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Abstract: We consider the matrix completion problem where the aim is to
estimate a large data matrix for which only a relatively small random subset
of its entries is observed. Quite popular approaches to matrix completion
problem are iterative thresholding methods. In spite of their empirical suc-
cess, the theoretical guarantees of such iterative thresholding methods are
poorly understood. The goal of this paper is to provide strong theoretical
guarantees, similar to those obtained for nuclear-norm penalization meth-
ods and one step thresholding methods, for an iterative thresholding algo-
rithm which is a modification of the softImpute algorithm. An important
consequence of our result is the exact minimax optimal rates of conver-
gence for matrix completion problem which were know until now only up
to a logarithmic factor.
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1. Introduction

Suppose that we observe a small subset of entries of a large data matrix. The
problem of inferring the many missing entries from this small set of observa-
tions is known as the matrix completion problem. This problem has attracted
considerable attention in the past five years. The first works [7, 6, 5, 12, 22]
introduce nuclear-norm minimization method. A different approach, called OP-
TISPACE has been proposed in [13, 14]. More recently, a method based on
max-norm minimization was studied in [4, 11]. Other methods include, for ex-
ample, GROUSE (Grassmannian Rank-One Update Subspace Estimation) [1]
and orthogonal rank-one matrix pursuit [26].

A quite popular direction in the matrix completion literature is the threshold-
ing methods which can be divided in two groups: one-step thresholding methods
and iterative thresholding methods. Strong theoretical guarantees were obtained
for one-step thresholding procedures. For example, Koltchinskii et al in [18] in-
troduce a soft-thresholding method and show that it is minimax optimal up
to a logarithmic factor. In [15] Klopp considers a hard thresholding procee-
dure. Chatterjee proposes [9] an universal singular value thresholding that can
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be applied to a large number of matrix estimation problems, including matrix
completion. Despite strong theoretical guarantees, these one-step thresholding
methods has two important drawbacks: they show poor behavior in practice
and only work under the uniform sampling distribution which is not realistic in
many practical situations.

Much better practical performances have been shown by iterative thresh-
olding methods (see, e.g., [3, 20, 10, 8]. For example, in [3], Cai et al propose
a first-order singular value thresholding algorithm SVT which approximately
solves the nuclear norm minimization problem. In [20], Mazmuder et al intro-
duce softImpute algorithm. softImpute produces a sequence of solutions that
converges to a solution of the nuclear norm regularized least-squares problem
when the number of iterations goes to infinity. These iterative thresholding algo-
rithms are simple to implement, scale to relatively large matrices and in practice
achieve competitive errors compared to the state-of-the-art algorithms. More re-
cently Dhanjal et al [10] propose an improvement for the softImpute algorithm
using randomized SVDs along with a novel updating method. This improvement
allows to bypass the bottleneck in the algorithm which consists in the use of the
singular value decomposition of a large matrix at each iteration.

The majority of existing algorithms for matrix completion consists of batch
methods, that is, they operate on the full data matrix. However, in some ap-
plications, such as recommendation systems or localization in sensor networks,
we observe a sequence of data matrix M1, . . . ,MT revealed sequentially where
from Mt to Mt+1 we add new observations. In such situations the predictive rule
should be refined incrementally. One advantage of iterative thresholding algo-
rithms is that they can be adapted to such sequential learning, see for example
[10].

In spite of their empirical success, the theoretical guarantees of such iterative
thresholding methods are poorly understood. The goal of this paper is to provide
strong theoretical guarantees, similar to those obtained for nuclear-norm penal-
ization methods (see, for example [21, 16]) and one step thresholding methods
(see [18, 15, 9]) for a modification of the softImpute algorithm.

1.1. Contributions and related work

The contributions of the present paper to the theoretical study of the modified
softImpute algorithm are multifaceted. In Section 3.2 we prove an upper bound
on the estimation error of the output M̂ of our algorithm. Let M0 ∈ R

m1×m2

be the unknown matrix of interest. Suppose, for simplicity, that each entry is
observed with the same probability p, then we prove the following upper bound
on the estimation error of M̂

‖M̂ −M0‖22
m1m2

� rank(M0)

pmin(m1,m2)
. (1)

Here the symbol �means that the inequality holds up to a multiplicative numer-
ical constant. To the best of our knowledge, the upper bound on the estimation
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error given by (1) is strictly better than all upper bounds available in matrix
completion literature.

For instance, for the same setting, Chatterjee in [9] obtains the following
larger bound

‖M̂ −M0‖22
m1m2

�
√

rank(M0)

pmin(m1,m2)
.

On the other hand, [18, 21, 16], among some other papers, consider a slightly
different setting where the matrix completion problem is viewed as a particular
case of the trace regression model. In this setting the number of observations
n is fixed. The drawback here is that in this model each entry can be observed
multiple times which is not the case in a large number of practical situations. We
consider a different setting where each entry can be observed at most once (see
Section 2.1). However, it is easy to see that these two settings are closely related
if we put n = pm1m2. Comparing to (1), the bounds obtained in [18, 21, 16]
have an additional log(d1 + d2) factor.

