]j

c̃i

∣∣∣∣
≤ max

1≤i<j≤p,(i,j)∈E
c̃ici

∣∣∣∣ [(
←−
S >i)−1←−S >

·i ]j
ci

∣∣∣∣
∣∣∣∣ 1ci −

1

c̃i

∣∣∣∣+
max

1≤i<j≤p,(i,j)∈E
c̃i

∣∣∣∣ [(
←−
S >i)−1←−S >

·i ]j
ci

− [(Σ̃>i)−1Σ̃>
·i ]j

c̃i

∣∣∣∣. (3.22)

Note that the first column of (
←−
S ≥i)−1 is

[
1/ci

−(
←−
S >i)−1←−S >

·i /ci

]
. It follows from

(3.22) that

max
1≤i<j≤p,(i,j)∈E

|[(←−S >i)−1←−S >
·i ]j − [(Σ̃>i)−1Σ̃>

·i ]j |

≤ (max
i

ci‖(
←−
S ≥i)−1‖max)(max

i
c̃i‖(

←−
S ≥i)−1 − (Σ̃≥i)−1‖max)+
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max
i

c̃i‖(
←−
S ≥i)−1 − (Σ̃≥i)−1‖max

= (max
i

c̃i‖(
←−
S ≥i)−1 − (Σ̃≥i)−1‖max)(1 + max

i
ci‖(

←−
S ≥i)−1‖max) (3.23)

Let M4 = 2M2

ε0
(8ε−2

0 + 1), where M2 is as in Lemma 3.5. Then M4ε0/(2M2)−1

2ε−1
0

=

4ε−1
0 > 2ε−1

0 . It follows from (3.23), Lemma 3.5 and Lemma 3.6 that,

P̄

(
max

1≤i<j≤p,(i,j)∈E
|[(←−S >i)−1←−S >

·i ]j − [(Σ̃>i)−1Σ̃>
·i ]j | ≥ M4δn

)

≤ P̄
(
max

i
‖(←−S ≥i)−1 − (Σ̃≥i)−1‖max ≥ M2δn

)
+ P̄

(
max

i
ci ≥ 2ε−1

0

)
+

P̄

(
max

i
‖(←−S ≥i)−1‖max ≥ M4ε0/(2M2)− 1

2ε−1
0

)
→ 0, (3.24)

as n → ∞. Let r = max1≤i<j≤p,(i,j)∈E |[(←−S >i)−1←−S >
·i ]j − [(Σ̃>i)−1Σ̃>

·i ]j |. Now,
by the form of M and M̃ , maxi L̃ii ≤ (eigp(Σ̃))

1/2 ≤ (ε0/2)
−1/2 and (3.18), we

have

Pr
{
‖M − M̃‖max ≥ K1δn/4|Y

}
≤ Pr

{
max

i
Lii ≥ K1δn/(4r)|Y

}
≤ Pr

{
max

i
L̃ii +max

i
|Lii − L̃ii| ≥ K1δn/(4r)|Y

}
≤ Pr

{
max

i
|Lii − L̃ii| ≥ K1δn/(4r)− (ε0/2)

−1/2|Y
}
. (3.25)

Note that for any η > 0,

P̄
(
Pr
{
max

i
|Lii − L̃ii| ≥ K1δn/(4r)− (2ε0)

−1/2|Y
}
> η

)
≤ P̄

(
Pr
{
max

i
|Lii − L̃ii| ≥ K1δn/(4r)− (2ε0)

−1/2|Y
}
> η, r < M4δn

)
+

P̄ (r ≥ M4δn)

≤ P̄
(
Pr
{
max

i
|Lii − L̃ii| ≥ K1/(4M4)− (2ε0)

−1/2|Y
}
> η

)
+ P̄ (r ≥ M4δn).

If K1 is chosen large enough such that K1/(4M4) − (2ε0)
−1/2 > 1, then by

Lemma 3.9 and (3.24), it follows that Pr{maxi |Lii − L̃ii| ≥ K1δn/(4r) −
(2ε0)

−1/2|Y } P̄→ 0. By (3.25), we get that Pr{‖M − M̃‖max ≥ K1δn/4|Y } P̄→ 0.
Hence, the second term in (3.18) has been dealt with.

For the last term in (3.18), note that L̃≥
·i =

[
L̃ii

−(Σ̃>i)−1Σ̃>
·i L̃ii

]
by Lemma 3.2

and M̃≥
·i =

[
Lii

−(Σ̃>i)−1Σ̃>
·iLii

]
. Then, by Lemma 3.6 and the fact that

max
1≤i≤p

‖(Σ̃≥i)−1‖max ≤ max
1≤i≤p

‖(Σ̃≥i)−1‖(2,2) = max
1≤i≤p

(eig1(Σ̃
≥i))−1 ≤ (ε0/2)

−1,
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also note that

max
1≤i<j≤p,(i,j)∈E

|[(Σ̃>i)−1Σ̃>
·i ]j | ≤ max

1≤i<j≤p,(i,j)∈E
|[(Σ̃>i)−1Σ̃>

·i ]j/c̃i|max
i

c̃i

≤ max
i

‖(Σ̃≥i)−1‖max max
i

c̃i,

we have

Pr
{
‖M̃ − L̃‖max ≥ K1δn/4|Y

}
≤ Pr

{(
1 + max

1≤i<j≤p,(i,j)∈E
|[(Σ̃>i)−1Σ̃>

·i ]j |
)
max

i
|Lii − L̃ii| ≥ K1δn/4

∣∣∣∣Y
}

≤ Pr

{(
1 + max

i
‖(Σ̃≥i)−1‖max max

i
c̃i

)
max

i
|Lii − L̃ii| ≥ K1δn/4

∣∣∣∣Y
}

≤ Pr

{
(1 + 4ε−2

0 )max
i

|Lii − L̃ii| ≥ K1δn/4

∣∣∣∣Y
}
. (3.26)

It then follows from Lemma 3.9 that Pr{‖M̃ − L̃‖max ≥ K1δn/4|Y } P̄→ 0 for
K1 > 4M5(1 + 4ε−2

0 ). We have now shown that all the three terms on the RHS
of (3.18) converge in P̄ -probability to zero. This completes the proof.

