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Abstract: To model heteroscedasticity in a broad class of additive partial
linear models, we allow the variance function to be an additive partial linear
model as well and the parameters in the variance function to be different
from those in the mean function. We develop a two-step estimation proce-
dure, where in the first step initial estimates of the parameters in both the
mean and variance functions are obtained and then in the second step the
estimates are updated using the weights based on the initial estimates. We
use polynomial splines to approximate the additive nonparametric compo-
nents in both the mean and variation functions and derive their convergence
rates. The resulting weighted estimators of the linear coefficients in both the
mean and variance functions are shown to be asymptotically normal and
more efficient than the initial un-weighted estimators. Simulation experi-
ments are conducted to examine the numerical performance of the proposed
procedure, which is also applied to analyze the dataset from a nutritional
epidemiology study.
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1. Introduction

Additive partial linear models (APLMs) are a generalization of multiple linear
regression models, and at the same time they are a special case of generalized
additive nonparametric regression models (Hastie and Tibshirani, 1990). As
discussed in Liu et al. (2011), APLMs allow an easier interpretation of the effect
of each variable. Also, they are preferable to completely nonparametric additive
models, since they combine both parametric and nonparametric components
when it is believed that the response variable depends on some variables in a
linear way but is nonlinearly related to the remaining independent variables.

Estimation and inference for APLMs have been well studied in literature
(Opsomer and Ruppert, 1997; Stone, 1985; Opsomer and Ruppert, 1999; Liang
et al., 2008; Li, 2000; Liu et al., 2011). However, most existing work focuses on
statistical inference for the mean function while variance function estimation
has received much less attention. Although a wealth of work has been done
to take heteroscedasticity into account for enhancing the efficiency of estimat-
ing the parameters in the mean function, estimating variance function is also
of independent interest. For example, an appropriate estimator of the variance
is needed when one derives confidence intervals/bands for the mean function
(Ruppert et al., 2003; Cai and Wang, 2008). Other examples in which the vari-
able function estimation plays an important role include a study of kinetic rate
parameters (Box and Hill, 1974), quality control (Box and Meyer, 1986), and a
study of social inequality (Western and Bloome, 2009). More recently, Thomas
et al. (2012) demonstrated that individual variability in longitudinal measure-
ments for an individual can be predictive of a health outcome, and Teschendorff
and Widschwendter (2012) argued that differential variability can be as impor-
tant as differential means for predicting disease phenotypes in cancer genomes.

In response to these demonstrations of the importance of variance function
estimation, many flexible and efficient methods for variance function estimation
have been proposed; Carroll (2003) and Carroll and Ruppert (1988) are nice sur-
veys. Representative work on modeling heteroscedasticity in linear or nonlinear
models includes Carroll and Härdle (1989), Carroll and Ruppert (1982), Carroll
(1982), Hall and Carroll (1989) and Bickel (1978). Motivated by Davidian and
Carroll (1987), Lian et al. (2015) studied the variance function partially linear
single index models (VF-PLSIMs), in which the variance function is a function
of the sum of linear and single index functions and the parameters in the vari-
ance function are allowed to be different from those in the mean function. They
developed efficient and practical estimators for the parameters in the mean and
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variance functions, and weighted the objective function to obtain more efficient
estimators for the parameters in the mean function.

In this paper, we consider variance function additive partial linear models
(VF-APLMs), a broad class of heteroscedastic regression models where the mean
function is an additive partial linear model and the variance function depends
upon a generalized additive partial linear model as well. Unlike the classic gen-
eralized additive partial linear model (Wang et al., 2011), here we do not insist
that the variance function depends only upon the mean function. Suppose that
{(X1,Z1, Y1), . . . , (Xn,Zn, Yn)} is an i.i.d. random sample of size n from the
following VF-APLM:

Y = XT α+

K∑
k=1

gk(Zk) + ε,

ε = φ{XT β +

K∑
k=1

hk(Zk)}ε, (1)

where X = (1,X∗T )T = (1, X1, . . . , Xd)
T and Z = (Z1, . . . , ZK)T are the

linear and nonparametric components, g1, . . . , gK are unknown smooth func-
tions in the mean function, h1, . . . , hK are unknown smooth functions in the
variance function, α = (α0, α1, . . . , αd)

T and β = (β0, β1, . . . , βd)
T are vec-

tors of unknown parameters, and ε is independent of X and Z with E(ε) = 0
and E(|ε|) = 1. Here φ is a known function, and generally either φ(v) = v
or φ(v) = exp(v). However, using φ(v) = v will not guarantee that φ(v)
will be positive in practice. Thus in all our numerical examples we will use
φ(v) = exp(v). To ensure identifiability of the nonparametric functions, we
assume that E{gk(Zk)} = 0 and E{hk(Zk)} = 0 for k = 1, . . . ,K. We also
assume that E(X∗) = 0, which can be achieved in practice by centering, that
is X∗

i −
∑n

j=1 X
∗
j/n.

The challenge of investigating model (1), in both theoretical derivation and
numerical implementation, is that there could be more than one nonparamet-
ric component in both the mean and variance functions. If there is only one
nonparametric component in both the mean and variance function, it may use
kernel method to estimate the nonparametric components as in VF-PLSIMs in-
vestigated by Lian et al. (2015). However, the kernel method cannot be applied
directly to estimate the variance parameter in VF-APLMs.

For APLMs, Opsomer and Ruppert (1997) and Stone (1985) proposed a
backfitting algorithm and Opsomer and Ruppert (1999) studied the asymptotic
properties of the kernel-based backfitting estimators for the parameters in the
mean function. Liang et al. (2008) suggested that a kernel-based estimation pro-
cedure is available for APLMs without an undersmoothing requirement. When
there are multiple nonparametric terms, the kernel-based procedures are compu-
tationally inexpedient. Challenged by these demands, Liu et al. (2011) proposed
to approximate the nonparametric components with splines. The resulting esti-
mators for the linear components are easily calculated and, of most importance,
still asymptotically normal.
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In this paper, we use the polynomial-spline procedure (Xue, 2009; Xue and
Yang, 2006a,b) for approximating the multiple nonparametric components in
both the mean and variance functions. However, we face additional challenges
in establishing asymptotic properties for the estimators of parameters in the
variance function. It is also worthwhile to point that the development of theory
with spline approximation in VF-APLMs is more difficult than for that in the
VF-PLSIMs (Lian et al., 2015).

We organize the remaining as follows. In Section 2, we describe in detail
the initial and updated estimation procedures for VF-APLMs. In Section 3,
we present the main theoretical results and their implications. We examine
numerical performance of the proposed method through simulation studies in
Section 4 and by the analysis of a real dataset in Section 5. Some discussion
is presented in Section 6 and all the technical assumptions and proofs of the
theoretical results are placed in the Appendix.

2. Methods

2.1. Spline approximation

In model (1), let g0(z) = g01 (z1) + · · ·+ g0K (zK) and α0 be the true additive
function and parameter for the mean, and let h0(z) = h01 (z1) + · · ·+ h0K (zK)
and β0 be the true additive function and parameter for the variance. For simplic-
ity, we assume that the covariate Zk is distributed on a compact interval [ak, bk],
k = 1, . . . ,K, and without loss of generality, we take all intervals [ak, bk] = [0, 1],
k = 1, . . . ,K. Under some smoothness assumptions, the g0k’s and h0k’s can be
well-approximated by spline functions. Although in practice we could consider
different sets of spline functions for g0 and h0 respectively, for notational sim-
plicity, here we consider a same set of spline functions for both g0 and h0.

Let Sn be the space of polynomial splines on [0, 1] of degree � ≥ 1. We
introduce a knot sequence with Jn interior knots,

t−� = . . . = t−1 = t0 = 0 < t1 < . . . < tJn < 1 = tJn+1 = . . . = tJn+�+1,

where Jn increases with sample size n in some order. Equally spaced knots are
used here for simplicity. However, other regular knot sequences can also be used,
with similar asymptotic results. Then Sn consists of functions ξ satisfying

(i) ξ is a polynomial of degree � on each of the subintervals Ij = [tj , tj+1),
j = 0, . . . , Jn − 1, IJn = [tJn , 1];

(ii) for � ≥ 2, ξ is �− 1 continuously differentiable on [0, 1].

We consider additive spline estimate ĝ of g0 in the mean and additive spline
estimate ĥ of h0 in the variance based on the independent random sample
(Xi,Zi, Yi), i = 1, . . . , n. Let An be the collection of functions ξ with the
additive form ξ (z) = ξ1 (z1) + · · · + ξK (zK), where each component function
ξk ∈ Sn and

∑n
i=1 ξk (Zik) = 0.
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2.2. Initial estimator of the mean

The problem of estimating g0 and α0 in the mean has been already well es-
tablished if the potential heteroscedasticity is ignored; for example, Liu et al.
(2011). We would like to find a function g ∈ An and a value of α that minimize
the following sum of squared residuals function

L (g,α) =
1

2

n∑
i=1

[
Yi − {g(Zi) +XT

i α}
]2
, g ∈ An. (2)

For the k-th covariate zk, let {bj,k (zk) : j = −�, . . . , Jn} be the B-spline basis
functions of degree �. For any g ∈ An, one can write

g (z) = ηT b (z) , (3)

where b (z) = {bj,k (zk) , j = −�, . . . , Jn, k = 1, . . . ,K}T , and the spline coeffi-

cient vector η = {ηj,k, j = −�, . . . , Jn, k = 1, . . . ,K}T . Thus the minimization
problem in (2) is equivalent to finding α and η to minimize


(η,α) =
1

2

n∑
i=1

[
Yi −

{
ηT b (Zi) +XT

i α
}]2

. (4)

We denote the minimizer as α̂ and η̂ = {η̂j,k, j = −�, . . . , Jn, k = 1, . . . ,K}T .
Then the spline estimator of g0 is ĝ(z) = η̂T b (z), and the centered spline
estimator of the component gk is

ĝk (zk) =

Jn∑
j=−�

η̂j,kbj,k (zk)−
1

n

n∑
i=1

Jn∑
j=−�

η̂j,kbj,k (Zik) , (5)

for k = 1, . . . ,K. The above estimation approach can be easily implemented
with existing linear models in any statistics software.

