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Abstract: We apply the results of Andresen et. al. (2014) on finite sam-
ple properties of sieve M-estimators and Andresen et. al. (2015) on the
convergence of an alternating maximization procedure to analyse a sieve
profile maximization estimator in the single index model with linear index
function. The link function is approximated with C3-Daubechies-wavelets
with compact support. We derive results like Wilks phenomenon and Fisher
Theorem in a finite sample setup even when the model is miss-specified. Fur-
thermore we show that an alternating maximization procedure converges
to the global maximizer and we assess the performance of Friedman’s pro-
jection pursuit procedure. The approach is based on showing that the con-
ditions of Andresen et. al. (2014) and (2015) can be satisfied under a set of
mild regularity and moment conditions on the link function, the regressors
and the additive noise. The results allow to construct non-asymptotic confi-
dence sets and to derive asymptotic bounds for the estimator as corollaries.

MSC 2010 subject classifications: Primary 62F10; secondary 62J12,
62F25, 62H12.
Keywords and phrases: Profile estimator, sieve, projection pursuit pro-
cedure, alternating maximization, alternating minimization, single index.

Received April 2015.

Contents

1 Finding the most interesting directions of a data set . . . . . . . . . 2529
1.1 Finite sample Wilks and Fisher Theorems . . . . . . . . . . . . 2534

2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2537
2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2537
2.2 Properties of the Wavelet Sieve profile M-estimator . . . . . . . 2539

2.2.1 The single index case . . . . . . . . . . . . . . . . . . . . 2540
2.2.2 The general case . . . . . . . . . . . . . . . . . . . . . . 2541

2.3 A way to calculate the profile estimator . . . . . . . . . . . . . 2542
2.3.1 The single index case . . . . . . . . . . . . . . . . . . . . 2544
2.3.2 The general case . . . . . . . . . . . . . . . . . . . . . . 2545

2.4 Performance of Projection Pursuit Procedure . . . . . . . . . . 2546
3 Technical peculiarities . . . . . . . . . . . . . . . . . . . . . . . . . . 2548

∗The author is supported by Research Units 1735 “Structural Inference in Statistics: Adap-
tation and Efficiency”.

2528

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1079
mailto:andresen@wias-berlin.de


Finite sample single index estimation 2529

3.1 Choice of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2548
3.2 Implications of Regression setup . . . . . . . . . . . . . . . . . 2549

4 Synopsis of the finite sample theory for M-Estimators . . . . . . . . 2551
4.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2551
4.2 General results for profile M-estimators . . . . . . . . . . . . . 2553
4.3 A way to bound the sieve bias . . . . . . . . . . . . . . . . . . . 2555
4.4 Convergence results for the alternating procedure . . . . . . . . 2557

5 Application of the finite sample theory . . . . . . . . . . . . . . . . . 2559
5.1 Conditions satisfied . . . . . . . . . . . . . . . . . . . . . . . . . 2560
5.2 Large deviations . . . . . . . . . . . . . . . . . . . . . . . . . . 2562
5.3 Proof of finite sample Wilks and Fisher expansion . . . . . . . 2564
5.4 Bounding the sieve bias . . . . . . . . . . . . . . . . . . . . . . 2565
5.5 Convergence of the alternating procedure . . . . . . . . . . . . 2566
5.6 Convergence of PPP . . . . . . . . . . . . . . . . . . . . . . . . 2567

A Technical proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2572
Aknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2640
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2640

1. Finding the most interesting directions of a data set

Assume observations (Yi,Xi) ∈ R× R
p with p ∈ N

Yi = g(Xi) + εi, i = 1, . . . , n, (1.1)

where g : Rp → R is some continuous function, εi ∈ R are additive centered er-
rors independent of the random regressors (Xi). Consider the task of estimating

E[Y |X] = g(X).

Statistical theory for nonparametric models shows that even for moderate p ∈ N

the accuracy of estimating g(X) increases very slow in the sample size n ∈ N

as the rates are lower bounded by n−α/(2α+p) – with α > 0 quantifying the
smoothness of g : Rp → R – as was for instance noted in [20]. [7] propose to use
a projection pursuit approach to circumvent this problem in situations where

g(X) ≈
M∑
l=1

f(l)(X
�θ∗

(l)), (1.2)

for a set of functions f(l) : R → R, vectors θ∗
(l) ∈ Sp,+

1 := {θ ∈ R
p : ‖θ‖ =

1, θ1 > 0} ⊂ R
p and some M ∈ N. As each nonparametric estimation task is

uni-variate, better performance can be expected in comparison to a full non-
parametric regression as long as M,p ∈ N are not very large. But of course (1.2)
is a structural assumption whose usefulness depends on the size of M ∈ N and
p ∈ N. For small M ∈ N and p ∈ N one can get important gains but the assump-
tion (1.2) becomes rather restrictive. On the other hand, for large M ∈ N and
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large p ∈ N the assumption (1.2) becomes true for any smooth function. This
can be seen as follows. Assume that one observes (Yi,Zi) for a given vector of
regressors Z ∈ R

p1 and that the aim is to estimate g◦(Z) = E[Y |Z]. We can

define for some D ∈ N an extended vector of regressors X ∈ R
p1+

∑D+1
d=2 pd

1−p1

via

X
def
= (Z1, . . . , Zp1 , Z1Z2, Z1Z3, . . . , Zp1−1Zp1 , Z1Z1Z2, . . . , Zp1−1Z

D
p1
).

For large D ∈ N this means that (1.2) demands that g◦(Z) = g(X) can be well
approximated by polynomials of maximal degree D + 1 ∈ N, which of course
is the case for smooth functions. See [11] and [13] for a more sophisticated
approach of showing that smooth functions g can be well approximated as in
(1.2). [7] suggest to estimate the pairs (f(l),θ

∗
(l)) iteratively. The first task is to

estimate

θ∗
(1)

def
= argmin

θ∈Sp,+
1

E

[(
g(X)− E[g(X)|X�θ]

)2]
. (1.3)

Given an estimator θ̃(1) ∈ Sp,+
1 one can determine an estimator f̂(1) for f(1) and

generate a new sample via

Yi(1)
def
= Yi − f̂(1)(X

�
i θ̃(1)).

Using this new data set (Yi(1))i=1,...,n one can estimate θ∗
(2) and f(2) as in the first

step and again generate a new data set (Yi(2))i=1,...,n. These steps are repeated
M − 1 ∈ N times if M ∈ N was fixed or known in the beginning, otherwise until
a certain level of variability in the data is explained by the obtained sum

M∑
l=1

f̂(l)(X
�
i θ̃(l)),

which then serves as an estimator for E[Y |X]. This way of estimating the con-
ditional expectation is called Projection Pursuit Procedure (PPP), cf. [7].

In this work we will mainly focus on the task (1.3). It has been observed in
[9] that the estimation of θ∗

(1) – from now on denoted simply by θ∗ – can be
attained with root-n rate even though the full model is nonparametric.

In the particular case that M = 1, i.e. that

g(X) = f(X�θ∗), (1.4)

for some f : R → R and θ∗ ∈ Sp,+
1 ⊂ R

p, the estimation problem (1.3) becomes
the task to estimate the linear response vector in a semiparametric single-index
model (see [12]). The single-index model supposes that the observations satisfy
with two functions f : R → R and h : Rp → R and with errors (εi) ∈ R

Yi = f(h(Xi)) + εi, i = 1, . . . , n.
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Usually it is assumed that the index function h is known up to some parameter
θ ∈ R

p such that one writes h(θ,x). In our setting h(θ,x) = θ�x. [23] compares
the asymptotic distributions of two different prominent estimation procedures
for θ∗. The first is the average derivative estimation introduced by [17] and
refined by [10] and is based on the fact that if (1.4) is correct

E

[
d

dX
g(X)

]
= E

[
f ′(X�θ∗)

]
θ∗,

which suggests to estimate θ∗ via an estimate of E
[
f ′(X�θ∗)

]
. The second one

is the minimal conditional variance estimation by [24] which is inspired by [8]
and aims at directly solving (1.3) via a local linear approximation of E[y|X�θ].
Further results are the asymptotic efficiency of a semiparametric maximum-
likelihood estimator shown by [5] for particular examples and in [8] the right
choice of the bandwidth for the nonparametric estimation of the link function.

In this work we want to use a different approach to carry out the first step
(1.3) that allows to apply the results of [2] and [3]. For this purpose denote

E[g(X)|X�θ∗] = f(X�θ∗). (1.5)

Assume that f |[−sX,sX] ∈ L2([−sX, sX]) = span{(ek)k∈N} for the set of Dau-
bechies wavelet basis functions (ek)k∈N ⊂ L2([−sX, sX]) that we present in
Section 3.1. For some m ≥ 1 and η ∈ R

m denote

fη
def
=

m∑
k=0

ηkek,

with properly selected coefficients η = (η1, . . . , ηm)� ∈ R
m. Further assume

that P(X1 ∈ BsX(0)) ≈ 1 for some sX > 0, where Br(z) denotes the euclidean

ball of radius r > 0 around z. Set υ
def
= (θ,η) ∈ R

p+m, define p∗ = p +m and
Πθ, Πη as the orthogonal projections on the θ- or η-component of υ respectively.
We assume that p is fixed and can be treated as a constant. This means that
p∗ = p + m = O(m). Our aim is to analyze for m ∈ N the properties of the
estimator

θ̃m
def
= Πθυ̃m

def
= Πθ argmax

(θ,η)∈Υm

Lm(θ,η), (1.6)

where

Lm(θ,η) =
∑

{i: ‖Xi‖≤sX}
�i,m(θ,η) (1.7)

= −
∑

{i: ‖Xi‖≤sX}
‖Yi − fη(X

�
i θ)‖2/2.
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The set Υm is defined as

Υm
def
= {(θ,η) ⊂ Sp,+

1 × R
m, ‖η‖ ≤ r◦},

with some r◦ < ∞ defined in (5.2). Note that this is exactly the type of estima-
tor presented in Section 2.7 of [2]. In [12] a very similar estimator is analyzed
based on a “leave one out” kernel estimation of E[Yi|X�

i θ] instead of using
fη(X

�
i θ). Ichimura shows

√
n-consistency and asymptotic normality of his pro-

posed estimator.

Remark 1.1. The radius r◦ is needed to control the large deviations of the full
maximizer υ̃m. We ensure that the estimator υ̃m does not lie on the boundary
in Lemma 5.2.

Remark 1.2. Our approach relies on an invertible operator ∇2
EL(υ∗). One

way to achieve this it to ensure that the density of X�θ is strictly greater zero
on the whole interval [−sX, sX] for any θ ∈ S1

+. To avoid undesirable boundary
effects – i.e. that the density vanishes near sX,−sX (see Remark A.5) – we
do not use all available data: We only consider realizations (Yi,Xi) for which
‖Xi‖ ≤ sX but in Section 2.1 we assume in condition (CondX) that there is
positive probability that X ∈ BsX+cB (0)\BsX(0) for some cB > 0. We assume
that the proportion of ignored data is small such that we can neglect this in the
following and pretend that we can use the full data set.

For an appropriate sequencem(n) → ∞ the estimator θ̃m in (1.6) is supposed
to approach

θ∗ def
= Πθ(θ

∗,η∗)
def
= Πθυ

∗ def
= Πθ argmax

(θ,η)∈Υ

EL(θ,η), (1.8)

where Υ = Sp,+
1 × l2 and for (θ,η) ∈ Υ

L(θ,η)
def
= −

∑
{i: ‖Xi‖≤sX}

∥∥∥∥∥Yi −
∞∑
k=1

ηkek(X
�
i θ)

∥∥∥∥∥
2

/2.

Remark 1.3. To understand the motivation of this functional note that for
any θ ∈ Sp,+

1 the sequence

η∗
θ

def
= Πη argmax

υ∈R
p×l2

Πθυ=θ

EL(υ),

solves by first order criteria of maximality for any A ∈ F(X�θ) – where F(X�θ)
denotes the sigma algebra associated to the law of X�θ – the equation

E

[(
g(X)− fη∗

θ
(X�θ)

)
1A

]
= 0.
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This means that with equivalence in L2(PX)

fη∗
θ
(X�θ) = E[g(X)|X�θ], (1.9)

such that the target (1.8) indeed coincides with the most informative direction
in (1.3).

Remark 1.4. Note that there is a model bias and an approximation bias of
the form

“model bias” = min
υ∈Υ

E‖g(X)− fη(X
�θ)‖2,

“approximation bias” = min
υ∈Υm

E‖fη(X
�θ)− fη∗(X�θ∗)‖2, (1.10)

which both have to be accounted for.

As pointed out we will analyze the properties of the estimator θ̃m in (1.6)
using the results of [2] and [3]. It turns out that this is possible with a series of
conditions on the additive noise εi ∈ R, the function g : Rp → R and on the
random design X ∈ R

p. In particular the choice of the basis is independent of
the model. Due to the support structure of compactly supported wavelets – see
Section 3.1 – we still manage to control the sieve bias in (1.10). Even though
we assume what is necessary to apply the results of [2] and [3], the calculations
necessary to check the conditions still remain rather tedious and lengthy. We
present most steps in full detail, which at some points leads to repetitions of
very similar arguments. Also the regression setup leads to some peculiarities that
we elaborate on in Section 3.2. The treatment of these issues involves bounds
for the spectral norm or random matrices from [22]. It is worthy to point out
here that a fixed design setting would not resolve these issues either as one for
instance would still have to deal with convergence issues of the operator

n∑
i=1

∇L(Xi, Yi,υ)∇L(Xi, Yi,υ)
� ∈ R

p∗×p∗
.

There is another peculiarity to the results we present in this work. A naive
approach to satisfy the important condition (Lr) from Section 4.1 would include
a bound for

sup
υ∈Υm

|E[L(υ,υ∗)|(Xi)i=1,...,n]− EL(υ,υ∗)| . (1.11)

But as L is quadratic and Υm ⊂ R
p∗

can be quite large this becomes hard to
achieve with nice bounds. We circumvent this problem using an idea of [15].
Mendelson’s crucial insight is that to obtain

inf
υ∈{‖υ−υ∗‖◦>r}

E[L(υ,υ∗)|(Xi)i=1,...,n] ≥ br2,
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with some norm ‖ · ‖◦, one only has to ensure that

inf
υ∈{‖υ−υ∗‖◦>r}

P
(
‖Yi − fη∗(X�

i θ
∗)‖2 − ‖Yi − fη(X

�
i θ)‖2 ≥ br2/n

)
> 0,

We follow this route in the proof of Lemma 5.3. But we only apply this idea in
the case that Cbias = 0. In the general case we derive a bound for (1.11) to avoid
too lengthy derivations. The price is an additional log(n)-factor in the sufficient
full dimension i.e. we need p∗3 log(n) = o(

√
n) instead of p∗3 = o(

√
n) to apply

Theorem 4.3.

1.1. Finite sample Wilks and Fisher Theorems

Before we present our main results we want to explain what type of results
we aim at and how they can be interpreted. Hopefully this will ease the un-
derstanding and will make some of the apparently cumbersome notation more
intelligible.

Usually in asymptotic treatments of semiparametric M-estimators like θ̃m in
(1.6) the aim is to derive statements of the kind

√
n(θ̃m − θ∗)− ξ̆m = oP(1), (1.12)

L̆m(θ̃m,θ∗)− ‖d̆mξ̆m‖2 = oP(1), (1.13)

ξ̆m
w−→ N(0, d̆−2v̆2d̆−2),

where we use the shorthand notation

L̆m(θ,θ◦)
def
= max

η
Lm(θ,η)−max

η
Lm(θ◦,η).

The random variable ξ̆m ∈ R
p is called semiparametric score. Below we will

briefly explain its derivation along with the explanation of the matrices v̆2, d̆2,
d̆2m ∈ R

p×p. But before, we sketch how (1.12) and (1.13) can be used for the
construction of asymptotic confidence sets that yield statistical tests. Given the
matrices v̆2, d̆2 the construction works as follows. Let q2α > 0 be an α-level

quantile of a χ2
p(d̆

−2v̆2d̆−2)-distribution. Set

E(qα) =
{
θ :

√
n‖(θ̃m − θ)‖ ≤ qα

}
; (1.14)

then one can use (1.12) to show

P {θ∗ /∈ E (qα)} = P

{√
n‖(θ̃m − θ∗)‖ ≥ qα

}
→ 1− α.

Similarly one can exploit (1.13).
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Now we explain the definition of v̆2, d̆2 and d̆2m. Remember that L(υ) =∑
i �i(υ) by the definition in (1.7). Consider the Fréchet-derivatives ∇�(υ∗) ∈

R
p × l2 and

−∇2
EL(υ) = −n∇2

E�(υ) : Rp × l2 → R
p × l2.

Then v̆2 = v̆2(υ∗) and d̆2 = d̆2(υ∗) where

v̆−2(υ)
def
= Πθ Cov(∇�(υ))−1Π�

θ ,

d̆−2(υ)
def
= −Πθ

(
∇2

E�(υ)
)−1

Π�
θ , (1.15)

where Πθ is the orthogonal projection onto the θ-component in R
p and Π�

θ is
its dual operator.

Remark 1.5. Note that these two matrices coincide if the functional L was
the complete loglikelihood of the observations and that then d̆2 would equal the
covariance of the efficient influence function (see [14] for more details).

For the definition of the semiparametric score ξ̆m ∈ R
p and of d̆−2

m (υ) consider

d2m(υ) =

(
d2(υ) am(υ)
a�m(υ) h2

m(υ)

)
def
= −Πm∇2

E�(υ)Π�
m ∈ R

p∗×p∗
, (1.16)

d̆−2
m (υ)

def
= −Πθ (dm(υ))

−2
Π�

θ . (1.17)

where Πm : Rp × l2 → R
p × R

m = R
p∗

is the canonical projection from l2 onto
R

p∗
. Further consider the possibly biased target υ∗

m ∈ R
p∗

υ∗
m = (θ∗

m,η∗
m) = argmax

υ∈Υ∗
m

E[Lm(υ)], (1.18)

where

Υ ∗
m

def
= {(θ,η) ⊂ Sp,+

1 × R
m}.

Then

ξ̆m
def
=

1√
n
(1− Eε)Πpd

−2
m (υ∗

m)∇Lm(υ∗
m)

=
1√
n
(1− Eε)d̆

−2
m (υ∗

m)
{
∇θL(υ

∗
m)− amh−2

m (υ∗
m)Πm∇ηL(υ

∗
m)
}
, (1.19)

where Eε denotes the expectation operator of the law of (εi)i=1,...,n given
(Xi)i=1,...,n. This random variable is related to the efficient influence function
in semiparametric estimation and it plays the role that the usual score ∇L(υ∗)
plays in the setting of parametric M-estimation.
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In Section A.2 we calculate ∇L(υ), E[∇L(υ∗)∇L(υ∗)�] and ∇2
EL(υ∗),

which could be used for a plug-in approach to estimate d̆−2v̆2d̆−2. But we do
not present closed form expressions for ξ̆m, d̆2, v̆2 or d̆2m. One reason – besides
the fact that it would not be clear how to do that – is that these objects depend
on the true parameter υ∗ in (1.8). In fact to make use of such results as in (1.12)

and (1.13) in practice one needs to somehow assess the distribution of ξ̆m, which

could be done via an estimation of d̆−2v̆2d̆−2 and a Gaussian approximation or
via some bootstrap scheme. On this level the statements are merely a theoretical
justification of such inference procedures.

In this work we restrict ourselves to derive finite sample bounds for the terms
on the right-hand sides of (1.12) and (1.13). To be more precise we derive state-
ments of the following kind. With probability greater than 1− Ce−x∥∥∥√n(θ̃m − θ∗)− ξ̆m

∥∥∥ ≤ τ(x, p∗, n), (1.20)∣∣∣L̆m(θ̃m,θ∗)− ‖d̆mξ̆m‖2
∣∣∣ = τ(x, p∗, n), (1.21)

with some small value τ(x, p∗) > 0. Using the scheme in (1.14) the bounds (1.20)
and (1.21) allow the construction of (conservative) finite sample “confidence

sets”. Assume that (approximate) quantiles qα for ‖ξ̆‖ are available, i.e. that
with some small ε > 0 and any α ∈ [0, 1]

P(‖ξ̆m‖ ≤ qα) ∈ (α− ε, α+ ε),

then with some generic constant C > 0 (see Remark 2.13 of [2])

α+ ε+ Ce−x ≤ P {θ∗ ∈ E(qα + τ(x, p∗)} ,

P {θ∗ ∈ E(qα − τ(x, p∗)} ≤ α− ε− Ce−x.

The important achievement is that one can now make approximate confidence
statements even in the finite sample case, without ignoring “hopefully small
enough” terms. As remarked above such approximate quantiles could be at-
tained via an plug-in-estimation of d̆−2v̆2d̆−2 combined with a Gaussian ap-
proximation or a bootstrap. Those steps are beyond the scope of this work,
in which we merely serve the first step for such an analysis namely the bounds
(1.20) and (1.21), which allow to correct for “non-quadratacity” of the functional
L.

To derive such a bound τ(x, p∗, n) > 0, in [2] the problem is split into two
parts. The first part is to derive a bound τs(x) such that with probability greater
than 1− Ce−x ∥∥∥√n(θ̃m − θ∗

m)− ξ̆m

∥∥∥ ≤ τs(x, p
∗, n),∣∣∣L̆m(θ̃m,θ∗

m)− ‖d̆ξ̆m‖2
∣∣∣ ≤ τs(x, p

∗, n).
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The corresponding result in this paper is Proposition 2.1. The second part con-
sists in bounding with some α(m) > 0∥∥√n(θ∗ − θ∗

m)
∥∥ ≤ α(m),

∣∣∣L̆m(θ∗,θ∗
m)
∣∣∣ ≤ α(m),

which yields τ(x, p∗, n) ≤ τs(x, p
∗, n) + α(m) in Proposition 2.2.

Remark 1.6. We will see that (υ∗
m, 0) ∈ l2 lies close to the true point υ∗ ∈ l2

but we will not proof that it is unique. We neither proof nor use uniqueness of the
profile ME either. In the following we will denote by υ∗

m the set of maximizers

and we will always make statements about θ̃m ∈ R
p, whereby we mean any

element of the set of maximizers of the profiled functional. Non-uniqueness is
not a problem, as the concentration on the local set Υ◦ is ensured via Theorem
4.2.

Remark 1.7. Note that we maximize over different sets when defining υ̃m

and υ∗
m. To control the large deviations and avoid boundary effects we have to

ensure that with overwhelming probability υ̃m ⊂ int{Υm} ⊂ Υ ∗
m. We do this

with Lemma 5.2, which tells us that we may set r◦ ≤ C
√
m with some constant

C ∈ R. This lemma also ensures that the alternating sequence (θ̃
(k)

, η̃(k(+1)))k∈N

from Section 2.3 lies in Sp,+
1 ×Bm

r◦(0).

2. Main results

2.1. Assumptions

To apply the technique presented in [2] and [3] we need a list of assumptions.
We denote this list by (A). We start with conditions on the regressors X ∈ R

p:

(CondX) • The random variables (Xi)i=1,...,n ⊂ R
p are i.i.d with distribu-

tion denoted by P
X and independent of (εi)i=1,...,n ⊂ R.

• The measure P
X is absolutely continuous with respect to the Lebes-

gue measure. The Lebesgue density pX of PX is Lipschitz continuous
on BsX(0) ⊂ R

p and satisfies pX > 0 on BsX+cB (0) for some cB > 0.

• For any pair θ ∈ S+,p
1 with θ ⊥ θ∗ we have almost surely

Var
(
X�θ

∣∣X�θ∗) > 0.

Furthermore all pairs θ,θ◦ ∈ S+,p
1 with θ ⊥ θ◦ satisfy

∥∥∥pθ◦,θ

pθ

∥∥∥
∞

< ∞
with pθ◦,θ : R2 → R+ denoting the density of (X�θ◦,X�θ) ∈ R

2.

Remark 2.1. Var
(
X�θ◦∣∣X�θ∗) = 0 would mean that X�θ◦ = a(X�θ∗)

for some measurable function a : R → R. But then we would have for any
(α, β) ∈ R

2 with α2 + β2 = 1 that

f(X�(αθ∗ + βθ◦)) = f(αX�θ∗ + βa(X�θ∗))
def
= f◦

α,β(X
�θ∗),
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such that the problem would no longer be identifiable. We bound pX > 0 on
BsX+cB (0) to ensure identifiability, also see Remark A.5.

Remark 2.2. We assume that the support of PX contains 0 without loss of
generality. If that was not the case one could modify the sample as follows. Let
x0 be an inner point of the support of PX. Generate a new sample (X′

i)i=1,...,n =
(Xi − x0)i=1,...,n and assume (CondX) for this new sample instead.

Of course we need some regularity of the link function f ∈ {f : [−sX, sX] 
→
R} in (1.5):

(Condf ) For some η∗ ∈ Br◦(0) ⊂ l2
def
= {(uk)k∈N :

∑∞
k=1 u

2
k < ∞}

f = E[g(X)|X�θ∗ = ·] = fη∗ =

∞∑
k=1

η∗kek, (2.1)

where ‖f ′
η∗‖∞ < ∞ and ‖f ′′

η∗‖∞ < ∞ and where with some α > 2

∞∑
k=0

k2αη∗k
2 < ∞. (2.2)

Remark 2.3. In the case that the data is not from the model (1.4) but from
the model in (1.1) the implications of this condition to the function g : Rp → R

become somewhat unclear. One way of ensuring that it is satisfied is to assume
that for every θ ∈ Sp,+

1 and any x ∈ BsX(0) ∩ θ⊥ the function

fθ,x : R → R, t 
→ g(t+ θ�x),

satisfies (2.1) with some η(θ,x) and α(θ,x) > 2+ε, where ε > 0 is independent
of x. More precisely set for any θ ∈ Sp,+

1

fθ(t)
def
= E[Yi|X�θ = t] =

∫
BsX

(0)∩θ⊥
fθ,x(t)pX|X�θ=t(x)dx,

where pX|X�θ=t(x) is the conditional density ofX|X�θ = t. Due to the smooth-
ness assumption on fθ,x(t) the function fθ(t) satisfies (2.1) as well with some
η(θ) and α(θ) ≥ infx∈BsX

(0)∩θ⊥{α(θ,x)} > 2. We proof this in Section A.

To control the large deviations of υ̃m ∈ R
p∗

we use the following assumption:

(CondXθ∗) On some interval [t0 − h, t0 + h] ⊆ [−sX, sX] with h > 0 it holds
true that

|f ′
η∗(t)| > 0.

Remark 2.4. A condition of this kind is necessary to ensure identifiability.
Otherwise the function g : Rp → R would be P

X-almost surely constant. But
for a constant function θ∗ ∈ R

p in (1.3) is not defined.



Finite sample single index estimation 2539

To be able to apply the finite sample device we need constraints on the
moments of the additive noise:

(Condε) The errors (εi) ∈ R are i.i.d. with E[εi] = 0, Cov(εi) = σ2 and satisfy
for all |μ| ≤ g̃ for some g̃ > 0 and some ν̃ > 0

logE[exp {με1}] ≤ ν̃2μ2/2.

Remark 2.5. Note that our assumptions in terms of moments and smoothness
are quite common in this model. For instance [8] assume that the density pX of
the regressors (Xi) is twice continuously differentiable, that f has two bounded
derivatives and that the errors (εi) are centered with bounded polynomial mo-
ments of arbitrary degree.

Unfortunately these conditions do not facilitate an easy proof of our desired
results in the case that the data is not from the model (1.4). To control the
large deviations of υ̃m and for identifiability we impose some more “esoteric”
conditions on the interplay of the function g : Rp → R and the measure P

X.

(model bias) Assume that

‖E[g(X)|X�θ∗]− g(X)‖ = ‖fη∗(X�θ∗)− g(X)‖ ≤ Cbias,

for some constant Cbias ≥ 0. Furthermore we need if Cbias > 0 that there
exists an open ball Brθ (θ

∗) ⊂ R
p around θ∗ and a constant bθ > 0 such

that for θ /∈ Brθ (θ
∗)

−E

[(
g(X)− E[g(X)|X�θ]

)2]
+ E

[(
g(X)− E[g(X)|X�θ∗]

)2] ≤ −bθ,

and such that on Brθ (θ
∗) ⊂ R

p−1 the second derivative exists and satisfies
with some Cθ > 0

∇2
θE

[(
g(X)− E[g(X)|X�θ]

)2] ≥ bθ > 0.

Remark 2.6. The conditions (model bias) are of course rather peculiar and
not a very accurate characterization of the class of functions that allow the
application of our approach. As this paper – even with these conditions – is still
very technical we do not elaborate on this issue further. We only point out that
this condition is a kind of quantification of how salient the direction θ∗ ∈ R

p in
(1.3) is.

2.2. Properties of the Wavelet Sieve profile M-estimator

This section presents the application of the results of [2] to the estimator θ̃m

in (1.6). Unfortunately a presentation of the results in full detail would involve
constants that are characterized by formulas that would cover many pages. This
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is why in this work we restrict ourselves to the mere presentation of an upper
bound for the critical dimension. This means that we do not specify the size of
the appearing constants even though this would be crucial in a true finite sample
approach. To further simplify the presentation we bound with some constants
C, c > 0

1− 12e−x − exp
{
−m3x

}
− exp

{
−nc(Q)/4

}
≥ 1− Ce−x−nc.

Also – in the proofs as well – the same symbol C can stand for different values,
that do not depend on p∗,m, n, x. We use this convention to make the presen-
tation less cumbersome and hope the reader appreciates this despite the loss of
rigor.

Remark 2.7. The constant c(Q) > 0 is derived in the proof of Lemma A.20
and does not depend on x, n, p∗.

2.2.1. The single index case

In this part we only consider the properties of the estimator θ̃m in (1.6) under
the assumption that the model (1.4) is correct. We get the following result by
applying Theorem 4.3:

Proposition 2.1. Assume (A) and that the model (1.4) is correct. Suppose that
m−(2α+1)n → 0 and that p∗4/n → 0. If n ∈ N is large enough, it holds with
probability greater than 1− Ce−x−nc

∥∥√n
(
θ̃m − θ∗

m

)
− ξ̆m

∥∥ ≤ C
p∗5/2 + x√

n
,

∣∣2L̆(θ̃m,θ∗
m)− ‖d̆mξ̆m(υ∗

m)‖2
∣∣ ≤ C

(
√
p+ x+

p∗5/2 + x√
n

)
p∗5/2 + x√

n
,

where d̆2m is defined in (1.17) and ξ̆m in (1.19).

Remark 2.8. The constraint that n is large enough means, that it should
exceed a constant, that depends on characteristics of the model, the basis, on
sX, etc. but also on the full dimension p∗. The necessary size of n ∈ N is
determined by the speed with which p∗4/n → 0 and m−2α−1n → 0. In the proof
of Proposition 2.1 we impose conditions on n ∈ N of the kind

p∗2/
√
n ≤ C−1

1 , m−2α−1n ≤ C−1
2 ,

for certain constants C1, C2 > 0. But note that the approximation error on the
right hand sides of the theorem are determined by the size of p∗5/n, which has
to be small. Consequently for accurate results one needs p∗ = o(n1/5) if p is
assumed to be constant.
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So far we only addressed the behavior of the sieve profile ME with respect to
the possibly biased target θ∗

m ∈ R
p and with a weighting matrix d̆m that depends

on the dimension m ∈ N of the nuisance parameter η ∈ R
m. Addressing the

bias we get the following result.