Appendix

Proof of Lemma 3.1. Banerjee and Ghosal [4] provide a proof of this result for
banded matrices. The proof below, for general sparse matrices, is based on
similar arguments, and is provided for the sake of completeness.

For any p × p matrix A = (Aij)1≤i,j≤p with at most d nonzero elements in

each row and each column, ‖A‖(∞,∞) = maxi
∑

j |Aij | ≤ maxi
√
d
√∑

j A
2
ij ≤

√
d‖A‖(2,2), where the first inequality follows by Cauchy-Schwarz and the second

inequality follows from that
√∑

j A
2
ij = ‖eTi A‖2 ≤ sup‖x‖2=1 ‖Ax‖2 = ‖A‖(2,2),

where the ith component of ei is 1 and the rest are 0.
Now, note that ‖A‖2(2,2) = eigp(A

TA) ≤ ‖ATA‖(1,1) ≤ ‖AT ‖(1,1)‖A‖(1,1) =

‖A‖(∞,∞)‖A‖(1,1), where the first inequality follows by the Gershgorin circle
theorem. Thus

‖A‖(2,2) ≤
√
‖A‖(1,1)

√
‖A‖(∞,∞)

=

√
max

j

∑
i

|Aij |
√
max

i

∑
j

|Aij |

≤ (
√
d‖A‖max)

2

= d‖A‖max.

This completes the proof.
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Proof of Lemma 3.2. Let R be non-negative definite matrix such that any prin-
cipal submatrix of R of size ≤ d is positive definite. We will show that the
function

tr(AR)− log det(A), A ∈ PG, (3.27)

has a unique minimizer, denoted by Â. Furthermore, the Cholesky factor of Â,
denoted by Ĉ satisfies Ĉij = 0 for (i, j) /∈ E or i < j, and

Ĉii =

√
1

Rii − (R>
·i )

T (R>i)−1R>
·i
, Ĉ>

·i = −Ĉii(R
>i)−1R>

·i . (3.28)

To prove this assertion, we first note by Lemma 2.1 that the minimization
problem in (3.27) is equivalent to minimizing the function �(C) = tr(CCTR)−
2 log det(C) where C varies over lower triangular matrices in MG with positive
diagonal entries. Now, straightforward matrix algebra and the fact that C ∈ MG

imply that

�(C) =

p∑
i=1

(
CT

·iRC·i − 2 logCii

)

=

p∑
i=1

(
(C≥

·i )
TR≥iC≥

·i − 2 logCii

)

=

p∑
i=1

(C>
·i + Cii(R

>i)−1R>
·i )

TR>i(C>
·i + Cii(R

>i)−1R>
·i ) +

p∑
i=1

C2
ii(Rii − (R>

·i )
T (R>i)−1R>

·i )− 2 logCii. (3.29)

It follows that the first sum in (3.29) is minimized if and only if

C>
·i = −Cii(R

>i)−1R>
·i ,

and the second sum is minimized if and only if

Cii =

√
1

Rii − (R>
·i )

T (R>i)−1R>
·i
.

Thus, the assertion in (3.28) holds. Lemma 3.2 now follows by noting that Ω̃ is
the unique minimizer for the function tr(AΣ̃)− log det(A), A ∈ PG.

Proof of Lemma 3.3. The fact that Lji = 0 for 1 ≤ i < j ≤ p and (i, j) /∈ E
follows directly from Lemma 2.1. Under the prior distribution WG(δ,D) on Ω,
the posterior distribution of Ω is WG(δ + n, nS +D):

f(Ω|G,Y ) ∝ (det(Ω))(δ+n)/2exp[−tr((nS +D)Ω)/2]. (3.30)
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The Jacobian of the transformation Ω → LLT is 2p
∏p

i=1 L
vi+1
ii , where vi =

dim(L>
·i ), by Lemma 1 of [2]. Hence, the posterior of L is:

f(L|G,Y ) ∝
p∏

i=1

Lvi+1
ii (L2

ii)
(δ+n)/2exp[−tr(nS̃Ω)/2]

=

p∏
i=1

Lδ+n+vi+1
ii exp{−n/2

p∑
i=1

[(L>
·i +Lii(S̃

>i)−1S̃>
·i )

T S̃>i(L>
·i +Lii(S̃

>i)−1S̃>
·i )

+ L2
ii(S̃ii − (S̃>

·i )
T (S̃>i)−1S̃>

·i )]}

=

p∏
i=1

Lδ+n+vi+1
ii exp{−nL2

iici/2}exp{−n/2

×
p−1∑
i=1

(L>
·i + Lii(S̃

>i)−1S̃>
·i )

T S̃>i(L>
·i + Lii(S̃

>i)−1S̃>
·i )}, (3.31)

by a similar calculation as (3.29). It follows from (3.31) that L≥
·i are independent

for 1 ≤ i ≤ p and

L>
·i |Lii ∼ MVN(−(S̃>i)−1S̃>

·i Lii, (S̃
>i)−1/n), for 1 ≤ i ≤ p− 1,

L2
ii ∼ Gamma((n+ vi + δ)/2 + 1, nci/2), for 1 ≤ i ≤ p,

where ci = S̃ii − (S̃>
·i )

T (S̃>i)−1S̃>
·i .