2.3. Initial estimator of the variance

Davidian and Carroll (1987) developed some general methodology and theory for
variance function estimation in the parametric case. They distinguished between
methods based on squared residuals and those based on absolute residuals, the
former being more efficient if the regressions errors εi’s are normally distributed,
but called this potential efficiency gain “tenuous” because it is less robust to
outliers. Here we consider absolute residuals.

Define unobserved absolute residuals Ri = |Yi − {g0(Zi) + XT
i α0}| and

R = |Y − {g0(Z) +XT α0}|, variation functions Φi = φ{h0(Zi) +XT
i β0} and

Φ = φ{h0(Z) + XT β0}, and their differences ei = Ri − Φi and e = R − Φ.
Recall that E(|εi|) = E(|ε|) = 1, we have E(ei) = E(e) = 0. Also define
Di = I(εi>0) − I(εi≤0) = sign(εi) and D = sign(ε).



2798 Y. Fang et al.

Define absolute residuals R̂i = |Yi −{ĝ(Zi)+XT
i α̂}| and R̂ = |Y −{ĝ(Z) +

XT α̂}|. Because E(e) = 0, approximately, E{R̂|X,Z} ≈ φ{h0(Z) +XT β0}.
A very quick way to estimate h0 and β0 is to regress R̂ on φ{h0(Z) +XT β0}.
We would like to find a function h ∈ An and a value of β that minimize the
following sum of squared residuals function

L (h,β) =
1

2

n∑
i=1

[
R̂i − φ{h(Zi) +XT

i β}
]2
, h ∈ An. (6)

For any h ∈ An, one can write

h (z) = γT b (z) , (7)

where the spline coefficient vector γ = {γj,k, j = −�, . . . , Jn, k = 1, . . . ,K}T .
Thus the minimization problem in (6) is equivalent to finding β and γ to mini-
mize


(γ,β) =
1

2

n∑
i=1

[
R̂i − φ

{
γT b (Zi) +XT

i β
}]2

. (8)

We denote the minimizer as β̂ and γ̂ = {η̂j,k, j = −�, . . . , Jn, k = 1, . . . ,K}T .
Then the spline estimator of h0 is ĥ(z) = γ̂T b (z), and the centered spline
estimator of the component hk is

ĥk (zk) =

Jn∑
j=−�

γ̂j,kbj,k (zk)−
1

n

n∑
i=1

Jn∑
j=−�

γ̂j,kbj,k (Zik) , (9)

for k = 1, . . . ,K. The above estimation approach can also be easily implemented
with existing linear models in any statistics software.

2.4. More efficient estimators

After the initial estimates of h0 and β0 in the variance function are obtained,
we can estimate g0 and α0 in the mean function more efficiently via generalized
least squares. For this aim, let

Φ̂i = φ{ĥ(Zi) +XT
i β̂}. (10)

Then g0 and α0 can be estimated more efficiently by the minimizers, ĝwls and
α̂wls, of the following sum of weighted squared residuals function

Lwls (g,α) =
1

2

n∑
i=1

[
Yi −

{
g(Zi) +XT

i α
}]2/

Φ̂2
i , g ∈ An. (11)

Equivalently, if η̂wls and α̂wls are the minimizers of


wls(η,α) =
1

2

n∑
i=1

[
Yi −

{
ηT b (Zi) +XT

i α
}]2/

Φ̂2
i , (12)

then ĝwls(z) = η̂T
wlsb (z), whose components can be centered as in (5).
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Consequently, the absolute residuals R̂i can be updated as R̂i,wls = |Yi −
{ĝwls(Zi)+XT

i α̂wls}|. Then h0 and β0 can be estimated more efficiently by the

minimizers, ĥwls and β̂wls, of the following sum of weighted squared residuals
function

Lwls (h,β) =
1

2

n∑
i=1

[
R̂i,wls − φ{h(Zi) +XT

i β}
]2/

Φ̂2
i , h ∈ An. (13)

Equivalently, if γ̂wls and β̂wls are the minimizers of


wls(γ,β) =
1

2

n∑
i=1

[
R̂i,wls − φ

{
γT b (Zi) +XT

i β
}]2 /

Φ̂2
i , (14)

then ĥwls(z) = γ̂T
wlsb (z), whose components can be centered as in (9).

3. Theoretical Results

Let r be an integer and ν ∈ (0, 1], with p = r + ν > 1.5. Let Hr,ν be the
collection of functions ξ on [0, 1] whose rth derivative, ξ(r), exists and satisfies
the Lipschitz condition of order ν:∣∣∣ξ(r) (z′)− ξ(r) (z)

∣∣∣ ≤ C |z′ − z|ν , for 0 ≤ z′, z ≤ 1,

where and below c and C are generic positive constants. In order to derive
theoretical results, we make the following assumptions.

(A1) Nonparametric functions g0k ∈ Hr,ν and h0k ∈ Hr,ν , k = 1, . . . ,K.
(A2) The distribution of Z is absolutely continuous and its density f is bounded

away from zero and infinity on [0, 1]K .
(A3) The random vector X satisfies that for any vector w ∈ R

d+1,

c ‖w‖2 ≤ wT E
{
X⊗2|Z = z

}
w ≤ C ‖w‖2 ,

where ‖ · ‖ is the Euclidean norm.
(A4) The number of interior knots Jn satisfies: n1/(4p) � Jn � n1/4.
(A5) Function φ is twice continuously differentiable, with c ≤ φ{h0(Z) +

XT β0} ≤ C and c ≤
∣∣∣φ(1){h0(Z) +XT β0}

∣∣∣ ≤ C.

Let Γ0(z) = E{X|Z = z}. As in Wang et al. (2011), let Γadd
0 (z) =∑K

k=1 Γ
add
0k (zk) be the projection of Γ0 onto the Hilbert space of theoretically

centered additive functions with inner product 〈ζ1, ζ2〉 = E{ζ1(Z)ζ2(Z)}.
Let Φ

(1)
i = φ(1){h0(Zi) + XT

i β0} and Φ(1) = φ(1){h0(Z) + XT β0}. De-
note (Φ(1))2 as Φ(1)2. Let Γ1(z) = E{Φ(1)2X|Z = z}/E{Φ(1)2|Z = z} and

let Γadd
1 (z) =

∑K
k=1 Γ

add
1k (zk) be the projection of Γ1 onto the Hilbert space

of theoretically centered additive functions with inner product 〈ζ1, ζ2〉1z =
E{Φ(1)2ζ1(Z)ζ2(Z)}.
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Let Γ2(z) = E{X/Φ2|Z = z}/E{1/Φ2|Z = z} and let Γadd
2 (z) =∑K

k=1 Γ
add
2k (zk) be the projection of Γ2 onto the Hilbert space of theoretically

centered additive functions with inner product 〈ζ1, ζ2〉2z = E{ζ1(Z)ζ2(Z)/Φ2}.
Let Γ3(z) = E{Φ(1)2X/Φ2|Z = z}/E{Φ(1)2/Φ2|Z = z} and let Γadd

3 (z) =∑K
k=1 Γ

add
3k (zk) be the projection of Γ3 onto the Hilbert space of theoretically

centered additive functions with inner product 〈ζ1, ζ2〉3z = E{Φ(1)2ζ1(Z)ζ2(Z)/

Φ2}. Write X̃i\m = Xi−Γadd
m (Zi) and X̃\m = X −Γadd

m (Z), for m = 0, 1, 2, 3.
We also make the following assumption on the above centered additive pro-

jections.

(A6) The additive components in Γadd
m satisfy that Γadd

mk ∈ Hr,ν for k = 1, . . . ,K
and m = 0, 1, 2, 3.

Theorem 1. Let Qα = E{X̃
⊗2

\0 }. Under Assumptions (A1)–(A6),

‖ĝ − g0‖2 = Op{(Jn/n)1/2 + J−p
n }, (15)

where ‖ζ‖22 = E{ζ2(Z)} for any L2-integrable function ζ on [0, 1]K , and

√
nQα(α̂−α0) =

1√
n

n∑
i=1

εiX̃i\0 + op(1). (16)

Consequently,
√
nQα(α̂−α0) → MVN(0,Σα), where Σα = E{ε2X̃

⊗2

\0 }.

Theorem 2. Let Qβ = E{(Φ(1)X̃\1)
⊗2}. Under Assumptions (A1)–(A6), there

exists a local maximizer (ĥ, β̂) of (6) such that

‖ĥ− h0‖2 = Op{(Jn/n)1/2 + J−p
n }, (17)

and ‖β̂ − β0‖ = Op{(Jn/n)1/2 + J−p
n }. Further,

√
nQβ(β̂ − β0) =

1√
n

n∑
i=1

(
eiΦ

(1)
i X̃i\1 − εiE{DΦ(1)X̃\1X

T }Q−1
α X̃i\0

)
+ op(1). (18)

Consequently,
√
nQβ(β̂ − β0) → MVN(0,Σβ), where

Σβ = E
{(

eΦ(1)X̃\1 − εE{DΦ(1)X̃\1X
T }Q−1

α X̃\0

)⊗2}
.

Theorem 3. Let Qα,wls = E{(X̃\2/Φ)
⊗2}. Under Assumptions (A1)–(A6),

‖ĝwls − g0‖2 = Op{(Jn/n)1/2 + J−p
n }, (19)

√
nQα,wls(α̂wls −α0) =

1√
n

n∑
i=1

εiX̃i\2/Φ
2
i + op(1). (20)

Consequently,
√
n(α̂wls −α0) → MVN(0, σ2Q−1

α,wls), where V ar(ε) = σ2.
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Theorem 4. Let Qβ,wls = E{(Φ(1)X̃\3/Φ)
⊗2}. Under Assumptions (A1)–

(A6), there exists a local maximizer (ĥwls, β̂wls) of (13) such that

‖ĥwls − h0‖2 = Op{(Jn/n)1/2 + J−p
n }, (21)

and ‖β̂wls − β0‖ = Op{(Jn/n)1/2 + J−p
n }. Further,

√
nQβ,wls(β̂wls − β0) =

1√
n

n∑
i=1

(
eiΦ

(1)
i X̃i\3/Φ

2
i − εiE{DΦ(1)X̃\3X

T /Φ2}

Q−1
α,wlsX̃i\2/Φ

2
i

)
+ op(1). (22)

Consequently,
√
nQβ,wls(β̂wls − β0) → MVN(0,Σβ,wls), where

Σβ,wls = E
{(

eΦ(1)X̃\3/Φ
2 − εE{DΦ(1)X̃\3X

T /Φ2}Q−1
α,wlsX̃\2/Φ

2
)⊗2}

.