Proposition 2.2. Assume (A) and that the model (1.4) is correct. Suppose that
m−(2α+1)n → 0 and that p∗4/n → 0. If n ∈ N is large enough it holds with
probability greater than 1− Ce−x−nc

∥∥√n
(
θ̃m − θ∗)− ξ̆m(υ∗

m)
∥∥ ≤ C

(
p∗5/2 + x√

n
+
√
nm−(α+1/2)

)
,

∣∣2L̆(θ̃m,θ∗)− ‖d̆mξ̆m(υ∗
m)‖2

∣∣ ≤ C

(
p∗5/2 + x√

n
+
√
nm−(α+1/2)

)

·
(
√
p+ x+

p∗5/2 + x√
n

)
.

Further if p∗5/n → 0 we find as n → ∞ – and with d̆2 defined in (1.15) –

√
n
(
θ̃m − θ∗) w−→ N(0, σ2d̆−2), 2L̆(θ̃m,θ∗)

w−→ σ2χ2
p.

Remark 2.9. The constraints m−(2α+1)n → 0 and p∗5/2/
√
n → 0 exclude the

case α ≤ 2. But note that if 0 < α−2 = ε and m ≥ n1/5−δ with δ > 2ε/(25+5ε)
we get

m−2α−1n1 ≤ n−(1+2εα/5)+δ(2α+1)+1 = n−2εα/5+δ(5+2ε) → 0,

such that n = o(m2α+1) and p∗ = o(n1/5). Also note that the choice m =
n1/(2α+1) is the optimal choice for m – for known θ∗ ∈ R

m – in the given
setting as a consequence of the bias variance decomposition in nonparametric
series estimation; see [16]. It leads to the optimal rate for the mean squared
error in the estimation of fη∗ , i.e. nα/(2α+1).

Remark 2.10. It can be shown that if the model (1.4) is correct the matrix

σ2d̆−2 is the lower bound for the variance of regular estimators of θ∗ ∈ R
m if

ε ∼ N(0, σ2) and X is uniformly distributed on BsX ⊂ R
p.

2.2.2. The general case

Assume now that the model (1.4) could be wrong. In this case the results for
the estimator in (1.6) slightly change. This mainly is a result of the fact that in
this case

‖g(X)− E[g(X)|X�θ∗]‖ > 0.



2542 A. Andresen

This leads to a more complicated form of the information operator −∇2
EL(υ∗),

which is harder to bound. It is worth mentioning that theses terms would dis-
appear if for all θ ⊥ θ∗ the random variable X�θ was independent of X�θ∗.

Proposition 2.3. Assume (A). Suppose that p∗6 log(n)/n → 0 and that
m−2(α−1)n → 0. If n ∈ N is large enough, it holds with probability greater
than 1− Ce−x−nc

∥∥√n
(
θ̃m − θ∗

m

)
− ξ̆m(υ∗

m)
∥∥ ≤ C

p∗7/2 + x√
n

,

∣∣2L̆(θ̃m,θ∗
m)− ‖d̆mξ̆m(υ∗

m)‖2
∣∣ ≤ C

(
√
p+ x+

p∗7/2 + x√
n

)
p∗7/2 + x√

n
.

For the unbiased target θ∗ we get the following result.

Proposition 2.4. Assume (A). Suppose that p∗6 log(n)/n → 0 and that
m−2(α−1)n → 0. If n ∈ N is large enough it holds with probability greater than
1− Ce−x−nc

∥∥√n
(
θ̃m − θ∗)− ξ̆m(υ∗

m)
∥∥ ≤ C

(
p∗7/2 + x√

n
+

√
nm−(α−1)

)
,

∣∣2L̆(θ̃m,θ∗)− ‖d̆mξ̆m(υ∗
m)‖2

∣∣ ≤ C

(
p∗7/2 + x√

n
+

√
nm−(α−1)

)

·
(
√
p+ x+

p∗7/2 + x√
n

)
.

Remark 2.11. Note that we do not show any weak convergence statements for
the general case. The approach of [1] is not applicable – at least not with the
arguments we use in Lemma A.6 for the case that the model in (1.4) is correct.
Also note that to control the approximation bias the necessary smoothness of
E[g(X)|X�θ∗ = ·] = fη∗(·) : R → R measured in α > 0 in (2.2) increases from
α > 2 to α > 14/3 to ensure that α(m) → 0.

2.3. A way to calculate the profile estimator

In this section we briefly sketch how to actually calculate υ̃ ∈ R
p∗

in practice.
We assume that the full dimension p + m ∈ N is finite and thus suppress the
index·m. For this note that the maximization problem

υ̃ = argmax
Υ

n∑
i=1

(Yi − fη(θ
�Xi))

2/2,
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is not convex and thus computationally involved. We propose to obtain the
maximizer via the alternation maximization procedure as it is analyzed in [3].
This sequential algorithm – which is a variant of the EM algorithm – works as

follows: Start with some initial guess υ̃(0) = (θ̃
(0)

, η̃(0)) ∈ Υ . Then calculate for
k ∈ N iteratively

υ̃(k,k+1) def
= (θ̃

(k)
, η̃(k+1)) =

(
θ̃
(k)

, argmax
η

L(θ̃
(k)

,η)

)
,

υ̃(k,k) def
= (θ̃

(k)
, η̃(k)) =

(
argmax

θ
L(θ, η̃(k)), η̃(k)

)
.

In the following we write υ̃(k,k(+1)) in statements that are true for both υ̃(k,k+1)

and υ̃(k,k). For the initial guess we propose a simple grid search. For this generate

a uniform grid GN
def
= (θ1, . . . ,θN ) ⊂ S+

1 and define

υ̃(0) def
= argmax

(θ,η)∈Υ
θ∈GN

L(υ). (2.3)

Note that given the grid the above maximizer is easily obtained. Simply calculate

η̃
(0)
l

def
= argmax

l=1,...,N
L(θl,η) (2.4)

=

(
1

n

n∑
i=1

ee�(X�
i θl)

)−1
1

n

n∑
i=1

Yie
�(X�

i θl) ∈ R
m,

where by abuse of notation e = (e1, . . . , em) ∈ R
m. Observe that

υ̃(0) = argmax
l=1,...,N

L(θl, η̃
(0)
l ).

Define the fineness of the grid via τ
def
= supθ,θ◦∈GN

‖θ − θ◦‖. To assess the
properties of the alternating procedure we apply Theorem 4.6 and Theorem 2.4
of [3]. Before we present the results we need to introduce the constant ρ, that
plays a central role in this part. It is defined – with the blocks of the information
matrix in (1.16) – as

‖d−1ah−1‖2 = ρ.

With Lemma 5.3 we know that 0 ≤ ρ < 1. To ease the presentation we again
distinguish the case that the model (1.4) is correct from the general one.
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2.3.1. The single index case

Theorem 4.6 yields:

Proposition 2.5. Assume (A) and that the model (1.4) is correct. Suppose that

m−(2α+1)n → 0 and that p∗4/n → 0. Set τ = o(p∗−3/2). With the initial guess
given by Equation (2.3) and for n ∈ N large enough the alternating sequence
satisfies with probability greater than 1− Ce−x−nc

∥∥√n
(
θ̃
(k)

− θ∗)− ξ̆
∥∥ ≤ C

p∗5/2 + ρ2kR2
0(x) + x√

n
, (2.5)

∣∣2L̆(θ̃(k)
,θ∗)− ‖d̆ξ̆‖2

∣∣ ≤ C
p∗5/2 + ρ2kR2

0(x) + x√
n

(2.6)

·
(
√
p+ x+

p∗5/2 + ρ2kR2
0(x) + x√

n

)
,

where

R0(x) ≤ Cp∗3/4
√
p∗ + x+ nτ2 +

√
nτ

√
x.

Remark 2.12. The constraint τ = o(p∗−3/2) implies that for the calculation

of the initial guess the vector η̃
(0)
(l) in (2.4) and the functional L(·) have to be

evaluated N = p∗3(p−1)/2 times. This means – since m5 = o(n) is necessary for
the right-hand sides in (2.6) and (2.5) to vanish – that we need an accuracy
of the first guess of order o(n−3/10), while the accuracy of the output of the
alternating procedure is of order n−1/2. In the general case we need – see below
– an accuracy of the first guess of order o(n−9/26) because τ = o(m−9/4) and
m13/2 = o(n). Although this difference does not seem large the number of grid
points necessary for n−1/2-accuracy of the grid search is by a factor n(p−1)/5 or
n2(p−1)/13 larger than those for a sufficient initial guess.

The above Theorem tells us that as far as statistical inference is concerned

the estimator θ̃
(k)

and the profile ME θ̃ are interchangeable as soon as ρkR0

is of the order of p∗. If not the statistical properties but mere convergence of

the sequence υ̃(k,k(+1)) → υ̃ is desired we can prove the following result using
Theorem 2.4 of [3].

Proposition 2.6. Assume (A) and that the model (1.4) is correct. Suppose that

m−(2α+1)n → 0 and that p∗4/n → 0. Set τ = o(p∗−3/2). Let x > 0 be chosen
such that

x ≤ 1

2

(
ν̃2ng̃2 − log(p∗)

)
∧ p∗.
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Then with the initial guess given by Equation (2.3) and for n ∈ N large enough

P

(⋂
k∈N

{√
n
∥∥∥υ̃ − υ̃(k,k(+1))

∥∥∥ ≤ r∗k

})
≥ 1− Ce−x−nc,

where with some constant C0 > 0 and κ(x) ≤ Cp∗3/2
√
p∗ + x

r∗k ≤

⎧⎨⎩ρk
√
n√

n−κ(x)k
R0, κ(x)k ≤ √

n,

ρ
k

log(k)
log
( √

n(1−ρ)
κ(x)

)
ckR0, otherwise,

with some sequence (ck) ∈ N, where 0 < ck → 2 and with

R0 ≤ C

√
p∗ + x+ nτ2 +

√
nτ

√
x.

Remark 2.13. In a nutshell this tells us that up to a 1/ log(k)-factor we can

ensure linear convergence of the sequence (θ̃
(k)

, η̃(k)) to the global maximizer
υ̃.

Remark 2.14. Note that the constraint on the size of the dimension p∗ ∈ N

for accurate results is weaker in Proposition 2.6 than in Proposition 2.5 because
there are no “right-hand sides” and thus m4 = o(n) is sufficient.

2.3.2. The general case

Again the results become worse in the general case:

Proposition 2.7. Assume (A). Suppose that m6 log(n)/n → 0 and that
m−2(α−1)n → 0. Furthermore let x ≤ 2ν̃2g̃2(1 + Cbias)n set τ = o(m−11/4).
With the initial guess given by Equation (2.3) the alternating sequence satisfies
with probability greater than 1− Ce−x−nc

∥∥√n
(
θ̃
(k)

− θ∗)− ξ̆
∥∥ ≤ C

p∗7/2 + ρ2kR2
0(x) + x√

n
,

∣∣2L̆(θ̃(k)
,θ∗)− ‖d̆ξ̆‖2

∣∣ ≤ C
p∗7/2 + ρ2kR2

0(x) + x√
n

·
(
√
p+ x+

p∗7/2 + ρ2kR2
0(x) + x√

n

)
,

where

R0(x) ≤ Cp∗5/4
√

p∗ log(n) + x+
√
mnτ2 +

√
nτ

√
x.
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Proposition 2.8. Assume (A). Suppose m6 log(n) = o(n) and assume that
m−2(α−1)n → 0. Set τ = o(m−11/4) and let x > 0 be chosen such that

x ≤ 1

2

(
ν̃2ng̃2 − log(p∗)

)
∧ p∗.

Then

P

(⋂
k∈N

{√
n
∥∥∥υ̃ − υ̃(k,k(+1))

∥∥∥ ≤ r∗k

})
≥ 1− Ce−2x−nc,

where with some constant C0 and κ(x) ≤ Cp∗5/2
√
p∗ + x

r∗k ≤

⎧⎨⎩ρk
√
n√

n−κ(x)k
R0, κ(x)k ≤ √

n,

ρ
k

log(k)
log
( √

n(1−ρ)
κ(x)

)
ckR0, otherwise,

with some sequence (ck) ∈ N, where 0 < ck → 2 and with

R0 ≤ C

√
p∗ log(n) + x+

√
mnτ2 +

√
nτ

√
x.

2.4. Performance of Projection Pursuit Procedure

In this section we want to briefly assess the performance of the Projection Pur-
suit procedure of [7] as we explained it in the introduction (i.e. in 1). We assume
that the iteration k ∈ N in the alternation maximization procedure is large
enough so that we can pretend that one can directly access the maximizer υ̃.
Also we assume that the number of iterations M ∈ N is fixed. Further we again
suppress ·m to ease notation. In the previous sections we already established
that for observations of the kind

Yi = g(Xi) + εi, i = 1, . . . , n,

the estimator in (1.6) satisfies∣∣∣E[Y |X�θ∗
(1)]− f η̃(1)

(X�θ̃(1))
∣∣∣ (2.7)

≤ C
(
r∗ + α(m) +♦(x) + ‖D(1)

−1∇L(1)(υ
∗
(1))‖

)
/
√
n,

with high probability. But in each step a new data set is generated, i.e. given
Yi(l), υ̃(l) we generate

Yi(l+1)
def
= Yi(l) − f η̃(l)

(X�
i θ̃(l)) = g(l+1)(Xi) + εi + τi(l),
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where

g(l)(Xi) ≈
M∑
s=l

fη∗
(s)
(X�

i θ
∗
(s)),

τi(l) =

l∑
s=1

fη∗
(s)
(X�

i θ
∗
(s))− f η̃(s)

(X�
i θ̃(s)).

The errors τi(l) are not i.i.d. and not necessarily centered such that we can not
directly apply the results from above for l > 1. But a slight modification serves
a remedy. For this remember that the central tool for Theorems of the type of
4.3 is to bound with probability 1− e−x

sup
υ∈Υ◦(r0)

∥∥D−1 (∇L(υ)−∇L(υ∗)) +D(υ − υ∗)
∥∥ ≤ ♦(r0, x),

and to show that P(υ̃, υ̃θ∗ ∈ Υ◦(r0)) ≥ 1− e−x. So we decompose

L(l)(υ, Yi(l))

= −
n∑

i=1

(
g(l)(Xi) + εi − fη(X

�
i θ)

)2
−

n∑
i=1

τi(l−1)
2 + 2

n∑
i=1

τi(l−1)

(
fη(X

�
i θ)− fη∗

(l)
(X�

i θ
∗
(l))
)

def
= Lε(l)(υ, Yi(l)) + L(l)τ

(υ, Yi(l)),

and define

υ∗
m(l)

def
= argmax

υ∈Υm

ELε(l)(υ),

Dm(l)
2 def

= ∇2
E[Lε(l)(υ

∗
m(l))],

ζε(l)(υ)
def
= Lε(l)(υ)− ELε(l)(υ).

We assume that the condition (model bias) holds for every function g(l). With
Remark 2.3, Lemma 5.3 and Lemma A.6 this means that the conditions of
Section 4.1 and 4.3 are met for (Lε(l), Υm,Dm(l)) with high probability for every
l = 1, . . . ,M . It remains to show that for each l ∈ N and m ∈ N large enough
the contribution of τi(l) remains insignificant. We do this in the proof of the
following Proposition.

Proposition 2.9. Assume that M = O(p∗) and that the conditions (A) hold

for every l = 1 . . . ,M . Assume further p∗3 log(n)M+x√
n

→ 0 and assume that
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m−2(α−1)n → 0. For n ∈ N large enough and with probability greater than
1− CMe−x−nc we have

sup
x∈BsX

(0)

∣∣∣∣∣
M∑
l=1

fη∗
(l)
(x�θ∗

(l))− f η̃(l)
(x�θ̃(l))

∣∣∣∣∣ ≤ CM
√
m

(
p∗7/2 + x

n
+

√
p∗ + x√

n

)
.

Remark 2.15. Denoting the bias

b(M)
def
=

∥∥∥∥∥g −
M∑
l=1

fη∗
(l)
(·�θ∗

(l))

∥∥∥∥∥
∞

,

Proposition 2.9 implies if x ≤ p∗ = o(n1/6) that

sup
x∈BsX

(0)

∣∣∣∣∣g(x)−
M∑
l=1

f η̃(l)
(x�θ̃(l))

∣∣∣∣∣ ≤ CMo(n−1/3) + b(M).

Depending on the speed with which b(M) decays in M the resulting rate can
be substantially faster than n−α/(2α+p).

3. Technical peculiarities

Before we explain in more detail how the above statements can be derived based
on the theory presented in [2] and [3], we address two technical issues that arise
with the regression setup with random design and due to the peculiarities of the
sieve approach.

3.1. Choice of basis

To control the approximation bias of the sieve estimator θ̃m ∈ R
p with the

approach from [1] we can not use any basis (ek)k∈N in L2([−sX, sX]). We need
to show in the proof of Lemma A.6 that the following terms vanish as m → ∞∫

R

em+k(x)em+l(x)pX�θ∗(x)dx; l, k ∈ N, (3.1)

where pX�θ∗ denotes the density of X�θ∗ ∈ R. But it is not clear whether terms
as in (3.1) vanish for any basis of L2([−sX, sX]). Of course – following [18] – we
could assume that the basis is orthogonal in the inner product induced by the
Hessian ∇2

EL(υ∗). But for this one would need to know the true parameter
θ∗ ∈ R

p and the density pX : R
p → R in advance. We want to avoid such

assumptions and also the tedious calculations resulting from using an estimator
of θ∗ plugged into an estimator of pX�· for the construction of a suitable basis.
As it turns out an orthonormal wavelet basis is suitable for our purpose. For
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high indexes k ∈ N the support of each wavelet ek is contained in a small
interval on which the density pX�θ∗ can be well approximated by a constant.
Due to orthogonality and shrinking supports of the basis the term in (3.1) can
be shown to diminish sufficiently fast for a Lipschitz continuous density pX�θ∗

(see Lemma A.6). The trouble is that our approach relies on smoothness of the
basis elements. Consequently we need a smooth orthogonal wavelet basis on an
interval. Thanks to [4] (Theorem 4.4) there can indeed be obtained a basis (ek))
for L2([−sX, sX]), that is contained in C3(R) and satisfies for any l, k ∈ N with
k = 2jk + jk17− 1 + rk ∈ N and rk ∈ {0, . . . , 2jk + 2 ∗ 17− 1}

〈el, ek〉L2(R) = δl,k, |supp(ek)| ≤ 2−jk17sX.

This basis has another useful property that will come in handy in the proof of
Lemma A.6: For any k ∈ N with k = 2jk + jk17− 1 + rk ∈ N it holds∣∣∣{l = 2jl + jl17 + rl

∣∣∣ rl ∈ {0, . . . , 2jl + 16}, supp(ek) ∩ supp(el) �= ∅
}∣∣∣

≤ �2(jl−jk)17� . (3.2)

In words this means that the number of nonempty intersections of the supports
of ek and el can be controlled well. For nearly all basis functions el with l ≥ k
we have ∫

R

ek(x)el(x)pX�θ∗(x)dx = 0.

This will allow to satisfy the conditions (κ) and (υκ) – which allows to bound
the sieve bias (1.10) as is shown in [1] – in Lemma A.6.

3.2. Implications of Regression setup

Due to the regression set up there are some particularities to the analysis that
we have to point out here. The definition of υ∗

m ∈ Υ reads

υ∗
m

def
= argmax

υ∈Υm

ELm(υ),

where E denotes the expectation operator with respect to the joint measure of
(X, ε) ∈ R

p × R, similarly D2(υ) is also based on the full expectation E. But
in Lemma 5.3 we show the conditions (ED0), (Er) and (ED1) for the random
variables

∇(1− Eε)Lm(υ) ∈ R
p+m,

i.e. we use only the expectation with respect to the noise (εi)i=1,...,n but condi-
tional on (Xi)i=1,...,n. This leads to rather weak conditions on the errors (εi).
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Especially the conditions (Er) and (ED1) would otherwise become quite restric-
tive. But on the other hand this means that a list of additional steps become
necessary to apply the theory of [2] and [3]. As becomes evident from the proof
of Theorem 2.2 of [2], we have to bound the term

sup
υ∈Υ◦(r)

‖D−1
m ∇(E− Eε)[Lm(υ∗

m)− Lm(υ)]‖,

and ad the obtained bound to the error term ♦̆(r0, x). The matrix Dm is defined
in (1.16). Also the probability of the desired bound has to be subtracted from
the probability under which the event in Theorem 2.2 of [2] is valid. See Section
4.2 for more details. The following lemma serves this bound.

Lemma 3.1. With some constant C > 0

P

( ⋂
r≤R0

{
sup
υ∈Υ

‖D−1
m ∇(E− Eε)[Lm(υ∗

m)− Lm(υ)]‖

≥ Cr
√
x+ p∗ log(p∗)/

√
n

})
≤ e−x.

Remark 3.1. We will see that the error term

Cr
√
x+ p∗ log(p∗)/

√
n,

is of smaller order than the bounds that we will derive for ♦̆(r, x) in the subse-

quent analysis, namely bounds of the order p∗5/2/
√
n. Consequently we neglect

it in the following and let a constant C > 0 account for its contribution in the
formulation of our results.

Furthermore in the derivation of the conditions (ED0), (Er) and (ED1) we
obtain bounds for ν1, ν0, νr that involve terms of the kind

‖E [Sn]− Sn‖ , Sn =
1

n

n∑
i=1

M(Xi), M(Xi) ∈ R
p∗×p∗

.

This leads to concentration bounds for sums of i.i.d. random matrices which
can be handled with the results of [22]. We do this in Section A.8.3. Again the
set on which Theorem 2.2 of [2] occurs has to be intersected with the set on
which the matrix deviation bounds are valid. Another implication is that when
proving condition (Lr) we have to consider EεL(υ,υ

∗
m) instead of EL(υ,υ∗

m),
which makes the proof quite involved and again makes the restriction to a set
of high probability necessary. This is why in Proposition 2.1 the probability of
the desired results can only be bounded from bellow by 1− 12e−x − Ce−nc−p∗x

instead of 1− 5e−x as in Proposition 2.4 of [2].



Finite sample single index estimation 2551

4. Synopsis of the finite sample theory for M-Estimators

In this section we briefly summarize the results of [2] and [3] and thereby adapt
them to the regression setting of the given model. The presentation mimics that
of those papers and thus is rather abstract. Readers familiar with those papers
can skip this section.

4.1. Conditions

This section collects the conditions that underlie the results of [2] and [3]. They
are taken from [2] but are adapted to our setting. This means in particular that
the expectation operator in the moment conditions is Eε and not the full one.
[2] assume that the function L(υ) : Rp∗ → R is sufficiently smooth in υ ∈ R

p∗
,

∇L(υ) ∈ R
p∗

stands for the gradient and ∇2
EL(υ) ∈ R

p∗×p∗
for the Hessian of

the expectation EL : Rp∗ → R at υ ∈ R
p∗
. By smooth enough we mean that all

appearing derivatives exist and that we can interchange ∇EL(υ) = E∇L(υ) on
Υ◦(r0), where r0 > 0 is defined in equation (4.2) and Υ◦(r) in equation (4.1).
This clearly is the case for the given problem of this work.

With υ∗
m ∈ R

p∗
from (1.18) define Dm

def
= ndm(υ∗

m) with dm(υ) in (1.16)
and V2

m = nCov(∇�m(υ∗
m)) ∈ R

p∗×p∗
. Using the matrix D2

m we define the local
set Υ◦(r) ⊂ Υm ⊆ R

p∗
with some r ≥ 0:

Υ◦(r)
def
=
{
υ = (θ,η) ∈ Υm : ‖Dm(υ − υ∗

m)‖ ≤ r
}
. (4.1)

We introduce υ̃θ∗
m
∈ Υ , which maximizes Lm(υ) subject to Π0υ = θ∗

m:

υ̃θ∗
m

def
= (θ∗

m, η̃θ∗
m
)
def
= argmax

υ∈Θ
Π0υ=θ∗

m

L(υ),

and define the radius r0 > 0

r0(x)
def
= inf

r>0

{
P(υ̃, υ̃θ∗

m
∈ Υ◦(r)) ≥ 1− e−x

}
, (4.2)

which is set to infinity if υ̃ = ∅ or υ̃θ∗ = ∅. Under the conditions (Lr) and (Er)
Theorem 2.3 of [2] states that r0 = r0(x) ≈ C

√
x+ p∗ > 0. Further introduce

the projected gradient and the covariance of the projected score

∇̆θ = ∇θ −AmH−2
m ∇η, V̆ 2 = nCov(∇̆θ�(υ

◦)).

Finally we define

ξ̆
def
=

1√
n
d̆−2∇̆L(υ∗), ξ̆m

def
=

1√
n
d̆−2
m ∇̆Lm(υ∗

m).
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A sufficient list of conditions

The following three conditions ensure that D2
m is not degenerated and further

quantify the smoothness properties on Υ◦(r) of the expected value EL(υ) and
of the stochastic component ζm(υ) = Lm(υ)− EεLm(υ).

Represent

D2
m(υ) =

(
D2(υ) Am(υ)

A�
m(υ) H2

m(υ)

)
.

(I) It holds for some ρ < 1

‖D−1A�
mH−1

m ‖ ≤ ρ.

(L̆0) For each r ≤ 4r0, there is a constant δ(r) such that it holds on the set
Υ◦(r):

‖D−1D2(υ)D−1 − Ip‖ ≤ δ̆(r),

‖D−1(Am(υ)−Am)H−1
m ‖ ≤ δ̆(r)∥∥D−1AmH−1

m

(
Im −H−1

m H2
m(υ)H−1

m

)∥∥ ≤ δ̆(r).

(ĔD1) ζ(υ) → ζ(υ′) as υ → υ′. Further for all 0 < r < 4r0, there exists a
constant ω ≤ 1/2 such that for all |μ| ≤ ğ and υ,υ′ ∈ Υ◦(r)

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖≤1

logEε exp

{
μ

ω̆

γ� 1√
n
d̆−1

{
∇̆θζ(υ)− ∇̆θζ(υ

′)
}

‖Dm(υ − υ′)‖

}
≤ ν̆21μ

2

2
.

(ĔD0) There exist a matrix V̆ 2 ∈ R
p×p, constants ν0 > 0 and ğ > 0 such that

for all |μ| ≤ ğ

sup
γ∈Rp

logEε exp

{
μ
〈∇̆θζ(υ

◦),γ〉
‖V̆ γ‖

}
≤ ν̆20μ

2

2
.

Remark 4.1. Please see [2] for a discussion and explanation of the above con-
ditions.

Stronger conditions for the full model

In many situations the following, stronger conditions, are easier to verify and
allow to derive more accurate results:

(L0) For each r ≤ r0, there is a constant δ(r) such that it holds on the set
Υ◦(r): ∥∥D−1

m

{
∇2

ELm(υ)
}
D−1

m − Ip∗
∥∥ ≤ δ(r).
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(ED1) There exists a constant ω ≤ 1/2, such that for all |μ| ≤ g and all
0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖=1

logEε exp

{
μγ�D−1

m

{
∇ζ(υ)−∇ζ(υ′)

}
ω ‖Dm(υ − υ′)‖

}
≤ ν21μ

2

2
.

(ED0) There exist a matrix V2
0 ∈ R

p∗×p∗
, constants ν0 > 0 and g > 0 such

that for all |μ| ≤ g

sup
γ∈Rp∗

logEε exp

{
μ
〈∇ζ(υ◦),γ〉

‖Vγ‖

}
≤ ν20μ

2

2
.

The following lemma shows, that these conditions imply the weaker ones from
above:

Lemma 4.1 (Lemma 2.1 of [2]). Assume (I). Then (ED1) implies (ĔD1), (L0)

implies (L̆0), and (ED0) implies (ĔD0) with

ğ =

√
1− ρ2

(1 + ρ)
√

1 + ρ2
g, ν̆i =

(1 + ρ)
√

1 + ρ2√
1− ρ2

νi, δ̆(r) = δ(r), and ω̆ = ω.

Conditions to ensure concentration of the ME

Finally we present two conditions that allow a specific approach to determine
the radius r0(x) > 0 from (4.2). These conditions have to be satisfied on the
whole set Υ ⊆ R

p∗
.

(Lr) For any r > r0 there exists a value b(r) > 0, such that

−EL(υ,υ◦)

‖Dm(υ − υ◦)‖2 ≥ b(r), υ ∈ Υ◦(r).

(Er) For any r ≥ r0 there exists a constant g(r) > 0 such that

sup
υ∈Υ◦(r)

sup
μ≤g(r)

sup
γ∈Rp∗

logEε exp

{
μ
〈∇ζ(υ),γ〉
‖Dmγ‖

}
≤ ν2rμ

2

2
.

4.2. General results for profile M-estimators

[2] define for some x, r > 0 the semiparametric spread

♦̆(r, x)
def
= 4

(
4

(1− ρ2)2
δ̆(4r) + 6ν1ω̆z1(x, 2p

∗ + 2p)

)
r. (4.3)

Remark 4.2. The constant z1(x, ·) is of order of
√
x+ ·. For a precise definition

see Appendix C of [2].
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[2] present the following three results, that we adapted for the regression
setup. They can be proved in exactly the same way:

Theorem 4.2 ([2], Theorem 2.3). Suppose that on some set N (x) ⊂ Ω the
condition(Er) and (Lr) with b(r) ≡ b is met. Further define the following ran-
dom set

Υ (K)
def
= {υ ∈ Υ : L(υ,υ∗) ≥ −K}.

If for a fixed r0 and any r ≥ r0, the following conditions are fulfilled:

6νr

√
x+ 2p∗ +

b

9ν2r
K ≤ rb,

1 +
√
x+ 2p∗ ≤ 3ν2rg(r)/b, (4.4)

then

P(Υ (K) ⊆ Υ◦(r0)) ≥ 1− e−x − P(N (x)c).

Theorem 4.3 (Theorem 2.2 of [2]). Assume (L̆0) and (I). Further assume

that on some set N (x) ⊂ Ω the condition (ĔD1) is met. Further assume that
on N (x) ⊂ Ω the sets of maximizers υ̃, υ̃θ∗ are not empty and that it contains
with some τ(·) ∈ R the set{

sup
υ∈Υ◦(r0)

‖∇(E− Eε)[L(υ
∗
m)− L(υ)]‖ ≤ τ(r0)

}
∩ {υ̃, υ̃θ∗ ∈ Υ◦(r0)}.

Then it holds on a set of probability greater 1− e−x − P(N (x)c)∥∥√nd̆
(
θ̃ − θ∗)− d̆ξ̆

∥∥ ≤ ♦̆(r0, x) + τ(r0),∣∣2L̆(θ̃,θ∗)− ‖d̆ξ̆‖2
∣∣ ≤ 5

(
‖ξ̆‖+ ♦̆(r0, x) + τ(r0)

)(
♦̆(r0, x) + τ(r0)

)
,

where the spread ♦̆(r0, x) is defined in (4.3) and where r0 > 0 is defined in (4.2).