Proof of Lemma 3.4. It follows by Assumption 1 and Lemma A.3 of [7] that
there exists constants m1,m2 and δ depending on ε0 only such that for 1 ≤
i, j ≤ p, we have:

P̄ (|Sij − Σ̄ij | ≥ t) ≤ m1 exp{−m2nt
2}, |t| ≤ δ.

Hence, by the union-sum inequality,

P̄ (‖S − Σ̄‖max ≥ t) = P̄ ( max
1≤i,j≤p

|Sij − Σ̄ij | ≥ t) ≤ m1p
2 exp{−m2nt

2}. (3.32)

Recall that
←−
S = S +D/n and note ‖D‖max ≤ ‖D‖(2,2) ≤ a. Hence, for a large

enough M1 such that 2−m2M
2
1 /4 < 0, we get

P̄ (‖←−S − Σ̄‖max ≥ M1

√
log p/n)

≤ P̄ (‖S − Σ̄‖max + ‖D‖max/n ≥ M1

√
log p/n)

≤ P̄ (‖S − Σ̄‖max + a/n ≥ M1

√
log p/n)

≤ P̄ (‖S − Σ̄‖max ≥ (M1/2)
√

log p/n)

≤ m1p
2−m2M

2
1 /4 → 0,

as n → ∞. The last inequality follows from (3.32).
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Note that

‖Σ̃− Σ̄‖max ≤ ‖Σ̃− Σ̄‖(2,2) ≤ ‖Σ̃‖(2,2)‖Ω̃− Ω̄‖(2,2)‖Σ̄‖(2,2) ≤ 2ε−2
0 γ(d).

Hence for M1 > max
(
2ε−2

0 ,
√

8
m2

)
, we get

P̄ (‖←−S − Σ̃‖max ≥ M1(
√

log p/n+ γ(d)))

≤ P̄ (‖←−S − Σ̄‖max + ‖Σ̃− Σ̄‖max ≥ M1(
√
log p/n+ γ(d)))

≤ P̄ (‖←−S − Σ̄‖max ≥ M1

√
log p/n) → 0,

Proof of Lemma 3.5. Note that for 1 ≤ i ≤ p,
←−
S ≥i − Σ̄≥i can be at most size

d × d. Hence, ‖←−S ≥i − Σ̄≥i‖(2,2) ≤ d‖←−S ≥i − Σ̄≥i‖max by Lemma 3.1. It follows
from Lemma 3.4 that

P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) ≥ M1d
√
log p/n

)

≤ P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖max ≥ M1

√
log p/n

)

≤ P̄ (‖←−S − Σ̄‖max ≥ M1

√
log p/n) → 0, (3.33)

as n → ∞. Note that

max
1≤i≤p

‖Σ̃≥i−Σ̄≥i‖(2,2) ≤ max
1≤i≤p

‖Σ̃≥i‖(2,2)‖Ω̃≥i−Ω̄≥i‖(2,2)‖Σ̄≥i‖(2,2) ≤ 2ε−2
0 γ(d).

Hence, by triangle inequality, and the fact that M1 > 2ε−2
0 , we get

P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̃≥i‖(2,2) ≥ M1(d
√

log p/n+ γ(d))

)

≤ P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) ≥ M1d
√

log p/n

)
→ 0. (3.34)

Note that by Assumption 1, d ≤ n for large enough n. Hence, (
←−
S ≥i)−1 is well-

defined for every 1 ≤ i ≤ p for large enough n. Also note that

max
1≤i≤p

‖(Σ̄≥i)−1‖(2,2) = max
1≤i≤p

(eig1(Σ̄
≥i))−1 ≤ (eig1(Σ̄))

−1 ≤ ε−1
0 ,

and

‖(←−S ≥i)−1 − (Σ̄≥i)−1‖(2,2) ≤ ‖(←−S ≥i)−1‖(2,2)‖
←−
S ≥i − Σ̄≥i‖(2,2)‖(Σ̄≥i)−1‖(2,2).

Thus,

max
1≤i≤p

‖(←−S ≥i)−1‖(2,2)

≤ max
1≤i≤p

‖(Σ̄≥i)−1‖(2,2) +
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max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) max
1≤i≤p

‖(Σ̄≥i)−1‖(2,2)

≤ ε−1
0

(
1 + max

1≤i≤p
‖(←−S ≥i)−1‖(2,2) max

1≤i≤p
‖←−S ≥i − Σ̄≥i‖(2,2)

)
.

It follows that if ε−1
0 max1≤i≤p ‖

←−
S ≥i − Σ̄≥i‖(2,2) < 1, then

max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) ≤
ε−1
0

1− ε−1
0 max1≤i≤p ‖

←−
S ≥i − Σ̄≥i‖(2,2)

.

Hence,

P̄

(
max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) ≥ 2ε−1
0

)

≤ P̄

(
max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) ≥ 2ε−1
0 , ε−1

0 max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) < 1

)
+

P̄

(
ε−1
0 max

1≤i≤p
‖←−S ≥i − Σ̄≥i‖(2,2) ≥ 1

)

≤ P̄

(
ε−1
0

1− ε−1
0 max1≤i≤p ‖

←−
S ≥i − Σ̄≥i‖(2,2)

≥ 2ε−1
0

)
+

P̄

(
ε−1
0 max

1≤i≤p
‖←−S ≥i − Σ̄≥i‖(2,2) ≥ 1

)
.