Remark 1. The convergence rate Op{(Jn/n)1/2 + J−p
n } enjoyed by the estima-

tors of nonparametric components in both the mean and variance functions is
natural. Similar assumption on Jn was made and similar convergence rate was
obtained in Wang et al. (2014). If Jn � n1/(2p+1), then we obtain an optimal
convergence rate n−2p/(2p+1).

Remark 2. Following the routine proposed in Newey (1994) and theory devel-
oped in Bickel et al. (1993), we can show that, when ε is normally distributed,
α̂wls is the most efficient estimator in the sense of semiparametric efficiency.

Remark 3. Consider the estimators for α0. The weighted estimator α̂wls is
more efficient than the initial estimator α̂. To see this, in this and next re-
marks, for simplicity, we ignore the factor n. The asymptotic variance of α̂ is

σ2[E(X̃
⊗2

\0 )]
−1E{(ΦX̃\0)

⊗2}[E(X̃
⊗2

\0 )]
−1 and the asymptotic variance of α̂wls

is σ2[E{(X̃\2/Φ)
⊗2}]−1. Noting that

E

⎧⎨⎩
(

X̃\2/Φ

ΦX̃\0

)⊗2
⎫⎬⎭ =

(
E{(X̃\2/Φ)

⊗2} E(X̃
⊗2

\0 )

E(X̃
⊗2

\0 ) E{(ΦX̃\0)
⊗2}

)
≥ 0,

we see that E{(X̃\2/Φ)
⊗2} ≥ E(X̃

⊗2

\0 )[E{(ΦX̃\0)
⊗2}]−1E(X̃

⊗2

\0 ).

Remark 4. Consider the estimators for β0. The weighted estimator β̂wls is more

efficient than the initial estimator β̂. To see this, for simplicity, we only con-
sider the special case where ε is symmetric. In this special case, E(D) = 0
and therefore the second term in each of Σβ and Σβ,wls becomes zero. Not-

ing that V ar(e/Φ) = V ar(|ε| − 1) = σ2 − 1, the asymptotic variance of β̂

is (σ2 − 1)[E{(Φ(1)X̃\1)
⊗2}]−1E{(ΦΦ(1)X̃\1)

⊗2}[E{(Φ(1)X̃\1)
⊗2}]−1 and the

asymptotic variance of β̂wls is (σ
2 − 1)[E{(Φ(1)X̃\3/G)⊗2}]−1. Noting that

E

⎧⎨⎩
(

Φ(1)X̃\3/Φ

ΦΦ(1)X̃\1

)⊗2
⎫⎬⎭ =

(
E{(Φ(1)X̃\3/Φ)

⊗2} E{(Φ(1)X̃\1)
⊗2}

E{(Φ(1)X̃\1)
⊗2} E{(ΦΦ(1)X̃\1)

⊗2}

)
≥ 0,
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we see that

E{(Φ(1)X̃\3/Φ)
⊗2} ≥ E{(Φ(1)X̃\1)

⊗2}[E{(ΦΦ(1)X̃\1)
⊗2}]−1E{(Φ(1)X̃\3)

⊗2}.

4. Simulation Experiments

To assess the finite sample performance of the proposed methods in Section 2,
we simulate data from model (1) with φ(v) = exp(v). Set d = 4 and K = 2.
First, obtain (Xi1, . . . , Xi6), i = 1, . . . , n, generated from zero-mean multivari-
ate Gaussian distribution with Cov(Xij , Xij′) = 0.2|j−j′|. Then, set X∗

i =
(Xi1, . . . , Xi4)

T , Zi1 = G(Xi5), and Zi2 = G(Xi6), where G is the cumula-
tive distribution function of the standard normal distribution and consequently
Zi1 and Zi2 are in [0, 1]. Let g01(x) = −6(x − 0.5)2, g02(x) = 6(x − 0.5)2,
h01(x) = sin(4x), h02(x) = cos(4x) and generate responses from

Yi = X∗T
i α0 + g01(Zi1) + g02(Zi2)

+ exp
{
1 +X∗T

i β0 + h01(Zi1) + h02(Zi2)
}
εi,

with α0 = (1,−1, 1,−1)T, β0 = (−0.125, 0.25,−0.125, 0.25)T and εi ∼ N(0, σ2).
Choose n ∈ {200, 400, 800} and σ ∈ {0.1, 0.2, 0.4}. Letting εi = εi/E(|εi|),

the above model is one example of model (1). In each case, 500 datasets are
generated and fitted. We use cubic splines (ρ = 3) to approximate the nonpara-
metric functions. The number of basic functions is set to be 5 for n = 200, 400
and 6 for n = 800. This choice applies for both mean functions and variance
functions, and for both initial estimators and more efficient estimators. Although
data-adaptive choice for the number of internal knots can be developed, as in
Wang and Yang (2007), Fan et al. (2011) and Lian et al. (2013), it is found that
fixed choice of the number of internal knots is much more convenient and indeed
adopted in most studies using B-splines for function estimation, and for regres-
sion splines a small number of basis functions is typically used in numerical
studies. For both the mean and variance functions, we consider three estima-
tors: the initial estimators (4) and (8), the weighted estimators (12) and (14),

and the infeasible estimators where Φ̂i is replaced by Φi and R̂i,wls is replaced
by Ri in (12) and (14).

First, we examine the estimation errors, ‖α̂−α0‖, ‖β̂−β0‖, ‖ĝk−g0k‖2, ‖ĥk−
h0k‖2, k = 1, 2. We approximate ‖ĝ1 − g01‖2 by

√∑100
i=1{ĝ1(ti)− g01(ti)}2/100

by a grid t1 = 0 < t2 < · · · < t100 = 1 on [0, 1] and similarly for other non-
parametric functions. The estimation errors averaged over 500 datasets for each
of the nine parameter settings are reported in Table 1, with the standard de-
viations of the errors shown in brackets. We see that both mean and variance
estimation improve with larger sample size. While errors in mean estimation
increase with noise, errors in variance estimation remain almost the same with
different noise levels. Most importantly, we see that the updated, weighted esti-
mators significantly improve on the initial estimators in all situations. In Figures
1–3, we show the estimated nonparametric functions on 20 generated data sets
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Table 1

Estimation errors (average errors with standard deviations inside brackets on 500 simulated
datasets) for the simulated data sets

(n, σ) α g1 g2 β h1 h2

(200, 0.1) Initial 0.119(0.048) 0.093(0.037) 0.127(0.059) 0.227(0.090) 0.268(0.101) 0.200(0.072)

Weighted 0.032(0.013) 0.041(0.014) 0.077(0.039) 0.150(0.054) 0.217(0.060) 0.159(0.058)

Infeasible 0.023(0.009) 0.028(0.011) 0.061(0.032) 0.114(0.044) 0.115(0.042) 0.118(0.039)

(200, 0.2) Initial 0.237(0.097) 0.187(0.074) 0.255(0.119) 0.227(0.090) 0.268(0.101) 0.200(0.072)

Weighted 0.065(0.026) 0.083(0.029) 0.155(0.078) 0.150(0.054) 0.216(0.060) 0.158(0.058)

Infeasible 0.047(0.018) 0.056(0.022) 0.123(0.064) 0.114(0.044) 0.115(0.042) 0.118(0.039)

(200, 0.4) Initial 0.475(0.195) 0.374(0.149) 0.510(0.237) 0.227(0.090) 0.268(0.101) 0.200(0.072)

Weighted 0.130(0.053) 0.167(0.058) 0.311(0.157) 0.150(0.054) 0.215(0.060) 0.158(0.058)

Infeasible 0.095(0.036) 0.114(0.044) 0.245(0.130) 0.114(0.044) 0.115(0.042) 0.118(0.039)

(400, 0.1) Initial 0.083(0.036) 0.063(0.026) 0.086(0.042) 0.166(0.060) 0.182(0.065) 0.136(0.051)

Weighted 0.018(0.007) 0.021(0.009) 0.044(0.021) 0.089(0.033) 0.091(0.034) 0.090(0.034)

Infeasible 0.015(0.006) 0.019(0.008) 0.038(0.019) 0.077(0.028) 0.080(0.029) 0.078(0.028)

(400, 0.2) Initial 0.167(0.072) 0.128(0.052) 0.172(0.084) 0.166(0.060) 0.182(0.065) 0.136(0.051)

Weighted 0.037(0.014) 0.043(0.018) 0.089(0.042) 0.089(0.033) 0.091(0.034) 0.090(0.034)

Infeasible 0.031(0.012) 0.039(0.016) 0.077(0.039) 0.077(0.028) 0.080(0.029) 0.078(0.028)

(400, 0.4) Initial 0.333(0.144) 0.256(0.105) 0.345(0.168) 0.166(0.060) 0.182(0.065) 0.136(0.051)

Weighted 0.074(0.028) 0.087(0.037) 0.179(0.084) 0.089(0.033) 0.091(0.034) 0.090(0.034)

Infeasible 0.062(0.024) 0.078(0.032) 0.155(0.079) 0.077(0.028) 0.080(0.029) 0.078(0.028)

(800, 0.1) Initial 0.057(0.022) 0.051(0.018) 0.069(0.032) 0.123(0.044) 0.138(0.049) 0.102(0.031)

Weighted 0.011(0.004) 0.017(0.006) 0.037(0.019) 0.059(0.023) 0.065(0.022) 0.065(0.022)

Infeasible 0.010(0.003) 0.016(0.006) 0.033(0.015) 0.055(0.019) 0.060(0.022) 0.060(0.019)

(800, 0.2) Initial 0.115(0.045) 0.103(0.036) 0.139(0.065) 0.120(0.044) 0.138(0.049) 0.102(0.031)

Weighted 0.022(0.009) 0.034(0.013) 0.075(0.039) 0.059(0.023) 0.065(0.022) 0.065(0.022)

Infeasible 0.020(0.007) 0.032(0.013) 0.066(0.031) 0.055(0.020) 0.060(0.022) 0.060(0.019)

(800, 0.4) Initial 0.230(0.090) 0.205(0.073) 0.277(0.131) 0.123(0.044) 0.138(0.049) 0.102(0.031)

Weighted 0.045(0.018) 0.069(0.027) 0.151(0.078) 0.059(0.023) 0.065(0.022) 0.065(0.022)

Infeasible 0.040(0.014) 0.065(0.026) 0.134(0.062) 0.055(0.020) 0.060(0.022) 0.060(0.019)

Fig 1. Estimated nonparametric functions when n = 400 and σ = 0.1. The solid red curve is
the true function. The three rows correspond to the initial estimators, the weighted estimators,
and the infeasible estimators, respectively.
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Fig 2. Estimated nonparametric functions when n = 400 and σ = 0.2. The solid red curve is
the true function. The three rows correspond to the initial estimators, the weighted estimators,
and the infeasible estimators, respectively.