Proposition 4.4 (Proposition 2.4 of [2]). Assume the conditions of Theorem
4.3 and additionally assume (L0) and that (ED1) and (ED0) are met on N (x).
Then the results of Theorem 4.3 hold with r1 ≤ r0 instead of r0 and with
probability greater 1− 4e−x − P(N (x)c) where

r1 ≤ z(x,B) +♦Q(R0, x) ∧ r0(x),

where ♦Q(r, x) is of similar order as ♦(r, x) defined in (4.3). Further if there
is some ε > 0 such that δ(r)/r ∨ 6ν1ω ≤ ε for all r ≤ r0 and with 6εr0(x) < c
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and 6εr0(x) < 1 then r0 can be replaces with r∗0 which is bounded by

r∗0 ≤ z(x,B) + εzQ(x, 4p
∗)2 + ε2

18

1− c
zε(x).

Remark 4.3. The constant z(x,B) is of order of
√
x+ p∗. For a precise def-

inition see Appendix A of [2]. Similarly the constant zQ(x, 4p
∗) is of order of√

x+ p∗. For a precise definition see the supplement of [19].

Remark 4.4. This is a slightly refined version of Proposition 2.4 of [2], that
can be derived using arguments that are similar to those underlying Theorem
2.4 of [3].

4.3. A way to bound the sieve bias

Theorem 4.3 involves two kinds of bias once it is applied to the sieve estimator
θ̃m: one that concerns the difference θ∗

m − θ∗ ∈ R
p and the other the difference

between d̆m(υ∗
m) ∈ R

p×p and d̆(υ∗) ∈ R
p×p where [2] combined with [1] present

the following conditions to control these biases:

Represent υ = (Πp∗υ,κ) ∈ R
p∗ × l2 and

−∇2
EL(υ) =

(
D2

m(υ) Aυmκ(υ)
Aυκ(υ)

� H2(κκ)

)
: Rp∗ × l2 → R

p∗ × l2.

(κ) The vector κ∗ def
= (Idl2 −Πp∗)υ∗ ∈ l2 satisfies ‖Hκκκ

∗‖2 ≤ Cκ∗m for some
Cκ∗ > 0 and with α(m) → 0

‖D−1
m A�

κυm
κ∗‖ ≤ α̂(m).

Further for any λ ∈ [0, 1] with some τ(m) → 0

‖D−1
m

(
∇υmκEL(Πp∗υ∗, λκ∗)−A�

κυm

)
κ∗‖ ≤ τ(m),∣∣∣κ∗�(Hκκ −∇κκEL ((Πp∗υ∗, λκ∗))κ∗
∣∣∣ ≤ Cκ∗m.

(υκ) Assume that with some β(m) → 0

‖H−1
κκA

�
κυm

D−1
m ‖ ≤ β(m).

(Lr∞) For any r > r0 there exists a value b(r) > 0, such that

−EL(υ,υ∗)

‖D(υ − υ∗)‖2 ≥ b(r).
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(bias′′) As m → ∞ with ‖ · ‖ denoting the spectral norm

‖d̆−1
m (υ∗

m)v̆2m(υ∗
m)d̆−1

m (υ∗
m)− d̆−1v̆2d̆−1‖ → 0,

where v̆2m =
1

n
Cov(∇̆(υ∗

m)).

For some r > 0 define the set

Υ◦,m(r)
def
= {υ ∈ R

p∗
, ‖Dm(υ∗

m)(υ − υ∗
m)‖}.

Theorem 4.5 (Corollary 2.8, 2.10 and Theorem 2.9 of [2]; Theorem 2.1 of
[1]). Let the condition (Lr∞) with b(r) ≡ b > 0, (κ) and condition (I) from
Section 4.1 be satisfied for both Dm(υ∗) and Dm(υ∗

m) and for EL : l2 → R. Set
r∗2 = 4C2κ∗m/b. Assume that on some set N (x) ⊂ Ω and for some m0 ∈ N

and all m ≥ m0 the conditions (ĔD0), (ĔD1) and (L̆0) from Section 4.1 are
satisfied for all m ≥ m0 for some m0 ∈ N and with D2

0 = ∇2
p+mELm(υ∗

m)

∈ R
p∗×p∗

, V2
0 = Cov[∇p+mLm(υ∗

m)] ∈ R
p∗×p∗

and υ◦ = υ∗
m ∈ R

p∗
and for any

r ≤ r∗ ∨ r◦0. Further assume that on N (x) ⊂ Ω the sets of maximizers υ̃, υ̃θ∗

are not empty and that it contains with some τ(·) ∈ R the set{
sup

υ∈Υ◦(r0)
‖∇(E− Eε)[L(υ

∗
m)− L(υ)]‖ ≤ τ(r◦0)

}
∩{υ̃m, υ̃θ∗

m,m, υ̃θ∗,m ∈ Υ0,m(r◦0)}.

Then it holds for any m ≥ m0 with probability greater 1− e−xn − P(N (x)c)

∥∥√n
(
θ̃m − θ∗)− d̆mξ̆m(υ∗

m)
∥∥ ≤ ♦̆(r◦0, x) + τ(r0) + α(m),∣∣2L̆(θ̃m,θ∗)− ‖d̆mξ̆m(υ∗

m)‖2
∣∣ ≤ 5

(
♦̆(r◦0, x) + τ(r0) + α(m)

)
·
(
‖d̆mξ̆m(υ∗

m)‖+ ♦̆(r◦0, x) + τ(r0) + α(m)
)
,

where

α(m) =

√
1 + ρ2

1− ρ2

(
α(m) + τ(m) + 2δ̆(2r∗)r∗

)
.

If further the condition (υκ) and (bias′′) are fulfilled and if for any r > 0

δ̆(r∗) → 0, δ̆n(r) → 0, r0(x) < ∞,

P(N (x)c) → 0, as x → ∞,
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there is a sequence mn → ∞ such that as n → ∞
√
nd̆
(
θ̃m − θ∗) w−→ N(0, d̆−1v̆2d̆−1),

2L̆(θ̃m,θ∗)
w−→ L(‖d̆ξ̆∞‖2), ξ̆∞ ∼ N(0, d̆−2v̆2d̆−2).

Remark 4.5. With remark 2.26 of [2] the radius r◦0 which is defined via

r◦0
def
= inf

{
r > 0/P

({
υ̃m, υ̃θ∗

m,m, υ̃θ∗,m ∈ Υ0,m(r)
})

> 1− e−x
}
,

is of similar order as r0 > 0 which satisfies

r0
def
= inf

{
r > 0/P

({
υ̃m, υ̃θ∗

m,m ∈ Υ0,m(r)
})

> 1− e−x
}
.

The later can be determined using the arguments we present in Section 5.2,
using Theorem 4.2.

4.4. Convergence results for the alternating procedure

To derive convergence statements for the alternating procedure sketched in Sec-
tion 2.3 [3] present the following list of conditions that the initial guess (2.3)
has to satisfy to allow applying their results.

(A1) With probability greater 1−β(A)(x) the initial guess satisfies L(υ̃0,υ
∗) ≥

−K0(x) for some K0(x) ≥ 0.

(A2) The conditions (ĔD1), (L̆0), (ED1) and (L0) from Section 4.1 hold for all
r ≤ R0(x,K0) where

R0(x) ≤ C
√
x+ p∗ +K0. (4.5)

(A3) There is some ε > 0 such that τ(r)/r∨ δ(r)/r∨ 12ν1ω ≤ ε for all r ≤ R0.
Further (A3)] K0 ∈ R and ε > 0 are small enough to ensure

εC(ρ)R0 < 1,

with

C(ρ)
def
=

16
√
2(1 +

√
ρ)

(1− ρ)(1−√
ρ)

.

(B1) Assume for all r ≥ 6ν0

b

√
x+ 4p∗

1 +
√
x+ 4p∗ ≤ 3ν2r

b
g(r).
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Theorem 4.6 (Theorem 2.2 of [3]). Assume that the conditions (L0) and (L̆0)
are met. Assume that on some set N (x) ⊂ Ω the conditions (ED0),(ED1), (Lr),

(ĔD1) and (Er) of Section 4.1 are met with a constant b(r) ≡ b and where
V2
0 = Cov

(
∇L(υ∗)

)
, D2

0 = −∇2
EL(υ∗) and where υ◦ = υ∗. Further assume

that on N (x) ⊂ Ω the sets (υ̃(k,k(+1))) are not empty and that it contains the
set

⋂
r≤R0

{
sup

υ∈Υ◦(r)
‖∇(E− Eε)[L(υ

∗
m)− L(υ)]‖ ≤ τ(r)

}

∩{(υ̃(k,k(+1))) ⊂ Υ0,m(R0)}.

Further assume (B1) and that the initial guess satisfies (A1) and (A2). Then it
holds with probability greater 1− 8e−x − β(A) − P(N (x)c) for all k ∈ N

∥∥D̆(θ̃k − θ∗)− ξ̆
∥∥ ≤ ♦̆Q(rk, x) + τ(rk),∣∣max

η
L(θ̃k,η)−max

η
L(θ∗,η)− ‖ξ̆‖2/2

∣∣ ≤ 5
(
‖ξ̆‖+ ♦̆Q(rk, x) + τ(rk)

)
(♦̆Q(rk, x) + τ(rk)),

where

rk ≤ C
(√

p∗ + x+ ρkR0

)
,

with a constant C that depends on ρ < 1 and 1 − C(ρ)εR0 > 0. ♦̆Q(r, x) is of

similar order as ♦̆(r, x) defined in (4.3)

[3] also present a result that shows under which conditions the sequence of

estimators (υ̃(k,k(+1))) actually converges to the maximizer υ̃. For this result
consider the following condition.

(ED2) There exists a constant ω ≤ 1/2, such that for all |μ| ≤ g and all
0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ1‖=1

sup
‖γ2‖=1

logE exp

{
μγ�

1 D
−1
{
∇2ζ(υ)−∇2ζ(υ′)

}
γ2

ω2 ‖D(υ − υ′)‖

}

≤ ν22μ
2

2
.

Define z(x,∇2L(υ∗)) via

P
{
‖D−1∇2L(υ∗)‖ ≥ z

(
x,∇2L(υ∗)

)}
≤ e−x,
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and κ(x,R0) as

κ(x,R0)
def
=

2
√
2(1 +

√
ρ)√

1− ρ

[
δ(R0) + 9ω2ν2‖D−1‖z1(x, 6p∗)R0

+ ‖D−1‖z
(
x,∇2L(υ∗)

) ]
.

Theorem 4.7 (Theorem 2.4 of [3]). Assume that the condition (L0) is met.
Assume that on some set N (x) ⊂ Ω the conditions (ED0),(ED1), (Lr) and (Er)
of Section 4.1 are met with a constant b(r) ≡ b and where V2

0 = Cov
(
∇L(υ∗)

)
,

D2
0 = −∇2

EL(υ∗) and where υ◦ = υ∗. Furthermore, assume that on N (x) ⊂ Ω

the sets (υ̃(k,k(+1))) are not empty and that it contains the set

⋂
r≤R0

{
sup

υ∈Υ◦(r)
‖∇(E− Eε)[L(υ

∗
m)− L(υ)]‖ ≤ τ(r)

}

∩{(υ̃(k,k(+1))) ⊂ Υ0,m(R0)}.

Suppose (B1) and that the initial guess satisfies (A1) and (A2). Assume that
κ(x,R0) < (1− ρ). Then

P

(⋂
k∈N

{∥∥∥D(υ̃(k,k(+1)) − υ∗)
∥∥∥ ≤ r∗k

})
≥ 1− 3e−x − β(A),

where

r∗k ≤

⎧⎨⎩ρk 4
√
2

1−κ(x,R0)k
R0, κ(x,R0)k ≤ 1,

ρ
k

log(k)
log
(

1−ρ
κ(x,R0)

)
ckR0, otherwise,

with some sequence (ck) ∈ N, where 0 < ck → 2.

5. Application of the finite sample theory

We will now apply the results presented in the previous section to our problem.
First we will show that the conditions (ED0), (ED1), (L0), (I), of Section 4.1

can be satisfied under the assumptions (A). These imply – by Lemma 4.1 - (L̆0),

(ĔD1) and (ĔD0) from Section 4.1, necessary for Theorem 2.2 of [2]. Further we
will show that the conditions (Er) and (Lr) from 4.1 are met. This will allow
to determine r0 > 0 and ensure that the sets of maximizers υ̃m, υ̃mθ∗ are not
empty. The subsequent analysis will then serve to determine the necessary size
of n ∈ N that allows to obtain good bounds for ♦̆(r0, x) ∈ R. Concerning the
alternation procedure we will show that the initial guess from (2.3) and the
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values of δ(r), ω from (L̆0), (ĔD1) allow to apply the Theorems 4.6 and 4.7.
Finally we present the proof of Proposition 2.9. Unfortunately this section is
rather technical and is not entirely intelligible without results from Section A.

5.1. Conditions satisfied

In this section we show that the conditions of Section 4.1 are satisfied. First we
derive an a priori bound for the distance between the target υ∗

m ∈ R
p×R

m and
the true parameter υ∗ ∈ R

p × l2

Lemma 5.1. Assume (A) then there is a constant C > 0 such that we get
‖Dm(υ∗

m − υ∗)‖ ≤ r∗ with

r∗ = C
√
nm−(1+2α)/2

√
m. (5.1)

The next step is to determine a radius r◦ that ensures that υ̃ ∈ Sp,+
1 ×Br◦(0)

with large probability.

Lemma 5.2. Define

η̃
(∞)
m,θ

def
= argmax

η∈Rm

Lm(θ,η),

then with some constant C ∈ R

P

(
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≥ C
√
p∗ log(p∗) + x

)
≤ e−x.

Remark 5.1. This Lemma also ensures that the alternating sequence

(θ̃
(k)

, η̃(k(+1))) introduced in Section 2.3 lies in Sp,+
1 ×Bm

r◦(0), with

r◦
def
= C

√
p∗ log(p∗) + x. (5.2)

Let cD > 0 denote the smallest eigenvalue cD
def
= λmin(Dm)/

√
n which as shown

in Lemma A.8 is bounded away from 0. This also means that

Υm ⊆ Υ◦(
√
nr◦/cD)

def
=
{
υ ∈ Υ : ‖Dm(υ − υ∗

m)‖ ≤
√
nr◦/cD

}
.

Now we show that the general conditions of Section 4.1 are met under the
assumptions (A). For this we point out again that due to the random design
regression approach we define the random component of L via L − EεL where
Eε denotes the expectation operator of the law of (εi)i=1,...,n given (Xi)i=1,...,n.
This facilitates the proof of the conditions (ED0), (ED1) and (Er) but leads to
additional randomness, in the sense that the claim of the following lemma is
only true with a certain high probability.
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Lemma 5.3. Assume the conditions (A). Then with υ◦ = υ∗
m ∈ R

p∗
and

V2
0 = Cov

(
∇Lm(υ∗

m)
)
, D2

0 = −∇2
ELm(υ∗

m),

and x ≤ m we get the conditions of section 4.1 on the set{
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≤ C
√
p∗ log(p∗) + x

}
.

More precisely we get (I) and:

(ED0) with probability greater than 1− e−x and with

g =

√
n

Cm
g̃, ν2m = 2ν̃2,

(Er) with probability greater than 1− e−x and with

g(r) =
√
ng̃C−1

(√
m+m3/2r/

√
n
)−1

,

ν2r,m = ν̃2
(
1 + C

(
m3/2 + rm2/

√
n
)
r/

√
n
)

+C
(
m+m3r2/n

) (
x+ log(2m)

)1/2
/
√
n
)
. (5.3)

(ED1) on Υ◦(r) for all r > 0 with rm2/
√
n ≤ 1 with probability greater than

1− e−x and with

g ≥
√
n

rm3/2C
, ω

def
=

2√
n
, ν21,m = ν̃2Cm2.

(L0) is satisfied for all r > 0 with rm3/2/
√
n ≤ 1 and where

δ(r) =
C
{
m3/2 + Cbiasm

5/2
}
r√

n
.

(Lr) if Cbias = 0 and for n ∈ N large enough with b = c(Lr) > 0 as soon as

r2 ≥ Cr∗2/b ∨m, (5.4)

and with probability greater than 1 − exp
{
−m3x

}
− exp

{
−nc(Q)

}
, for

some c(Q) > 0. In the case that Cbias �= 0 we get for

r2 ≥
√
x+ Cp∗[log(p∗) + log(n)]/bE ∨ 2r∗2,
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that with some bbias > 0 independent of n,m, x, r and with probability
greater than 1− e−x

−EεLm(υ,υ∗
m) ≥ bbiasr

2.

Finally we apply Lemma 4.1 to obtain the conditions (L̆0), (ĔD1) and (ĔD0).

Remark 5.2. The condition rm2/
√
n ≤ 1 needed for (ED1) can be relaxed

to read rm3/2/
√
n ≤ 1 if one increases ν21,m = ν̃2Cm3. This does not change

the bounds for ♦(r, x), as δ(r) will still be of the same order as ων1,m. With
this correction the conditions apply for all r ≤ R0, where R0 is the deviation
bound for the elements of the alternation procedure started in υ̃0 in (2.3), as
we explain in Remark 5.6.

Remark 5.3. We do not show the conditions (L̆0), (ĔD1) and (ĔD0) directly.
To benefit from the weaker conditions we would need entry-wise bounds for
the operator AH−2

m for better bounds in the proof of condition (L̆0). As this
work is very long and technical without this sophistication we postpone this
improvement to future work.

5.2. Large deviations

Next we determine the necessary size of the radius r0(x) defined in (4.2). We
want to use Theorem 4.2. We have with Lemma 5.2 combined with Lemma
A.16 that condition (Er) is met with probability 1 − 2e−x and with (setting
r = C

√
n
√
p∗ log(p∗) in (5.3))

g(r) =
√
ng̃C−1

(√
m+m2 log(p∗)

)−1
, ν2r,m ≤ ν̃2Cm3 log(p∗)2.

Furthermore due to r∗ ≤ C
√
p∗ and for moderate x > 0 we find if

r2 ≥
{
Cp∗, if Cbias = 0,

Cp∗ log(n) if Cbias > 0.

that with some b > 0

P
(
−EεLm(υ,υ∗

m) ≥ br2
)
≥ 1− e−x − exp

{
−m3x

}
− exp

{
−nc(Q)/4

}
.

Note that the second condition (4.4) of Theorem 4.2 is automatically satisfied in
our setting for n ∈ N large enough. Finally we only have to ensure that r0 > 0
is large enough to satisfy (5.4), then Theorem 4.2 yields the following corollary.

Corollary 5.4. Consider the set

A def
= {(Er) and (Lr) are met} ∩

{
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≤ C
√
p∗ log(p∗) + x

}
,
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Then it holds that

P

(
A ∩

{
sup

υ∈Υm\Υ◦(r◦0)
L(υ,υ∗

m) < 0

})
≥ 1− e−x − P(Ac),

where

r◦0
def
=

{
Cm3/2

√
x+ p∗ if Cbias = 0,

C
(√

p∗ log(n) ∨m3/2
√
x+ p∗

)
if Cbias > 0.

Repeating the same steps from above gives that on the set

{(Er) and (Lr) are met} ∩
{

sup
θ∈Sp,+

1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≤ C
√
p∗ log(p∗) + x

}

∩
{

sup
υ∈Υm\Υ◦(r◦0)

L(υ,υ∗
m) < 0

}
.

condition (Er) is actually met on Υ◦(r
◦
0) with

g(r) =
√
ng̃(C

√
m)−1, ν2m ≤ Cν̃2m,

if p∗5(1 + Cbias log(n))/n → 0. This gives

Corollary 5.5. Consider the set

B def
= {(Er) and (Lr) are met} ∩

{
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≤ C
√
p∗ log(p∗) + x

}

∩
{

sup
υ∈Υm\Υ◦(r◦0)

L(υ,υ∗
m) < 0

}
.

Then it holds that

P

(
B ∩

{
sup

υ∈Υm\Υ◦(r0)
L(υ,υ∗

m) < 0

})
≥ 1− 2e−x − P(Ac),

where

r0 ≤
{
C
√
x+ p∗ if Cbias = 0,

C
√
x+ p∗ log(n) if Cbias > 0.

(5.5)

Remark 5.4. If only p∗4(1 + Cbias log(n))/n → 0 we would get ν2m ≤ Cν̃2m2

and would have to iterate the above argument once more.
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5.3. Proof of finite sample Wilks and Fisher expansion

Combining Lemma 5.3 and Corollary 5.5 we obtain the following bound if
Cbias = 0 and p∗4/n → 0 and if n ∈ N is large enough:

♦̆(r0, x) ≤ C
p∗5/2 + x√

n
.

With these results Proposition 2.1 is merely a corollary of Theorem 4.3 and
of Lemma 4.1. More precisely define the set

N (x)
def
=

{
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≤ C
√
p∗ log(p∗) + x

}

∩
{

sup
υ∈Υm\Υ◦(r◦0)

L(υ,υ∗
m) < 0

}
∩{υ̃m, υ̃θ∗

m,m ∈ {‖Dm(υ − υ∗
m)‖ ≤ r0}}

∩
{

sup
υ∈Υ◦(r0)

‖∇(E− Eε)[L(υ
∗
m)− L(υ)]‖ ≤ C(x+ p∗)2r0/

√
n

}
∩{The conditions of Section 4.1 are met for (L, Υm,D)} .

It is of Probability greater 1 − 7e−x − exp
{
−m3x

}
− exp

{
−nc(Q)/4

}
. Finally

with the results of Appendix A of [2] on the deviation behavior of quadratic
forms we can bound with some constant

P

(
‖ 1√

n
d̆−1∇̆‖ ≤ z(x, B̆)

)
≥ 1− 2e−x, z(x, B̆) ≤ σC

√
p∗ + x.

So we get the claim with Theorem 4.3.
For the case that Cbias > 0 we want to apply Proposition 4.4. For this define

ε
def
= 6ν1ω ∨ δ(r)/r ≤ C
m

5/2/
√
n.

Then r0 > 0 in (5.5) satisfies by assumption

6εr0 → 0.

since m3 log(n)/
√
n → 0. Consequently Proposition 4.4 applies with N (x) from

above, which yields the claim of Proposition 2.3 with an error term

C
(1 + Cbias)
x+ p∗5/2r∗0

2

√
n

,

where

r∗0 ≤ C
√
p∗ + x.
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5.4. Bounding the sieve bias

We prove this claim via showing that the conditions of and Theorem 4.5 are
met. For this we need to show that the conditions (Lr∞) and (κ) are met. But
exactly this is done in Lemma A.6. So we simply have to plug in our estimates.

Finally we determine an admissible rate for m(n) ∈ N which ensures that the
error terms vanish. We exemplify this for the case Cbias = 0. We can show that

♦̆(r◦0, x) ≤ C(p∗ + x)5/2/
√
n.

If p∗5/2/
√
n → 0, we can get that 2(‖D̆−1∇̆‖ + r∗p(xn))♦(r2, xn)

P−→ 0 by

choosing a sequence xn > 0, that increases slow enough. If
√
nm−α−1/2 → 0 we

get the desired result. Clearly such a sequence exists and in this case P(Ω(xn)) →
1.

For the the weak convergence statements we focus on the case Cbias = 0 and
use Theorem 4.5. As δ(r), ω → 0 and r0(x) < ∞ we further only have to prove
condition (bias′) which means that we have to bound

‖Ip∗ − d̆−1
m (υ∗)d̆(υ∗)d̆−1

m (υ∗)‖ and ‖Ip∗ − d̆−1
m (υ∗

m)d̆m(υ∗)d̆−1
m (υ∗

m)‖.

With (υκ) – as proven in Lemma A.6 – we can apply Lemma A.4 of [1] to find

‖I − d̆−1
m d̆d̆−1

m ‖ ≤
√

1 + ρ2 +m−1

1− ρ2
C21m

−1

c2D − C21m
−1

→ 0,

and with Lemma A.5 of [1]

‖I − d̆m(υ∗
m)−1d̆m(υ∗)2d̆m(υ∗

m)−1‖

≤

√
ρ

(
2 +

√
1− δ̆(r∗)

)
+ 1 + δ̆(r∗)

(1−√
ρ)2

δ̆(r∗) → 0.

Furthermore we need to satisfy (bias′′), which in our setting becomes

(bias′′) The i.i.d. random variables Yi(m) ∈ R
p satisfy Cov(Yi(m)) → 0 where

Yi(m)
def
= d̆−1

m {∇θ (�i(υ
∗
m)− �i(υ

∗))

−AmH−2
m ∇(η1,...,ηm) (�i(υ

∗
m)− �i(υ

∗))
}
.

which is done with Lemma A.26. This completes the proof after plugging in the
bounds.
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5.5. Convergence of the alternating procedure

Here we want to explain in more detail how the Propositions 2.5, 2.7, 2.6 and
2.8 can be derived.

We want to use Theorem 4.6. For this it remains to check the conditions
(A1), (A2) and (A3) from Section 4.4 for the initial guess defined in (2.3).

Remark 5.5. Condition (B1) is met in our case as we pointed out in Section
5.2.

We can prove the following lemma:

Lemma 5.6. It holds for x ≤ Cν̃2g̃2n that

P

(
Lm(υ̃(0),υ∗

m) ≤ −C
{
(1 + Cbias

√
m)nτ2 + (1 + Cbias)

√
xτ

√
n
})

≤ 2e−x.

If Cbias = 0 set τ = o(p∗−3/2) and m4 = o(n). If Cbias > 0 set τ = o(m−9/4)
and m6 = o(n). Then the initial radius R0 > 0 in (4.5) satisfies εR0 → 0 such
that the conditions (A1),(A2) and (A3) are satisfied for n ∈ N large enough (as
in Lemma 5.3).

Together with Theorem 4.6 this implies Proposition 2.5 as we can bound

♦̆Q(r, x) ≤ C

x+ p∗3/2r2 + Cbiasp

∗2r2√
n

.

Remark 5.6. εR0 → 0 implies R0m
3/2/

√
n → 0. As pointed out in Remark

5.2 this means that the conditions from Section 4.1 can be satisfied on Υ◦(R0).

For Proposition 2.6 we apply Theorem 4.7. It remains to show condition
(ED2) and to bound z(x,∇2L(υ∗)) which is defined via

P
{
‖D−1∇2L(υ∗)‖ ≥ z

(
x,∇2L(υ∗)

)}
≤ e−x.

We derive a bound for z(x,∇2L(υ∗)) in Lemma A.31 which is based on Corollary
3.7 of [22], as is proposed in Remark 2.17 of [3]. The claim of Proposition 2.6 is
shown with the following Lemma.

Lemma 5.7. Assume (A). Assume further that p∗4/n → 0 and τ = o(p∗−3/2)

if Cbias = 0 and p∗6/n → 0 and τ = o(p∗−9/4) if Cbias > 0. Let x > 0 be chosen
such that

x ≤ 1

2

(
ν̃2ng̃2 − log(p∗)

)
.

then the conditions (ED2), (L0), (Lr) and (Er) are met and κ(x,R0) → 0 with
n → ∞.

Remark 5.7. The bound for x comes from Lemma A.31 but also from the
definition of z1(x, ·) and ensures that z1(x, 3p

∗) = O(
√
x+ p∗).
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5.6. Convergence of PPP

Define the set

MM (x)
def
=

{
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≤ C(x)
√
m

}
∩

M⋂
l=1

N l(x),

where

N l(x)
def
=

{
sup

υ∈Υm\Υ◦(r◦0)
L(υ,υ∗

m) < 0

}
∩ {υ̃m(l), υ̃mθ∗

(l)
(l), υ̃mη∗

(l)
(l) ∈ {‖D(l)(υ − υ∗

m(l))‖ ≤ r0}}

∩
⋂
r≤r0

{
sup

υ∈Υ◦(r)

∥∥∥D(l)
−1
(
∇ζε(l)(υ)−∇ζε(l)(υ

∗
m(l))

)∥∥∥− 2r2 ≤ Cων1(x+ p∗)

}
∩
{
‖D(l)

−1∇Lε(l)(υ
∗
m(l))‖ ≤ C

√
x+ p∗

}
∩
{

sup
υ∈Υ◦(l)(r∞)

‖∇(E− Eε)[Lε(l)(υ
∗
m(l))− Lε(l)(υ)]‖ ≤ C(x+ p∗)2r∞/

√
n

}
∩
{
The conditions of Section 4.1 are met for (Lε(l), Υm,D(l))

}
,

where r0 = C(p∗ + x)M , r◦0 = C[p∗3/2
√
p∗ + x ∨ (p∗ + x)M ] and where

r∞(x) = C
√
p∗ + x.

Remark 5.8. For M = 1 this is the set on which Proposition 2.3 applies.

Lemma 5.8. We have on the set MM (x) if p∗5/n < l

τi(l) ≤ Cl
√
m

(
p∗7/2 + x

n
+

√
p∗ + x√

n

)
. (5.6)

Proof. We obtain with Proposition 4.4 that if

(δ(r)/r+ 6ν1ω) r0 < 1, and (δ(r)/r+ 6ν1ω) C
√
x+ p∗ < 1,

that then

MM (x) ⊂ {υ̃m(l), υ̃mθ∗
(l)

(l) ⊂ Υ◦(r
∞)},

where

r∞(x) ≤ C
√
p∗ + x.
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But by assumption

(δ(r)/r+ 6ν1ω) C
√
x+ p∗ ≤ C

p∗5/2 + x√
n

→ 0,

(δ(r)/r+ 6ν1ω) r0(x) ≤ C
p∗3 log(n)M + x√

n
→ 0.

Consequently we can restrict our selves to the set Υ◦(r
∞). We show the claim

via induction. For this note that with (2.7) we already showed the claim for
l = 1. Assume that the claim is already shown for 0 < l − 1 < M . Remember
that

ςi,m(υ)
def
=
(
f ′
η(X

�
i θ)∇Φ(θ)�Xi, e(X

�
i θ)

)
∈ R

p+m.

We find with the same arguments as in the proof of Proposition 4.4 and using
Lemma A.11 that on the set MM (we suppress ·(l))

sup
υ∈Υ◦(r∞)

∥∥D−1 (∇L(υ)−∇L(υ∗
m)) +D(υ − υ∗

m)
∥∥

≤ sup
υ∈Υ◦(r∞)

∥∥D−1 (∇Lε(υ)−∇Lε(υ
∗
m)) +D(υ − υ∗

m)
∥∥

+ sup
υ∈Υ◦(r∞)

∥∥D−1 (∇Lτ (υ)−∇Lτ (υ
∗
m))

∥∥
≤ ♦Q(r

∞, x) + sup
υ∈Υ◦(r∞)

2

cD
√
n

n∑
i=1

τi(l − 1) ‖ςi,m(υ)− ςi,m(υ∗
m)‖

≤ ♦Q(r
∞, x) +

Cm3/2r∞

c2D
max

i
|τi(l − 1)|,

We find∥∥∥D(l)(υ̃m(l) − υ∗
m(l))

∥∥∥
≤
∥∥∥D(l)

−1∇Lε(l)(υ
∗
m(l))

∥∥∥+ C
p∗7/2 + x√

n
+ Cp∗2 max

i
|τi(l − 1)|

≤ C

(
√
p∗ + x+ C

p∗7/2 + x√
n

+ p∗2 max
i

|τi(l − 1)|
)
.