Now by (3.34), we have for all large n,

P̄

(
max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) ≥ 2ε−1
0

)

≤ P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) ≥ ε0/2

)
+

P̄

(
ε−1
0 max

1≤i≤p
‖←−S ≥i − Σ̄≥i‖(2,2) ≥ 1

)

≤ 2P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) ≥ M1d
√

log p/n

)
→ 0, (3.35)

as n → ∞. Also, let M2 = max(2M1/ε
2
0, (2ε

−2
0 )2), then ε0M2/(2ε

−1
0 ) ≥ M1.

Note that

max
1≤i≤p

‖(Σ̃≥i)−1 − (Σ̄≥i)−1‖(2,2)

≤ max
1≤i≤p

‖(Σ̃≥i)−1‖(2,2)‖Σ̃≥i − Σ̄≥i‖(2,2)‖(Σ̄≥i)−1‖(2,2)

≤ (2ε−2
0 )2γ(d) ≤ M2γ(d) (3.36)

Hence, it follows from (3.34), (3.35) and max1≤i≤p ‖(Σ̄≥i)−1‖(2,2) ≤ ε0
−1 that
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P̄

(
max
1≤i≤p

‖(←−S ≥i)−1 − (Σ̃≥i)−1‖(2,2) ≥ M2(d
√

log p/n+ γ(d))

)

≤ P̄

(
max
1≤i≤p

‖(←−S ≥i)−1 − (Σ̄≥i)−1‖(2,2) ≥ M2d
√

log p/n

)

≤ P̄

(
max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) ≥ ε0M2d
√
log p/n

)

≤ P̄

(
max
1≤i≤p

‖←−S ≥i − Σ̄≥i‖(2,2) ≥ (ε0M2/(2ε
−1
0 ))d

√
log p/n

)
+

P̄

(
max
1≤i≤p

‖(←−S ≥i)−1‖(2,2) ≥ 2ε−1
0

)
→ 0, (3.37)

as n → ∞.

Proof of Lemma 3.6. Note that the first column of (Σ̃≥i)−1 is

[
1/c̃i

−(Σ̃>i)−1Σ̃>
·i /c̃i

]
.

Also note that eig1((Σ̃
≥i)−1) ≤ 1/c̃i ≤ ‖(Σ̃≥i)−1‖(2,2). Thus

min
i

c̃i = (max
i

{1/c̃i})−1 ≥ (max
i

‖(Σ̃≥i)−1‖(2,2))−1 = min
i

eig1(Σ̃
≥i) ≥ ε0/2,

and

max
i

c̃i = (min
i
{1/c̃i})−1 ≤ (min

i
{eig1((Σ̃≥i)−1)})−1 = max

i
‖Σ̃≥i‖(2,2) ≤ 2ε−1

0 .

Similarly,
ε0 ≤ min

i
c̄i ≤ max

i
c̄i ≤ ε−1

0 .

Note that

max
i

ci ≤ max
i

c̄i +max
i

|ci − c̄i|

≤ max
i

c̄i +max
i

cic̄i|1/ci − 1/c̄i|

≤ ε−1
0 (1 + max

i
ci‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max),

which implies that if ε−1
0 maxi ‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max < 1,

max
i

ci ≤
ε−1
0

1− ε−1
0 maxi ‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max

.

Hence, for all large n,

P̄
(
max

i
ci ≥ 2ε−1

0

)
≤ P̄

(
max

i
ci ≥ 2ε−1

0 , ε−1
0 max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max < 1

)
+

P̄
(
ε−1
0 max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ 1

)
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≤ P̄

(
ε−1
0

1− ε−1
0 maxi ‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max

≥ 2ε−1
0

)
+

P̄
(
ε−1
0 max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ 1

)
By (3.37), it now follows that for all large n,

P̄
(
max

i
ci ≥ 2ε−1

0

)
≤ P̄

(
max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ ε0/2

)
+

P̄
(
ε−1
0 max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ 1

)
≤ 2P̄

(
max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ M2d

√
log p/n

)
→ 0,

as n → ∞. Now,

max
i

|ci − c̄i| = max
i

cic̄i|1/ci − 1/c̄i|

≤ (max
i

|ci − c̄i|+max
i

c̄i)max
i

c̄i max
i

‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max

≤ (max
i

|ci − c̄i|+ ε−1
0 )ε−1

0 max
i

‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max,

which again implies that if ε−1
0 maxi ‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max < 1,

max
i

|ci − c̄i| ≤
ε−2
0 maxi ‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max

1− ε−1
0 maxi ‖(

←−
S ≥i)−1 − (Σ̄≥i)−1‖max

. (3.38)

Let M3 = 2ε−2
0 M2, then

M3d
√

log p/n

ε−2
0 +M3d

√
log p/nε−1

0

≥ M3d
√
log p/n

2ε−2
0

= M2d
√
log p/n,

for all large n. It follows from (3.37) and (3.38) that for all large n,

P̄
(
max

i
|ci − c̄i| ≥ M3d

√
log p/n

)
≤ P̄

(
max

i
|ci − c̄i| ≥ M3d

√
log p/n, ε−1

0 max
i

‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max < 1
)

+ P̄
(
ε−1
0 max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ 1

)

≤ P̄

(
max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ M3d

√
log p/n

ε−2
0 +M3d

√
log p/nε−1

0

)

+ P̄
(
ε−1
0 max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ 1

)
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≤ 2P̄
(
max

i
‖(←−S ≥i)−1 − (Σ̄≥i)−1‖max ≥ M2d

√
log p/n

)
→ 0, (3.39)

as n → ∞. Note that by (3.36),

max
i

|c̃i − c̄i| = max
i

c̃ic̄i|1/c̃i − 1/c̄i|

≤ 2ε−2
0 max

i
‖(Σ̃≥i)−1 − (Σ̄≥i)−1‖max

≤ 2ε−2
0 M2γ(d)

= M3γ(d),

we get

P̄
(
max

i
|ci − c̃i| ≥ M3(d

√
log p/n+ γ(d))

)
≤ P̄

(
max

i
|ci − c̄i| ≥ M3d

√
log p/n

)
→ 0.