Fig 3. Estimated nonparametric functions when n = 400 and σ = 0.4. The solid red curve is
the true function. The three rows correspond to the initial estimators, the weighted estimators,
and the infeasible estimators, respectively.



Additive partial linear models 2805

Fig 4. Squared bias (first row) and variance (second row) for our simulation example when
when n = 400 and σ = 0.2. The red, blue, green curves show the squared bias and variance
for the initial estimator, the weighted estimator, and the infeasible estimation, respectively.

when n = 400, for the three noise levels respectively. The weighted estimators
are obviously better than the initial estimators, and are visually very similar
to the infeasible estimators. For the case n = 400, σ = 0.2, we also show the
squared bias and variance for the three estimators in Figure 4. We see that
the improvement of the weighted estimator mostly come from the reduction of
variance. Furthermore, there is relatively large bias and variance close to the
boundary.

Second, we consider estimation of standard errors for the parameters α0

and β0. It is easy to obtain standard error estimates based on the asymptotic
normality results, using the sandwich formula. On each generated dataset, we
can get an estimate of standard errors, and the average of these over 500 datasets
are reported in Table 2, on rows indicated by “s.e. (est)”. The sample standard
errors of the estimated parameter values on 500 datasets are reported on rows
indicated by “s.e. (emp)”. It is seen that the estimated standard errors are
reasonably close to the empirical standard errors especially when the sample
size is large.

Third, we consider the coverage of the pointwise confidence intervals for the
nonparametric functions. Our construction of the pointwise confidence intervals
is again based on the sandwich formula. More specifically, since the nonparamet-
ric functions are approximated by linear combinations of known basis functions,
we regard the model as parametric with parameters α,η,β,γ and we find the
estimated covariance matrix of these parameters as in parametric models by the
standard sandwich formula. Note that this ignores the bias term caused by the
series expansion of nonparametric functions. However, it is a difficult problem
to construct bona fide confidence intervals in additive models. Thus we just use
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Table 2

Estimated standard errors in the simulations. For each pair of (n, σ), the first two rows are
the results of the initial estimators, and the next two rows are the results of the weighted

estimators

case: (n, σ) α1 α2 α3 α4 β1 β2 β3 β4

(200, 0.1) s.e. (est) 0.057 0.061 0.057 0.060 0.101 0.103 0.102 0.099

s.e. (emp) 0.059 0.069 0.060 0.066 0.120 0.123 0.122 0.121

s.e. (est) 0.013 0.013 0.013 0.013 0.067 0.066 0.067 0.066

s.e. (emp) 0.017 0.018 0.017 0.017 0.085 0.080 0.105 0.090

(200, 0.2) s.e. (est) 0.115 0.122 0.114 0.122 0.101 0.103 0.102 0.099

s.e. (emp) 0.119 0.138 0.1216 0.132 0.120 0.123 0.122 0.121

s.e. (est) 0.027 0.027 0.027 0.027 0.067 0.066 0.067 0.066

s.e. (emp) 0.035 0.036 0.035 0.034 0.084 0.080 0.105 0.090

(200, 0.4) s.e. (est) 0.231 0.244 0.229 0.243 0.101 0.103 0.102 0.099

s.e. (emp) 0.239 0.276 0.243 0.265 0.120 0.123 0.122 0.121

s.e. (est) 0.054 0.055 0.055 0.055 0.067 0.066 0.067 0.066

s.e. (emp) 0.071 0.072 0.071 0.069 0.084 0.080 0.105 0.090

(400, 0.1) s.e. (est) 0.041 0.045 0.041 0.042 0.081 0.083 0.081 0.081

s.e. (emp) 0.044 0.047 0.044 0.044 0.091 0.096 0.088 0.082

s.e. (est) 0.008 0.008 0.008 0.008 0.046 0.046 0.046 0.044

s.e. (emp) 0.010 0.010 0.010 0.009 0.049 0.050 0.048 0.048

(400, 0.2) s.e. (est) 0.082 0.090 0.082 0.085 0.081 0.083 0.081 0.081

s.e. (emp) 0.089 0.094 0.089 0.088 0.091 0.096 0.088 0.082

s.e. (est) 0.017 0.017 0.017 0.016 0.046 0.046 0.046 0.044

s.e. (emp) 0.020 0.020 0.020 0.019 0.049 0.050 0.048 0.048

(400, 0.4) s.e. (est) 0.165 0.180 0.166 0.171 0.081 0.083 0.081 0.081

s.e. (emp) 0.178 0.188 0.179 0.177 0.091 0.096 0.088 0.082

s.e. (est) 0.034 0.034 0.034 0.033 0.046 0.046 0.046 0.044

s.e. (emp) 0.040 0.040 0.040 0.039 0.049 0.050 0.048 0.048

(800, 0.1) s.e. (est) 0.029 0.031 0.030 0.031 0.065 0.065 0.064 0.063

s.e. (emp) 0.029 0.031 0.030 0.031 0.064 0.066 0.066 0.068

s.e. (est) 0.005 0.005 0.005 0.005 0.031 0.031 0.031 0.030

s.e. (emp) 0.006 0.006 0.006 0.005 0.031 0.032 0.031 0.031

(800, 0.2) s.e. (est) 0.059 0.063 0.060 0.062 0.065 0.065 0.064 0.063

s.e. (emp) 0.058 0.063 0.061 0.062 0.064 0.066 0.066 0.068

s.e. (est) 0.011 0.011 0.011 0.011 0.031 0.031 0.031 0.030

s.e. (emp) 0.012 0.012 0.012 0.011 0.031 0.032 0.031 0.031

(800, 0.4) s.e. (est) 0.119 0.127 0.120 0.125 0.065 0.065 0.064 0.063

s.e. (emp) 0.116 0.126 0.122 0.125 0.064 0.066 0.066 0.068

s.e. (est) 0.023 0.023 0.022 0.022 0.031 0.031 0.031 0.030

s.e. (emp) 0.024 0.024 0.025 0.023 0.031 0.032 0.031 0.031

this naive approach and mainly regard the intervals as “exploratory” in nature.
For illustration we only used n = 200, 400, 800 with σ = 0.2. Figures 5–7 show
the empirical coverage of the 95% pointwise confidence intervals for the three
sample sizes, respectively. When n = 200 we see the coverage is not satisfactory,
especially close to the boundary for some cases, although the coverage is always
larger than 80% . For larger sample sizes, the coverage improved somewhat. Bet-
ter construction of the pointwise confidence intervals or simultaneous confidence
bands for the nonparametric part is an interesting problem to be investigated
in the future.

Finally, we modify the above example in two ways. In the first modification,
we change the mean functions to g01(x) = − sin(15x), g02(x) = sin(15x) while
other aspects of the model remain the same. This is used to explore the case
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Fig 5. Empirical coverage of the pointwise confidence intervals for the nonparametric func-
tions, when n = 200 and σ = 0.2. The first row is for the initial estimators and the second
row is for the weighted estimators.

Fig 6. Empirical coverage of the pointwise confidence intervals for the nonparametric func-
tions, when n = 400 and σ = 0.2. The first row is for the initial estimators and the second
row is for the weighted estimators.

when the mean functions cannot be estimated well, whether the estimates of
the variance functions will be seriously affected, and whether weighting will im-
prove the estimation. In the second modification, we change the normal errors
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Fig 7. Empirical coverage of the pointwise confidence intervals for the nonparametric func-
tions, when n = 800 and σ = 0.2. The first row is for the initial estimators and the second
row is for the weighted estimators.

in the original example to Student’s t errors with degrees of freedom 3 and scale
parameter σ. We only report the results for σ = 0.2 with n = 200, 400, 800 for
these two modified examples. The estimation errors are reported in Table 3 and
20 estimated nonparametric functions are illustrated in Figure 8 and Figure 9,
respectively (for n = 400 only). From Figure 8, we see that when the mean
function cannot be estimated well, this causes obvious bias in the variance func-
tion estimate. Table 3 shows that the second stage weighted estimate does not
improve the estimation (actually for this particular case the second stage esti-
mator is even worse). This indicates that using totally wrong weights could be
worse than using equal weights, due to the extra variability of the estimated
weights. Even using the correct weights does not help the seriously biased es-
timates for mean functions. In conclusion, reasonably accurate estimate of the
mean function is a requirement for the proposed method to work well. The bad
performance of this example is mainly due to that with highly oscillating true
functions, the spline approximation using only 5 or 6 basis functions results in
a large bias. To illustrate this point, we increase the number of basis functions
to 9 and some estimated curves are shown in Figure 10. With a larger number
of basis functions, the mean function estimation is now much more reasonable.
However, a larger number of basis functions means the estimates for variance
functions become more variable. In such examples, it is desirable that the num-
ber of basis functions is chosen adaptively according to (unknown) smoothness
of each function, although this is outside of the scope of the current paper. For
the second modification using heavy-tailed errors, we still see that the second
stage estimator improves upon the initial estimator. With heavy-tailed errors,
the estimates are obviously worse than those with normal errors.
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Table 3

Estimation errors (average errors with standard deviations inside brackets on 500 simulated
datasets) for the simulated data sets. The first block is for the case g01(x) = − sin(15x) and
g02(x) = sin(15x), and the second block reports results when the error follows a student’s t

distribution

(n, σ) α g1 g2 β h1 h2

(200, 0.2) Initial 0.269(0.108) 0.638(0.030) 0.667(0.049) 0.223(0.081) 0.289(0.081) 0.320(0.068)

Weighted 0.179(0.068) 0.644(0.034) 0.690(0.062) 0.262(0.074) 0.316(0.073) 0.381(0.070)