It remains to address the bias ‖D(l)(υ
∗
m(l) − υ∗

(l))‖. Using that the assump-

tions (A) hold for all (g(l))l=1,...,M we can bound as in Lemma A.7

ELε(l)(υ,υ
∗
(l)) ≤ −br2,
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where r = ‖D(l)(υ − υ∗
(l))‖. With Lemma A.2 of [1] this gives

‖D(l)(υ
∗
m(l) − υ∗

(l))‖2 ≤ r∗2,

where we point out that r∗ ≤ C
√
nm−α in (5.1) is a uniform upper bound for

all l ≤ M . We derived that on the set MM using that r∗ ≤ C
√
p∗ + x∥∥D(l)(υ̃m(l) − υ∗

(l))
∥∥

≤ C

(
√
p∗ + x+ C

p∗7/2 + x√
n

+ p∗2 max
i

|τi(l − 1)|
)

def
= CT (l−1). (5.7)

Finally we bound∣∣∣fη∗
(l)
(X�

i θ
∗
(l))− f η̃(l)

(X�
i θ̃(l))

∣∣∣ ≤ ∣∣∣fη∗
(l)

−η̃(l)
(X�θ̃)

∣∣∣
+
∣∣∣fη∗

(l)
(X�θ∗

(l))− fη∗
(l)
(X�θ̃(l))

∣∣∣ .
We estimate separately using (5.7)∣∣∣fη∗

(l)
−η̃(l)

(X�θ̃(l))
∣∣∣ ≤ ‖‖H−1

m e‖Rm‖∞CT (l−1)

≤ C
√
mT (l−1)/

√
n.

Furthermore we find with (5.7)∣∣∣fη∗
(l)
(X�θ∗

(l))− fη∗
(l)
(X�θ̃)(l)

∣∣∣ ≤ CsX‖f ′
η∗

(l)
‖T (l−1)/

√
n.

Consequently

∣∣τi(l)∣∣ =
∣∣∣∣∣

l∑
s=1

fη∗
(s)
(X�

i θ
∗
(s))− f η̃(s)

(X�
i θ̃(s))

∣∣∣∣∣
≤ Cl

√
m

(
p∗7/2 + x

n
+

√
p∗ + x√

n

)
+ C

l∑
s=1

p∗5/2√
n

max
i

|τi(s− 1)|.

Denote

a
def
= C

√
m

(
p∗7/2 + x

n
+

√
p∗ + x√

n

)
, b

def
=

p∗5/2√
n

.



2570 A. Andresen

Furthermore define

Sk(l)
def
=

l∑
s=1

Sk−1(s−1), S0(l) = l.

Then we can write

∣∣τi(l)∣∣ ≤ a
l−1∑
k=0

bkSk(l),

which gives with the crude bound Sk(l) ≤ l
∑k

s=0 l
s = l l

k+1−1
l−1 ≤ 2lk+1 that

∣∣τi(l)∣∣ ≤ 2la
l−1∑
k=0

bklk ≤ Cla,

if b < l ≤ M . This gives the claim.

To complete this section we show that the set MM is of large probability as
long as M ∈ N is not too big.

Lemma 5.9. We have

P(MM ) ≥ 1− e−x −M
(
12e−x + exp

{
−m3x

}
+ exp

{
−nc(Q)/4

})
Proof. With Lemma 5.2 we find

P

(
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≥ C(x)
√
m

)
≤ e−x.

Due to the assumptions we find with Lemma 5.3 that

P
(
The conditions of Section 4.1 are met for (Lε(l), Υm,D(l))

)
≥ 1− 4e−x − exp

{
−m3x

}
− exp

{
−nc(Q)/4

}
.

On that set we find as in the proof of Proposition 4.4 for C > 0 large enough

P

( ⋂
r≤r0

{
sup

υ∈Υ◦(r)

∥∥∥D(l)
−1
(
∇ζε(l)(υ)−∇ζε(l)(υ

∗
m(l))

)∥∥∥− 2r2

≤ Cων1(x+ p∗)

})
≥ 1− e−x.

and

P

(∥∥∥D(l)
−1∇ζε(l)(υ

∗
m(l))

∥∥∥ ≥ C
√
x+ p∗

)
≥ 1− 2e−x.
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Furthermore by Lemma 3.1 We have that

P

(
sup

υ∈Υ◦(l)(r)

‖∇(E− Eε)[Lε(l)(υ
∗
m(l))− Lε(l)(υ)] ≥ C(x+ p∗)2r/

√
n

)
≤ 2e−x.

For the large deviation bound we proceed as follows. Note that

L(l)(υ,υ
∗
m(l), Yi(l)) = Lε(l)(υ,υ

∗
m(l), Yi(l))

+2

n∑
i=1

τi(l − 1)
(
fη(X

�
i θ)− fη∗

m(l)
(X�

i θ
∗
m(l))

)
.

We can bound

n∑
i=1

τi(l − 1)
(
fη(X

�
i θ)− fη∗

m(l)
(X�

i θ
∗
m(l))

)
≤ Cmax

i
|τi(l − 1)|

√
n
√
mr.

As the conditions (A) are satisfied for all l = 1, . . . ,M we can establish as in
Lemma 5.3 for r2 ≥ Cbp

∗ log(n)

−Eε

n∑
i=1

(
g(l)(Xi) + εi − fη(X

�
i θ)

)2
−
(
g(l)(Xi) + εi − fη∗

m(l)
(X�

i θ
∗
m(l))

)2
≤ −b(l)r2.

Together this implies for r ≥ Cbp
∗

EεL(l)(υ,υ
∗
m(l), Yi(l)) ≤ −b(l)r2 + CB(l−1)

√
n
√
mr.

This gives for r ≥ CB(l−1)

√
n
√
m and C > 0 large enough

EεL(υ,υ
∗
m(l), Yi(l)) ≤ −b(l)r2/2.

Plugging in (5.6) the lower bound becomes

r0(l) ≥ C
√
p∗ + x

(
1 + l

√
m
p∗7/2 + x√

n

)
= C′M(p∗ + x).

For the remaining part we proceed as in Section 5.2. This gives the claim.
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Appendix A: Technical proofs

In the following all the technical steps necessary to prove the Lemmas of Sec-
tion 5 are presented. But first we cite an important result that will be used in
our arguments, namely the bounded difference inequality:

Theorem A.1 (Bounded differences inequality). Let a function f : Xn → R

satisfy for any X1, . . . ,Xn,X
′
i ∈ X

|f(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn)− f(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn)| ≤ ci.

Then for any vector of independent random variables X ∈ Xn

P (f(X)− Ef(X) ≥ t) ≤ e
− 2t2∑n

i=1
c2
i ,

P (f(X)− Ef(X) ≤ −t) ≤ e
− 2t2∑n

i=1
c2
i .

Furthermore we will use the basic chaining device as it was introduced by [6]
(see Section 2 of [21] for a more concise description). As we use the idea several
times, we summarize the central step in the following Lemma

Lemma A.2. Let {Y(υ)−Y(υ∗), υ ∈ Υ} be a family of random variables index
by a set Υ that is contained in a normed space (X, ‖ · ‖). Define Υ0 = {υ∗} and
with some r > 0 the sequence rk = 2−kr and the sequence of sets Υk each with
minimal cardinality such that

Υ ⊂
⋃

υ∈Υk

Brk(υ), Br(υ)
def
= {υ◦ ∈ Υ, ‖υ◦ − υ‖ ≤ r}.

Then for any z > 0

P

(
sup
υ∈Υ

|Y(υ)− Y(υ∗)| ≥ z

)

≤
∞∑
k=1

|Υk| sup
υ◦∈Υk

P

(
inf

υ∈Υk−1

|Y(υ)− Y(υ◦)| ≥ 2−(k−1)/2(1− 1/
√
2)z

)
.

Proof. We simply use the definition and estimate

P

(
sup
υ∈Υ

|Y(υ)− Y(υ∗)| ≥ z

)
≤ P

( ∞∑
k=1

sup
υk∈Υk

inf
υk−1Υk−1

|Y(υk)− Y(υk−1)| ≥ z

)

≤
∞∑
k=1

P

(
sup

υk∈Υk

inf
υk−1∈Υk−1

|Y(υk)− Y(υk−1)| ≥ 2−(k−1)/2(1− 1/
√
2)z

)
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≤
∞∑
k=1

|Υk| sup
υk∈Υk

P

(
inf

υk−1∈Υk−1

|Y(υk)− Y(υk−1)| ≥ 2−(k−1)/2(1− 1/
√
2)z

)
,

where we used that
∑∞

k=1 2
−(k−1)/2 ≤ 1/(1− 1/

√
2).

A.1. Proof of Remark 2.3

Proof. This can be seen as follows. First with Fubini’s Theorem we find

ηk(θ)
def
=

∫
[−sX,sX]

fθ(t)ek(t)dt

=

∫
[−sX,sX]

∫
BsX

(0)∩θ⊥
fθ,x(t)ek(t)pX|X�θ=t(x)dxdt

=

∫
BsX

(0)∩θ⊥

(∫
[−sX,sX]

fθ,x(t)ek(t)dt

)
pX|X�θ=t(x)dx,

=

∫
BsX

(0)∩θ⊥
ηk(θ,x)pX|X�θ=t(x)dx.

Note that the application of Fubini’s theorem is justified since by assumtion

|fθ,x(t)ek(t)pX|X�θ=t(x)| < ∞.

Furthermore with Jensen’s inequality and exchanging the order integration and
summation as the lim sup is finite we find

∞∑
k=0

k2α(θ)η2
k(θ)

2 =

∞∑
k=0

k2α(θ)

(∫
BsX

(0)∩θ⊥
ηk(θ,x)pX|X�θ=t(x)dx

)2

≤
∞∑
k=0

∫
BsX

(0)∩θ⊥
k2α(θ)ηk(θ,x)

2pX|X�θ=t(x)dx

≤
∫
BsX

(0)∩θ⊥

( ∞∑
k=0

k2α(θ,x)ηk(θ,x)
2

)
pX|X�θ=t(x)dx

< ∞,

where we used in the second to last step that α(θ) ≤ α(θ,x).

A.2. Calculating the elements

First we calculate the relevant objects in this setting. For this we have to empha-
size one subtlety about this analysis. As the parameter θ ∈ R

p lies in Sp,+
1 ⊂ R

p



2574 A. Andresen

a more appropriate parameter set is WS
def
= [0, π]× [−π/2, π/2]× [−π/2, π/2]×

· · · × [−π/2, π/2] ⊂ R
p−1. This gives, parametrising the half sphere Sp,+

1 ⊂ R
p

via the standard spherical coordinates

Φ : [0, π]× [−π/2, π/2]× [−π/2, π/2]× · · · × [−π/2, π/2] ⊂ R
p−1 → Sp,+

1 ,

that our actual likelihood functional is defined on WS × R
m as

Lm(θ,η) =

n∑
i=1

‖Yi − fη(X
�
i Φ(θ))‖2/2,

where with abuse of notation we denote the preimage of an element of the
sphere by the same symbol. Fix any element of the set of maximizers υ∗

m for
some m ∈ N.

First we calculate

ζ(υ,υ∗) := Lm(υ,υ∗)− EεLm(υ,υ∗) = −
n∑

i=1

εi

(
g(Xi)− fη(X

�
i Φ(θ))

)
.

This gives that with ∇p∗ = (∇θ1 , . . . ,∇θp−1 ,∇η1 , . . . ,∇ηm) and ε = (ε1, . . . , ε)

∇p∗ζ(υ) =

n∑
i=1

(
f ′
η(X

�
i θ)∇Φ(θ)�Xi, e(X

�
i θ)

)
εi

def
=

n∑
i=1

ςi,m(υ)εi
def
= Wm(υ)ε.

where with e = (e1, . . . , em)

Wm(υ) =

(
f ′
η(X

�
1 θ)∇Φ(θ)�X1 . . . f ′

η(X
�
n θ)∇Φ(θ)�Xn

e(X�
1 θ) . . . e(X�

n θ)

)
.

As we use this notation in the following, we repeat the definition

ςi,m(υ)
def
=
(
f ′
η(X

�
i θ)∇Φ(θ)�Xi, e(X

�
i θ)

)
∈ R

p∗
. (A.1)

By assumption the εi are i.i.d. with covariance σ2 > 0 and the design points
(Xi) are i.i.d. as well. We set

V2
m

def
= σ2

EWm(υ∗)Wm(υ∗)�

= nσ2

(
d2θ(υ

∗) am(υ∗)
a�m(υ∗) h2

m(υ∗)

)
def
= nσ2d2m ∈ R

(p−1+m)×(p−1+m).
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where with E[·] denoting the expectation under the measure P
X1

d2θ(υ) = E

[
f ′
η(X

�
1 θ)

2∇Φ(θ)�X1X1
�∇Φ(θ)

]
,

h2
m(υ) = E

[
ee�(X�

1 θ)
]
,

am(υ) = E

[
f ′
η(X

�
1 θ)∇Φ(θ)�X1e

�(X�
1 θ)

]
.

Furthermore we get because of the quadratic functional and sufficient smooth-
ness of the basis (ei) for any υ ∈ R

p∗−1

D2
m(υ)

def
= −∇2

p∗E[Lm(υ)] = nd2m(υ) + nr2m(υ),

d2m =

(
d2θ(υ) am(υ)
a�m(υ) h2

m(υ)

)
,

r2m(υ) = E

[ [
fη(X

�θ)− g(X)
]( v2θ(υ) bm(υ)

b�m(υ) 0

)]
,

v2θ(υ) = 2f ′′
η(X

�θ)∇Φ�
θ XX�∇Φθ + |f ′

η(X
�θ)|2X�∇2Φ�

θ [X, ·, ·],

bm(υ) = ∇ΦθX
�e′�(X�θ).

For the analysis of the sieve bias we also define the corresponding full operator
D2 ∈ L(l2, {(xk)k∈N, x ∈ R})

D2(υ) = nd2(υ) + E

[ [
fη(X

�θ)− g(X)
]( v2θ(υ) b�∞(υ)

b�∞(υ) 0

)]
,

where with the obvious adaptations

d2(υ) =

(
d2θ(υ) a∞(υ)
a�∞(υ) h2

∞(υ)

)
.

Remark A.1. If X�θ∗ was independent to X�θ◦ for any θ◦ ∈ θ∗⊥, we

would have bm(υ∗) = 0 for m ∈ N ∪ {∞} by the definition of fη∗(X�θ∗)
def
=

E[g(X)|X�θ∗].

Furthermore we calculate – with ςi,m from (A.1) –

∇2ζ(υ) =
n∑

i=1

∇ςi,m(υ),
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where

Πθ∇θςi,m(υ) = f ′′
η(X

�
i θ)∇Φ(θ)�XiX

�
i ∇Φ(θ)

+f ′
η(X

�
i θ)Xi∇2Φ(θ�Xi)[Xi, ·, ·],

Πη∇θςi,m(υ) = e′(θ�Xi)X
�
i ∇Φ(θ),

∇ηςi,m(υ) = 0.

A.3. Preliminary calculations

By assumption the density of pX : Rp 
→ R is Lipshitz continuous. Denote by
LpX its Lipshitz constant. Define

Ik
def
= supp(ek) ⊂ [−sX, sX].

Lemma A.3. We have for all k, l ∈ N

|E[ekel(X�θ)]|

≤ 17sp+1
X LpX‖ψ‖∞2−jl−12(jk−jl)/21{Il∩Ik �=∅}(k, l), for l ≥ k, (A.2)

|E[(X�θ)e′kel(X
�θ◦)]|

≤ 17

√
p+ 2

2
π‖ψ′‖∞s2X‖pX‖∞23jk/22−(jl∨jk)/21{Il∩Ik �=∅}(k, l), (A.3)

|E[e′le′k(X�θ)]|

≤ 17sX‖ψ′‖∞‖pX‖∞23(jl+jk)/2−(jl∨jk)1{Ik∩Il �=∅}(k, l), (A.4)

E
[
(ek(X

�θ)− ek(X
�θ′))(el(X

�θ)− el(X
�θ′))

]
≤ C‖θ − θ′‖22jk2jl‖ψ′‖2∞s4X1721{Ik∩Il �=∅}, (A.5)

E
[
(e′k(X

�θ)− e′k(X
�θ′))(e′l(X

�θ)− e′l(X
�θ′))

]
≤ C‖θ − θ′‖222jk22jl‖ψ′′‖2∞s4X1721{Ik∩Il �=∅}, (A.6)

E
[(
el(X

�θ)− el(X
�θ′)

)
ek(X

�θ)
]
≤ C‖θ − θ′‖2jl/22(jk∧jl)/2. (A.7)

Proof. Observe that if the density of pX : Rp 
→ R is Lipshitz continuous with
Lipshitz constant LpX and its support contained in a ball of radius sX > 0 then
the density pX�θ∗ : R 
→ R of X�θ ∈ R is Lipshitz continuous with Lipshitz
constant Lp

X�θ
≤ spXLpX . Furthermore for k, l ∈ N

E[ekel(X
�θ)] =

∫
[−sX,sX]

ek(x)el(x)pX�θ(x)dx.
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Denote by Ik ⊂ R the support of ek(x). We write

E[ekel(X
�θ)] =

∫
Il

ek(x)el(x)pX�θ(x)dx

=

∫
Il

ek(x)el(x)pX�θ(x0)dx1{Il∩Ik �=∅}(k, l)

+

∫
Il

ek(x)el(x)
(
pX�θ(x)− pX�θ(x0)

)
dx1{Il∩Ik �=∅}(k, l),

where x0 ∈ Il is the center of the support of el(x), which is of length 2−jl17sX
for l = 2jl +17jl−1+rl ∈ N. Because of orthogonality the first summand on the
right-hand side is equal to zero. For the second summand we use the Lipshitz
continuity and Cauchy-Schwarz to estimate

|
∫
Il

ek(x)el(x)
(
pX�θ(x)− pX�θ(x0)

)
dx|1{Il∩Ik �=∅}(k, l)

≤ spXLpX2
−jl−1

∫
Il

|ek(x)||el(x)|dx1{Il∩Ik �=∅}(k, l)

≤ spXLpX2
−jl−1

(∫
Il

el(x)
2dx

∫
Il

ek(x)
2dx

)1/2

1{Il∩Ik �=∅}(k, l)

≤ spXLpX2
−jl−1

(∫
Il

ek(x)
2dx

)1/2

1{Il∩Ik �=∅}(k, l)

≤ 17sp+1
X LpX‖ψ‖∞2−jl−12jk/2−jl/21{Il∩Ik �=∅}(k, l),

where we used that the (ek) form an orthonormal basis, that ‖ek‖∞
≤ 2jk/2‖ψ‖∞ and that Il is of length 2−jl17sX. This gives (A.2). Using that

for any θ ∈ WS it holds true that ‖∇Φ(θ∗)θ‖ ≤
√
p+2
2 π we estimate similarly

to before

|E[(X�θ)e′kel(X
�θ◦)]|

≤
√
p+ 2

2
πs2XE[|e′kel(X�θ◦)|]

≤
√
p+ 2

2
πs2X

∫
Il

e′k(x)el(x)pX�θ◦(x)dx

≤
√
p+ 2

2
πs2X‖pX�θ‖∞

(∫
Il

e′k(x)
2dx

)1/2(∫
Il

el(x)
2dx

)1/2

≤ 17

√
p+ 2

2
π‖ψ′‖∞s2X‖pX�θ‖∞23jk/22−(jl∨jk)/21{Il∩Ik �=∅}(k, l).
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The bound (A.4) follows with exactly the same calculations. To show (A.5) we

calculate with Mk
def
= {(x, y) ∈ R

2, x ∈ Ik} ∪ {(x, y) ∈ R
2, x+ y ∈ Ik} and with

pθ,(θ◦−θ) : R
2 → R+ denoting the density of (X�θ,X�(θ◦ − θ)) ∈ R

2

E
[
(ek(X

�θ)− ek(X
�θ◦))(el(X

�θ)− el(X
�θ◦))

]
= 1{Ik∩Il �=∅}

∫
Mk

(ek(x)− ek(x+ y))(el(x)− el(x+ y))pθ,(θ◦−θ)(x, y)d(x, y)

≤ 1{Ik∩Il �=∅}

(∫
Mk

(ek(x)− ek(x+ y))2pθ,(θ◦−θ)(x, y)d(x, y)

)1/2

(∫
Ml

(el(x)− el(x+ y))2pθ,(θ◦−θ)(x, y)d(x, y)

)1/2

.

We estimate separately

∫
Mk

(ek(x)− ek(x+ y))2pθ,(θ◦−θ)(x, y)d(x, y)

≤ 23jk‖ψ′′‖2∞
∫
Mk

y2pθ,(θ◦−θ)(x, y)d(x, y),

Note that pθ,(θ◦−θ)(x, y) > 0 only for |y| ≤ ‖θ−θ◦‖(sX+h), where we suppress
h in the following such that

∫
Mk

(ek(x)− ek(x+ y))2pθ,(θ◦−θ)(x, y)d(x, y)

≤ ‖θ − θ◦‖223jk‖ψ′′‖2∞s2X(∫
R

∫
Ik−x

pθ,(θ◦−θ)(x, y)dydx+

∫
Ik

∫
R

pθ,(θ◦−θ)(x, y)dydx

)
≤ ‖θ − θ◦‖223jk‖ψ′′‖2∞s2X(∫

R

P

{
(θ◦ − θ)�X ∈ Ik − x|θ�X = x

}
pθ(x)dx+

∫
Ik

pθ(x)dx

)
.

represent θ◦ = αθ + βθ′ where θ′ ⊥ θ with ‖θ◦‖ = 1. Then we find with
condition (CondX)

P

{
(θ◦ − θ)�X ∈ Ik − x|θ�X = x

}
= P

{
θ′�X ∈ 1

β
(Ik − (1− α)x)|θ�X = x

}
≤
∥∥∥∥pθ′,θ

pθ

∥∥∥∥
∞

λ

{
1

β
(Ik − (1− α)x)

}
≤ C2−jk/‖θ − θ◦‖.
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With the bound pθ(x) ≤ C we find (since ‖θ − θ◦‖ <
√
2)

∫
Mk

(ek(x)− ek(x+ y))2pθ,(θ◦−θ)(x, y)d(x, y)

≤ C‖θ − θ◦‖22jk‖ψ′′‖2∞s4X172,

which yields (A.5). With the same calculations we can show (A.6). with Ml,k
def
=

{(x, y) ∈ Ik × R, x ∈ Il ∩ Ik} ∪ {(x, y) ∈ Ik × R, x+ y ∈ Il}

E
[(
el(X

�θ)− el(X
�θ∗

m)
)
ek(X

�θ)
]

≤
(∫

Ml,k

(el(x)− el(x+ y))
2
pθ,(θ∗

m−θ)(x, y)d(x, y)

)1/2

(∫
Ml,k

e2k(x)pθ,(θ∗
m−θ)(x, y)d(x, y)

)1/2

.

We have by (A.5)

∫
Ml,k

(el(x)− el(x+ y))
2
pθ,(θ∗

m−θ)(x, y)d(x, y)

≤ 22jl‖θ − θ∗
m‖2‖ψ′‖2s4X172C.

As above we can bound∫
Ml,k

e2k(x)pθ,(θ′−θ)(x, y)d(x, y)

=

∫
R

e2k(x)

∫
Il−x

pθ,(θ′−θ)(x, y)d(x, y)

+

∫
Il∩Ik

e2k(x)

∫
R

pθ,(θ′−θ)(x, y)d(x, y)

≤
∫
R

e2k(x)P
{
(θ′ − θ)�X ∈ (Il − x)

∣∣ θ�X = x}pθ(x)d(x)

+

∫
Il∩Ik

e2k(x)pθ(x)d(x)

≤ C

‖θ − θ′‖2
−jlC+ 2−jl2(jk∧jl)‖ψ‖2∞.
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Lemma A.4. For any (θ,η) ∈ R
p+m

‖e(x)‖ ≤ C‖ψ‖∞
√
m, (A.8)∣∣fη(x)

∣∣ ≤ C‖ψ‖∞
√
m‖η‖,

‖e′(x)‖ ≤
√
17‖ψ′‖m3/2. (A.9)

Proof. Clearly
∣∣fη(x)

∣∣ ≤ ‖η‖‖e(X�
i θ

∗
m)‖. Because of the wavelet structure and

the choice m = 2jm + jm17− 1 we have for each j = 0, . . . , jm − 1 that

|M(j)| (A.10)

def
=
∣∣∣{k ∈ {(2j + j17− 1, . . . , 2j+1 + (j + 1)17− 2} : |ek(x)| �= 0

}∣∣∣ ≤ 17.

This implies

‖e(x)‖ =

(
m−1∑
k=0

|ek(x)|2
)1/2

=

⎛⎝jm−1∑
j=0

∑
k∈M(j)

|ek(x)|2
⎞⎠1/2

≤
√
17‖ψ‖∞

⎛⎝jm−1∑
j=0

2j

⎞⎠1/2

=
√
17‖ψ‖∞2jm/2 ≤

√
17‖ψ‖∞

√
m.

The proof of (A.9) works analogously.

A.4. Lower bound for the information operator

Lemma A.5. Under (CondX,e), (CondXθ∗) and (model bias) we find for all
m ∈ N ∪ {∞} that Dm(υ∗) ≥ cD∗ with some constant cD∗ > 0.

Remark A.2. The constant cD∗ > 0 is specified – to some extend – in the
proof.

Proof. We represent for any γ ∈ R
p∗

with ‖γ‖ = 1

γ�Dmγ

= n lim
h→0

1

h2

(
E

⎡⎣(g(X)−
m∑

k=1

(η∗k + hγp+k)ek(X
�(θ∗ + hΠθγ))

)2
⎤⎦

−E
[
(g(X)− E[g(X)|X�θ∗])2

])
.
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Using the properties of conditional expectation we can write

E

⎡⎣(g(X)−
m∑

k=1

(η∗k + hγp+k)ek(X
�(θ∗ + hΠθγ))

)2
⎤⎦

= E

[(
E[g(X)|X�(θ∗ +Πθγ)]

−
m∑

k=1

(η∗k + hγp+k)ek(X
�(θ∗ + hΠθγ))

)2]
+E

[
(g(X)− E[g(X)|X�(θ∗ + hΠθγ)])

2
]

Using assumption (model bias) we find

γ�Dmγ ≥ nbθ‖Πθγ‖2

+n lim
h→0

1

h2
E

(
E[g(X)|X�(θ∗ + hΠθγ)]

−
m∑

k=1

(η∗k + hγp+k)ek(X
�(θ∗ + hΠθγ))

)2

.

In case that ‖Πθγ‖2 ≥ τ2 > 0 with some τ > 0 this implies Dm ≥ bθτ
2. Assume

‖Πθγ‖2 ≤ τ2. Using the smoothness of the density pX and of g we find with
some constant∣∣∣E[g(X)|X�(θ∗ + hΠθγ)]− E[g(X)|X�θ∗]

∣∣∣ ≤ C‖Πθγ‖ ≤ nChτ.

Furthermore we show in Lemma A.24 that with some b∗ > 0 and Q > 0

inf
υ∈Υm

P

(∣∣∣∣∣E[g(X)|X�θ∗]−
m∑

k=1

(ηk)ek(X
�θ)

∣∣∣∣∣ ≥ b∗‖υ − υ∗‖
)

≥ Q > 0.

Remark A.3. A close look at the proof of Lemma A.24 reveals that the claim
can be shown with ‖υ−υ∗‖ instead of ‖D(υ−υ∗)‖ on the right-hand side with
the same arguments.

Consequently

E

[(
E[g(X)|X�(θ∗ + hΠθγ)]−

m∑
k=1

(η∗k + hγp+k)ek(X
�(θ∗ + hΠθγ))

)2
]

≥ Qh2(b∗ − Cτ)2.

Setting τ ≤ b∗/(2C) gives the claim.
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A.5. Regularity

We represent the full parameter υ ∈ R
∞ in the form

υ = (θ,f) = (Πp∗υ,κ) = (θ, Πmη,κ) ∈ R
p+m × l2.

where κ = (ηm+1, . . .)
� stands for the remaining components of the expansion

(2.1). Consider the following block representations of of the full information
operator : Remember the representation the full operatorD ∈ L(l2, {(xk)k∈N, x ∈
R}) in block form

D2(υ∗) =

(
D2 A
A H2

)
=

(
D2

m Aυκ

Aυκ H2
κκ

)
=

⎛⎝ D2 Am Aθκ

Am Hm Aηκ

Aηκ Aθκ H2
κκ

⎞⎠ .

where Aυκ is a – possibly unbounded – operator from l2 to R
p+m.

Lemma A.6. Assume that the density pX : Rp → R is Lipschitz continuous
and that the X ∈ R are bounded by some constant sX > 0. Then using our
orthogonal and sufficiently smooth wavelet basis we get for any λ ∈ [0, 1]

‖H1/2
m κ∗‖2 < Cnm−2α,

α(m)
def
= ‖D−1

m Aυκκ
∗‖ ≤ C

√
n
(
m−(α+1/2) + Cbiasm

−(α−1)
)
,

τ(m)
def
= ‖D−1

m ∇υκE[L
(
(Πp∗υ∗, λκ∗)−Aυκ

)
]κ∗‖ ≤ Cm−2α+1/2

√
n,

0 =
∣∣∣κ∗�(Hm −∇κκEL(Πp∗υ∗, λκ∗))κ∗

∣∣∣ ,
if Cbias = 0 one can bound with some C > 0

β(m)
def
= ‖D−1

m AυκH−1
m ‖ ≤ Cm−1/2.

Furthermore we find that

‖D2‖ ≤ Cnp

Proof. Throughout this proof we assume that m > 0 is large enough to ensure
for all k, l > m that Ik ∩ Il ⊆ [−sX − cB, sX + cB]. We have that

‖D−1
m Aυκκ

∗‖ ≤ ‖D−1
m ‖‖Aυκκ

∗‖.

Due to Lemma A.5

‖D−1
m ‖ ≤ 1

cD
√
n
.
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And we have by definition that for any υ = (θ,η) ∈ WS × R
m

1

n
|υ�Aυκκ

∗| ≤ 1

n
|θAθκκ

∗|+ 1

n
|ηAηκκ

∗|.

We first analyze the second summand

1

n
ηAηκκ

∗ =

∞∑
l=m+1

η∗l

m∑
k=1

ηkE[ekel(X
�θ∗)].

We use (A.2) from Lemma A.3 to find

1

n
ηAηκκ

∗| ≤ 17sp+1
X LpX‖ψ‖∞

∞∑
l=m+1

m∑
k=1

|η∗l ||ηk|2−jl−12jk/2−jl/21{Il∩Ik �=∅}(k, l).