Also, by (3.39), and the fact that mini c̄i ≥ ε0, it follows that for all large n,

P̄ (min
i

ci ≤ ε0/2) ≤ P̄ (min
i

c̄i −max
i

|ci − c̄i| ≤ ε0/2)

≤ P̄ (max
i

|ci − c̄i| ≥ ε0/2)

≤ P̄ (max
i

|ci − c̄i| ≥ M3d
√

log p/n)

→ 0,

as n → ∞. This completes the proof.

Proof of Lemma 3.7. Note that Ω̂ is the unique minimizer of the function
tr(AS) − log det(A), A ∈ PG. Since all principal sub matrices of S with size
less than or equal to n are positive definite with P̄ -probability one, it follows
from (3.28) (with R = S) that the Cholesky factor L̂ of Ω̂ satisfies

L̂ii =

√
1

Sii − (S>
·i )

T (S>i)−1S>
·i
, L̂>

·i = −L̂ii(S
>i)−1S>

·i , 1 ≤ i ≤ p. (3.40)

Now, using (3.32) and repeating the proof of Lemma 3.5 verbatim, except by

using S in place of
←−
S , we obtain (similar to (3.11)) that

P̄ ( max
1≤i≤p

‖(S≥i)−1 − (Σ̃≥i)−1‖(2,2) ≥ M2(d
√

log p/n+ γ(d))) → 0, (3.41)

for a large enough constant M2 (not depending on n). Now, it follows by (3.40),
and the fact

S≥i =

[
Sii (S>

·i )
T

S>
·i S>i

]
,
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that the first column of (S≥i)−1 is given by (L̂jiL̂ii)j≥i,(i,j)∈E . Similarly, by

Lemma 3.2, it follows that the first column of (Σ̃≥i)−1 is given by
(L̃jiL̃ii)j≥i,(i,j)∈E . By (3.41), we get that

P̄

(
max

1≤i≤j≤p,(i,j)∈E
|L̂jiL̂ii − L̃jiL̃ii| ≥ M2(d

√
log p/n+ γ(d))

)
→ 0, (3.42)

as n → ∞. In particular, (3.42) implies that

P̄ ( max
1≤i≤p

|L̂2
ii − L̃2

ii| ≥ M2(d
√
log p/n+ γ(d)))

= P̄ ( max
1≤i≤p

|L̂ii + L̃ii||L̂ii − L̃ii| ≥ M2(d
√

log p/n+ γ(d)))

→ 0,

as n → ∞. Since L̂ii > 0 and
√

ε0/2 ≤ L̃ii ≤
√
2/ε0 (by Lemma 3.2 and 3.6),

we have

P̄ ( max
1≤i≤p

|L̂ii − L̃ii| ≥ M2(d
√

log p/n+ γ(d))/
√
ε0/2) → 0, (3.43)

as n → ∞, which further implies that

P̄ ( min
1≤i≤p

L̂ii ≥
√
ε0/2) → 1, (3.44)

as n → ∞. Note that ‖L̃‖max ≤ ‖L̃‖(2,2) ≤
√
2/ε0. Hence, we get, for j >

i, (i, j) ∈ E,

|L̂jiL̂ii − L̃jiL̃ii| ≥ L̂ii|L̂ji − L̃ji| − L̃ji|L̂ii − L̃ii|
≥ L̂ii|L̂ji − L̃ji| −

√
2/ε0|L̂ii − L̃ii|. (3.45)

It follows by (3.42), (3.43), (3.44) and (3.45) that

P̄

(
max

1≤i<j≤p,(i,j)∈E
|L̂ji − L̃ji| ≥ M∗

2 (d
√

log p/n+ γ(d))

)
→ 0, (3.46)

as n → 0, where M∗
2 = 2√

ε0

(
1 + 2

ε0

)
M2. It follows by (3.43), (3.46) and Lemma

3.1 that

P̄ (‖L̂− L̃‖(2,2) ≥ (
√

2/ε0M2 +M∗
2 )d(d

√
log p/n+ γ(d))) → 0, (3.47)

as n → ∞.
Since

‖Ω̄− Ω̃‖(∞,∞) ≤ γ(d),

it suffices to show that

P̄ (‖Ω̂− Ω̃‖(∞,∞) ≥ K̃εn) → 0,

for a large enough K̃.
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By Lemma 3.1, we have

P̄ (‖Ω̂− Ω̃‖(∞,∞) ≥ K̃εn)

≤ P̄ (‖Ω̂− Ω̃‖(2,2) ≥ K̃εn/
√
d)

= P̄ (‖L̂L̂T − L̃L̃T ‖(2,2) ≥ K̃εn/
√
d)

≤ P̄ (‖L̂‖(2,2)‖L̂− L̃‖(2,2) + ‖L̃‖(2,2)‖L̂− L̃‖(2,2) ≥ K̃εn/
√
d)