Infeasible 0.207(0.076) 0.674(0.045) 0.676(0.052) 0.114(0.044) 0.115(0.042) 0.118(0.039)

(400, 0.2) Initial 0.187(0.079) 0.611(0.015) 0.627(0.027) 0.173(0.065) 0.254(0.056) 0.288(0.052)

Weighted 0.121(0.050) 0.626(0.023) 0.654(0.039) 0.255(0.054) 0.300(0.044) 0.365(0.046)

Infeasible 0.148(0.058) 0.672(0.037) 0.637(0.035) 0.077(0.028) 0.081(0.029) 0.078(0.028)

(800, 0.2) Initial 0.129(0.049) 0.602(0.008) 0.612(0.013) 0.140(0.054) 0.284(0.036) 0.330(0.031)

Weighted 0.082(0.033) 0.643(0.020) 0.731(0.049) 0.257(0.034) 0.307(0.032) 0.339(0.032)

Infeasible 0.086(0.034) 0.734(0.028) 1.100(0.101) 0.055(0.020) 0.060(0.022) 0.060(0.019)

(200, 0.2) Initial 0.384(0.166) 0.318(0.136) 0.425(0.199) 0.345(0.150) 0.416(0.150) 0.309(0.113)

Weighted 0.137(0.057) 0.212(0.059) 0.285(0.143) 0.254(0.095) 0.347(0.105) 0.243(0.102)

Infeasible 0.079(0.031) 0.095(0.038) 0.192(0.090) 0.229(0.083) 0.216(0.076) 0.218(0.083)

(400, 0.2) Initial 0.275(0.109) 0.221(0.089) 0.285(0.122) 0.277(0.101) 0.311(0.112) 0.221(0.088)

Weighted 0.086(0.033) 0.138(0.040) 0.201(0.079) 0.166(0.056) 0.205(0.067) 0.197(0.061)

Infeasible 0.050(0.021) 0.066(0.027) 0.134(0.062) 0.139(0.053) 0.132(0.050) 0.132(0.056)

(800, 0.2) Initial 0.197(0.069) 0.178(0.067) 0.252(0.112) 0.211(0.091) 0.260(0.080) 0.175(0.065)

Weighted 0.055(0.019) 0.091(0.025) 0.152(0.065) 0.116(0.041) 0.231(0.039) 0.143(0.037)

Infeasible 0.034(0.014) 0.051(0.020) 0.111(0.052) 0.095(0.034) 0.101(0.034) 0.102(0.036)

Fig 8. Estimated nonparametric functions when n = 400 and σ = 0.2 when the model is
changed to g01(x) = −g02(x) = − sin(15x). The solid red curve is the true function. The
three rows correspond to the initial estimators, the weighted estimators, and the infeasible
estimators, respectively.
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Fig 9. Estimated nonparametric functions when n = 400 and σ = 0.2 when the error is
changed to follow the Student’s t distribution. The solid red curve is the true function. The
three rows correspond to the initial estimators, the weighted estimators, and the infeasible
estimators, respectively.

Fig 10. Estimated nonparametric functions when n = 400 and σ = 0.2 when the model is
changed to g01(x) = −g02(x) = − sin(15x). Here we use a larger number of basis 9.
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Fig 11. Estimated nonparametric functions for the nutrition data with pointwise 95% CI.
The first row shows the initial estimators and the second row shows the weighted estimators.

5. Nutrition Data

We apply the proposed method to the dataset from a nutritional epidemiology
study (Nierenberg et al., 1989), which attempted to investigate the relationships
between the plasma beta-carotene levels and personal characteristics, including
AGE, SEX, BMI, and other factors: CALORIES (number of calories consumed
per day), FAT (grams of fat consumed per day), FIBER (grams of fiber con-
sumed per day), ALCOHOL (number of alcoholic drinks consumed per week),
CHOL (cholesterol consumed mg per day), BETADIET (dietary betacarotene
consumed mcg per day), SMOKE2 (smoking status [1 = former smoker, 0 =
never smoked]), and SMOKE3 (smoking status [1 = current smoker, 0 = never
smoked]). We remove the predictor FAT since it is highly correlated with CALO-
RIES. There is one extremely high leverage point in alcohol consumption that
is deleted prior to analysis and thus the sample size of the dataset is n = 314.
Similar to simulations, we used cubic splines with 5 basis functions. By first
fitting an APLM that puts all continuous predictors in the nonparametric part
and discrete predictors in the linear part, we find that AGE and CHOL seem
to have nonlinear effect in the mean function, while ALCOHOL and FIBER
seem to have nonlinear effect in the variance function. Thus we fit the model
with AGE and CHOL in the nonparametric part in the mean and at the same
time with ALCOHOL and FIBER in the nonparametric part in the variance.
The shapes of the estimated nonparametric functions for both the initial esti-
mators and the weighted estimators are shown in Figure 11. The nonparametric
functions g1(AGE) and g2(CHOL) in the mean function are similar to that ob-
tained in Liu et al. (2011). For the nonparametric functions h1(ALCOHOL) and
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Table 4

Estimated coefficients and standard errors (in brackets) for the real data.

Mean Estimation
Variable Initial Weighted

ALCOHOL 0.105(0.160) 0.178(0.143)
BETADIET 0.425(0.265) 0.424(0.241)

BMI −1.103(0.207) −1.130(0.187)
CALORIES −0.439(0.428) −0.530(0.363)

FIBER 0.833(0.329) 0.632(0.277)
SEX 0.271(0.131) 0.335(0.120)

SMOKE2 −0.101(0.081) −0.055(0.086)
SMOKE3 −0.316(0.114) −0.296(0.086)

Variance Estimation
Variable Initial Weighted
AGE 0.048(0.274) 0.166(0.280)

BETADIET 0.531(0.435) 0.463(0.399)
BMI −0.116(0.296) −0.029(0.275)

CALORIES 0.068(0.625) −0.141(0.635)
CHOL 0.463(0.481) 0.348(0.413)
SEX −0.085(0.170) 0.010(0.167)

SMOKE2 0.091(0.116) 0.107(0.120)
SMOKE3 −0.090(0.204) −0.137(0.162)

h2(CHOL) in the variance function, it shows there is nonlinear contribution of
ALCOHOL to the variance while the effect of CHOL seems to be nonsignifi-
cant. The estimated coefficients and their standard errors are listed in Table 4.
The variables BMI, FIBER, SEX and SMOKE3 have significant effects in the
mean function at the 0.05 level, while none has significant effect in the variance
function.

6. Discussion

The additive partial linear models have been well studied in the literature when
the heteroscedasticity is ignored. In this paper we investigate a broad class of
models, variance function additive partial linear models. The flexibility of such
models comes from that the variance is not limited to be a known function of
the mean. The models are useful for the settings where estimating the variance
function is of its own interest. The models are also useful for the settings where
estimating the mean function is of main interest, because taking into account the
heteroscedasticity would improve the efficiency of estimating the mean function.
Also, in cases of even moderate heteroscedasticity, prediction intervals will not
have correct coverage probabilities unless the variance is modeled properly.

The polynomial-splines method we adopt for approximating the nonpara-
metric components in both the mean and variance functions has at least three
principal advantages. First, it avoids iterative algorithms and therefore it is
computationally convenient. Second, the resulting estimators of the linear com-
ponents in both the mean and variance functions are still asymptotically normal.
Third, it is very easy to conduct variable selection on the linear components in
both the mean and variance functions, which we discuss in detail in next. On
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the other hand, the spline estimators tend to be less accurate at the boundary,
compared to some other estimation methods such as local linear regression. As
we show in our simulation, reasonably good mean function estimates is nec-
essary for the weighted estimator to work well. Thus if boundary problem is a
serious concern, one may consider local linear regression, at the cost of increased
computational burden.

If the number of predictors is large and curse of high-dimensionality is a
concern, we should consider variable selection. Fortunately, there is a wealthy
of literature on the topic of variable selection in the past two decades and many
existing variable selection procedures can be easily extended to our setting. For
example, we can add some sparsity penalty terms such as LASSO (Tibshirani,
1996) and SCAD (Fan and Li, 2001) to the objective functions (4) and (8),
respectively.

In addition, the asymptotic properties of weighted estimators for the mean
function have been studied in the literature by many authors and it is well
known that in general weighted estimators are more efficient than unweighted
estimators. However, the asymptotic properties of weighted estimators for the
variance function draw much less attention. In this paper, we investigate the
asymptotic properties of weighted estimators for the variance function for VF-
APLMs and show that weighted estimators are more efficient than unweighted
estimators.

Finally, we emphasize that a great deal of effort be put on making decision on
which predictors should be the linear components of both the mean and variance
functions. Scatterplots of the response variable versus those predictors or initial
fitting using a fully additive model could help us make such decision for the
mean function, as we demonstrate in Section 5. For the notational simplicity,
in the main context we assume that the same subset of predictors are put in
the linear components of both the mean and variance function. The model (1)
can be easily extended to allow different subsets of predictors to be put in the
linear components of the mean and variance functions, as we demonstrate in
Section 5.

Appendix

Let ‖·‖ be the Euclidean norm. For matrix A, denote its L2 norm as ‖A‖2 =
sup‖u‖�=0 ‖Au‖ / ‖u‖. Let ‖ξ‖∞ = supz |ξ (z)| be the supremum norm of a func-
tion ξ on [0, 1].