Note that for each jk = 0, . . . , jm there exists at most 17 rk(l) ∈ {0, . . . , 2jk+16}
with Il ∩ Ik �= ∅. Remember that m = 2jm + jm17− 1 and note that 2jm ≤ m.
This implies using the Cauchy-Schwarz inequality and that ‖η‖ = 1

| 1
n
ηAηκκ

∗| ≤ 17sp+1
X LpX‖ψ2‖∞

∞∑
l=m+1

m∑
k=1

|η∗l ||ηk|2−jl−12jk/2−jl/21{Il∩Ik �=∅}(k, l)

≤ 17sp+1
X LpX‖ψ2‖∞

∞∑
l=m+1

|η∗l |2−3jl/2

(
m∑

k=1

2jk1{Il∩Ik �=∅}(k, l)

)1/2

≤ 17
√
17sp+1

X LpX‖ψ2‖∞
∞∑

l=m+1

|η∗l |2−3jl/2

⎛⎝jm−1∑
jk=0

2jk

⎞⎠1/2

≤ 173/2sp+1
X LpX‖ψ2‖∞

√
m

( ∞∑
l=m+1

|η∗l |2
)1/2( ∞∑

l=m

2−3jl

)1/2

.

By assumption Condυ∗( ∞∑
l=m+1

|η∗l |2
)1/2

≤ m−α

( ∞∑
l=m+1

l2α|η∗l |2
)1/2

≤ m−αC‖f∗‖.

Since m = 2jm + jm17− 1 and l = 2jl + jl17− 1 + rl with rl ∈ {0, . . . , 2jl + 16}( ∞∑
l=m+1

2−3jl

)1/2

=

( ∞∑
jl=jm

C(m)2jl2−3jl

)1/2

= C(m)1/22−jm2 ≤
√
2C(m)3/2m−1,
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with

C(m) =
2jm + jm17− 1

2jm
≤ 34.

Consequently

| 1
n
ηAηκκ

∗| ≤
√
2173C‖f∗‖s

p+1
X LpX‖ψ2‖∞m−α−1/2.

For the second summand we remind the reader that

Aθκ = naθκ,

aθκ = E[f ′
η∗(X�θ∗)∇Φ�

θ∗X(em+1(X
�θ∗), . . .)],

Similarly to the first summand we get by the dominated convergence theorem

θaθκκ
∗ =

∞∑
k=1

∞∑
l=m+1

η∗kη
∗
l E[(X

�∇Φ(θ∗)θ)e′kel(X
�θ∗)]1{Il∩Ik �=∅}(k, l).

To justify the exchange of summation and expectation note that for each l ∈ N

E[|(X�∇Φ(θ∗)θ)elf
′
η∗(X�θ∗)|]

≤ ‖∇Φ(θ∗)θ‖sX2jl/2E[|f ′
η∗(X�θ∗)|]

≤ ‖∇Φ(θ∗)θ‖sX2jl/2E

[∣∣∣∣∣
∞∑
k=1

η∗ke
′
k(X

�θ∗)

∣∣∣∣∣
]

≤ ‖∇Φ(θ∗)θ‖sX2jl/2

( ∞∑
k=1

l2αη∗k
2

)1/2( ∞∑
k=1

l−2α23jk‖ψ′‖2
)1/2

≤ ‖∇Φ(θ∗)θ‖sXC‖f∗‖‖ψ′‖∞2jl/2

⎛⎝17

2

∞∑
j=0

l−2α24j

⎞⎠1/2

< ∞.

The exchange of the order of summation is justified by the subsequent bounds
and again the dominated convergence theorem. We again use Lemma A.3 to
find with (A.3) and with similar arguments to those from above

|θaθκκ∗| ≤ 17

√
p+ 2

2
π‖ψ′‖∞s2X‖pX‖∞

∞∑
k=1

η∗k2
3jk/2

∞∑
l=m+1

η∗l 2
−(jl∨jk)/21{Il∩Ik �=∅}(k, l)
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≤ 17

√
p+ 2

2
π‖ψ′‖∞s2X‖pX‖∞

∞∑
k=1

η∗kk
3/2

( ∞∑
l=m+1

l2αη∗l
2

)1/2

⎛⎝ ∞∑
jl=jm+1

2jl+16∑
rl=0

2−2αjl2−(jl∨jk)1{Il∩Ik �=∅}(k, l)

⎞⎠1/2

.

We have due to (3.2) that

∞∑
jl=jm+1

2jl+16∑
rl=0

2−2αjl2−(jl∨jk)1{Il∩Ik �=∅}(k, l)

=

∞∑
jl=jm+1

2−2αjl2−(jl∨jk)
2jl+16∑
rl=0

1{Il∩Ik �=∅}(k, l)

=

∞∑
jl=jm+1

2−2αjl2−(jl∨jk)

∣∣∣{l = 2jl + 17jl − 1 + rl

∣∣∣ rl ∈ {0, . . . , 2jl + 16}, Il ∩ Ik �= ∅
}∣∣∣

=

∞∑
jl=jm+1

2−(2α+1)jl2−(jk−jl)+ �2(jl−jk)17�

≤ 2−(2α+1)jm18 ≤ 17m−(2α+1)18.

Which gives

|θaθκκ∗| ≤ 173/2
√
18

√
p+ 2

2
π‖ψ′‖∞s2X‖pX‖∞C‖f∗‖m

−α−1/2

( ∞∑
k=1

η∗k
2k2α

)1/2( ∞∑
k=1

k−(2α−3)

)1/2

≤ 173/2
√
18

√
p+ 2

2
π‖ψ′‖∞s2X‖pX‖∞C2‖f∗‖√

(2α− 3)/(2α− 4)m−(α+1/2),

since α > 2 such that
∑∞

k=1 k
−(2α−3) < (2α− 3)/(2α− 4).

Furthermore with θ◦ = ∇Φθ∗θ ∈ θ∗⊥

|θbθκκ∗| =
∣∣∣∣∣E
[
(fη∗(X�θ∗)− g(X))X�θ◦

∞∑
k=m

η∗ke
′
k(X

�θ∗)

]∣∣∣∣∣
≤ Cbias

√
p+ 2

2
πsXE

[∣∣f ′
κ∗(X�θ∗)

∣∣] .
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We bound

E
[∣∣f ′

κ∗(X�θ∗)
∣∣] ≤

√
17‖ψ′‖∞

( ∞∑
k=m

η∗k
2k2α

)⎛⎝ ∞∑
j=jm+1

2−(2α−3)j

⎞⎠
≤ C(m)C‖η∗‖

√
17‖ψ′‖∞m−(α−3/2) < ∞.

We can exchange summation and expectation to find

E
[∣∣f ′

κ∗(X�θ∗)
∣∣] = ∞∑

k=m

η∗kE[
∣∣e′k(X�θ∗)

∣∣].
We estimate

E
[∣∣e′k(X�θ∗)

∣∣] =

∫
R

|e′k(x)pX�θ∗(x)| dx

≤
(∫

Ik

e′k(x)
2dx

)1/2(∫
Ik

p2X�θ∗(x)dx

)1/2

≤ ‖ψ′‖∞Cd2
jk/2.

Such that

E
[∣∣f ′

κ∗(X�θ∗)
∣∣] ≤ C(m)C‖η∗‖Cd‖ψ′‖∞

∞∑
k=m

2jk/2η∗k

≤ C(m)C‖η∗‖Cd‖ψ′‖∞

⎛⎝ ∞∑
j=jm+1

2−2(α−1)j

⎞⎠1/2

≤ C(m)C‖η∗‖Cd‖ψ′‖∞m−(α−1).

Collecting both summands

‖D−1
m Aυκκ

∗‖ ≤ C
(√

nm−(α+1/2) + Cbiasm
−(α−1)

)
.

with some C > 0. The same arguments give for the case Cbias = 0

‖D−1
m AυκH−1

m ‖ ≤ 1

c2D

(
sup

‖θ‖=1, ‖κ‖l2=1

1

n
|θAθκκ|+ sup

‖η‖=1, ‖κ‖l2=1

1

n
|ηAηκκ|

)

≤ C1

c2D
2m−1/2.
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Remark A.4. In case Cbias > 0 we do not manage to get a bound for θbθκκ
for general κ ∈ l2. How to get a bound for β(m) in this setting remains unclear.

We bound using the dominated convergence theorem (applicable due to sim-
ilar bounds as above)

‖Hmκ∗‖2 ≤ n

∞∑
k=m+1

η∗k
2‖pX�θ∗‖∞ + 2n

∣∣∣∣∣∑
l>k

η∗l η
∗
kE[ekel(X

�θ∗)]

∣∣∣∣∣ .
As above we find

|E[ekel(X�θ∗)]| ≤ 17sp+1
X LpX‖ψ‖∞2−3jl/2−12jk/21{Il∩Ik �=∅}(k, l).

We estimate∑
l>k>m

η∗l η
∗
kE[ekel(X

�θ∗)]

≤ 17sp+1
X LpX‖ψ‖∞

∑
l>k

η∗l η
∗
k2

−3jl/2−12jk/21{Il∩Ik �=∅}(k, l)

≤ 17sp+1
X LpX‖ψ‖∞

∞∑
k=1

η∗k2
jk/2

∞∑
l=k+1

η∗l 2
−3jl/2−11{Il∩Ik �=∅}(k, l)

≤ 17sp+1
X LpX‖ψ‖∞

∞∑
k=1

η∗k2
jk/2

( ∞∑
l=k+1

η∗l
2l2α

)1/2

( ∞∑
l=k+1

l−2α2−3jl1{Il∩Ik �=∅}(k, l)

)1/2

.

We continue using that l ≥ 2jl

∞∑
l=k+1

l−2α2−3jl1{Il∩Ik �=∅}(k, l)

≤
∞∑

j=jk+1

2−(3+2α)j

|{l = 2j + j17− 1, . . . , 2j+1 + (j + 1)17− 1− 1 : Il ∩ Ik �= ∅}|

≤
∞∑

j=jk+1

2−(3+2α)j�2j−jk17� ≤ 2−(3+2α)jk36.
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Plugging this in we find∑
l>k>m

η∗l η
∗
kE[ekel(X

�θ∗)]

≤ 17
√
36sp+1

X LpX‖ψ‖∞
∞∑

k=m+1

η∗k2
−(2+2α)jk/2C‖f∗‖

≤ 17
√
36sp+1

X LpX‖ψ‖∞C‖f∗‖

( ∞∑
k=m+1

η∗k
2k2α

)1/2( ∞∑
k=m+1

k−2α2−(2+2α)jk

)1/2

≤ 17
√
36sp+1

X LpX‖ψ‖∞C2‖f∗‖

( ∞∑
k=m+1

2−(2+4α)jk

)1/2

≤ 17
√
36sp+1

X LpX‖ψ‖∞C2‖f∗‖

( ∞∑
j=jm

2−(1+4α)jk

)1/2

≤ 17
√
36sp+1

X LpX‖ψ‖∞C2‖f∗‖2
−(1+4α)(jm)/2

( ∞∑
j=0

2−(1+4α)jk

)1/2

.

From which we obtain

‖Hmη∗
2‖2 = n

∞∑
k=m+1

η∗k
2‖pX�θ∗‖∞ + 2spXLpX‖ψ‖∞C2‖f∗‖n2

−(1+4α)(jm+1)/2

≤ ‖pX�θ∗‖∞nm−(1+2α)m

( ∞∑
k=m+1

η∗k
2k2α

)

+172
√
36sp+1

X LpX‖ψ‖∞C2‖f∗‖nm
−(1/2+2α)

≤
(
17‖pX�θ∗‖∞C‖f∗‖ + 172

√
36sp+1

X LpX‖ψ‖∞C2‖f∗‖

)
nm−(1+2α)m.

Next we show

‖D−1
m

(
∇υκE[L

(
(Πp∗υ∗, λκ∗)

)
]−Aυκ

)
κ∗‖ ≤ τ(m).

For this note that(
∇υκE[L

(
(Πp∗υ∗, λκ∗)

)
]−Aυκ

)
κ∗

= n

(
E[f ′

(0,λκ∗)Xf (0,κ∗)(X
�θ∗)]

E[ef (0,κ∗)(X
�θ∗)]

)

+n

(
E[f ′

(0,κ∗)Xf (0,λκ∗)(X
�θ∗)]

0

)
.
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We infer

‖D−1
m

(
∇υκE[L

(
(Πp∗υ∗, λκ∗)

)
]−Aυκ

)
κ∗‖

≤ nE[f2
(0,κ∗)(X

�θ∗)]1/2

(
E

[∥∥∥∥D−1
m

(
f ′
(0,λκ∗)X

e

)∥∥∥∥2
]1/2

+E

[∥∥∥∥D−1
m

(
f ′
(0,κ∗)X

0

)∥∥∥∥2
]1/2)

≤
√
n

cD

(
sX

{
E[f ′

(0,λκ∗)
2
]1/2 + E[f ′

(0,κ∗)
2
]1/2

}
+ ‖pX�θ‖1/2171/4

√
m
)

E[f2
(0,κ∗)(X

�θ∗)]1/2.

We estimate separately using the same bounds as before to apply the dominated
convergence theorem to exchange summation and expectation. We bound as
above using (A.4)

E[f ′
(0,λκ∗)

2
]

= λ

∞∑
k,l=m+1

η∗kη
∗
l E[e

′
le

′
k(X

�θ∗)]

≤ 17sX‖ψ′‖∞‖pX‖∞
∞∑

k,l=m+1

η∗kη
∗
l 2

3(jl+jk)/2−(jl∨jk)1{Ik∩Il �=∅}(k, l)

≤ 17sX‖ψ′‖∞‖pX‖∞
∞∑

k=m+1

η∗k2
3jk/2

( ∞∑
l=m+1

l2αf∗2
l

)1/2

( ∞∑
l=m+1

2(3−2α)2jl−2(jl∨jk)1{Ik∩Il �=∅}(k, l)

)1/2

.

Observe

∞∑
l=m+1

2(3−2α)jl−2(jl∨jk)1{Ik∩Il �=∅}(k, l)

=

∞∑
j=jm+1

2(3−2α)j−2(j∨jk)

∣∣∣{l = j12 + 2j + rl

∣∣∣ rl ∈ {0, . . . , 2j + 11}, Il ∩ Ik �= ∅
}∣∣∣

=

∞∑
j=jm+1

2(3−2α)j−2(j∨jk) �2(j−jk)17�
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≤ 18

∞∑
j=jm+1

2(2−2α)j = 17318m−2α+2.

Such that again using the Cauchy-Schwarz inequality for any λ ∈ [0, 1]

E[f ′
(0,λκ∗)

2
] ≤ 175/2

√
18sX‖ψ′‖∞‖pX‖∞C‖f∗‖m

−α+1
∞∑

k=m+1

η∗k2
3jk/2

≤ 173
√
18sX‖ψ′‖∞‖pX‖∞C2‖f∗‖m

−2α+3.

Furthermore

E[f2
(0,κ∗)(X

�θ∗)] =
∞∑

k,l=m+1

η∗kη
∗
l E[ekel(X

�θ∗)]

≤ 17sp+1
X LpX‖ψ‖∞

∞∑
k,l=m+1

η∗kη
∗
l 2

−3(jl∨jk)/2+(jl∧jk)/21{Il∩Ik �=∅}(k, l)

= 17sp+1
X LpX‖ψ‖∞

∞∑
k=m+1

η∗k2
−jk

∞∑
l=m+1

η∗l 1{Il∩Ik �=∅}(k, l)

≤ 17sp+1
X LpX‖ψ‖∞

∞∑
k=m+1

η∗k2
−jkC‖f∗‖

⎛⎝ ∞∑
j=jm+1

2−2αj18

⎞⎠1/2

≤ 17
√
18171/2sp+1

X LpX‖ψ‖∞C‖f∗‖m
−α

∞∑
k=m+1

η∗k2
−jk

≤ 17
√
36172sp+1

X LpX‖ψ‖∞C2‖f∗‖m
−2α.

Together this implies

‖D−1
m

(
∇υκE[L

(
(Πp∗υ∗, λκ∗)

)
]−Aυκ

)
κ∗‖

≤ 1

cD

(
2sX

{
173

√
18sX‖ψ′‖∞‖pX‖∞C2‖f∗‖

}1/2

+ ‖pX�θ‖1/2171/4
)

√√
36173sp+1

X LpX‖ψ‖∞C2‖f∗‖m
−2α+1/2)

√
n

≤ C1m
−2α+1/2

√
n.

Clearly ∣∣∣κ∗�(Hm −∇κκEL(Πp∗υ∗, λκ∗))κ∗
∣∣∣ = 0.

To see this simply note that for any f ∈ S and any κ ∈ S

κ�∇κκEL(θ
∗,f)κ = E[f2

(0,κ)(X
�θ∗)] = κ�Hmκ.
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Furthermore we find that

θ�d2θ(υ
∗)θ = E[f ′

f (X
�θ∗)2(X�∇Φ(θ∗)θ)2]

≤ ‖f ′
η∗‖2∞s2X‖∇Φ(θ∗)‖

≤ p+ 2

4
C‖f‖‖ψ′‖2∞s2Xπ2,

and

θ�v2θ(υ
∗)θ = E

[(
fη∗(X�θ∗)− g(X)

) (
(X�θ)2f ′′

η∗(X�θ∗)]

+|f ′
η∗(X�θ∗)|2X�∇2ϕ�

θ∗ [X,θ,θ]
)]

≤ Cbias

(
s2XC‖f ′′

η∗‖∞ + 34‖ψ′‖2∞C2
‖η∗‖s

2
X‖∇2ϕθ∗‖∞

)
.

This completes the proof.

A.6. Proof or Lemma 5.1

We proof the claim via validating condition (Lr∞) from Section 4.3. For this
condition we can use the full expectation E instead of Eε:

Lemma A.7. Assume (A). Then there exists a constant b > 0 such that

EL(υ,υ∗) ≤ −br2.

Proof. As in Lemma A.8 we can make the decomposition

EL(υ,υ∗)

= −nE
[(
g(X)− E[g(X)|X�θ]

)2]− nE
[(
g(X)− E[g(X)|X�θ∗]

)2]
−nE

⎡⎣(E[g(X)|X�θ]−
n∑

k=1

ηkek(X
�θ)

)2
⎤⎦ .

We find with condition (model bias) for all υ = (θ,η) ∈ Υm

−nE
[(
g(X)− E[g(X)|X�θ]

)2]
+ nE

[(
g(X)− E[g(X)|X�θ∗]

)2]
≤
{
−nbθ, ‖D(θ − θ∗)‖ ≥ √

nrθ/cD

−bθ‖D(θ − θ∗)‖2, otherwise.

As ‖D(θ − θ∗)‖2 ≤ np+2
2 C‖f‖‖ψ′‖2∞s2Xπ2 we find

EL(υ,υ∗) ≤ −b′′θ‖D(θ − θ∗)‖2, b′′θ = bθ min

{
1,

1
p+2
2 C‖f‖‖ψ′‖2∞s2Xπ2

}
.
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We study two cases first assume that ‖D(θ−θ∗)‖2 ≥ τ2r2 for some τ > 0, then
we get

−EL(υ,υ∗) ≥ τ2b′θr
2.

Otherwise – if ‖D(θ − θ∗)‖2 ≤ τ2r2 – we have as in the proof of Lemma A.5

E

⎡⎣(E[g(X)|X�θ]−
n∑

k=1

ηkek(X
�θ)

)2
⎤⎦ ≥ Q(b∗ − Cτ)2r2.

Choosing τ > 0 small enough gives the claim.

The claim of Lemma 5.1 now is a direct consequence of Lemma A.2 of [1].

A.7. Proof of Lemma 5.2

Remark A.5. We assume that the density of the regressors satisfies pX ≥
cpX > 0 on BsX+cB (0). This implies that for any θ ∈ R

p the density of X�θ
is also bounded away from zero on [−sX, sX] by λ(Bp−1

cB )cpX where λ(Bp−1
r )

denotes the Lebesgue measure of the p− 1 dimensional ball of radius r > 0 on
R

p−1. As we use a orthonormal wavelet basis on L2([−sx, sx]) this gives

λmin(H2(υ)) = inf
η∈l2

E[fη(X
�θ)2]/‖η‖2

≥ λ(Bp−1
cB )cpX

∫
[−sX,sX]

fη(x)
2dx/‖η‖2 = λ(Bp−1

cB )cpX .

Proof. Take any θ ∈ Sp,+
1 . Then we have due to the quadratic structure of the

problem and using the usual bounds for ‖e‖ ≤ C
√
m

∥∥∥η̃(∞)
m,θ

∥∥∥ def
=

∥∥∥∥argmax
η∈Rm

Lm(θ,η)

∥∥∥∥
=

∥∥∥∥∥∥
(
1

n

n∑
i=1

ee�(X�
i θ)

)−1
1

n

n∑
i=1

(g(Xi) + εi)e(X
�
i θ)

∥∥∥∥∥∥
≤
(
‖g‖∞C

√
m+

∥∥∥∥∥ 1n
n∑

i=1

εie(X
�
i θ)

∥∥∥∥∥
)

∥∥∥∥∥∥
(
1

n

n∑
i=1

ee�(X�
i θ)

)−1
∥∥∥∥∥∥ . (A.11)
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We want to bound the above right-hand side. For this we bound

P

(∥∥∥∥∥ 1n
n∑

i=1

εie(X
�
i θ)

∥∥∥∥∥ ≥ t

)
= P

⎛⎜⎝ sup
η∈R

m

‖η‖=1

1

n

n∑
i=1

εi

m∑
k=1

ηkek(X
�
i θ) ≥ t

⎞⎟⎠
≤ P

(
sup

η∈B1(0)

1

n

n∑
i=1

εifη(X
�
i θ) ≥ t

)

We want to apply Corollary 2.2 of the supplement of [19] with

U(η) =
1√
n

n∑
i=1

εifη(X
�
i θ), υ

∗ = 0 ∈ R
m.

For this we have to show that

logE exp

{
λ
U(υ)− U(υ◦)

d(υ,υ◦)

}
≤ ν2λ2/2,

with d(η,η◦) = ‖η − η◦‖Rm . This is indeed the case since by Lemma A.4 for
any pair η,η◦ ∈ B1(0)∣∣fη−η◦(X�

i θ)
∣∣ ≤ C‖ψ‖∞

√
m‖η − η◦‖.

Using (Condε), the independence of (εi) and (Xi) we find for

λ ≤
√
n

C
√
m
g̃,

and any pair η,η◦ ∈ B1(0)

logE exp

{
λ
U(υ)− U(υ◦)

d(υ,υ◦)

}

= logE exp

{
λ

1√
n‖η − η◦‖

n∑
i=1

εifη−η◦(X�
i θ)

}

≤
n∑

i=1

logE exp

{
λ√

n‖η − η◦‖εifη−η◦(X�
i θ)

}

≤
n∑

i=1

logE

[
exp

{
ν̃2λ2

n

1

‖η − η◦‖2f
2
η−η◦(X�

i θ)

}]
≤ C2mν̃2λ2/2.
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This implies with Corollary 2.2 of the supplement of [19]

P

(∥∥∥∥∥ 1n
n∑

i=1

εie(X
�
i θ)

∥∥∥∥∥ ≥ Cν̃
√
m
√
x+ 2m/

√
n

)
≤ e−x.

Two bound the norm of the inverse of the matrix in (A.11) we denote

Mn(θ)
def
=

1

n

n∑
i=1

ee�(X�
i θ).

Note that with Remark A.5

E [Mn(θ)] ≥ λ(Bp−1
h )cpXce,

while

sup
θ∈Sp

1

‖Mn(θ)− E [Mn(θ)]‖ = sup
(θ,η)∈Sp

1×Sm
1

∣∣(Pn − P)f2
η(X

�θ)
∣∣ .

We bound

P

(
sup

(θ,η)∈Sp
1×Sm

1

∣∣(Pn − P)f2
η(X

�θ)
∣∣ ≥ t+ s

)

≤ P
(∣∣(Pn − P)f2

η∗(X�θ∗)
∣∣ ≥ s

)
+P

(
sup

(θ,η)∈Sp
1×Sm

1

∣∣(Pn − P)
[
f2
η(X

�θ)− f2
η∗(X�θ∗)

]∣∣ ≥ t

)
.

For the first term we can use the bounded differences inequality (Theorem A.1)
to find

P
(∣∣(Pn − P)f2

η∗(X�
i θ

∗)2
∣∣ ≥ ‖fη∗‖2∞

√
x/

√
n
)
≤ e−x.

For the second summand we define ζX(υ)
def
= (Pn − P)fη(X

�
i θ)

2. We use the
chaining method, i.e. Lemma A.2. Define Υ0 = {υ∗} and with a sequence rk =
2−kr with r to be specified later the sequence of sets Υk each with minimal
cardinality such that

Sp
1 × Sm

1 ⊂
⋃

υ∈Υk

Brk(υ), Br(υ)
def
= {υ◦ ∈ Sp

1 × Sm
1 , ‖υ◦ − υ‖ ≤ r}.

We can estimate with any υ′ ∈ Brk,D(υ)

inf
Υk−1,m

|ζX(υ)− ζX(υ◦)| =
∣∣(Pn − P)

{
fη(X

�
i θ)

2 − fη′(X�
i θ

′)2
}∣∣
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We estimate for an application of the bounded differences inequality∣∣{fη(X
�
i θ)

2 − fη′(X�
i θ

′)2
}∣∣

≤
∣∣{fη(X

�
i θ)− fη′(X�

i θ
′)
}{

fη(X
�
i θ) + fη′(X�

i θ
′)
}∣∣

≤
(
‖fη‖∞ + ‖fη′‖∞

) (
‖fη−η′‖∞ + ‖f ′

η‖∞‖θ − θ′‖
)
.

We have as ‖η‖ = 1 with Lemma A.4

‖fη‖∞ ≤ ‖η‖ sup
x∈[−sX,sX]

(
m∑

k=1

e2k(x)
2

)1/2

≤
√
17‖ψ‖

√
m,

‖f ′
η‖∞ ≤ ‖η‖ sup

x∈[−sX,sX]

(
m∑

k=1

e′2k (x)
2

)1/2

≤
√
17‖ψ′‖m3/2.

Consequently ∣∣{fη(X
�
i θ)

2 − fη′(X�
i θ

′)2
}∣∣ ≤ Cζm

3/2rk.

This yields with the bounded difference inequality

P

(
inf

Υk−1,m

|ζX(υk)− ζX(υk−1)| ≥ sCζm
3/2rk/

√
n

)
≤ e−s2 .

Now we can define r
def
= (1−1/

√
2)

Cζm3/2 . Then

P

(
inf

Υk−1,m

|ζX(υk)− ζX(υk−1)| ≥
2−(k−1)(1− 1/

√
2)s√

n

)
≤ e−s2 . (A.12)

Set

s =

√
x+ log(2) + p∗[1 + log(2) + log(Cζm3/2)− log(1− 1/

√
2)]/

√
n

≤ C
√
x+ p∗ log(p∗)/

√
n,

and plug it into (A.12), then we find with Lemma A.2

P

(
sup
θ∈Sp

1

‖Mn(θ)− E [Mn(θ)]‖ ≥ C
√
x+ p∗ log(p∗)/

√
n

)

≤ P

(
sup

υ∈Υm

ζX(υ)− ζX(υ∗) ≥ C
√
x+ p∗ log(p∗)/

√
n

)
≤

∞∑
k=1

exp

{
p∗[1 + log(2)k + log(Cζm

3/2)− log(1− 1/
√
2)]
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− 2k−1
[
x+ log(2) + p∗[1 + log(2) + log(Cζm

3/2)− log(1− 1/
√
2)]
]}

≤ e−x.

Together this implies because p∗ log(p∗)/
√
n → 0

P

(
sup

θ∈Sp,+
1

∥∥∥η̃(∞)
m,θ

∥∥∥ ≥ C
√
p∗ log(p∗) + x

)
≤ 3e−x.

Adding log(3) to x in the above inequality and adapting the constant gives the
claim with a probability bound e−x.

A.8. Proof of Lemma 5.3

Before we prove the claims we need a series of auxiliary lemmas.

A.8.1. Dm(υ∗
m) is boundedly invertible

Lemma A.8. Under (A) we have that

Dm(υ∗
m)2 ≥ c2D ≥ c∗D

2/

(
1−

C∗(L0)

{
m3/2 + Cbiasm

5/2
}
r∗

c∗D
√
n

)
,

where c∗D > 0 is defined in Lemma A.5 and is independent of m,n and where
r∗ > 0 is defined in (5.1).

Remark A.6. By the definition of r∗ > 0 in (5.1) it is clear that cD ≈ c∗D,
once (m2 + Cbiasm

3)/
√
n → 0.

To prove this claim, note that using Lemma A.5 we can prove the following
result. It is proved very similarly to Lemma A.18:

Lemma A.9. We have for any υ ∈ {υ ∈ Υm : ‖Dm(υ∗)(υ − υ∗)‖ ≤ r} and
with some constant C∗(L0)

> 0

‖I −D−1
m (υ∗

m)D2
m(υ∗)D−1

m (υ∗
m)‖ ≤

C∗(L0)

{
m3/2 + Cbiasm

5/2
}
r

c∗D
√
n

.

We obtain the claim of Lemma A.8 because

D2
m(υ∗

m)−Dm(υ∗
m)
{
I −D−1

m (υ∗
m)D2

m(υ∗)D−1
m (υ∗

m

}
= D2

m(υ∗),

such that using Lemma 5.1 and Lemma A.5(
1 +

C∗(L0)

{
m3/2 + Cbiasm

5/2
}
r∗

c∗D
√
n

)
D2

m(υ∗
m) ≥ D2

m(υ∗) ≥ c∗D.
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A.8.2. Some bounds for the score

Lemma A.10. We have

|f ′
η∗

m
(x)| ≤ C,

|fη(X
�θ)− fη◦(X�θ◦)| ≤ C

‖D(υ − υ◦)‖√m√
n

+C

(
‖D(υ◦ − υ∗)‖m2

√
n

+ 1

)
. (A.13)

Proof. Using assumption (Condη∗), that |M(j)| ≤ 17 (in (A.10)) and k =
(2jk − 1)17 + rk with rk ∈ {0, . . . , 2jk + 16} and jk ∈ N0 we find as α > 2

|f ′
η∗

m
(x)| ≤

jm−1∑
j=0

∑
k∈M(j)

|η∗mk||e′k(x)|

≤
√
17‖ψ′‖∞

⎛⎝jm−1∑
j=0

∑
k∈M(j)

|η∗mk|224j
⎞⎠1/2⎛⎝jm−1∑

j=0

2−4j23j

⎞⎠1/2

≤
√
17‖ψ′‖∞

(
m−1∑
k=0

|η∗mk|2k4
)1/2

⎛⎝jm−1∑
j=0

2−j

⎞⎠1/2

≤
√
34‖ψ′‖∞C‖η∗

m‖,

where with Lemma 5.1 and m ∈ N large enough (m5/n → 0 and r∗ ∼= m)

C‖η∗
m‖ ≤

(
m−1∑
k=1

|η∗mk|2k4
)1/2

≤
(

m−1∑
k=0

|η∗k|2k4
)1/2

+

(
m−1∑
k=0

|η∗mk − η∗k|2k4
)1/2

≤ C+m2‖(η∗
m −Πmη∗)‖

≤ C+
m2r∗√
ncD

≤ C,

For the second claim we bound (A.13) to bound

|fη(X
�θ)− fη◦(X�θ◦)| ≤ |fη−η◦(X�θ)|+ |fη◦(X�θ)− fη◦(X�θ◦)|

≤ r
√
m

cD
√
n
+ sX‖f ′

η◦‖∞r/
√
n.
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It remains to bound using that m5/n → 0 and that r∗ ≤ C
√
m

|f ′
η◦ | ≤

√
17

(
m∑

k=1

η◦24

)1/2
⎛⎝ jm∑

j=1

2(3−4)j

⎞⎠1/2

≤ C

(
‖D(υ◦ − υ∗)‖m2

√
n

+ 1

)
.