≤ P̄ ((2‖L̃‖(2,2) + ‖L̂− L̃‖(2,2))‖L̂− L̃‖(2,2) ≥ K̃εn/
√
d)

≤ P̄

(
‖L̂− L̃‖(2,2) ≥

K̃εn

4‖L̃‖(2,2)
√
d

)
+

P̄

(
‖L̂− L̃‖(2,2) ≥

√
K̃
√
εn√

2 4
√
d

)
. (3.48)

Since ε0/2 ≤ eig1(Ω̃) ≤ eigp(Ω̃) ≤ (ε0/2)
−1, it follows that

√
ε0/2 ≤ ‖L̃‖(2,2) =

{eigp(Ω̃)}1/2 ≤ (ε0/2)
−1/2. Also by Assumption 3, it follows that

√
εn/

4
√
d ≥

εn/
√
d for large enough n. In view of these observations and (3.48), it suffices

to show that P̄ (‖L̂ − L̃‖(2,2) ≥ K̃1εn/
√
d) → 0 as n → ∞ for a large enough

constant K̃1, which is precisely what has been proved in (3.47).

Proof of Lemma 3.8. The density of X is given by

f(x) = 2λα/Γ(α)x2α−1e−λx2

, x > 0.

Using the Legendre Duplication Formula

Γ(α)Γ(α+ 1/2) =
√
π21−2αΓ(2α)

and the inequalities (see [19, (1.3)] and [6, Theorem 1.5]),

α√
α+ 1/2

≤ Γ(α+ 1/2)

Γ(α)
≤ α√

α+ 1/4
, Γ(α+ 1) ≤

√
2π

(
α+ 1/2

e

)α+1/2

,

(3.49)
we get

μ =
Γ(α+ 1/2)

Γ(α)
√
λ

≥ α√
α+ 1/2

√
λ
, (3.50)

and

E[exp{λ(X − μ)2}] =

∫ ∞

0

2λα

Γ(α)
x2α−1e−λx2

eλ(x−μ)2dx

=

∫ ∞

0

2λα

Γ(α)
x2α−1e−2λμx+λμ2

dx

=
2λα

Γ(α)

Γ(2α)

(2λμ)2α
eλμ

2
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=
2λα

(2λμ)2α
Γ(α+ 1/2)√

π21−2α
eλμ

2

.

Now, using the second inequality in (3.49) with α− 1/2 and (3.50), we get

E[exp{λ(X − μ)2}] ≤ 2λα

(2α
√
λ/
√
α+ 1/2)2α

√
2π(α/e)α√
π21−2α

eλμ
2

≤ 1

(α/
√

α+ 1/2)2α

√
2(α/e)αeα

=
√
2(1 + 1/(2α))α ≤

√
2e.

Thus, by the Markov inequality,

Pr(|X − μ| ≥ x) = Pr(exp{λ(X − μ)2} ≥ eλx
2

) ≤
√
2e e−λx2

.

Proof of Lemma 3.9. By Lemma 3.3, L2
ii|Y ∼ Gamma(αi, λi), where αi = (n+

vi+ δ)/2+1, λi = nci/2, where ci =
←−
S ii− (

←−
S >

·i )
T (

←−
S >i)−1←−S >

·i . By Lemma 3.2,
L̃ii = 1/

√
c̃i, where c̃i = Σ̃ii − (Σ̃>

·i )
T (Σ̃>i)−1Σ̃>

·i . Let μi = E(Lii). Note that

μi ≤
√
E(L2

ii) =
√
αi/λi =

√
n+ vi + δ + 2

nci
≤ (1 +

√
(d+ δ + 2)/n)

√
1/ci.

Also, by (3.50) in the proof of Lemma 3.8,

μi ≥
αi√

(αi + 1/2)λi

=
n+ vi + δ + 2√

(n+ vi + δ + 3)nci
≥ 1/

√
ci.

Thus,

max
i

|
√
1/ci − μi| ≤

√
(d+ δ + 2)/n

√
1/min

i
ci.

Let M6 = 4M3/ε
3/2
0 . It follows that

P̄
(
max

i
|L̃ii − μi| ≥ M6(d

√
log p/n+ γ(d))

)
≤ P̄

(
max

i
|L̃ii −

√
1/ci| ≥ (M6/2)(d

√
log p/n+ γ(d))

)
+

P̄
(
max

i
|
√

1/ci − μi| ≥ (M6/2)(d
√

log p/n+ γ(d))
)

= P̄

(
max

i
| ci − c̃i√

cic̃i(
√
ci +

√
c̃i)

| ≥ (M6/2)(d
√
log p/n+ γ(d))

)
+

P̄
(
max

i
|
√

1/ci − μi| ≥ (M6/2)(d
√

log p/n+ γ(d))
)

≤ P̄

(
maxi |ci − c̃i|

mini
√
ci(ε0/2) + mini ci

√
ε0/2

≥ (M6/2)(d
√

log p/n+ γ(d))

)
+

P̄

(√
(d+ δ + 2)/n

√
1/min

i
ci ≥ (M6/2)(d

√
log p/n+ γ(d))

)
. (3.51)
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By Lemma 3.6 and Assumption 3, for all large n,

P̄

(√
(d+ δ + 2)/n

√
1/min

i
ci ≥ (M6/2)(d

√
log p/n+ γ(d))

)

≤ P̄

(
min
i

ci ≤
4(d+ δ + 2)

M2
6 d

2 log p

)
≤ P̄ (min

i
ci ≤ ε0/2)