Following Stone (1985) and Huang (2003), for any measurable functions ζ1,

ζ2 on [0, 1]
K
, we take the empirical inner product and the corresponding norm

to be

〈ζ1, ζ2〉n = n−1
n∑

i=1

ζ1 (Zi) ζ2 (Zi) , ‖ζ‖2n = n−1
n∑

i=1

ζ2 (Zi) ,

where {Zi} is a sample from density f . If ζ1 and ζ2 are L2-integrable, take the
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inner product

〈ζ1, ζ2〉 =
∫
[0,1]K

ζ1 (z) ζ2 (z) f(z)dz,

with the corresponding induced norm ‖ζ‖22 =
∫
[0,1]K

ζ2 (z) f(z)dz. The empiri-

cal and theoretical norm of a univariate function ξ on [0, 1] are to be

‖ξ‖2nk = n−1
n∑

i=1

ξ2 (Zik) , ‖ξ‖22k =

∫ 1

0

ξ2 (zk) fk (zk) dzk,

where fk is the density of Zk for k = 1, . . . ,K. Define the centered version spline
basis

b∗j,k (zk) = bj,k (zk)−
E (bj,k)

E (b1,k)
b1,k (zk) , k = 1, . . . ,K, j = −�+ 1, . . . , Jn,

with the standardized version given by, for any k = 1, . . . ,K,

Bj,k (zk) =
b∗j,k (zk)∥∥∥b∗j,k∥∥∥

2k

, j = −�+ 1, . . . , Jn. (A.1)

Notice that finding the (η,α) that minimizes (4) is equivalent to finding the
(η,α) that minimizes

1

2

n∑
i=1

[
Yi −

{
ηT B (Zi) +XT

i α
}]2

,

where B (z) = {Bj,k (zk) , j = −�+ 1, . . . , Jn, k = 1, . . . ,K}T . Then the spline

estimator of g0 is ĝ(z) = η̂T B (z) and the centered spline estimator of a com-
ponent function is

ĝk (zk) =

Jn∑
j=−�+1

η̂j,kBj,k (zk)−
1

n

n∑
i=1

Jn∑
j=−�+1

η̂j,kBj,k (Zik) , k = 1, . . . ,K.

Similarly, finding the (γ,β) that minimizes (8) is equivalent to finding the
(γ,β) minimizing

1

2

n∑
i=1

[
R̂i − φ

{
γT B (Zi) +XT

i β
}]2

.

Then the spline estimator of h0 is ĥ(z) = γ̂T B (z) and the centered components
are

ĥk (zk) =

Jn∑
j=−�+1

γ̂j,kBj,k (zk)−
1

n

n∑
i=1

Jn∑
j=−�+1

γ̂j,kBj,k (Zik) , k = 1, . . . ,K.

In practice, basis {bj,k,j = −�, . . . , Jn, k = 1, . . . ,K}T is used for data-analytic
implementation, and basis (A.1) is convenient for asymptotic analysis.
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A.1. Proof of Theorem 1

The proof of Theorem 1 is similar to that of Theorem 1 in Liu et al. (2011),
except that in proving their theorem, Liu et al. (2011) assumed that the intercept
α0 is zero and Γ0 = Γadd

0 in their Assumption (C5). Here we partition the

predictor vector into X = (1,X∗T )T to relax their zero-intercept assumption.

And, we define X̃\0 as X − Γadd
0 (Z) to relax their assumption that Γ0 = Γadd

0 ;

in Liu et al. (2011), they defined X̃\0 as X − Γ0(Z).

A.2. Proof of Theorem 2

According to the result of de Boor (2001, page 149), for any function ξ ∈ Hr,ν

and n ≥ 1, there exists a function ξ̃ ∈ Sn such that ‖ξ̃ − ξ‖∞ ≤ CJ−p
n . For h0

satisfying (A1), we can find γ̃ = {γ̃j,k, j = −� + 1, . . . , Jn, k = 1, . . . ,K}T and

an additive spline function h̃ = γ̃T B (z) ∈ An, such that

‖h̃− h0‖∞ = O(J−p
n ). (A.2)

In the following, let

β̃ = argmin
β

1

2

n∑
i=1

[
R̂i − φ{h̃ (Zi) +XT

i β}
]2

. (A.3)

Let T = (X,Z). Write m0(T ) = h0(Z) +XT β0, m0i = m0 (T i) = h0 (Zi) +

XT
i β0, m̃0 (T ) = h̃ (Z) +XT β0, and m̃0i = m̃0 (T i) = h̃ (Zi) +XT

i β0.

Lemma 1. Under Assumptions (A1)–(A5), there exists a local minimizer β̃ of

(A.3) such that ‖β̃ − β0‖ = Op(n
−1/2), which can be further shown that

√
nQ̃β(β̃ − β0) → MVN(0, Σ̃β),

where Q̃β=E{(Φ(1)X)⊗2}and Σ̃β=E{(eΦ(1)X−εE{DΦ(1)XXT }Q−1
α X̃i\0)

⊗2}.

Proof of Lemma 1. Let δ̂ =
√
n(β̃ − β0). According to (A.3), δ̂ minimizes

l̃n (δ) =
1

2

n∑
i=1

[{
R̂i − φ

(
m̃0i + n−1/2δT Xi

)}2

−
{
R̂i − φ(m̃0i)

}2
]
.

By expansion, we have

l̃n (δ) = − 1√
n

n∑
i=1

{R̂i − φ(m̃0i)}φ(1)(m̃0i)X
T
i δ +

1

2
δT

[ 1
n

n∑
i=1

φ(1)2(m̃0i)XiX
T
i

− 1

n

n∑
i=1

{R̂i − φ(m̃0i)}φ(2)(m̃0i)XiX
T
i

]
δ + op(1).
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The first term on the right-hand-side of the above can be further expressed as

− 1√
n

n∑
i=1

(R̂i −Ri)Φ
(1)
i XT

i δ − 1√
n
(Ri − Φi)Φ

(1)
i XT

i δ

+
1√
n

{
φ(m̃0i)− Φi

}
Φ

(1)
i XT

i δ + op(1). (A.4)

Consider the first summation in (A.4). Using an identity in Knight (1998,
p. 758), we have

R̂i −Ri = −Ŝi{I(εi>0) − I(εi≤0)}+ 2

∫ Ŝi

0

{I(εi≤s) − I(εi≤0)}ds, (A.5)

where Ŝi = {ĝ(Zi) + XT
i α̂} − {g0(Zi) + XT

i α0}. Then the first summation
in (A.4) equals

1√
n

n∑
i=1

{ĝ(Zi)− g0(Zi)}Φ(1)
i XT

i δ (A.6)

+
√
n(α̂−α0)

T ×
{ 1

n

n∑
i=1

Φ
(1)
i DiXiX

T
i

}
δ (A.7)

− 2√
n

n∑
i=1

∫ Ŝi

0

{I(εi≤s) − I(εi≤0)}ds× Φ
(1)
i XT

i δ. (A.8)

By Lemma A.5 in Liu et al. (2011), term (A.6) equals op(1). By Lemma 7 of

Stone (1986) and Theorem 1, ‖ĝ− g0‖∞ ≤ CJ
1/2
n ‖ĝ− g0‖2 = op(n

−1/6). Hence,

max1≤i≤n Ŝi = op(n
−1/6). Let an = n1/6. Following the proof of Theorem 1 in

Knight (1998), we can show that

an√
n

n∑
i=1

{∫ C/an

0

{I(εi≤s) − I(εi≤0)}ds+
∫ −C/an

0

{I(εi≤s) − I(εi≤0)}ds
}
= Op(1).

(A.9)

Noting that Φ
(1)
i XT

i δ is bounded, we can see that term (A.8) equals Op(a
−1
n ),

which equals op(1). In term (A.7), 1
n

∑n
i=1 Φ

(1)
i DiXiX

T
i = E{Φ(1)DXXT } +

op(1). Combining these results of (A.6)–(A.8), we have

− 1√
n

n∑
i=1

(R̂i −Ri)Φ
(1)
i XT

i δ = δT E{DΦ(1)XXT }×
√
n(α̂−α0) + op(1).(A.10)

We can easily see that the second summation in (A.4) equals

−n−1/2
∑

eiΦ
(1)
i XT

i δ. By Taylor expression, we can also easily see that the
third summation in (A.4) equals

1√
n

n∑
i=1

{g̃(Zi)− g0(Zi)}Φ(1)2
i XT

i δ + op(1),
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which, again by Lemma A.5 in Liu et al. (2011), is equal to op(1). In addition,
we can show that

1

n

n∑
i=1

φ(1)2(m̃0i)XiX
T
i − 1

n

n∑
i=1

{R̂i − φ(m̃0i)}φ(2)(m̃0i)XiX
T
i = Qβ + op(1).

Together, we have

l̃n (δ) = − 1√
n

n∑
i=1

eiΦ
(1)
i XT

i δδ
T +

√
n(α̂−α0)

T E{DΦ(1)XXT }δ +
1

2
δT Qβδ

+ op(1).

By Assumption (A5), Qβ > 0. Then for any τ > 0, there exists a large constant
C such that

Prob
{

sup
‖δ‖=C

l̃n (δ) > l̃n (0)
}
≥ 1− τ.

This implies with probability at least 1 − τ that there exists a local minimum
in the ball {β0 + n−1/2δ : ‖δ‖ ≤ C}. Hence, there exists a local minimizer such

that ‖β̃−β0‖ = Op(n
−1/2). By the expression of

√
n(α̂−α0) in (16), the second

part of the lemma can be derived easily.

The next lemma is Lemma A.2 in Liu et al. (2011). Let

Vn =
1

n

n∑
i=1

(
{B (Zi)}⊗2

, B (Zi)X
T
i

XiB
T (Zi) , X⊗2

i

)
. (A.11)

Lemma 2. Under Assumptions (A1)–(A4), there exists a positive constant C
such that

‖Vn‖2 ≤ C and
∥∥V−1

n

∥∥
2
≤ C, a.s..

In the following, take θ = (γT ,βT )T , θ̃ = (γ̃T , β̃
T
)T , θ̂ = (γ̂T , β̂

T
)T ,

l̂n (θ) = 
(γ,β), and m̃i ≡ m̃ (T i) = h̃ (Zi) +XT
i β̃ = γ̃T B (Zi) +XT

i β̃.

Lemma 3. Under Assumptions (A1)–(A4), there exists a local minimizer θ̂ of

l̂n (θ) such that

‖θ̂ − θ̃‖ = Op{(Jn/n)1/2 + J−p
n }.

Proof of Lemma 3. Let an = (Jn/n)
1/2 + J−p

n and δ = (θ − θ̃)/an. Let W i =(
B(Zi)

T ,XT
i

)T
. Then

l̂n(θ)− l̂n(θ̃) =
1

2

n∑
i=1

[
R̂i − φ

{
m̃i + anδ

T W i

}]2
− 1

2

n∑
i=1

[
R̂i − φ(m̃i)

]2
,

which is equal to

− an

n∑
i=1

[
R̂i − φ(m̃i)

]
φ(1)(m̃i)W

T
i δ (A.12)
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+ a2nδ
T
[ n∑

i=1

φ(1)2(m̃i)W iW
T
i −

n∑
i=1

[
R̂i − φ(m̃i)

]
φ(2)(m̃i)W iW

T
i

]
δ (A.13)

{1 + op(1)}.