Lemma A.11. We have with ςi,m from (A.1)

‖ςi,m(υ∗
m)‖ ≤ C

√
m,

and for any υ,υ′ ∈ Υ◦(r) with r ≤ C
√
m(1 + Cbias log(n))

‖ςi,m(υ)− ςi,m(υ′)‖ ≤ Cm3/2 ‖Dm(υ − υ′)‖√
ncD

.

Proof. Note

‖ςi,m(υ∗
m)‖ = ‖(f ′

η∗
m
(X�

i θ
∗
m)∇Φ�

ϕθ∗
m
Xi, e(X

�
i θ

∗
m))‖

≤ ‖f ′
η∗

m
(X�

i θ
∗
m)‖‖Xi‖+ ‖e(X�

i θ
∗
m)‖.

Such that with (A.8) and Lemma A.10

‖ςi,m(υ∗
m)‖ ≤ (C+ 1)

√
34sX‖ψ′‖∞ +

√
17‖ψ‖∞

√
m. (A.14)

For the second claim we use that for each j = 1, . . . , jm − 1

|N(j)| def=
∣∣∣{ k ∈ {(2j − 1)17, . . . , 2j+1 + (j + 1)17− 1− 1} : (A.15)

|ek(X�
i θ

′)− ek(X
�
i θ)| ∨ |e′k(X�

i θ
′)− e′k(X

�
i θ)| > 0

}∣∣∣ ≤ 34.

Furthermore we always have that

|e′k(X�
i θ

′)− e′k(X
�
i θ)| ≤ 2jk5/2‖ψ′′‖∞sX‖θ − θ′‖.

This implies again using that α > 2 that rm
n → 0 for r2 ≤ Cm and with

N(j) ⊂ N from (A.15)

|f ′
η(θ

�Xi)− f ′
η(X

�
i θ

′)| ≤
√
34(C+ 1)m3/2‖θ − θ′‖‖ψ′′‖∞sX, (A.16)
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and with the same arguments

‖e(X�
i θ)− e(X�

i θ
′)‖ ≤

(
m∑

k=1

|ek(X�
i θ)− ek(X

�
i θ

′)|2
)1/2

(A.17)

≤
√
34

(
jm−1∑
j=0

23j

)1/2

‖θ − θ′‖‖ψ′‖∞sX

≤
√
34m3/2‖θ − θ′‖‖ψ′‖∞sX,

and

‖f ′
η−η′(θ�Xi)∇ϕ�

θ Xi‖ ≤ sX

m∑
k=1

|ηk − η′m,k||e′k(θ�Xi)| (A.18)

≤
√
34‖η − η′‖sX‖ψ′‖∞

(
jm−1∑
j=0

23j

)1/2

≤
√
34‖η − η′‖sX‖ψ′‖∞m3/2.

Finally similar to (A.14) we have with M(j) ⊂ N from (A.10)

|f ′
η(X

�
i θ)| ≤

√
34‖ψ′‖∞(C‖η∗‖ + 1),

such that

‖f ′
η′(X�

i θ
′)(∇ϕ�

θ −∇Φ�
θ′)Xi‖ (A.19)

≤ ‖ψ′‖∞(C‖η∗‖ + 1)
√
34L∇Φ·‖θ − θ′‖sX.

We get combining (A.19), (A.16), (A.18) and (A.17)

‖ςi,m(υ)− ςi,m(υ′)‖ ≤ Cm3/2 ‖Dm(υ − υ′)‖√
ncD

,

where we used Lemma A.8 to find that

‖θ − θ′‖ ∨ ‖η − η′‖ ≤
√

‖θ − θ′‖2 + ‖η − η′‖2 ≤ ‖υ − υ′‖

≤ ‖Dm(υ − υ′)‖√
ncD

.

A.8.3. Crude deviation bounds for sums of random matrices

The next auxiliary Lemma relies on a non-commutative Bernstein inequality;
see Theorem 1.4 of [22].
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Lemma A.12. Suppose that hi ∈ R
p1 are iid random vectors, where p ∈ N.

Define

S∗
n :=

1

n

n∑
i=1

hih
�
i − E[h1h

�
1 ],

and B2 := E[‖h1‖4]. Assume that ‖hi,mh�
i,m‖ = ‖Mi‖ ≤ U ∈ R then it holds

P
(
‖S∗

n‖ > n−1t
)
≤ 2p1 exp

{
− t2

4nB2 + 2Ut/3

}
Proof. This lemma is an immediate consequence of the non-commutative Bern-
stein inequality (Theorem 1.4 in [22]). We only have to note that

n∑
i=1

E[M2
i ] ≤ 2nE[‖h1‖4] = 2nB2.

Lemma A.13. We have with x ≤ 9n/2− log(2m) that

P

(
‖Sn‖ ≥ C

√
8m
(
x+ log(2m)

)1/2
/
√
n

)
≤ e−x.

where with ςi,m from (A.1)

Sn =
1

n

n∑
i=1

ςi,m(υ∗
m)ςi,m(υ∗

m)� − 1

n
V2
m(υ∗

m).

Proof. We want to employ lemma A.12. We estimate using Lemma A.11

‖ςi,m(υ∗
m)ςi,m(υ∗

m)�‖ ≤ Cm,

such that ‖ςi,mς�i,m‖ =: ‖Mi‖ ≤ Cm. Furthermore

E[‖ςi,m(υ∗
m)‖4] ≤ C2m2.

Plugging these bounds into lemma A.12 we get

P(‖Sn‖ ≥ n−1t) ≤ 2m exp
{
− t2

4nC2m2 + 2Cmt/3

}
.

Setting t = C
√
8nm

(
x+ log(2m)

)1/2
and x ≤ 9n/2− log(2m) this gives

P

(
‖Sn‖ ≥ C

√
8m
(
x+ log(2m)

)1/2
/
√
n

)
≤ e−x.
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Lemma A.14. We have with x ≤ 9n/2− log(2m) that

P

(
‖Sn‖ ≥

√
8C(p∗ + x)4

(
x+ log(2m)

)1/2
/
√
n

)
≤ e−x.

where with ςi,m from (A.1)

Sn(υ) =
1

n

n∑
i=1

ςi,m(υ)ςi,m(υ)� − 1

n
V2
m(υ).

Proof. We want to employ lemma A.12. We estimate using Lemma A.11 and
that r◦ ≤ C

√
p∗ + x

‖ςi,m(υ)ςi,m(υ)�‖ ≤ 3‖ςi,m(υ∗
m)‖2 + 3‖ςi,m(υ∗

m)− ςi,m(υ)‖2

≤ Cm+ C
‖Dm(υ − υ∗

m)‖2m3

n

≤ Cm+ Cm3r2/n.

such that ‖ςi,mς�i,m‖ =: ‖Mi‖ ≤ Cm. Furthermore

E[‖ςi,m(υ∗
m)‖4] ≤ C2(m2 +m6r4/n2).

Plugging these bounds into lemma A.12 we get

P(‖Sn‖ ≥ n−1t) ≤ 2m exp
{
− t2

4nC2(m2 +m6r4/n2) + 2C (m+m3r2/n) t/3

}
.

Setting t =
√
8nC

(
m+m3r2/n

) (
x+ log(2m)

)1/2
/n2 and x ≤ 9n/2− log(2m)

this implies

P

(
‖Sn‖ ≥

√
8C
(
m+m3r2/n

) (
x+ log(2m)

)1/2
/
√
n

)
≤ e−x.

Lemma A.15. We have with

t = C‖Dm(υ − υ′)‖2m3
(
x+ log(2m)

)1/2√
5/n,

and x ≤ 9n/2− log(2m)

P(‖Sn‖ ≥ n−1t) ≤ e−x,
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where with υ ∈ Υ◦(r) and with ςi,m from (A.1)

Sn =
1

n

n∑
i=1

(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�

−E(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�.

Proof. We estimate using Lemma A.11

‖(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�‖

≤ ‖ςi,m(υ′)− ςi,m(υ)‖2

≤ C
‖Dm(υ − υ′)‖2m3

n
.

With the same estimates we obtain

E[‖ςi,m(υ′)− ςi,m(υ)‖4] ≤ Cm6 ‖Dm(υ − υ′)‖4
n2

.

Plugging these bounds into Lemma A.12 we get with d(υ,υ′)
def
= ‖Dm(υ−υ′)‖

P(‖Sn‖ ≥ n−1t)

≤ 2m exp
{
− t2

4d(υ,υ′)4Cn−1m6 + 2d(υ,υ′)2Cm3n−1t/3

}
.

Setting t = C‖Dm(υ−υ′)‖2
√

8/nm3
(
x+ log(2m)

)1/2
and x ≤ 9n/2− log(2m)

this yields

P(‖Sn‖ ≥ n−1t) ≤ e−x.

A.8.4. Conditions (I)

Proof. This follows from D ≥ cDId with Lemma B.5 of [2] where

ρ2 ≤ 1− ncD
λmaxD ∧ λmaxH

≤ 1− cD
Cp

.

where we used Lemma A.6 to bound λmaxD ≤ Cp in the last step. Finally we
have cD > 0 as shown in Lemma A.8.
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A.8.5. Conditions (ED0), (Er) and (ED1,m)

Lemma A.16. With probability greater than 1− 3e−x we have (ED0) with

g =

√
n

C(1 +
√
m)

, ν2m = 2ν̃2σ2,

and (Er) with

g(r) =
√
ncDg̃C

(√
m+m3/2r/

√
n
)−1

,

ν2r,m = ν̃2
(
1 + C

(
m3/2 + rm2/

√
n
)
r/

√
n

+C
(
m+m3r2/n

) (
x+ log(2m)

)1/2
/
√
n
)
.

where C(Er) > 0 is independent of n,m, x, r.

Proof. Lemma A.8 gives with γ̃ = V
1/2
m γ/‖V1/2

m γ‖

〈∇ζ(υ∗
m), γ〉Rp∗

‖Vmγ‖ = 〈γ̃�V−1
m A(υ∗

m), ε〉Rn .

Consequently – using Lemma A.11 – we get with μ ≤
√
n

C(1 +
√
m)

, with ςi,m

from (A.1) and assumption (Condε)

sup
γ∈Rp∗

logEε exp

{
μ
〈∇ζ(υ∗

m), γ〉
‖Vm(υ∗

m)γ‖

}

≤
n∑

i=1

sup
γ∈Rp∗ , ‖γ̃‖=1

logE exp
{
μ〈γ̃,V−1

m (υ∗
m)ςi,m(υ∗

m)〉εi
}

≤ ν̃2μ2γ̃�V−1
m (υ∗

m)

(
n∑

i=1

ςi,m(υ∗
m)ςi,m(υ∗

m)�

)
V−1
m (υ∗)γ̃

= ν̃2μ2 + ν̃2μ2γ̃�V−1
m (υ∗

m)nSnV
−1
m (υ∗

m)γ̃

≤ ν̃2μ2 + ν̃2μ2κn, (A.20)

where

κn = γ̃� (n−1Vm

)−1/2
Sn

(
n−1Vm

)−1/2
γ̃,

Sn =
1

n

n∑
i=1

ςi,m(υ∗
m)ςi,m(υ∗

m)� − 1

n
Vm(υ∗

m).
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With Lemma A.13 we infer that if x ≤ 9n/2− log(2m)

P

(
‖Sn‖ ≥ CM

√
8m
(
x+ log(2m)

)1/2
/
√
n

)
≤ e−x.

Consequently with probability greater than 1− e−x we find that for n ∈ N large
enough

κn ≤
CM

√
8m
(
x+ log(2m)

)1/2
√
nσ2c2D

≤ 1.

Thus we get (ED0) with probability greater than 1− e−x and

g =

√
n

C(1 +
√
m)

, ν2m = 2ν̃2.

Concerning (Er) we bound using the same arguments as in the proof of Lemma
A.18

‖Vm(υ)−1Vm(υ∗
m)‖2 ≤ 1 + ‖I − Vm(υ)−1Vm(υ∗

m)2Vm(υ)−1‖

≤ 1 + C
(
m3/2 + rm2/

√
n
)
r/

√
n.

Thus we get with the arguments from above (Er) using Lemma A.14 with
probability greater than 1− e−x and

g(r) =
√
ncDg̃C

(√
m+m3/2r/

√
n
)−1

,

ν2r,m = ν̃2
(
1 + C

(
m3/2 + rm2/

√
n
)
r/

√
n

+C
(
m+m3r2/n

) (
x+ log(2m)

)1/2
/
√
n
)
.

Lemma A.17. With probability greater than 1− e−x we have (ED1) with

g
def
=

√
n

Crm3/2
, ω

def
=

2√
ncD

, ν21,m = ν̃2Cm2.

Proof. We get with Lemma A.11, with Lemma A.8 and with ςi,m from (A.1)

‖D−1
m (ςi,m(υ)− ςi,m(υ′))‖ ≤ C

2m3/2

nc2D
‖Dm(υ − υ′)‖,

We get with,

μ ≤ g
def
=

√
n

Crm3/2

ω
def
=

2√
ncD

,
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and the same calculations as in (A.20) with some υ,υ′ ∈ Υ◦(r), γ ∈ R
p∗

and
‖γ‖ = 1

logEε[exp

{
μ
γ�D−1

m (∇ζ(υ)−∇ζ(υ′))

ω‖Dm(υ − υ′)‖

}
]

≤
n∑

i=1

logEε[exp

{
μεi

γ�D−1
m (ςi,m(υ)− ςi,m(υ′))

ω‖Dm(υ − υ′)‖

}
]

≤ μ2ν̃2

2
(ω‖Dm(υ − υ′)‖)−2

nγ�D−1
m

(
n∑

i=1

(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�

)
D−1

m γ�.

We estimate

γ̃�D−1
m

(
n∑

i=1

(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�

)
D−1

m γ̃�

≤ ‖D−1
m nE

[
(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�

]
D−1

m ‖+ κn

≤ E‖
(
n−1/2Dm

)−1

(ςi,m(υ′)− ςi,m(υ))‖2 + κn,

where

κn = ‖
(
n−1/2Dm

)−1

Sn

(
n−1/2Dm

)−1

‖,

Sn =
1

n

n∑
i=1

(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�

−E(ςi,m(υ′)− ςi,m(υ))(ςi,m(υ′)− ςi,m(υ))�.

To control κn > 0 we apply Lemma A.15 and we infer that with t = C2
M‖Dm(υ−

υ′)‖2
√

5/nm3
(
x+log(2m)

)1/2
and x ≤ 9n/2− log(2m) the set {‖Sn‖ ≤ n−1t}

is of dominating probability and on this set we find

κn ≤
C2

M‖Dm(υ − υ′)‖2
(
x+ log(2m)

)1/2
m3
√

5/n

nc2D

≤ ω2‖Dm(υ − υ′)‖2
C2

M

√
5m3

(
x+ log(2m)

)1/2
√
n

.
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For r ≤ r0 ≤ Cr
√
p∗ + x this gives because m5/2/

√
n → 0

κn ≤ Cκ

√(
x+ log(2m)

)
p∗.

We calculate with some (θ◦,η◦)
def
= ( 1√

n
Dm)−1γ

nγ�D−1
m E

[
(ς1,m(υ′)− ς1,m(υ))(ς1,m(υ′)− ς1,m(υ))�

]
D−1

m γ�

= E

[{[
f ′
η(X

�θ)− f ′
η′(X�θ′)

]
(X�θ◦)2 + fη◦(X�θ)− fη◦(X�θ′)

}2]
≤ 2E

[{[
f ′
η(X

�θ)− f ′
η′(X�θ′)

]
(X�θ◦)2

}2]
+2E

[{
fη◦(X�θ)− fη◦(X�θ′)

}2]
.

We estimate separately

E

[{[
f ′
η(X

�θ)− f ′
η′(X�θ′)

]
(X�θ◦)2

}2]
≤ 2s4X

(
E

[{
f ′
η−η′(X�θ)

}2]
+ E

[{
f ′
η′(X�θ)− f ′

η′(X�θ′)
}2])

.

We again estimate separately denoting γ = (η − η′)/‖η − η′‖

E

[{
f ′
η−η′(X�θ)

}2]
= ‖η − η′‖22

m∑
k=1

m∑
l=k

(1− 1k=l/2)γkγlE[e
′
le

′
l(X

�θ)],

We have with l = 2jl + 17jl − 1 + rl ∈ N and k = (2jk − 1)17 + rk ∈ N using
(A.4)

E[e′ke
′
l(X

�θ)] ≤ 17C2jk‖ψ′‖2∞2jl1Ik∩Il �=0. (A.21)

This implies

1

‖η − η′‖2E
[{

f ′
η−η′(X�θ)

}2]
=

m∑
k=1

m∑
l=k

(1− 1k=l/2)γlγkE[e
′
le

′
l(X

�θ)]

≤ 17C‖ψ′‖∞
m∑

k=0

γk2
jk

⎛⎝ jm∑
j=jk

2j+17−1∑
r=0

22jl1Ik∩Il �=0((2
j − 1)17 + r, k)

⎞⎠1/2

≤ 17C‖ψ′‖∞
m∑

k=0

γk2
jk

⎛⎝ jm∑
j=jk

22jl �2(jl−jk)17�

⎞⎠1/2
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≤
√
1817C‖ψ′‖∞

m∑
k=0

γk2
jk/2

⎛⎝ jm∑
j=jk

23jl

⎞⎠1/2

≤ 182Cm2. (A.22)

Furthermore

E

[{
f ′
η′(X�θ)− f ′

η′(X�θ′)
}2]

= 2

m∑
k=1

m∑
l=k

(1− 1k=l/2)η
′
kη

′
l

E
[
(e′k(X

�θ)− e′k(X
�θ′))(e′l(X

�θ)− e′l(X
�θ′))

]
.

With (A.6) this gives

E

[{
f ′
η′(X�θ)− f ′

η′(X�θ′)
}2]

≤ ‖θ − θ′‖2C‖ψ′′‖2∞s4X1722

m∑
k=1

η′k2
2jk

m∑
l=k

η′l2
2jl1{Ik∩Il �=∅}

≤ ‖θ − θ′‖2C‖ψ′′‖2∞s4X1722

m∑
k=1

η′k2
2jk

(
m∑
l=k

η′l
2
k4

)1/2( m∑
l=k

1{Ik∩Il �=∅}

)1/2

.

As always

r ≤ C
√
p∗(1 + Cbias log(n)),

implies rm2/
√
n → 0 such that(

m∑
l=k

η′l
2
k4

)1/2

≤
(

m∑
l=k

η∗m
2
l k

4

)1/2

+

(
m∑
l=k

|η′l − η∗ml|2k4
)1/2

≤ 2(1− C‖η∗‖),

which gives using (3.2)

E

[{
f ′
η′(X�θ)− f ′

η′(X�θ′)
}2]

≤ ‖θ − θ′‖2(1− C‖η∗‖)C‖ψ′′‖2∞s4X175/24m
m∑

k=1

η′k2
3jk/2.

Repeating the same arguments gives

E

[{
f ′
η′(X�θ)− f ′

η′(X�θ′)
}2] ≤ ‖θ − θ′‖2(1− C‖η∗‖)C‖ψ′′‖2∞s4X1734m3/2,
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such that

E

[{[
f ′
η(X

�θ)− f ′
η′(X�θ′)

]
(X�θ◦)2

}2] ≤ Cm2‖υ − υ′‖2. (A.23)

Finally we can estimate

E

[{
fη◦(X�θ)− fη◦(X�θ′)

}2]
= 2

m∑
k=1

m∑
l=k

(1− 1k=l/2)η
◦
kη

◦
l

E
[
(ek(X

�θ)− ek(X
�θ′))(el(X

�θ)− el(X
�θ′))

]
.

Using (A.5), that ‖η◦‖ ≤ 1/cD and very similar arguments as before we find

E

[{
fη◦(X�θ)− fη◦(X�θ′)

}2] ≤ ‖θ − θ′‖2C‖ψ′‖2∞s4X175/24m2 1

c2D
. (A.24)

Putting these bounds together gives

nγ�D−1
m E

[
(ς1,m(υ′)− ς1,m(υ))(ς1,m(υ′)− ς1,m(υ))�

]
D−1

m γ�

≤ C2(ED1)
m2‖Dm(υ − υ′)‖2ω2.

This yields (ED1) with

ν21,m = ν̃2C2(ED1)
m2.

A.8.6. Condition (L0)

Lemma A.18. The condition (L0) is satisfied where

δ(r) =
C
{
m3/2 + Cbiasm

5/2
}
r

cD
√
n

.

Proof. We will show that 1
n‖D2

m(υ) −D2
m(υ∗

m)‖ ≤ c2Dδ(r), which will give the
claim due to

‖Ip∗ −D−1
m ∇2

p∗E[L(υ)]D−1
m ‖ ≤ 1

nc2D
‖D2

m(υ)−D2
m(υ∗

m)‖.

We represent

−∇2
p∗E[Lm(υ)]

def
= D2

m(υ) = nd2m(υ) + nr2m(υ),
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nd2m(υ) = n

(
d2θ(υ) am(υ)
a�m(υ) h2

m(υ)

)
def
=

(
D(υ)2 A�

m(υ)
Am(υ) H2

m(υ)

)
,

r2m(υ) = E

[ (
fη(X

�θ)− g(X)
)( v2θ(υ) bm(υ)

b�m(υ) 0

)]
,

v2θ(υ) = 2f ′′
η(X

�θ)∇Φ�
θ X(X)�∇Φθ

+ |f ′
η(X

�θ)|2X�∇2ϕ�
θ [X, ·, ·],

bm(υ) = ∇ΦθX
�e′�(X�θ),

such that

1

n
‖D2

m(υ)−D2
m(υ∗

m)‖ ≤ 1

n

(
‖D2(υ)−D2(υ∗

m)‖+ 2‖Am(υ)−Am(υ∗
m)‖

+‖H2
m(υ)−H2

m(υ∗
m)‖+ ‖r2m(υ)− r2m(υ∗

m)‖
)
,

so that we can calculate separately

1

n
‖D2(υ)−D2(υ∗

m)‖ ≤ E[‖X‖2
{
|((f ′

η)
2 − (f ′

η∗
m
)2)(X�θ)|

+|(f ′
η∗

m
)2(X�θ)− (f ′

η∗
m
)2(X�θ∗

m)|

+2|(f ′
η∗

m
)2(X�θ∗

m)|‖∇Φ(θ)�X−∇Φ(θ∗
m)�X‖

}
].

Using Lemma A.10 we find

|(f ′
η∗

m
)2(X�θ∗

m)|‖∇Φ(X�θ)−∇Φ(X�θ∗
m)‖ ≤ ‖ψ′‖∞(C+ 1)

√
2L∇Φ‖θ − θ∗

m‖.

Furthermore we have with M(j) ⊂ {1, . . . ,m} in (A.10)

E|(f ′
η − f ′

η∗
m
)(X�θ)| ≤

m∑
k=1

|ηk − η∗mk|E|e′k(X�θ)| (A.25)

≤ CpXθ
‖ψ′‖‖η − η∗

m‖
(

jm∑
k=1

2jk |M(j)|
)1/2

≤ C‖η − η∗
m‖‖ψ′‖∞m.

This implies using (A.14), (A.25) and (A.22)

E

[
|((f ′

η)
2 − (f ′

η∗
m
)2)(X�θ)|

]
≤ E

[
|f ′

η(X
�θ)|+ |f ′

η∗
m
(X�θ)|)|(f ′

η − f ′
η∗

m
)(X�θ)|

]
≤ E

[
(|(f ′

η − f ′
η∗

m
)(X�θ)|+ 2|f ′

η∗
m
(X�θ)|)|(f ′

η − f ′
η∗

m
)(X�θ)|

]
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≤ E

[
|(f ′

η − f ′
η∗

m
)(X�θ)|2

]
+ 2‖ψ′‖∞(C+ 1)

√
2E[|(f ′

η − f ′
η∗

m
)(X�θ)|]

≤ ‖ψ′‖∞
(
2‖ψ′‖∞(C+ 1)

√
2 + C

rm√
n

)
m‖η − η∗

m‖ = Cm‖η − η∗
m‖,

where we used rm√
n
→ 0 for r2 ≤ Cm. Finally we derive with (A.16) and (A.14)

‖(f ′
η∗

m
)2(X�θ)− (f ′

η∗
m
)2(X�θ∗

m)‖

≤ (‖f ′
η∗

m
(X�θ∗

m)‖+ ‖f ′
η∗

m
(X�θ)‖)‖f ′

η∗
m
(X�θ)− f ′

η∗
m
(X�θ∗

m)‖

≤ 4
√
2‖ψ′‖∞(C+ 1)2

√
m‖ψ′′‖∞sX‖θ − θ∗

m‖.

Collecting everything yields with some constant C > 0

1

n
‖D2(υ)−D2(υ∗

m)‖ ≤ Cm‖υ − υ∗
m‖.

Furthermore

1

n
‖H2

m(υ)−H2
m(υ∗

m)‖

= sup
γ∈R

m

‖γ‖=1

m∑
k,l=1

γkγl
(
E[ekel(X

�θ)]− E[ekel(X
�θ∗

m)]
)
1Il∩Ik �=∅

≤ 2 sup
γ∈R

m

‖γ‖=1

m∑
k=1

m∑
l=k

γkγlE
[(
ek(X

�θ)− ek(X
�θ∗

m)
)
el(X

�θ)
]
1Il∩Ik �=∅

+2 sup
γ∈R

m

‖γ‖=1

m∑
k=1

m∑
l=k

γkγlE
[
ek(X

�θ∗
m)
(
el(X

�θ)− el(X
�θ∗

m)
)]

1Il∩Ik �=∅.

Using (A.7) and (3.2) this gives

m∑
k=1

m∑
l=k

γkγlE
[(
ek(X

�θ)− ek(X
�θ∗

m)
)
el(X

�θ)
]
1Il∩Ik �=∅

≤ ‖θ − θ∗
m‖‖ψ′‖s2X17C

m∑
k=1

γk2
jk

m∑
l=k

γl1Il∩Ik �=∅

≤ ‖θ − θ∗
m‖‖ψ′‖s2X173/2Cm,
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and with similar arguments

m∑
k=1

m∑
l=k

γkγlE
[(
el(X

�θ)− el(X
�θ∗

m)
)
ek(X

�θ)
]
1Il∩Ik �=∅

≤ ‖θ − θ∗
m‖‖ψ′‖s2X173/2(C+ ‖ψ‖∞)m.

Consequently with some constant C ∈ R

1

n
‖H2

m(υ)−H2
m(υ∗

m)‖ ≤ Cm√
ncD

‖D(υ − υ∗
m)‖. (A.26)

Again with some constant C > 0

1

n
‖Am(υ)−Am(υ∗

m)‖ ≤ C

(
E

[ ∥∥∥f ′
η(X

�
1 θ)− f ′

η∗
m
(X�

1 θ
∗
m)
∥∥∥2 ]1/2

+E

[
‖∇Φ(θ)−∇Φ(θ∗

m)‖2
]1/2

+E

[ ∥∥e(X�
1 θ)− e(X�

1 θ
∗
m)
∥∥2 ]1/2) .

Note that using (A.24)

E

[ ∥∥e(X�
1 θ)− e(X�

1 θ
∗
m)
∥∥2 ]

≤ sup
η◦∈R

m

‖η◦‖=1

E

[{
fη◦(X�θ)− fη◦(X�θ∗

m)
}2]

≤ ‖θ − θ∗
m‖2C‖ψ′‖2∞s4X175/24m2.

Using (A.23) this yields

1

n
‖Am(υ)−Am(υ∗

m)‖ ≤ Cm‖υ − υ′‖.

Finally we estimate the fourth term.

‖r2m(υ)− r2m(υ∗
m)‖ ≤ E[|fη(X

�θ)− fη∗
m
(X�θ∗

m)|‖Ṽ2
m(υ)‖] (A.27)

+E[|fη∗
m
(X�θ∗

m)− g(X)|‖Ṽ2
m(υ∗

m)− Ṽ2
m(υ)‖].

We estimate separately

E[|fη(X
�θ)− fη∗

m
(X�θ∗

m)|‖(Ṽ2
m)(υ)‖]

≤ E[|fη(X
�θ)− fη∗

m
(X�θ∗

m)|‖v2θ(υ)‖]

+E[|fη(X
�θ)− fη∗

m
(X�θ∗

m)|‖bm(υ)‖]
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To bound the first term, first note that again using the wavelet structure

|f ′′
η(X

�θ)| ≤ |f ′′
η−η∗

m
(X�θ)|+ |f ′′

η∗
m
(X�θ)|

≤
√
34‖ψ′′‖∞

(
m∑

k=0

(ηk − η∗mk)
2

)1/2
⎛⎝jm−1∑

j=0

25j

⎞⎠1/2

+ C‖f ′′
η∗
m

‖∞

≤
√
34‖ψ′′‖∞‖Dm(υ − υ∗

m)‖ m5/2

cD
√
n
+ C‖f ′′

η∗
m

‖∞ ,

which can be treated as a constant as m5/n → 0. Furthermore using (A.14) we
have for any ϕ ∈ R

p−1 with ‖ϕ‖ = 1

‖|f ′
η(X

�θ)|2∇2Φ�
θ [X, ϕ, ·]‖Rp ≤ 34‖ψ′‖2∞C2

‖η∗
m‖s

2
X‖∇2Φθ∗

m
‖∞.

To control E‖bm(υ)‖2 we use (A.21) to bound

E‖bm(υ)‖2 ≤ s2X

m∑
k=1

Ee′k(X
�θ)2

≤ s2X172C2‖ψ′‖2∞
m∑

k=1

22jk

≤ s2X172C2‖ψ′‖2∞m3. (A.28)

This implies for the first summand in (A.27) with constants C, C′ > 0 large
enough

E[|fη(X
�θ)− fη∗

m
(X�θ∗

m)|‖Ṽ2
m(υ)‖]

≤
(
E[|fη(X

�θ)− fη∗
m
(X�θ)|2]1/2

+E[|fη∗
m
(X�θ)− fη∗

m
(X�θ∗

m)|2]1/2
)
Cm3/2

≤ Cm3/2‖υ − υ∗
m‖+ Cm3/2

E[|fη(X
�θ)− fη∗

m
(X�θ)|2]1/2.

We estimate using (A.26), rm3/2/
√
n → 0 for r ≤ r0 and constants C, C′ > 0

large enough

E[|fη(X
�θ)− fη∗

m
(X�θ)|2]1/2 =

1√
n
‖Hm(υ)(η − η∗

m)‖

≤ 1√
n
‖H2

m(υ)−H2
m(υ∗

m)‖1/2‖(η − η∗
m)‖+ 1√

n
‖Hm(υ∗

m)(η − η∗
m)‖

≤
(

1√
n
‖H2

m(υ)−H2
m(υ∗

m)‖1/2 1√
ncD

+
1√
n

)
‖Hm(υ∗

m)(η − η∗
m)‖
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≤
{(

rm3/2/
√
n
)1/2

+ 1

}
C√
ncD

‖Dm(υ − υ∗
m)‖

≤ C′√
ncD

‖Dm(υ − υ∗
m)‖.