→ 0,

as n → ∞, and

P̄

(
maxi |ci − c̃i|

mini
√
ci(ε0/2) + mini ci

√
ε0/2

≥ (M6/2)(d
√
log p/n+ γ(d))

)

≤ P̄ (max
i

|ci − c̃i| ≥ M3(d
√

log p/n+ γ(d)))+

P̄ (min
i

√
ci(ε0/2) + min

i
ci
√
ε0/2 ≤ 2M3/M6)

≤ P̄ (max
i

|ci − c̃i| ≥ M3(d
√

log p/n+ γ(d))) + P̄ (min
i

√
ci
√
ε0 +min

i
ci ≤ ε0)

≤ P̄ (max
i

|ci − c̃i| ≥ M3(d
√

log p/n+ γ(d))) + P̄ (min
i

ci ≤ ε0/2)

→ 0,

as n → ∞. It follows from (3.51) that

P̄ (max
i

|L̃ii − μi| ≥ M6(d
√
log p/n+ γ(d))) → 0. (3.52)

Let M5 be large enough such that 1−ε0(M5−M6)
2/4 < 0 and M5 > M6. Then,

for any η > 0,

P̄ (Pr(max
i

|Lii − L̃ii| ≥ M5(d
√

log p/n+ γ(d))|Y ) > η)

≤ P̄ (Pr(max
i

|Lii − L̃ii| ≥ M5(d
√

log p/n+ γ(d))|Y ) > η,

max
i

|L̃ii − μi| < M6(d
√

log p/n+ γ(d)))

+P̄ (max
i

|L̃ii − μi| ≥ M6(d
√

log p/n+ γ(d)))

≤ P̄ (Pr(max
i

|Lii − μi| ≥ (M5 −M6)(d
√

log p/n+ γ(d))|Y ) > η) +

P̄ (max
i

|L̃ii − μi| ≥ M6(d
√
log p/n+ γ(d))). (3.53)

Note that, by Lemma 3.6,

P̄ (Pr(max
i

|Lii − μi| ≥ (M5 −M6)(d
√

log p/n+ γ(d))|Y ) > η)

≤ P̄ (Pr(max
i

|Lii − μi| ≥ (M5 −M6)d
√

log p/n|Y ) > η)



2852 R. Xiang et al.

≤ P̄ (pmax
i

Pr(|Lii − μi| ≥ (M5 −M6)d
√

log p/n|Y ) > η)

(a)

≤ P̄ (
√
2ep exp{−min

i
ci(M5 −M6)

2d2 log p/2} > η)

= P̄ (
√
2ep1−mini ci(M5−M6)

2d2/2 > η)

≤ P̄ (
√
2ep1−mini ci(M5−M6)

2d2/2 > η,min
i

ci ≥ ε0/2) + P̄ (min
i

ci < ε0/2)

≤ P̄ (
√
2ep1−ε0(M5−M6)

2d2/4 > η) + P̄ (min
i

ci < ε0/2)

→ 0, (3.54)

as n → ∞, where (a) follows from Lemma 3.8. By (3.52), (3.53) and (3.54), we
get

Pr(max
i

|Lii − L̃ii| ≥ M5(d
√

log p/n+ γ(d))|Y )
P̄→ 0.

This completes the proof.

References

[1] Asci, C. and Piccioni, M. (2007). Functionally Compatible Local Char-
acteristics for the Local Specification of Priors in Graphical Models. Scand.
J. Stat. 34 829–840. MR2396941

[2] Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo method for
computing the marginal likelihood in nondecomposable Gaussian graphical
models. Biometrika 92 317–335. MR2201362

[3] Banerjee, O., Ghaoui, L. and d’Aspremont, A. (2008). Model Se-
lection Through Sparse Maximum Likelihood Estimation for Multivariate
Gaussian or Binary Data. J. of Mach. Learn. Res. 9 485–516. MR2417243

[4] Banerjee, S. and Ghosal, S. (2014). Posterior convergence rates for
estimating large precision matrices using graphical models. Electron. J.
Statist. 8 2111–2137. MR3273620

[5] Banerjee, S. and Ghosal, S. (2015). Bayesian structure learning in
graphical models. J. Multivariate Anal. 136 147–162. MR3321485

[6] Batir, N. (2008). Inequalities for the gamma function. Archiv der Math-
ematik 91 554–563. MR2465874

[7] Bickel, P. J. and Levina, E. (2008a). Regularized estimation of large
covariance matrices. Ann. Statist. 36 199–227. MR2387969

[8] Bickel, P. J. and Levina, E. (2008b). Covariance regularization by
thresholding. Ann. Statist. 36 2577–2604. MR2485008

[9] Dawid, A. P. and Lauritzen, S. L. (1993). Hyper-Markov laws in the sta-
tistical analysis of decomposable graphical models. Ann. Statist. 12 1272–
1317. MR1241267

[10] Dempster, A. P. (1972). Covariance Selection. Biometrics 28 157–175.
[11] Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential

families. Ann. Statist. 7 269–281. MR0520238

http://www.ams.org/mathscinet-getitem?mr=2396941
http://www.ams.org/mathscinet-getitem?mr=2201362
http://www.ams.org/mathscinet-getitem?mr=2417243
http://www.ams.org/mathscinet-getitem?mr=3273620
http://www.ams.org/mathscinet-getitem?mr=3321485
http://www.ams.org/mathscinet-getitem?mr=2465874
http://www.ams.org/mathscinet-getitem?mr=2387969
http://www.ams.org/mathscinet-getitem?mr=2485008
http://www.ams.org/mathscinet-getitem?mr=1241267
http://www.ams.org/mathscinet-getitem?mr=0520238


High dimensional posterior convergence rates for decomposable graphical models 2853

[12] Friedman, J., Hastie, T. and Tibshirani, R. (2007). Sparse inverse
covariance estimation with the graphical lasso. Biostatistics 0 1–10.