By expansion, term (A.12) equals

−an

n∑
i=1

[(
R̂i −Ri) +

(
Ri − Φi

)
−

(
φ(m̃i)− Φi

)]
Φ

(1)
i W T

i δ{1 + op(1)}.

Now we will show that∥∥∥ 1
n

n∑
i=1

(
R̂i −Ri)ΦiB(Zi)

∥∥∥ = Op{(Jn/n)1/2 + J−p
n }, (A.14)

∥∥∥ 1
n

n∑
i=1

eiΦiB(Zi)
∥∥∥ = Op{(Jn/n)1/2}, (A.15)

∥∥∥ 1
n

n∑
i=1

(
φ(m̃i)− Φi

)
ΦiB(Zi)

∥∥∥ = Op{(Jn/n)1/2}. (A.16)

By Theorem 1, ‖ĝ−g0‖2 = Op{(Jn/n)1/2+J−p
n } and ‖ĝ−g0‖n = Op{(Jn/n)1/2+

J−p
n }. Then∥∥∥ 1

n

n∑
i=1

{
ĝ(Zi)− g0(Zi)

}
DiΦiB(Zi)

∥∥∥2

≤ n−2λmax(B
′B)

n∑
i=1

[{
ĝ(Zi)− g0(Zi)

}
DiΦi

]2
= n−2λmax(BB′)

n∑
i=1

[{
ĝ(Zi)− g0(Zi)

}
DiΦi

]2
= n−2 ×Op(n)×Op(Jn + nJ−2p

n ) = Op(Jn/n+ J−2p
n ),

where (Jn+ �)×n matrix B =
(
B(Z1) : . . . : B(Zn)

)
and λmax(BB′) = Op(n)

by Lemma 2. Similarly,∥∥∥ 1
n

n∑
i=1

(α̂−α0)
T XiDiΦiB(Zi)

∥∥∥2

= Op(Jn/n+ J−2p
n ).

Together, by (A.5), we obtain (A.14). By

∥∥∥− 1

n

n∑
i=1

eiΦiB (Zi)
∥∥∥ =

[ K∑
k=1

Jn∑
j=−�+1

{ 1

n

n∑
i=1

eiΦiBj,k (Zik)
}2

]1/2
,

E

[ K∑
k=1

Jn∑
j=−�+1

{ 1

n

n∑
i=1

eiΦiBj,k (Zik)
}2

]
≤ CJn/n,
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we obtain (A.15). By (A.2) and Lemma 1, we obtain (A.16). Similarly, we have∥∥∥ 1
n

n∑
i=1

(
R̂i −Ri)ΦiXi

∥∥∥ = Op{(Jn/n)1/2 + J−p
n }, (A.17)

∥∥∥ 1
n

n∑
i=1

eiΦiXi

∥∥∥ = Op(n
−1/2), (A.18)

∥∥∥ 1
n

n∑
i=1

(
φ(m̃i)− Φi

)
ΦiXi

∥∥∥ = Op(n
−1/2). (A.19)

Combining (A.14)–(A.19), we see that term (A.12) equals Op(na
2
n)‖δ‖. By

Assumption (A5) and Lemma 2, we see that term (A.13) equals Op(na
2
n)‖δ‖2.

Therefore, term (A.13) dominates term (A.12) for large ‖δ‖. Then for any τ > 0,
there exists a large constant C such that

Prob
{

sup
‖δ‖=C

l̂n(θ̃ + anδ)− l̂n(θ̃)
}
≥ 1− τ.

This implies there exists a local minimizer such that ‖θ̂ − θ̃‖ = Op(an).

Lemma 4. Under Assumptions (A1)–(A5), ‖ĥ−h0‖2 = Op{(Jn/n)1/2+J−p
n },

‖ĥ − h0‖n = Op{(Jn/n)1/2 + J−p
n }, ‖ĥk − h0k‖2k = Op{(Jn/n)1/2 + J−p

n } and

‖ĥk − h0k‖nk = Op{(Jn/n)1/2 + J−p
n }, for k = 1, . . . ,K.

Proof of Lemma 4. According to Lemma 2,∥∥ĥ− h̃
∥∥2

2
= (γ̂ − γ̃)

T
(〈Bj,k, Bj′,k′〉)−�+1≤j,j′≤Jn,

1≤k,k′≤K

(γ̂ − γ̃) ≤ C
∥∥γ̂ − γ̃

∥∥2

2
.

Then by Lemma 3, we have ‖ĥ− h̃‖2 = Op{(Jn/n)1/2 + J−p
n }, and∥∥ĥ− h0

∥∥
2
≤

∥∥ĥ− h̃
∥∥
2
+

∥∥h̃− h0

∥∥
2
= Op{(Jn/n)1/2 + J−p

n },

where the last equality is from
∥∥h̃ − h0

∥∥
2
= Op(J

−p
n ). By Lemma 1 of Stone

(1985),
∥∥ĥk − h0k

∥∥
2k

= Op{(Jn/n)1/2 + J−p
n }, 1 ≤ k ≤ K.

By Lemma A.8 in Wang and Yang (2007), we have

An ≡ sup
ζ1,ζ2∈An

∣∣∣∣ 〈ζ1, ζ2〉n − 〈ζ1, ζ2〉
‖ζ1‖2 ‖ζ2‖2

∣∣∣∣ = O
{
(Jnlogn/n)

1/2
}
, a.s. (A.20)

Then equation (A.20) implies that ‖ĥ−h0‖n = Op{(Jn/n)1/2+J−p
n } and ‖ĥk−

h0k‖nk = Op{(Jn/n)1/2 + J−p
n }, for k = 1, . . . ,K.

Lemma 5. Under Assumptions (A1)–(A6),

1

n

n∑
i=1

{
ĝ (Zi)− g0 (Zi)

}
DiΦ

(1)
i X̃i\1 = op

(
n−1/2

)
, (A.21)
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1

n

n∑
i=1

{
ĥ (Zi)− h0 (Zi)

}
Φ

(1)2
i X̃i\1 = op

(
n−1/2

)
, (A.22)

1

n

n∑
i=1

Φ
(1)2
i X̃i\1Γ

add
1 (Zi)

T (
β̂ − β0

)
= op

(
n−1/2

)
. (A.23)

Proof of Lemma 5. By the same arguments as in the proof of Lemma A.5 in
Liu et al. (2011), we can show (A.21). Now we consider (A.22). Let s (Zi, h) =

h(Zi)Φ
(1)2
i X̃i\1. Note that

E
{
s(Zi, ĥ)− s (Z, h0)

}2

= E
{
(ĥ− h0) (Zi) Φ

(1)2
i X̃i\1

}2

≤ O
(
‖ĥ− h0‖22

)
.

By Lemma A.2 of Huang (1999), the logarithm of the ε-bracketing number
of the class of functions A1(δ) =

{
s(·, h) − s(·, h0) : h ∈ An, ‖h− h0‖2 ≤

δ
}

is c
{
(Jn + �) log (δ/ε) + log

(
δ−1

)}
, so the corresponding entropy integral

J[](δ,A1(δ), ‖·‖2) ≤ cδ{(Jn + �)1/2 + log1/2(δ−1)}. According to Lemma 7 of

Stone (1986) and Lemma 4, ‖ĥ − h0‖∞ ≤ cJ
1/2
n ‖ĥ − h0‖2 = Op{Jnn−1/2 +

J
1/2−p
n }. Lemma 3.4.2 of van der Vaart and Wellner (1996) implies that, for

an = (Jn/n)
1/2 + J−p

n ,

E

∣∣∣∣∣ 1n
n∑

i=1

{
ĥ (Zi)− h0 (Zi)

}
Φ

(1)2
i X̃i\1 − E

[{
ĥ (Z)− h0 (Z)

}
Φ(1)2X̃\1

]∣∣∣∣∣
≤ n−1/2Can

{
(Jn + �)

1/2
+ log1/2

(
a−1
n

) }
×

[
1 +

can
{
(Jn + �)

1/2
+ log1/2

(
a−1
n

) }
a2n

√
n

C0

]
≤ O(1)n−1/2an

{
(Jn + �)

1/2
+ log1/2

(
a−1
n

) }
.

Thus, we have

E

∣∣∣∣ 1n
n∑

i=1

{
ĥ (Zi)− h0 (Zi)

}
Φ

(1)2
i X̃i\1 − E

[{
ĥ (Z)− h0 (Z)

}
Φ(1)2X̃\1

] ∣∣∣∣
= o

(
n−1/2

)
.

By the definition of X̃\1 and Γadd
1 , for any measurable function ζ,

E
{
ζ (Z) Φ(1)2X̃\1

}
= 0. Hence (A.22) holds.

Finally, consider (A.23). Again, by the definition of X̃\1, Γ1(Z) and Γadd
1 (Z),

we have

E
{
Φ(1)2X̃\1Γ

add
1 (Z)

}
= E

{
Φ(1)2

[
X − Γ1(Z)

]
Γadd
1 (Z)

}
+ E

{
Φ(1)2

[
Γ1(Z)− Γadd

1 (Z)
]
Γadd
1 (Z)

}
= 0,
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which implies n−1/2
∑

Φ
(1)2
i X̃i\1Γ

add
1 (Zi) = Op(1). Then, (A.23) follows from

β̂ − β0 = Op{(Jn/n)1/2 + J−p
n },

which is implied by Lemmas 1 and 3.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. According to Assumption (A6), Γadd
1 (z) =

∑K
k=1 Γ

add
1k (zk),

where Γadd
1k ∈ Hr,ν . By the result of de Boor (2001, page 149), there exists an

empirically centered function Γ̃add
1k ∈ Sn, such that ‖Γ̃add

1k −Γadd
1k ‖∞ = Op(J

−p
n ),

k = 1, . . . ,K. As Γ̃add
1 (z) =

∑K
k=1 Γ̃

add
1k (zk), Γ̃

add
1 ∈ An. Define a class of func-

tions
Mn =

{
m (x, z) = h (z) + xT β : h ∈ An

}
. (A.24)

For any v ∈ R
(d+1), let m̂(x, z) = ĥ(z) + xT β̂ and m̂v = m̂(x, z) + vT {x −

Γ̃add
1 (z)}. Then m̂v = {ĥ(z)− vT Γ̃add

1 (z)}+ (β̂ + v)T x ∈ Mn. Note that m̂v
minimizes the function

l̂n(m) =
1

2

n∑
i=1

[
R̂i − φ {m (Xi,Zi)}

]2
,

for all m ∈ Mn when v = 0, thus ∂
∂v l̂n (m̂v)

∣∣∣
v=0

= 0. Write m̂i ≡ m̂ (Xi,Zi).