We also find

|fη∗
m
(X�θ)− fη∗

m
(X�θ∗

m)|

≤
(

m∑
k=1

(η∗
m)2kk

2α

)1/2( m∑
k=1

|e′k(X�θ∗
m)|2k−2α

)1/2

L∇Φ‖X‖‖θ − θ∗
m‖

≤ 2
√
34C‖η∗

m‖
√
2L∇ΦsX‖ψ′‖∞‖θ − θ∗

m‖.

Consequently

E[|fη(X
�θ)− fη∗

m
(X�θ∗

m)|‖Ṽ2
m(υ)‖] ≤ Cm3/2

√
ncD

‖Dm(υ − υ∗
m)‖.

Furthermore using that |fη∗
m
(X�θ∗

m)− g(X)| ≤ Cbias

E[|fη∗
m
(X�θ∗

m)− g(X)|‖Ṽ2
m(υ∗

m)− Ṽ2
m(υ)‖]

≤ Cbias
(
E[‖v2θ(υ∗

m)− v2θ(υ)‖] + 2E[‖bm(υ∗
m)− bm(υ)‖]

)
.

For this we estimate with some constants Ci that only depend on ‖∇2Φθ∗
m
‖, sX,

C‖f ′
η∗
m

‖∞ , C‖f ′′
η∗
m

‖∞ , etc.

‖v2θ(υ∗
m)− v2θ(υ)‖

≤ ‖2f ′′
η(X

�θ)∇Φ�
θ X(X)�∇Φθ − 2f ′′

η∗
m
(X�θ∗

m)∇Φ�
θ∗
m
X(X)�∇Φθ∗

m
‖

+‖|f ′
η∗

m
(X�θ∗

m)|2X�∇2Φ�
θ∗
m
[X, ·, ·]− |f ′

η(X
�θ)|2X�∇2ϕ�

θ [X, ·, ·]‖

≤ C1

∣∣∣|f ′
η∗

m
(X�θ∗

m)|2 − |f ′
η(X

�θ)|2
∣∣∣+ C2|f ′′

η∗
m
(X�θ∗

m)− f ′′
η(X

�θ)|

+C3‖θ − θ∗
m‖.

With the same arguments as those used for the bound of 1
n‖D

2(υ)−D2(υ∗
m)‖

E

∣∣∣|f ′
η∗

m
(X�θ∗

m)|2 − |f ′
η(X

�θ)|2
∣∣∣ ≤ Cm‖υ − υ∗

m‖.

Furthermore

|f ′′
η∗

m
(X�θ∗

m)− f ′′
η(X

�θ)| ≤ |f ′′
η∗

m
(X�θ∗

m)− f ′′
η∗

m
(X�θ)|

+|f ′′
η∗

m
(X�θ)− f ′′

η(X
�θ)|
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Using (A.15) we estimate

|f ′′
η∗

m
(X�θ∗

m)− f ′′
η∗

m
(X�θ)| ≤ Cm3/2‖θ − θ∗

m‖,

and

|f ′′
η∗

m
(X�θ)− f ′′

η(X
�θ)| ≤

√
17‖η − η∗‖

⎛⎝ jm∑
j=1

25j)

⎞⎠1/2

≤ Cm5/2‖θ − θ∗
m‖.

Furthermore

E[‖bm(υ∗
m)− bm(υ)‖] ≤ CE‖e′(X�θ)− e′(X�θ∗

m)‖

+CE[‖e′(X�θ∗
m)‖2]1/2‖θ − θ∗

m‖.

By (A.28) we have

E[‖e′(X�θ∗
m)‖2]1/2 ≤ 17C‖ψ′‖∞m3/2.

Furthermore

E‖e′(X�θ)− e′(X�θ∗
m)‖ ≤ E

[
‖e′(X�θ)− e′(X�θ∗

m)‖2
]1/2

=

(
m∑

k=1

E
[
(e′k(X

�θ)− e′k(X
�θ∗

m))2
])1/2

.

With (A.6) we find

E‖e′(X�θ)− e′(X�θ∗
m)‖ ≤ ‖ψ′′‖∞s2X17‖θ − θ′‖

(
m∑

k=1

24jk

)1/2

≤ |ψ′′‖∞s2X17‖θ − θ′‖m5/2.

Together this gives

E[|fη∗
m
(X�θ∗

m)− g(X)|‖Ṽ2
m(υ∗

m)− Ṽ2
m(υ)‖]

≤ Cm3/2‖υ −Πp∗υ∗‖+ CbiasCm
5/2.

Collecting everything we find

1

n
‖D2

m(υ)−D2
m(υ∗

m)‖ ≤ C√
ncD

{
m3/2 + Cbiasm

5/2
}
‖Dm(υ − υ∗

m)‖.

Such that

δ(r) =
C(L0)

{
m3/2 + Cbiasm

5/2
}
r

cD
√
n

.
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A.8.7. Condition (Lr)

Before we start with the actual proof we cite the following important result that
will be used in our arguments.

The next result is a variant of Theorem 4.3 of [15] and is the key tool of this
subsection.

Theorem A.19. Let for a sequence of independent Xi ∈ X for some space X

F (υ) =
n∑

i=1

fi(υ,Xi)− e, υ ∈ Υ ⊂ R
p∗

and assume that with r > rQ > 0, Υ◦(r) ⊂ Υ and χb : [0, 2b] → R defined in
(A.29)

E

[
sup

υ∈Υ◦(r)c
(Pn − P)χb(υ)

]
≤ Cχ, P(e > Ce) ≤ τe,

Q(b)
def
= inf

υ∈Υ◦(r)c
P
(
fi(υ,Xi) ≥ br2/n

)
> 0.

Choose

0 < λ ≤ (Q(2b)− 2/n− 2Cχ) /4.

Then for r2 ≥ Ce/(λb) ∨ r2Q

P

(
inf

υ∈Υ◦(r)c
F (υ) ≤ λbr2

)
≤ exp

{
−nQ(2b)2/4

}
+ τe

The auxiliary function is defined as

χu(t) =

⎧⎪⎨⎪⎩
0 t ≤ u;

t/u− 1 t ∈ [u, 2u];

1 t ≥ 2u;

χb(υ)i
def
= χb(fi(υ)). (A.29)

Remark A.7. The proof is nearly the same as that of Theorem 4.3 of [15]. The
set Υ◦(r)

c ⊂ R
p∗

is neither star shaped, nor convex but one can still use the
same arguments.

Now we can start with the verification of (Lr). We point out that in this
Section we will distinguish θ ∈ Sp,+

1 and ϕθ ∈ WS with Φ(ϕθ) = θ from each
other. The result is summarized in the following Lemma:
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Lemma A.20. Assume the conditions (A). Then for n ∈ N large enough
there exist c(Q), c(Lr), C > 0 such that with probability 1 − exp

{
−m3x

}
−

exp
{
−nc(Q)/4

}
− inf

υ∈Υ◦(r)c
E[L(υ,υ∗

m)] > c(Lr)r
2/2,

as soon as r2 ≥ C(m+ x).

Proof. We will proof this claim using Theorem A.19. First note that we have
with expectation taken conditioned on (X) = (Xi)i=1,...,n ⊂ R

p and using (1.9)

−Eε[L(υ,υ
∗
m)] = −E[L(υ,υ∗

m)|(X)]

=
n∑

i=1

[
|fη(X

�
i θ)− fη∗(X�θ∗)|2 − |fη∗

m
(X�

i θ
∗
m)− fη∗(X�θ∗)|2

]

≥
n∑

i=1

[
|fη(X

�
i θ)− fη∗(X�

i θ
∗)|2

]
− nE[|fη∗

m
(X�

i θ
∗
m)− fη∗(X�

i θ
∗)|2]

−n
∣∣∣(Pn − P)|fη∗

m
(X�θ∗

m)− fη∗(X�
i θ

∗)|2
∣∣∣ .

We define

e
def
= nE[|fη∗

m
(X�

i θ
∗
m)− fη∗(X�θ∗)|2]

+n
∣∣∣(Pn − P)|fη∗

m
(X�θ∗

m)− fη∗(X�θ∗)|2
∣∣∣ ,

such that

−E[L(υ,υ∗
m)|(X)] ≥

n∑
i=1

(
fη(X

�
i θ)− fη∗(X�

i θ
∗)
)2 − e,

This hints that Theorem A.19 gives the desired result. Consider the following
list of assumptions:

(1) With some C > 0

nE[|fη∗
m
(X�θ∗

m)− fη∗(X�θ∗)|2] ≤ 3(2 + C)r∗2,

(2) With probability 1− exp
{
−m3x

}
and a constant C∑ > 0

n
∣∣∣(Pn − P)|fη∗

m
(X�θ∗

m)− fη∗(X�θ∗)|2]
∣∣∣ ≤ C∑ ,
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(3) For some b > 0 and for n ∈ N large enough and r >
√
m

Q(2b) (A.30)

def
= inf

(θ,η)∈Υ◦(r)c
P

[(
fη(X

�
i θ)− fη∗(X�

i θ
∗)
)2 ≥ br2/n

]
> 0,

This means that in terms of Theorem A.19 under assumptions (1), (2) and (3)
we have Ce ≤ 3(2 + C)r∗2 + C∑ and τe ≤ exp

{
−m3x

}
. We prove assumptions

(1), (2) and (3) in Lemmas A.22, A.23 and A.24, which will give that Ce ≤
Cm+3(2+C)r∗2 with probability greater than 1− e−m3x and that Q(b) > 0 for
a certain choice of b > 0 small enough and for r ≥ C

√
m with some constant C.

Lemma A.21 completes the proof.

Lemma A.21. Under the assumptions (1), (2) and (3) we get

inf
υ∈Υ◦(r)c

−E[L(υ,υ∗
m)|(X)] ≥ λbr2

with probability greater than 1− exp
{
−m3x

}
− exp

{
−nQ(2b)2/4

}
for

r2 ≥ (3(2 + C)r∗2 + C∑ )/(λb) ∨ Cm,

if

0 < λ
def
=

(
Q(2b)− 2/n+ C

√
log(n)p∗

n

)
/4,

for a constant C > 0 which is a function of ‖ψ‖∞, ‖ψ‖∞, sX.

Proof. This is a direct consequence of Theorem A.19. It remains to bound using
the proof of Theorem 8.15 of [14]

E

[
sup

υ∈Υ◦(r)c
(Pn − P)χb(υ)

]
≤ E

[
sup
υ∈Υ

(Pn − P)χb(υ)

]
(A.31)

≤ 2C∗E

[√
6{1 + logN(δ,F , L1(Pn))}

n

]
+ δ,

where N(δ,F , L1(Pn)) denotes the δ-ball covering number of F def
= {χb(υ) : υ ∈

Υ} with respect to the norm

‖h‖L1(Pn) = Pn|h(X)| = 1

n

n∑
i=1

|h(Xi)|.
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The universal constant C∗ > 0 comes from Lemma 8.2 of [14] (C∗ = K(exp(x2)−
1)). The function χb : Υ◦ → R is defined via

χu(t) =

⎧⎪⎨⎪⎩
0 t ≤ u;

t/u− 1 t ∈ [u, 2u];

1 t ≥ 2u;

χb(υ)i
def
= χb(|fη(X

�
i θ)− fη∗(X�

i θ
∗)|2).

We want to bound the right-hand side of (A.31). For this note that

logN(δ,F , L1(Pn)) ≤ logN(δ/(L(Pn) ∨ 1), Υ, ‖ · ‖2),

where

L(Pn) = sup
υ,υ◦∈Υ

‖χb(υ)− χb(υ
◦)‖L1(Pn)

‖υ − υ◦‖2
.

We estimate using that we have diam(Υm) < C
√
m

|χb(υ)i − χb(υ
◦)i|

≤ |fη(X
�
i θ)− fη◦(X�

i θ
◦)|2

+2|(fη(X
�
i θ)− fη◦(X�

i θ
◦))(fη(X

�
i θ)− fη∗(X�θ∗))|

≤ 2|fη−η◦(X�
i θ)|2 + 2|fη◦(X�

i θ)− fη◦(X�
i θ

◦)|2

+
√

2|fη−η◦(X�
i θ)|2 + 2|fη◦(X�

i θ)− fη◦(X�
i θ

◦)|2

|fη(X
�
i θ)− fη∗(X�θ∗)|

≤ 2‖η − η◦‖2m‖ψ‖2∞ + 2‖θ − θ◦‖2sX2m3‖ψ′‖2∞‖η◦‖2

+
√

2‖η − η◦‖2m‖ψ‖2∞ + 2‖θ − θ◦‖2sX2m3‖ψ′‖2∞‖η◦‖2
√
m‖ψ‖∞(‖η‖+ ‖η∗‖)

≤ C1m
3‖υ − υ◦‖+ C2m

4‖υ − υ◦‖2.

But note that by the triangular inequality we also have |χb(υ)i − χb(υ
◦)i| ≤ 2.

This gives

sup
υ,υ◦

‖χb(υ)− χb(υ
◦)‖L1(Pn)

‖υ − υ◦‖2
≤ sup

υ,υ◦

(
2

‖υ − υ◦‖2
∧ C1m

3 + C2m
4‖υ − υ◦‖2

)
= C3m

3.
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We infer setting δ =
√

p∗/n

√
6{1 + logN(δ,F , L1(Pn))}

n
+ δ

≤
√

6{1 + logN(δ/(L(Pn) ∨ 1), Υ, ‖ · ‖2)}
n

+ δ

≤
√

6{1 + log(Cm3) + log(1/δ)p∗}
n

+ δ

≤ C1

√
log(p∗) + log(n/p∗)p∗/2

n
+
√

p∗/n

≤ C2

√
log(n)p∗

n
.

The claim follows with Theorem A.19.

It remains to prove the assumptions (1), (2) and (3) which we do in the
following three lemmas.

Lemma A.22. We have for some C > 0

nE[‖fη∗
m
(X�θ∗

m)− fη∗(X�θ∗)‖2] ≤ 3(2 + C)r∗2.

Proof. We find with the Taylor expansion, Lemma A.2 of [1] (which is applicable
because it only needs (Lr) for the full model and with center υ∗ ∈ Υ ) and
Lemma A.6 with some θ◦ ∈ Conv(θ∗

m,θ∗)

nE[‖fη∗
m
(X�θ∗

m)− fη∗(X�θ∗)‖2]

≤ 3n
(
E[‖fη∗(X�θ∗

m)− fη∗(X�θ∗)‖2] + E[‖fη∗
m−η∗(X�θ∗

m)‖2]
)

≤ 3
(
‖D(θ◦)(θ∗

m − θ∗)‖2 + ‖H(υ∗
m)(η∗

m − f∗)‖2
)

≤ 3
(
(1 + ‖I −D−1/2nD(ξ)D−1/2‖)‖D(θ∗

m − θ∗)‖2

+(1 + ‖I −H−1nH̃(υ∗
m)H−1‖)‖H(η∗

m − f∗)‖2
)

≤ 3
[
2 + ‖I −D−1/2nD(θ◦)D−1/2‖+ ‖I −H−1nH(υ∗

m)H−1‖
]

‖D(υ∗
m − υ∗)‖2

≤ 3(2 + C)r∗2.
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Lemma A.23. We have for a constant C > 0 that only depends on ‖ψ‖∞,
‖ψ′‖∞ and sX2 that

P

(
n
∣∣∣(Pn − P)|fη∗

m
(X�θ∗

m)− fη∗(X�θ∗)|2
∣∣∣ ≥ C

√
x
)
≤ exp

{
−m3x

}
.

Proof. We want to use the finite difference inequality. As above define

f :

n⊗
i=1

R
p → R, f(X1, . . . ,Xn)

def
= Pn|fη∗

m
(X�θ∗

m)− fη∗(X�θ∗)|2,

and note that for any i = 1, . . . , n and any alternative realization X′
i ∈ R

n|f(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn)− f(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn)|

≤ |fη∗
m
(X�

i θ
∗
m)− fη∗(X�

i θ
∗)|2 + |fη∗

m
(X′�

i θ
∗
m)− g(X′

i)|2.

We have

|fη∗
m
(X�θ∗

m)− fη∗(X�θ∗)|2 ≤ 3|fη∗−η∗
m
(X�

i θ)|2

+3|fη∗(X�
i θ

∗)− fη∗(X�
i θ

∗
m)|2.

As in Lemma A.11 there are constants C, C′ such that

|fη∗−η∗
m
(X�

i θ
∗
m)|2 ≤ 3

∣∣∣∣∣
m∑

k=1

(η∗k − η∗k,m)ek(X
�
i θ

∗
m)

∣∣∣∣∣
2

+ 3

∣∣∣∣∣
∞∑

k=m+1

η∗kek(X
�
i θ

∗
m)

∣∣∣∣∣
2

≤ 3

∣∣∣∣∣
m∑

k=1

e2k(X
�
i θ

∗
m)

∣∣∣∣∣ ‖Πmη∗ − η∗
m‖2 + C(κ∗)

≤ C′

∣∣∣∣∣∣
jm∑
j=0

2j

∣∣∣∣∣∣ ‖Πmη∗ − η∗
m‖2 + C(κ∗)

≤ Cm‖Πmη∗ − η∗
m‖2 + C(κ∗),

where C(κ∗) ≤ Cm−2α+1. Furthermore again as in Lemma A.11 there are con-
stants C, C′ such that

|fη∗(X�
i θ

∗)− fη∗(X�
i θ

∗
m)|2 ≤

∣∣∣∣∣
m∑

k=1

η∗k
(
ek(X

�
i θ

∗)− ek(X
�
i θ

∗
m)
)∣∣∣∣∣

2

≤ C′

∣∣∣∣∣∣
jm∑
j=0

23j−2α

∣∣∣∣∣∣ ‖θ∗ − θ∗
m‖2

≤ C‖θ∗ − θ∗
m‖2.



Finite sample single index estimation 2621

This implies with Lemma 5.1 and constants C1, C2 > 0

|fη∗
m
(X�θ∗

m)− fη∗(X�θ∗)|2 ≤ C1

(
m

nc2D
r∗2 +m−2α+1

)
≤ Cm−3.

Note that r∗2m/n → 0. This gives with the bounded difference inequality (The-
orem A.1) that

P

(
n
∣∣∣(Pn − P)|fη∗

m
(X�θ∗

m)− fη∗(X�θ∗)|2
∣∣∣ ≥ tCm−3

)
≤ exp

{
−t2

}
.

From this we infer with t = m3
√
x → ∞

P

(
n
∣∣∣(Pn − P)|fη∗

m
(X�θ∗

m)− fη∗(X�θ∗)|2
∣∣∣ ≥ C2

√
x
)
≤ exp

{
−m3x

}
.

For a set A ⊂ R
p we denote by λ(A) ∈ R+ its Lebesgue measure and define

λe
def
= sup

⎧⎪⎨⎪⎩λ > 0 : inf
v∈R

m,‖v‖=1

θ∈Sp,+
1

P
(
|〈v, e(X�θ)〉| > λ

)
> 3/4

⎫⎪⎬⎪⎭ . (A.32)

Remark A.8. λe ≥ R in (A.32) is strictly greater 0 because the basis functions
are linearly independent and we assumed the distribution of the regressors X
to be absolutely continuous with respect to the Lebesgue measure.

Lemma A.24. Denote the cylinder

Cρ,x,y(x0, y0)
def
= {(x, y, z) ∈ R

2 × R
p−2; (x− x0)

2 + (y − y0)
2 ≤ ρ2}.

There is a point (x0, y0) ∈ R
2 such that Q(2b) in (A.30) satisfies

Q(2b) + 3e−x ≥ 1

2
∧ cpXλ (Bh(0) ∩ Ch,x,y(0) ∩BsX(x0, y0, 0)

∩
{
(x, y) ∈ R

2 : sign(y0)y ≥ sign(y0)h/2
})

,

for τ = λe/(8Lη∗sX) and

2b = (1− ρ2)

(
λ2
ec

2
D

32
∧

τc2f ′
η∗
h2

4pπ2s2X‖pX‖2∞C‖η∗‖

)
,

and for

r ≥
√
m

4Cκ

λe

√
(1− ρ)

.
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Remark A.9. The constants h, cf ′
η∗ > 0 are from assumption (CondXθ∗).

Proof. We have to prove

inf
υ∈Υ◦(r)c

P

[(
fη(X

�
i θ)− fη∗(X�

i θ
∗)
)2 ≥ br2

n

]
> 0. (A.33)

We carry out the proof in two steps.

1. Before we determine b > 0 that allows to prove (A.33) note that

‖Dm(υ − υ∗
m)‖ − ‖Dm(Πp∗υ∗ − υ∗

m)‖ ≤ ‖Dm(υ −Πp∗υ∗)‖

≤ ‖Dm(υ − υ∗
m)‖+ ‖Dm(Πp∗υ∗ − υ∗

m)‖.

Slightly modifying Lemma A.3 of [1] with θ = υ gives

‖Dm(Πp∗υ∗ − υ∗
m)‖ ≤

(
α(m) + τ(m) + 2δ(2r∗)r∗

)
def
= r∗ε (m),

where due to Lemma A.6 and the definition of r∗ > 0 in Lemma 5.1

r∗ ≤ C
√
m, α(m) = C

(
m−α−1/2 + Cbiasm

−(α−1)
)√

n, τ(m) ≤ Cm−2α+1/2
√
n.

With arguments as above we find that r∗ε (m) > 0 is neglect-ably small for n ∈ N

large enough. We have with some small ε > 0

(1− ε)‖Dm(υ − υ∗
m)‖2 ≤ ‖Dm(υ − υ∗)‖2 (A.34)

≤ (1 + ε)‖Dm(υ − υ∗
m)‖2.

Assume that n ∈ N is large enough to ensure that ε < 1/2. Then we find for
υ ∈ Υ◦(r)

c and with Lemma B.5 of [2] and (A.34) that

‖D(ϕθ − ϕθ∗)‖2 + ‖Hm(η − η∗)‖2 ≥ (1− ρ)‖Dm(υ − υ∗)‖2 ≥ (1− ρ)r2/2.

2. Now we show (A.30). We treat two cases for (ϕθ,η) ∈ R
p−1×R

m separately.
The first case is that ‖D(ϕθ −ϕθ∗)‖2 ≤ 1

4 (1− ρ)r2. In this situation we can use
the smoothness of fη∗

m
and fη∗ to determine b > 0. In the second case we use

the geometric structure of

(
fη(X

�θ)− fη∗(X�θ∗)
)2

> 0,

to obtain a good lower bound.



Finite sample single index estimation 2623

Case 1: ‖D(ϕθ − ϕθ∗)‖2 ≤ 1
2τr

2. In this case we simply calculate and find

|fη(X
�θ)− fη∗(X�θ∗)|2

≥ |fη(X
�θ)− fη∗(X�θ)|2

−2|fη(X
�θ)− fη∗(X�θ)||fη∗(X�θ)− fη∗(X�θ∗)|

≥ |fη(X
�θ)− fη∗(X�θ)|2 − 2|fη(X

�θ)− fη∗(X�θ)|Lη∗sX‖θ − θ∗‖.

Now

|fη(X
�θ)− fη∗(X�θ)| ≥ |fη−η∗(X�θ)| − |f (0,κ∗)(X

�θ)|.

We find with probability greater than 3/4

|fη−η∗(X�θ)| = |〈η − η∗, e(X�θ)〉|

≥ ‖Hm(η − η∗)‖λe

≥ rλe
1

2

√
(1− ρ2),

where

λe
def
= sup

⎧⎪⎨⎪⎩λ > 0 : inf
η∈R

m,‖η‖=1

θ∈Sp,+
1

P
(
|〈η,H−1

m e(X�θ)〉| > λ
)
> 3/4

⎫⎪⎬⎪⎭ ,

which is larger 0 because the basis functions are linearly independent and we
assumed the distribution of the regressors X to be absolutely continuous to the
Lebesgue measure. Remember that by Lemma A.6

‖H1/2
m κ∗‖2 <

(
17‖pX�θ∗‖∞C‖f∗‖ + 172

√
36sp+1

X LpX‖ψ‖∞C2‖f∗‖

)
nm−2α

def
= C2κm.

We use the Markov inequality to obtain

P

(
|f (0,κ∗)(X

�θ)|2 ≥ 4Cκ
m

n

)
≤ ‖H1/2

m κ∗‖2
4C2κm

≤ 1/4.

This implies that with probability greater than 1/2 = 3/4− 1/4

|fη(X
�θ)− fη∗(X�θ)| ≥ rλe

1

2

√
(1− ρ2)− 4Cκ

√
m

n

≥
√

(1− ρ2)λe

4
√
n

r,
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for

r ≥
√
m

4Cκ

λe

√
(1− ρ2)

.

We still have to account for the summand Lη∗sX‖θ − θ∗‖ via

Lη∗sX‖θ − θ∗‖ ≤ Lη∗sX
√

τ(1− ρ2)

2cD
√
n

r.

This gives for the choice of τ = λecD/(8Lη∗sX)

|fη(X
�θ)− fη∗(X�θ)| − 2Lη∗sX‖θ − θ∗‖

≥
(
λe

4
− Lη∗sX

√
τ

cD

) √
(1− ρ2)√

n
r

=
λecD

√
(1− ρ2)

8
√
n

r.

We obtain in case 1 that Q(2b) ≥ 1/2 for

2b/n
def
=

(1− ρ2)λ2
ec

2
D

32n
.

Case 2: 1
2τ(1− ρ)r2 ≤ ‖D(ϕθ − ϕθ∗)‖2 ≤

√
2λmaxD

2.
Take some f : R → R with f ′ > c and some (α, β) ∈ R

2 with α2 + β2 = 1.
Furthermore take any g : R → R. We are interested in determining

V (τ)
def
= inf

f∈C1(R), f ′>c,
g:R→R

λ (A(τ)) ,

A(τ)
def
=
{
(x, y, z) ∈ R

2 × R
p−2; |f(αx+ βy)− g(x)| > τ

}
∩Cρ,x,y(0) ∩BsX(x0, y0, 0) ⊂ R

2 × R
p−2,

Cρ,x,y(x0, y0)
def
= {(x, y, z) ∈ R

2 × R
p−2; (x− x0)

2 + (y − y0)
2 ≤ ρ2},

where for a set A ⊂ R
p we denote by λ(A) ∈ R+ its Lebesgue measure. For this

observe

f(αx+ βy)− g(x)

{
≥ cβy + f(αx)− g(x) β > 0,

≤ cβy + f(αx)− g(x) β ≤ 0.

Consequently for fixed x ∈ [−ρ, ρ] we have |f(αx+ βy)− g(x)| > ρβc/2 on the
set

{y ∈ [−
√

ρ2 − x2,
√
ρ2 − x2] : |cβy + f(αx)− g(x)| > ρβc/2},
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which always is of a length greater λ([−
√

ρ2 − x2,
√

ρ2 − x2]\[−ρ/2, ρ/2]). Ad-
dressing the way a centered cylinder intersects with a shifted ball this gives
that

V (ρβc/2) ≥ λ (Cρ,x,y(0) ∩BsX(x0, y0, 0)

∩ {(x, y, z) ∈ R
2 × R

p−2;

(x, y) ∈ R
2 : − sign(y0)y ≥ − sign(y0)ρ/2}

)
≥ λ(Bρ/4(0)) > 0, (A.35)

for the ball Bh/4(0) ⊂ R
p. Now we can prove the claim. For any (θ,η) = υ ∈ Υ ,

with ‖θ‖ = 1, we can represent θ∗ = αθ+βθ◦ with some θ◦ ∈ θ⊥ with ‖θ◦‖ = 1
and α2+β2 = 1. By assumption (CondXθ∗) for any (θ,η) = υ ∈ Υ , there exist
constants cf ′ , cpX , h > 0 and a value (x0, y0) ∈ {x2 + y2 ≤ sX} ⊂ R

2 such that
for (x, y) ∈ {(x− x0)

2 + (y − y0)
2 ≤ h2} we have |f ′

η∗(x)| > cf ′ and pX ≥ cpX .
We can estimate using (A.35)

P

{(
fη∗(X�θ∗)− fη(X

�θ)
)2 ≥ c2f ′h2β2/4

}
≥ inf

f∈C1(R), f ′>0,
g:R→R

P

(
{X ∈ BsX(0)} ∩ {X ∈ Ch,x,y(x0, y0)}

∩ {|f(αx+ βy)− g(x)| ≥ cf ′hβ/2}
)

≥ cpX inf
f∈C1(R), f ′>0,

g:R→R

λ

(
BsX(−x0,−y0, 0) ∩ Ch,x,y(0)

∩ {|f(αx+ βy)− g(x)| ≥ cf ′hβ/2}
)

= cpXV (hβcf ′/2) ≥ λ(Bh/4(0)) > 0.

We need to express β > 0 in terms of r > 0. We can use elementary geometry
to obtain

β = sin

(
2 arcsin

(
‖θ − θ∗‖

2

))
.

Using that sin(2α) = 2 sin(α) cos(α) this yields

β = cos

(
arcsin

(
‖θ − θ∗‖

2

))
‖θ − θ∗‖

2
.
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Now as ‖θ − θ∗‖2 ≤ 2 we get

β ≥ cos

(
arcsin

(
1√
2

))
‖θ − θ∗‖ =

‖θ − θ∗‖√
2

.

Furthermore for any ϕθ, ϕθ ∈ WS we have with (A.34) that

‖θ − θ∗‖2 ≥ 2

pπ2
‖ϕθ − ϕθ∗‖2 ≥ 2

pπ2‖D2‖
‖D(ϕθ − ϕθ∗)‖2 ≥ τ

pπ2‖D2‖
r2.

With Lemma A.5 this implies

β2 ≥ τ

2pπ2s2X‖fX‖2∞C‖f∗‖
r2/n.

Combined this yields that with

2b/n
def
=

τc2f ′h2

4npπ2s2X‖pX‖2∞C‖η∗‖
,

it holds

P

{ (
fη(X

�θ)− fη∗(X�θ∗)
)2 ≥ 9br2/n

}
≥ cpXλ(B

p−2
1 )λ

(
Bh(0) ∩ {(x, y) ∈ R

2 : |y| ≤ h/2}
)
.

This gives the claim.

A.8.8. Proof of Condition (Lr) with modeling bias

We show the following Lemma

Lemma A.25. We have with some C > 0 and with r◦ > 0 from (5.2) that

P

(
sup

υ∈Υ◦(
√
nr◦)

|EεL(υ,υ
∗)− EL(υ,υ∗)| ≥

√
x+ p∗[C log(p∗) + log(r)]

)
≤ e−x.