[13] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Applications of
the lasso and grouped lasso to the estimation of sparse graphical models.
Tech. Report, Stanford Univ.

[14] Ghosal, S. (2000). Asymptotic normality of posterior distributions for
exponential families when the number of parameters tends to infinity. J.
Multivariate Anal. 74 49–68. MR1790613

[15] Huang, J., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance
matrix selection and estimation via penalised normal likelihood. Biometrika
93 85–98. MR2277742

[16] Johnstone, I. (2001). On the distribution of the largest eigenvalue in
principal components analysis. Ann. Statist. 29 295–327. MR1863961

[17] Johnstone, I. and Lu, A. (2004). Sparse Principal Components Analysis.
Tech. Report, Stanford Univ.

[18] Karoui, N. (2007). Tracy-Widom limit for the largest eigenvalue of a
large class of complex sample covariance matrices. Ann. Prob. 2 663–714.
MR2308592

[19] Kershaw, D. (1983). Some Extensions of W. Gautschi’s Inequalities
for the Gamma Function. Mathematics of Computation 41 607–611.
MR0717706

[20] Khare, K., Oh, S. and Rajaratnam, R. (2014). A convex pseudo-
likelihood framework for high dimensional partial correlation estimation,
to appear in Journal of the Royal Statistical Society B.

[21] Lauritzen, S. L. (1996).Graphical Models, Oxford Univ. Press, New York.
MR1419991

[22] Lenkoski, A. (2013). A Direct Sampler for G-Wishart Variates. Stat 2
119–128.

[23] Letac, G. and Massam, H. (2007). Wishart Distributions For Decom-
posable Graphs. Ann. Statist. 35 1278–1323. MR2341706

[24] Meinshausen, N. and Buehlmann, P. (2006). High dimensional graphs
and variable selection with the Lasso. Ann. Statist. 34 1436–1462.
MR2278363

[25] Mitsakakis, N., Massam, H. and Escobar, M. (2011). A Metropolis-
Hastings based method for sampling from the G-Wishart distribu-
tion in Gaussian graphical models. Electron. J. Statist. 5 18–30.
MR2763796

[26] Pati, D., Bhattacharya, A., Pillai, N. S. and Dunson, D. (2014).
Posterior contraction in sparse Bayesian factor models for massive covari-
ance matrices. Ann. Statist. 42 1102–1130. MR3210997

[27] Peng, J., Wang, P., Zhou, N. and Zhu, J. (2009). Partial Correlation
Estimation by Joint Sparse Regression Models. J. Am. Statist. Assoc. 5
735–746. MR2541591

[28] Rajaratnam, B., Massam, H. and Carvalho, C. M. (2008). Flexible
covariance estimation in graphical Gaussian models. Ann. Statist. 36 2818–
2849. MR2485014

http://www.ams.org/mathscinet-getitem?mr=1790613
http://www.ams.org/mathscinet-getitem?mr=2277742
http://www.ams.org/mathscinet-getitem?mr=1863961
http://www.ams.org/mathscinet-getitem?mr=2308592
http://www.ams.org/mathscinet-getitem?mr=0717706
http://www.ams.org/mathscinet-getitem?mr=1419991
http://www.ams.org/mathscinet-getitem?mr=2341706
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=2763796
http://www.ams.org/mathscinet-getitem?mr=3210997
http://www.ams.org/mathscinet-getitem?mr=2541591
http://www.ams.org/mathscinet-getitem?mr=2485014


2854 R. Xiang et al.

[29] Rocha, G., Zhao, P. and Yu, B. (2008). A path following algorithm for
Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE). Tech.
Report 759, Statistics Department, UC Berkeley.

[30] Rose, D., Tarjan, R. and Lueker, G. (1975). Algorithmic aspects of
vertex elimination on graphs, SIAM J. Comput. 5 266–283. MR0408312

[31] Roverato, A. (2000). Cholesky decomposition of a hyper inverse Wishart
matrix. Biometrika 87 99–112. MR1766831

[32] Roverato, A. (2002). Hyper inverse Wishart distribution for non-
decomposable graphs and its application to Bayesian inference for Gaussian
graphical models. Scand. J. Stat. 29 391–411. MR1925566

[33] Tarjan, R. and Yannakakis, M. (1984). Simple linear-time algorithm
to test chordality of graphs, test acyclicity of hypergraphs, and selectivity
reduce acyclic hypergraphs. SIAM J. Comput. 13 566–579. MR0749707

[34] Wang, H. and Carvalho, C. (2010). Simulation of hyper-inverse Wishart
distributions for non-decomposable graphs. Electron. J. Statist. 4 1470–
1475. MR2741209

[35] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the
Gaussian graphical model. Biometrika 94 19–35. MR2367824

http://www.ams.org/mathscinet-getitem?mr=0408312
http://www.ams.org/mathscinet-getitem?mr=1766831
http://www.ams.org/mathscinet-getitem?mr=1925566
http://www.ams.org/mathscinet-getitem?mr=0749707
http://www.ams.org/mathscinet-getitem?mr=2741209
http://www.ams.org/mathscinet-getitem?mr=2367824

	Introduction
	Preliminaries
	Decomposable graphs and Cholesky decomposition
	The G-Wishart distribution

	Main results
	Appendix
	References