Then

0 ≡ ∂

∂v
l̂n (m̂v)

∣∣∣∣
v=0

= −
n∑

i=1

[
R̂i − φ(m̂i)

]
φ(1)(m̂i)

{
Xi − Γ̃add

1 (Zi)
}

= −
n∑

i=1

[
R̂i − φ(m̂i)

]
φ(1)(m̂i)X̃i\1 + op(n

1/2)

= −
n∑

i=1

[
R̂i − φ(m̂i)

]
Φ

(1)
i X̃i\1 + op(n

1/2).

Noting that R̂i − φ(m̂i) = (R̂i −Ri) + (Ri − Φi)− [φ(m̂i)− Φi], we have

1

n

n∑
i=1

(R̂i −Ri)Φ
(1)
i X̃i\1 +

1

n

n∑
i=1

eiΦ
(1)
i X̃i\1 −

1

n

n∑
i=1

{φ(m̂i)− Φi}Φ(1)
i X̃i\1

= op(n
−1/2). (A.25)

Consider the first term in (A.25). By (A.9), we have

1

n

n∑
i=1

∫ Ŝi

0

{I(εi≤s) − I(εi≤0)}ds× Φ
(1)
i X̃i\1 = op(n

−1/2).

Then, by the expression of R̂i −Ri in (A.5), the first term in (A.25) equals

− 1

n

n∑
i=1

DiΦ
(1)
i X̃i\1X

T
i (α̂−α0)−

1

n

n∑
i=1

{ĝ(Zi)− g0(Zi)}DiΦ
(1)
i X̃i\1.
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Hence, by (A.21), the first term in (A.25) further equals

1

n

n∑
i=1

E{DΦ(1)X̃\1X
T }Q−1

α εiX̃i\0 + op(n
−1/2).

Now consider the third term in (A.25). By expansion, it can be expressed as

− 1

n

n∑
i=1

{ĥ(Zi)− h0(Zi)}Φ(1)2
i X̃i\1 −

1

n

n∑
i=1

Φ
(1)2
i X̃i\1X

T
i (β̂−β0) + op(n

−1/2).

By (A.22), it is equal to

− 1

n

n∑
i=1

Φ
(1)2
i X̃i\1X̃

T
i\1(β̂−β0)−

1

n

n∑
i=1

Φ
(1)2
i X̃i\1Γ

add
1 (Zi)

T (β̂−β0)+op(n
−1/2).

Hence, by (A.23), the third term in (A.25) equals Qβ(β̂ − β0). Combining the
final expressions of those three terms in (A.25), we complete the proof of The-
orem 2.

A.3. Proof of Theorem 3

According to Assumption (A6), Γadd
2 (z) =

∑K
k=1 Γ

add
2k (zk), where Γadd

2k ∈ Hr,ν .
By the result of de Boor (2001, page 149), there exists an empirically centered

function Γ̃add
2k ∈ Sn, such that ‖Γ̃add

2k − Γadd
2k ‖∞ = Op(J

−p
n ), k = 1, . . . ,K. As

Γ̃add
2 (z) =

∑K
k=1 Γ̃

add
2k (zk), Γ̃

add
2 ∈ An. Define a class of functions

Wn =
{
w (x, z) = g (z) + xT α : g ∈ An

}
. (A.26)

For any u ∈ R
(d+1), let ŵ(x, z) = ĝwls(z)+xT α̂wls and ŵu = ŵ(x, z)+uT {x−

Γ̃add
2 (z)}. Then ŵu = {ĝ(z)−uT Γ̃add

2 (z)}+(α̂wls+u)T x ∈ Wn. Note that ŵu
minimizes the function

l̂n,wls(w) =
1

2

n∑
i=1

[Yi − w (Xi,Zi)]
2
/Φ̂i,

for all w ∈ Wn when u = 0, thus ∂
∂u l̂n,wls (ŵu)

∣∣∣
u=0

= 0. Write ŵi ≡
ŵ (Xi,Zi). Then

0 ≡ ∂

∂u
l̂n (ŵu)

∣∣∣∣
u=0

= −
n∑

i=1

(Yi − ŵi)
{
Xi − Γ̃add

2 (Zi)
}
/Φ̂2

i

= −
n∑

i=1

(Yi − ŵi) X̃i\2/Φ̂
2
i + op(n

1/2)

= −
n∑

i=1

(Yi − ŵi) X̃i\2/Φ
2
i + op(n

1/2),
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where the last equality is by expansion and Theorem 2. Then we have

n∑
i=1

εiX̃i\2/Φ
2
i −

n∑
i=1

{ĝwls(Zi)− g0(Zi)}X̃i\2/Φ
2
i

−
n∑

i=1

X̃i\2X
T
i (α̂wls −α0) = op(n

1/2). (A.27)

Following similar arguments as in the proof of Lemma 5, we can show that the
second term of (A.27) is op(n

1/2). The third term of (A.27) equals

n∑
i=1

X̃i\2X̃
T
i\2(α̂wls −α0) +

n∑
i=1

X̃i\2Γ
add
2 (Zi)

T (α̂wls −α0),

where, following similar arguments as in the proof of Lemma 5, the second term
is op(n

1/2). Hence, combining final expressions of the terms in (A.27), we prove
Theorem 3.

A.4. Proof of Theorem 4

According to Assumption (A6), Γadd
3 (z) =

∑K
k=1 Γ

add
3k (zk), where Γadd

3k ∈ Hr,ν .
By the result of de Boor (2001, page 149), there exists an empirically centered

function Γ̃add
1k ∈ Sn, such that ‖Γ̃add

3k − Γadd
3k ‖∞ = Op(J

−p
n ), k = 1, . . . ,K. As

Γ̃add
3 (z) =

∑K
k=1 Γ̃

add
3k (zk), Γ̃

add
3 ∈ An.

Consider the same class of functions defined in (A.24), Mn. For any v ∈
R

(d+1), let m̂wls(x, z) = ĥwls(z) + xT β̂wls and m̂v,wls = m̂wls(x, z) + vT {x −
Γ̃add
3 (z)}. Then m̂v,wls = {ĥwls(z) − vT Γ̃add

3 (z)} + (β̂wls + v)T x ∈ Mn. Note
that m̂v,wls minimizes the function

l̂n,wls(m) =
1

2

n∑
i=1

[
R̂i,wls − φ {m (Xi,Zi)}

]2
,

for all m ∈ Mn when v = 0, thus ∂
∂v l̂n,wls (m̂v,wls)

∣∣∣
v=0

= 0. Write m̂i,wls ≡
m̂wls (Xi,Zi). Then

0 ≡ ∂

∂v
l̂n,wls (m̂v,wls)

∣∣∣∣
v=0

= −
n∑

i=1

[
R̂i,wls − φ(m̂i,wls)

]
φ(1)(m̂i,wls)

{
X − Γ̃add

3 (Zi)
}
/Φ̂2

i

= −
n∑

i=1

[
R̂i,wls − φ(m̂i,wls)

]
φ(1)(m̂i,wls)X̃i\3/Φ̂

2
i + op(n

1/2)

= −
n∑

i=1

[
R̂i,wls − φ(m̂i,wls)

]
Φ

(1)
i X̃i\3/Φ

2
i + op(n

1/2),
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where the last equality is by expansion, together with Theorem 2 and the con-
sistency of (ĥwls, β̂wls). The consistency of (ĥwls, β̂wls) can be shown following

similar arguments as in the proof of Lemma 4. Noting that R̂i,wls −φ(m̂i,wls) =

(R̂i,wls −Ri) + (Ri − Φi)− [φ(m̂i,wls)− Φi], we have

n∑
i=1

(R̂i,wls −Ri)Φ
(1)
i X̃i\3/Φ

2
i +

n∑
i=1

eiΦ
(1)
i X̃i\3/Φ

2
i

−
n∑

i=1

{φ(m̂i,wls)− Φi}Φ(1)
i X̃i\3/Φ

2
i = op(n

1/2). (A.28)

Consider the first term in (A.28). By similar arguments as in the proof of
(A.9), we have

n∑
i=1

∫ Ŝi,wls

0

{I(εi≤s) − I(εi≤0)}ds× Φ
(1)
i X̃i\3/Φ

2
i = op(n

1/2),

where Ŝi,wls = {ĝwls(Zi) + XT
i α̂wls} − {g0(Zi) − XT

i α0}. Then, by a similar

expression of R̂i,wls −Ri as the one of R̂i −Ri in (A.5), the first term in (A.28)
equals

−
n∑

i=1

DiΦ
(1)
i X̃i\3X

T
i (α̂wls −α0)/Φ

2
i −

n∑
i=1

{ĝwls(Zi)− g0(Zi)}DiΦ
(1)
i X̃i\3/Φ

2
i .

Hence, by similar arguments as in the proof (A.21), the first term in (A.28)
equals

n∑
i=1

E{DΦ(1)X̃\3X
T /Φ2}Q−1

α,wlsεiX̃i\2/Φ
2
i + op(n

1/2).

Now consider the third term in (A.28). By expansion, it can be expressed as

−
n∑

i=1

{ĥwls(Zi)− h0(Zi)}Φ(1)2
i X̃i\3/Φ

2
i

−
n∑

i=1

Φ
(1)2
i X̃i\3X

T
i (β̂wls − β0)/Φ

2
i + op(n

1/2).

By similar arguments as in the proof of (A.22), it is equal to

−
n∑

i=1

Φ
(1)2
i X̃i\3X̃

T
i\3(β̂wls − β0)/Φ

2
i

−
n∑

i=1

Φ
(1)2
i X̃i\3Γ

add
3 (Zi)

T (β̂wls − β0)/Φ
2
i + op(n

1/2),

where, by similar arguments as in the proof of (A.23), the second term is
op(n

1/2). Hence, combining final expressions of those terms in (A.28), we com-
plete the proof of Theorem 4.
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