Proof. We bound

sup
υ∈Υ◦(

√
nr◦)

|EεL(υ,υ
∗)− EL(υ,υ∗)|

≤ n sup
υ∈Υ◦(

√
nr◦)

∣∣∣∣(Pn − P)

{(
g(Xi)− fη∗(X�

i θ
∗)
)2 − (g(Xi)− fη(X

�
i θ)

)2}∣∣∣∣
≤ n sup

υ∈Υ◦(
√
nr◦)

∣∣∣(Pn − P)
{
fη(X

�
i θ)− fη∗(X�

i θ
∗)
}2∣∣∣

+ nCbias sup
υ∈Υ◦(

√
nr◦)

∣∣(Pn − P)
∣∣fη(X

�
i θ)− fη∗(X�

i θ
∗)
∣∣∣∣ .
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Furthermore{
fη(X

�
i θ)− fη∗(X�

i θ
∗)
}2 ≤

∣∣fη(X
�
i θ)− fη∗(X�

i θ
∗)
∣∣(

‖fη∗‖∞ + ‖fη∗
m
‖∞ + Cr

√
m/

√
n
)
.

Thus we have

sup
υ∈Υ◦(

√
nr◦)

|EεL(υ,υ
∗)− EL(υ,υ∗)|

≤ n
(
Cbias + ‖fη∗‖∞ + ‖fη∗

m
‖∞ + Cr◦

√
m
)

sup
υ∈Υ◦(

√
nr◦)

∣∣(Pn − P)
∣∣fη(X

�
i θ)− fη∗(X�

i θ
∗)
∣∣∣∣ .

Define ζX(υ)
def
= (Pn − P)|fη(X

�
i θ) − fη∗(X�

i θ
∗)|. Then we find using that

r◦ ≤ C
√
p∗ log(p∗) + x

sup
υ∈Υ◦(

√
nr◦)

|EεL(υ,υ
∗)− EL(υ,υ∗)| ≤ nCm3/2 sup

υ∈Υ◦(
√
nr◦)

|ζX(υ)− ζX(υ∗)| .

We want to use Lemma A.2. Define Υ0 = {υ∗} and with rk = 2−kr with r > 0
to be specified later the sequence of sets Υk each with minimal cardinality such
that

Υm ⊂
⋃

υ∈Υk

Brk(υ), Br(υ)
def
= {υ◦ ∈ Υm, ‖D(υ◦ − υ)‖ ≤ r}.

We estimate for an application of the bounded differences inequality∣∣{fη(X
�
i θ)− fη′(X�

i θ
′)
}∣∣ ≤ ‖fη−η′‖∞ + ‖f ′

η‖∞‖θ − θ′‖.

We have

‖fη‖∞ ≤ ‖η‖ sup
x∈[−sX,sX]

(
m∑

k=1

e2k(x)
2

)1/2

≤
√
17‖ψ‖

√
mr/

√
n,

‖f ′
η−η′‖∞ ≤ ‖η − η′‖ sup

x∈[−sX,sX]

(
m∑

k=1

e′2k (x)
2

)1/2

≤
√
17‖ψ′‖m3/2‖η − η′‖.

Consequently again using that r◦ ≤ C
√
p∗ log(p∗) + x∣∣{fη(X

�
i θ)− fη′(X�

i θ
′)
}∣∣ ≤ Cζm

3/2‖υ − υ′‖.
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This implies with the bounded difference inequality for any υk ∈ Υk

P

(
n inf

Υk−1

|ζX(υk)− ζX(υk−1)| ≥ tCζm
3/2 rk−1

cD

)
≤ e−t2 .

Define r
def
= (1−1/

√
2)

m3 then we find

P

(
n inf

Υk−1

|ζX(υk)− ζX(υk−1)| ≥ Cm−3/2t2−(k−1)(1− 1/
√
2)

)
≤ e−t2 ,

|Υk| ≤ exp
{(

log(2)k + log(r◦) + log(n)/2 + 3 log(m) + log(1− 1/
√
2)
)
p∗
}
.

Set

T (n,m)
def
= log(r◦) + log(n)/2 + 3 log(m) + log(1− 1/

√
2,

t
def
=
√
x+ 1 + log(2) + p∗ (log(2) + T (n,m)),

then we infer with Lemma A.2

P

(
sup

υ∈Υ◦(
√
nr◦)

|EεL(υ,υ
∗)− EL(υ,υ∗)| ≥ Ct

)

≤ P

(
n sup

υ∈Υ◦(
√
nr◦)

|ζX(υ)− ζX(υ∗)| ≥ Cm log(m)t

)

≤
∞∑
k=1

exp

{
p∗
[
(log(2)k + T (n,m))− 2k−1 (log(2) + T (n,m))

]
−2k−1(x+ 1 + log(2))

}
≤ e−x.

We have as in the proof of Lemma A.2 of [1]

− EL(υ∗,υ∗
m) = EL(υ∗

m,υ∗) ≥ EL(Πp∗υ∗,υ∗) ≥ −r∗2. (A.36)

Combining this lemma and Equation (A.36) with Lemma A.7 and Lemma 5.2
we find for ‖Dm(υ − υ∗

m)‖2 = r2 ≥ 2r∗2that with probability greater than
1− 2e−x

−EεL(υ,υ
∗
m) ≥ br2/2−

√
x+ Cp∗[log(p∗) + log(n)]− r∗2.

Consequently we get for r that additionally satisfies

r2 ≥
√
x+ Cp∗[log(p∗) + log(n)]/b ∨ 2r∗2,

that
−EεL(υ,υ

∗
m) ≥ br2/4

def
= bbiasr

2.

Finally observe that by definition L(υ,υ∗
m) = Lm(υ,υ∗

m).
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A.9. Proof of Lemma 3.1

Proof. Note that with the definitions and with some υ ∈ Υm,0(r), γ0 ∈ R
p∗

with ‖γ0‖ = 1

‖D−1
m ∇(E− Eε)[Lm(υ∗

m)− Lm(υ)]‖

≤ sup
υ∈Υm,0(r)

‖D−1
m (E− Eε)

[
∇2Lm(υ)

]
D−1

m ‖r

≤ 1√
ncD

‖(E− Eε)
[
D−1

m ∇2Lm(υ∗
m)
]
‖r

+ sup
υ∈Υm,0(r)

∥∥(E− Eε)
[
D−1

m

([
∇2Lm(υ)

]
−
[
∇2Lm(υ∗

m)
])

D−1
m

]∥∥ r.
For the first term we obtain with Lemma A.31 and with some constant C > 0

P

(
1√
ncD

‖(E− Eε)
[
D−1∇2Lm(υ∗

m)
]
‖r ≥ C

√
log(p∗) + xr/

√
n

)
≤ e−x.

For the second term we can use similar arguments to those of Lemma 5.2 to
find with some constant C > 0 that

P

(
sup

υ∈Υm,0(r)

∥∥(E− Eε)
[
D−1

m

([
∇2Lm(υ)

]
−
[
∇2Lm(υ∗

m)
])

D−1
m

]∥∥
≥ C

√
x+ p∗ log(p∗)/

√
n

)
≤ e−x.

Adding log(2) to x in the above bounds we get the claim after increasing the
constants appropriately.

A.10. Condition (bias′′) is satisfied

Lemma A.26. Under the conditions of Proposition 2.4 condition (bias′′) is
satisfied.

Proof. It suffices to show that

Cov(∇θ (�i(υ
∗
m)− �i(υ

∗))) → 0, Cov(∇(η1,...,ηm) (�i(υ
∗
m)− �i(υ

∗))) → 0.

We calculate

‖Cov(∇θ (�i(υ
∗
m)− �i(υ

∗)))‖

≤ E‖
(
f ′
η∗

m
(X�

i θ
∗
m)− f ′

η∗(X�
i θ

∗)
)
∇Φ(θ)�Xi‖2

≤ s2XE‖f ′
η∗

m
(X�

i θ
∗
m)− f ′

η∗(X�
i θ

∗)‖2

≤ 4s2X

(
E‖f ′

η∗
m−η∗(X�

i θ
∗)‖2 + E‖f ′

η∗
m
(X�

i θ
∗
m)− f ′

η∗
m
(X�

i θ
∗)‖2

)
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≤ 4s2X

( ∞∑
k=0

‖e′k‖∞(η∗mk − η∗k)

)2

+ 4s4X

(
m−1∑
k=0

‖e′′k‖∞η∗mk

)2

‖θ∗
m − θ∗‖2.

We estimate separately

∞∑
k=0

‖e′k‖∞(η∗mk − η∗k) ≤ C‖ψ′‖∞

(
m−1∑
k=0

k3/2(η∗mk − η∗k) +
∞∑

k=m

k3/2η∗k

)

≤ C‖ψ′‖∞

⎛⎝m2‖η∗
m − η∗‖+

( ∞∑
k=m

k−2α−3

)1/2( ∞∑
k=m

2αη∗k
2

)1/2
⎞⎠

≤ C‖ψ′‖∞

(
m2 1√

ncD
‖Dm(Πp∗υ∗ − υ∗

m)‖

+
√
(2α− 3)/(2α− 4)

( ∞∑
k=m

k2αη∗k
2

)1/2)
The last term tends to 0 because of Lemma 5.1, because m2r∗/

√
n → 0 and

because
∑

k 2
αη∗k

2 < ∞. Furthermore we get with similar steps(
m−1∑
k=0

‖e′′k‖∞η∗mk

)
‖θ∗

m − θ∗‖ ≤ ‖ψ′′‖∞‖θ∗
m − θ∗‖

(
m−1∑
k=0

k5/2η∗mk

)

≤ ‖ψ′′‖∞‖θ∗
m − θ∗‖

⎧⎨⎩
(

m−1∑
k=0

k2α−5

)1/2(m−1∑
k=0

k2αη∗k

)1/2

+
1√
ncD

(
m−1∑
k=0

k5

)2

‖D(υ∗ − υ∗
m)‖

⎫⎬⎭
≤ ‖ψ′′‖∞‖θ∗

m − θ∗‖
{
mC‖η∗‖ +

1√
ncD

m3‖Dm(Πp∗υ∗ − υ∗
m)‖

}
≤ ‖Dm(Πp∗υ∗ − υ∗

m)‖ 1√
ncD

mC‖η∗‖‖ψ′′‖∞

+
1

nc2D
m3‖Dm(Πp∗υ∗ − υ∗

m)‖2‖ψ′′‖∞.

Again the last term tends to 0. Similarly we calculate

Cov(∇(η1,...,ηm) (�i(υ
∗
m)− �i(υ

∗))) ≤ E‖e(X�
i θ

∗
m)− e(X�

i θ
∗)‖2

≤ s2X‖ψ′‖2∞‖θ∗
m − θ∗‖2

(m−1∑
k=0

k3/2
)2

≤ s2X‖ψ′‖∞
1

ncD
m3‖Dm(Πp∗υ∗ − υ∗

m)‖2,

which again is a zero sequence. This gives the claim.
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A.11. Proof of Lemma 5.6

Proof. Define

θl∗
def
= argmin

θ∈GN

‖θ − θ∗‖.

Then by definition

max
η

Lm(υ̃(0),υ∗
m) ≥ Lm((θl∗ , η̃

(0)
l∗ ),υ∗

m) ≥ Lm((θl∗ ,η
∗
m),υ∗

m)

= −
n∑

i=1

(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))
2

+(g(Xi)− fη∗
m
(X�

i θ
∗
m))(fη∗

m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))

−(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi.

We estimate using the smoothness of fη∗

|fη∗
m
(X�

i θ
∗
m)− fη∗(X�

i θl∗)| ≤ CsX‖θl∗ − θ∗
m‖ ≤ CsXτ.

Furthermore the first order criteria of maximality give for some θ◦ ∈ θ∗
m

⊥

E

[
(g(Xi)− fη∗

m
(X�

i θ
∗
m))f ′

η∗
m
(X�

i θ
∗
m)X�θ◦

]
= 0,

We estimate with Taylor expansion∥∥∥(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))− f ′
η∗

m
(X�

i θ
∗
m)X�∇Φθ∗

m
(ϕθl∗ − ϕθ∗

m
)
∥∥∥

≤ C
√
m‖θl∗ − θ∗

m‖.

Furthermore with the bounded differences inequality

P

(
n
∣∣∣(Pn − P)(g(Xi)− fη∗

m
(X�

i θ
∗
m))(fη∗

m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))
∣∣∣

≥
√
xCbiasCsXτ

)
≤ e−x.

Consequently with probability greater than 1− e−x

L(υ̃(0),υ∗) ≥ −nC2s2Xτ2 − CbiasC
(
sXτ

√
x+ n

√
mτ2

)
+

n∑
i=1

(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi.

Clearly we have due to (Condε) for λ ≤ √
ng̃/(CsXτ)

P
ε

(
n∑

i=1

(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi ≥
√
nt

)
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≤ exp{−λt}Eε

[
exp{λ

n∑
i=1

(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi/
√
n}
]

≤ exp{−λt}
n∏

i=1

E
ε
[
exp{λ(fη∗

m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi/
√
n}
]

≤ exp{−λt+ ν̃2C2s2Xτ2λ2/2}.

Setting λ = t
ν̃2C2s2Xτ2 we get

P
ε

(
n∑

i=1

(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi ≥
√
nt

)
≤ exp

{
− t2

2ν̃2C2s2Xτ2

}
.

With t = ν̃CsXτ
√
2x and x ≤ 2ν̃2g̃2n/(C2s2Xτ2) this gives

P
ε

(
n∑

i=1

(fη∗
m
(X�

i θ
∗
m)− fη∗

m
(X�

i θl∗))εi ≥ ν̃CsXτ
√
2nx

)
≤ e−x.

Consequently

P

(
Lm(υ̃(0),υ∗

m) ≥ −C
{
(1 + Cbias

√
m)nτ2 + (1 + Cbias)

√
xτ

√
n
})

≤ 2e−x.

For the second claim note that by Lemma 5.3 the conditions (ED1) and (L0)
from Section 4.1 hold for all r ≤ √

nr◦. We define

K0(x)
def
= C

{
(1 + Cbias

√
m)nτ2 + (1 + Cbias)

√
xτ

√
n
}
.

This implies with Lemma 5.3 and Theorem 4.2 that

R0(x) ≤ Cm3/2
√

p∗(1 + Cbias log(n)) + x+ (1 + Cbias
√
m)nτ2 +

√
nτ

√
x

≤ Cm3/2
√

p∗(1 + Cbias log(n)) + x

+Cm3/2
√
(1 + Cbias

√
m)nτ2 +

√
nτ

√
x.

We use that τ = o(m−3/2) if Cbias = 0 and τ = o(m−11/4) if Cbias > 0 to find

R0(x) ≤ Cm3/2
√
p∗(1 + Cbias log(n)) + x+ C(

√
n+m1/2n1/4).

Repeating the same arguments as in Section 5.2 we can infer that with proba-
bility greater than 1− 2e−x the sequence satisfies (υk,k(+1)) ⊂ Υ◦(R0) where

R0(x) ≤ C

√
p∗(1 + Cbias log(n)) + x+ (1 + Cbias

√
m)nτ2 +

√
nτ

√
x.

Furthermore with Lemma 5.3

ε
def
= δ(r)/r+ ω = C

m3/2 + Cbiasm
5/2

√
n

.
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Consequently for moderate x we find if Cbias = 0 that

εR0(x) = O
(
m3/2/

√
n
)
O
(
τ
√
n+

√
τn1/4

)
+O(m2/

√
n),

such that εR0(x) → 0 if τ = o(m−3/2). While ε
√
z(x) = O(m2/

√
n) → 0. If

Cbias > 0 we find

εR0(x) = O
(
m5/2/

√
n
)
O
(
τm1/4

√
n+

√
τn1/4

)
+O(m3 log(n)/

√
n),

such that it suffices to ensure that τ = o(m−11/4) since then m5/2
√
τn−1/4 =

o(m−3/8) → 0, due to n ≥ O(m6 log(n)2). In this case ε
√

z(x) = O(m6/
√
n) →

0. This gives (A3) and completes the proof.

A.12. Proof of Lemma 5.7

A.12.1. Auxiliary results

First we need the following uniform bounds:

Lemma A.27. There is a generic constant C > 0 such that for any pair υ,υ◦ ∈
Υ◦(R0) with ςi,m from (A.1)

‖∇ςi,m(υ∗)‖ ≤ C(‖f ′
η∗‖∞ + ‖f ′′

η∗‖∞), (A.37)

‖D−1/2
m ∇ςi,m(υ)−D−1/2

m ∇ςi,m(υ◦)‖ (A.38)

≤ C

cD
√
n
m

(
m3/2 +

(
C+

m2(R0 + r∗)

nc2D

)
m1/2

)
‖Dm(υ − υ◦)‖.

Proof. Since ∇2
ηζ(υ) = 0 we can estimate with help of Lemma A.8

‖∇ςi,m(υ∗)‖ ≤ ‖∇θςi,m(υ∗)‖+ ‖∇ηςi,m(υ∗)‖.

We estimate separately

‖∇θςi,m(υ∗)‖ ≤ ‖f ′′
η∗(X�

i θ
∗)∇Φ(θ∗)�XiX

�
i ∇Φ(θ∗)‖

+‖f ′
η∗(X�

i θ
∗)Xi∇2Φ(θ�Xi)[Xi, ·, ·]‖

≤ C0s
2
X

(
|f ′

η∗(X�
i θ)|+ |f ′′

η∗(X�
i θ)|

)
≤ C(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞),

This gives (A.37). For the proof of (A.38) we again use ∇2
ηζ(υ) = 0 and estimate

with help of Lemma A.8

‖D−1/2
m ∇ςi,m(υ)−D−1/2

m ∇ςi,m(υ◦)‖ ≤ 1

cD
√
n
‖∇ςi,m(υ)−∇ςi,m(υ◦)‖

≤ 1

cD
√
n
(‖∇θςi,m(υ)−∇θςi,m(υ◦)‖+ 2‖∇ηςi,m(υ)−∇ηςi,m(υ◦)‖) .
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We calculate separately

‖∇θςi,m(υ)−∇θςi,m(υ◦)‖

≤ s2X‖f ′′
η(X

�
i θ)∇Φ(θ)∇Φ(θ)� − f ′′

η◦(X�
i θ

◦)∇Φ(θ◦�Xi)∇Φ(θ◦�Xi)
�‖

+s2X‖f ′
η(X

�
i θ)X

�
i ∇2Φ(θ�Xi)− f ′

η◦(X�
i θ

◦)X�
i ∇2Φ(θ◦�Xi)‖.

We again separately estimate

‖f ′′
η(X

�
i θ)∇Φ(θ)∇Φ(θ)� − f ′′

η◦(X�
i θ

◦)∇Φ(θ◦�Xi)∇Φ(θ◦�Xi)
�‖

≤ ‖[f ′′
η(X

�
i θ)− f ′′

η◦(X�
i θ

◦)]∇Φ(θ)∇Φ(θ)�‖

+‖f ′′
η◦(X�

i θ
◦)[∇Φ(θ)−∇Φ(θ◦�Xi)]∇Φ(θ)�‖

+‖f ′′
η◦(X�

i θ
◦)∇Φ(θ◦�Xi)[∇Φ(θ)� −∇Φ(θ◦�Xi)

�‖.

We estimate using that ‖∇Φ(θ)∇Φ(θ)�‖ ≤ 1

‖[f ′′
η(X

�
i θ)− f ′′

η◦(X�
i θ

◦)]∇Φ(θ)∇Φ(θ)�‖

≤ ‖f ′′
η(X

�
i θ)− f ′′

η◦(X�
i θ

◦)‖

≤ ‖f ′′
η(X

�
i θ)− f ′′

η◦(X�
i θ)‖+ ‖f ′′

η◦(X�
i θ)− f ′′

η◦(X�
i θ

◦)‖.

Remember that due to the structure of the basis

|N(j)| def=
∣∣∣{k ∈ {(2j − 1)17, . . . , 2j+1 + (j + 1)17− 1− 1} :

|e′k(X�
i θ

′)− e′k(X
�
i θ)| ∨ |e′′k(X�

i θ
′)− e′′k(X

�
i θ)| ∨ |e′k(X�

i θ)| > 0
}∣∣∣

≤ 34.

We get with the same arguments as in the proof of Lemma A.11

‖[f ′′
η(X

�
i θ)− f ′′

η◦(X�
i θ

◦)]∇Φ(θ)∇Φ(θ)�‖

≤
√
34√
ncD

(
‖ψ′′‖m5/2 + ‖ψ′′′‖

(
C+

m2(R0 + r∗)√
ncD

)
m3/2

)
‖Dm(υ − υ◦)‖.

For the other two summands we estimate

‖f ′′
η◦(X�

i θ
◦)[∇Φ(θ)−∇Φ(θ◦�Xi)]∇Φ(θ)�‖

≤ ‖f ′′
η◦(X�

i θ
◦)‖‖

{
∇Φ(θ)−∇Φ(θ◦�Xi)

}
∇Φ(θ◦�Xi)‖.
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We can use the smoothness of φ : Rp−1 → S1 ⊂ R
p to find a constant C1 such

that

‖f ′′
η◦(X�

i θ
◦)[∇Φ(θ)−∇Φ(θ◦�Xi)]∇Φ(θ)�‖

≤ ‖f ′′
η◦(X�

i θ
◦)‖C2‖θ − θ◦‖

≤ C1‖θ − θ◦‖‖ψ′′‖
jm−1∑
j=0

∑
k∈N(j)

η◦k2
5j/2

≤ 17C1‖θ − θ◦‖‖ψ′′‖
(
C+

m2(R0 + r∗)√
ncD

)
m1/2.

We continue with

‖f ′
η(X

�
i θ)X

�
i ∇2Φ(θ�Xi)− f ′

η◦(X�
i θ

◦)X�
i ∇2Φ(θ◦�Xi)‖

≤ ‖f ′
η(X

�
i θ)− f ′

η◦(X�
i θ

◦)‖‖X�
i ∇2Φ(θ◦�Xi)‖

+‖f ′
η(X

�
i θ)‖X�

i ∇2Φ(θ�Xi)−X�
i ∇2Φ(θ◦�Xi)‖.

Using the smoothness of φ : Rp−1 → S1 ⊂ R
p we find constants C2, C3 such that

with the same argument as in the proof of Lemma A.11

‖f ′
η(X

�
i θ)X

�
i ∇2Φ(θ�Xi)− f ′

η◦(X�
i θ

◦)X�
i ∇2Φ(θ◦�Xi)‖

≤
√
34√
ncD

m1/2
(
C2sX‖ψ′′‖+ ‖ψ′‖+ s2XC3

)(
C+

m2(R0 + r∗)√
ncD

)
‖Dm(υ − υ◦)‖.

Finally

‖∇ηςi,m(υ)−∇ηςi,m(υ◦)‖

≤ ‖
(
∇Φ(θ)� −∇Φ(θ◦�Xi)

�
)
Xi‖‖e′(θ�Xi)

�‖

+‖∇Φ(θ◦�Xi)
�Xi‖‖e′(θ�Xi)− e′(θ◦�Xi)‖.

We estimate separately

‖
(
∇Φ(θ)� −∇Φ(θ◦)�

)
Xi‖ ≤ C4s

2
X

1√
ncD

‖Dm(υ − υ◦)‖,

‖e′(θ�Xi)
�‖ ≤ ‖ψ′‖∞

⎛⎝ jm∑
j=0

23j |N(j)|

⎞⎠1/2

≤ ‖ψ′‖∞
√
34m3/2.
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Furthermore

‖∇Φ(θ◦�Xi)
�Xi‖ ≤ C5sX,

‖e′(θ�Xi)− e′(θ◦�Xi)‖ ≤ ‖ψ′′‖∞
√
34m5/2 1√

ncD
‖Dm(υ − υ◦)‖.

Putting all estimates together gives (A.38).

A.12.2. Condition (ED2)

Just as for the conditions (ED1) and (ED0) we can show:

Lemma A.28. We have (ED2) with

ω2 =
1√
ncD

, g2 =
√
ng̃cDm−1C(R0, p

∗)−1, ν22 =
ν̃2m2C(R0, p

∗)2

2cD
,

where with C > 0 in (A.38)

C(R0,m)
def
= C

(
m3/2 +

(
C+

m2(R0 + r∗)√
ncD

)
m1/2

)
.

Proof. Lemma A.27 gives for any υ,υ◦ ∈ Υ (r) with ςi,m from (A.1)

‖D−1
m ∇ςi,m(υ)−D−1∇ςi,m(υ◦)‖

≤ C

cD
√
n
m

(
m3/2 +

(
C+

m2(R0 + r∗)√
ncD

)
m1/2

)
‖Dm(υ − υ◦)‖

def
=

1√
ncD

mC(R0, p
∗)‖Dm(υ − υ◦)‖. (A.39)

We get with μ ≤ g2 and assumption (Condε) for any pair γ1,γ2 ∈ {‖γ‖ = 1}

Eε exp

{
μ

ω2‖Dm(υ − υ◦)‖γ
�
1

(
D−1

m ∇2 {ζ(υ)− ζ(υ◦)}
)
γ2

}

= Eε exp

{
μ

ω2‖Dm(υ − υ◦)‖

n∑
i=1

εiγ
�
1

(
D−1

m ∇{ςi,m(υ)− ςi,m(υ◦)}
)
γ2

}

=

n∏
i=1

Eε exp

{
μ

ω2‖Dm(υ − υ◦)‖εiγ
�
1

(
D−1

m ∇{ςi,m(υ)− ςi,m(υ◦)}
)
γ2

}

≤
n∏

i=1

exp

{
ν̃2μ2

2ω2
2‖Dm(υ − υ◦)‖2

(
γ�
1

(
D−1

m ∇{ςi,m(υ)− ςi,m(υ◦)}
)
γ2

)2}
.
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With (A.39) this implies

sup
γ1,γ2∈R

p∗

‖γi‖=1

logEε exp

{
μ

ω2‖Dm(υ − υ◦)‖γ
�
1

(
D−1

m ∇2ζ(υ)−D−1∇2ζ(υ◦)
)
γ2

}

≤ ν̃2μ2

2cD
m2C(R0, p

∗)2.

A.12.3. Bound for Hessian

To control the deviation of D−1∇ζ(υ∗) we apply the following Theorem of [22]:

Theorem A.29 (Corollary 3.7 of [22]). Consider a finite sequence (M i)
n
i=1 ⊂

R
p∗×p∗

of independent, selfadjoint, random matrices. Assume that there is a
function g : (0,∞) → R+ and a sequence of matrices (Ai) ⊂ R

p∗×p∗
that satisfy

for all μ > 0

EeμMi � eg(μ)Ai , where M � M ′ ⇔ γ�Mγ ≤ γ�Mγ, ∀γ ∈ R
p∗
.

Then for all t ∈ R

P

(∥∥∥∥∥
n∑

i=1

M i

∥∥∥∥∥ ≥ t

)
≤ p∗ inf

μ
exp {−tμ+ g(μ)τ} , where τ

def
=

∥∥∥∥∥
n∑

i=1

Ai

∥∥∥∥∥ .
Lemma A.30. We have for μ ≤ g̃

E exp
{
μD−1∇2ζ(υ∗)

}
� exp {g(μ) diag(1, . . . , 1)} ,

where

g(μ) =

{
ν̃2C2(‖f ′

η∗‖∞+‖f ′′
η∗‖∞)2μ2

2 , if μ ≤ √
ng̃C−1(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞)−1

∞, otherwise.

Proof. Due to Lemma A.27

D−1∇ςi,m(υ∗)

� diag

(
1√
n
C(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞), . . . ,

1√
n
C(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞)

)
.

Thus denoting C1
def
= C(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞)

exp
{
μD−1∇2ζ(υ∗)

}
= exp

{
μ

n∑
i=1

D−1∇ςi,m(υ∗)εi

}

� exp

{
μ

n∑
i=1

εi diag

(
1√
n
C1, . . . ,

1√
n
C1

)}
.
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Consequently we obtain due to the independence of the ςi,m(υ∗) and assumption
(Condε) for μ ≤ √

ng̃C−1
1

E exp
{
μD−1∇2ζ(υ∗)

}
≤

n∏
i=1

diag

(
E exp

{
μ√
n
εiC1

}
, . . . ,E exp

{
μ√
n
εiC1

})

≤ diag

(
exp

{
ν̃2μ2

2
C21

}
, . . . , exp

{
ν̃2μ2

2
C21

})

= exp

{
ν̃2C21μ

2

2
diag(1, . . . , 1)

}
.

Lemma A.31. We have with C(‖f ′
η∗‖∞ + ‖f ′′

η∗‖∞) and if x ≤ 1
2 (ν̃

2ng̃2

− log(p∗))

P

(∥∥D−1∇2ζ(υ∗)
∥∥ ≥ ν̃C(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞)

√
2x+ log(p∗)

)
≤ e−2x.

Proof. With Lemma A.30 and Theorem A.29 we obtain for

t ≤
√
ng̃C−1(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞)−1,

that

P
(∥∥D−1∇2ζ(υ∗)

∥∥ ≥ t
)
≤ p∗ inf

μ
exp

{
−tμ+

ν̃2C2(‖f ′
η∗‖∞ + ‖f ′′

η∗‖∞)2μ2

2

}

= inf
μ

exp

{
−tμ+ ν̃2C(‖f ′

η∗‖∞ + ‖f ′′
η∗‖∞)2

μ2

2

}

= exp

{
− t2

2ν̃2C(‖f ′
η∗‖∞ + ‖f ′′

η∗‖∞)2

}
.

Defining t(x) via

P
(∥∥D−1∇2ζ(υ∗)

∥∥ ≥ t(x)
)
= e−x,

we find

t(x) ≤ ν̃C(‖f ′
η∗‖∞ + ‖f ′′

η∗‖∞)
√

2x+ log(p∗), if x ≤ 1

2

(
ν̃2ng̃2 − log(p∗)

)
.
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A.12.4. Proof of Lemma

Lemma A.31 together with Lemma A.28 gives that in this setting

√
1− ρ

2
√
2(1 +

√
ρ)

κ(x,R0) ≤ C(‖f ′
η∗‖∞ + ‖f ′′

η∗‖∞)2
√
2x+ log(p∗)/

√
n

+
Cz1(x, 3p

∗)

n

(
m5/2 +

m7/2(R0 + r∗)√
ncD

)
R0

+δ(R0 + r0),

if x is chosen moderately. As above

z1(x, 3p
∗) = O(

√
x+ p∗) = O(r0), ‖D−1‖ ≤ 1/(

√
ncD)

δ(r)/r = O(p∗3/2 + Cbiasm
5/2)/

√
n.

In both cases Cbias = 0 and Cbias > 0 the dominating term is the third summand
δ(R0 + r0).

Lemma 5.6 tells us that

R0 = O

(√
p∗(1 + Cbias log(n)) + nτ2 +

√
xnτ

)
.

In case Cbias = 0 this means that for moderate x

κ(x,R0) ≤ C

(
p∗2√
n
+ p∗3/2τ +

√
τp∗3/2

n1/4

)
(1 + o(1)),

which tends to zero if p∗4/n → 0 and τ = o(p∗−3/2).
In case Cbias > 0 we have

r0 = C
√
p∗ log(n), R0 = C

√
p∗ log(n) +

√
p∗nτ2 +

√
xnτ.

Consequently

κ(x,R0) ≤ C

(
p∗3 log(n)/

√
n+ p∗11/4τ

+n−1/4m5/2
√
τ)

)
(1 + o(1)),

which tends to 0 if m3 log(n)/n → 0 and τ = o(p∗−11/4) since then

n−1/4m5/2
√
τ = o(m−3/8).
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