Koltchinskii et al in [18] obtained lower bounds for the estimation error with-
out this additional log(d1 + d2) factor. So our result answer the important the-
oretical question what is the exact minimax rate of convergence for matrix
completion problem. As the lower bound in [18] is obtained for a different set-
ting, in Section 4 we adapt their proof to our setting, showing that the minimax
rate of convergence for matrix completion problem is given by (1) and that the
estimator produced by our algorithm is minimax optimal. Note that our tech-
niques can be adapted to the setting considered in [18, 21, 16] and lead to an
upper bound without the additional log(d1 + d2) factor in this setting also.

Another important point is that a large part of matrix completion literature
consider uniform sampling at random setting where each entry is observed with
the same probability p. In many applications, such as recommendation systems,
this assumption is not realistic. The theoretical analysis in the present paper is
carried out for quite general sampling distributions and show that our iterative
thresholding algorithm has good performances in such situations. Finally our
results give theoretical insights for the chose of the parameters in the modified
softImpute algorithm.

1.2. Organization of the paper

The remainder of this paper is organized as follows. In Section 2.1 we introduce
our model and the assumptions on the sampling scheme. For the reader’s conve-
nience, we collect notation which we use throughout the paper in Section 2.2. In
Section 3.1 we present a modification of the softImpute algorithm for matrix
completion. The upper bounds on the estimation error are derived in Section 3.2.
Finally the lower bounds are obtained in Section 4 and the Appendix contains
the proofs.
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2. Preliminaries

2.1. Model and sampling scheme

Suppose that we observe a relatively small number of entries of a data matrix

X = M0 + E. (2)

Here M0 = (mij) ∈ R
m1×m2 is the unknown matrix of interest and E = (ξij) ∈

R
m1×m2 is the matrix containing the noise. We assume that the noise variables

ξij are independent, zero mean and bounded:

Assumption 1. E(ξij) = 0, E(ξ2ij) = σ2 and there exists a positive constant
b > 0 such that

max
i,j

|ξij | ≤ b.

We suppose that each entry of X is observed independently of the other
entries. For the entry (i, j) ∈ [m1] × [m2], we denote the probability to be
observed by πij . Let ηij be the independent Bernoulli variables with parameters
πij and yij = ηij (mij + ξij). Then, Y = (yij) is the matrix containing our
observations. We denote by Ω the random set of observed indices.

In the simplest situation each coefficient is observed with the same probabil-
ity, i.e. for every (i, j) ∈ [m1]× [m2], πij = p. Unfortunately, such an assumption
on the sampling distribution is not realistic in many practical applications. In
the present paper, we consider general sampling model. We suppose that each
coefficient is observed with a positive probability:

Assumption 2. There exists p > 0 such that for any (i, j) ∈ {1, . . . ,m1} ×
{1, . . . ,m2}

πij ≥ p.

For any A = (Aij) ∈ Rm1×m2 we define the weighted by πij Frobenius norm
of A

‖A‖2L2(Π) =
∑
(i,j)

πijA
2
ij .

Assumption 2 implies that

‖A‖2L2(Π) ≥ p ‖A‖22. (3)

We denote the column and row marginals by

π·j =
m1

Σ
i=1

πij and πi· =
m2

Σ
j=1

πij .

Suppose that we know an upper bound L on it’s maximum:

max
i,j

(π·j , πi·) ≤ L. (4)

Note that we can easily get an estimation on this upper bound using the em-
pirical frequencies

π̂·j =

∑m1

i=1 ηij∑
(i,j) ηij

and π̂i· =

∑m2

j=1 ηij∑
(i,j) ηij

.
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2.2. Notation

We provide a brief summary of the notation used throughout this paper. Let
A,B be matrices in R

m1×m2 .

• For a matrix A, Aij is its (i, j)-th entry.
• We denote by Sλ(W ) ≡ UDλV

′ the soft-thresholding operator where
Dλ = diag [(d1 − λ)+, . . . , (dr − λ)+], UDV ′ is the SVD of W , D =
diag [d1, . . . , dr] and t+ = max(t, 0).

• For any set I, |I| denotes its cardinal and Ī its complement. Let a ∨ b =
max(a, b) and a ∧ b = min(a, b).

• For two matrices A,B ∈ R
m1×m2 we define the scalar product

〈A,B〉 = tr(ATB).

• We denote by ‖A‖2 the usual l2−norm. Additionally, we use the following
matrix norms: ‖A‖∗ is the nuclear norm (the sum of singular values),
‖A‖ is the operator norm (the largest singular value), ‖A‖∞ is the largest
absolute value of the entries:

‖A‖∞ = max
i,j

| Aij | .

• πij is the probability to observe the (i, j)-th element. For j = 1 . . .m2,

π·j =
m1

Σ
i=1

πij and for i = 1 . . .m1, πi· =
m2

Σ
j=1

πij . We have that

max
i,j

(π·j , πi·) ≤ L.

• Let M = max(m1,m2), m = min(m1,m2) and d = m1 +m2.
• Let I ⊂ {1, . . .m1} × {1, . . .m2} be a subset of indices. Given a matrix

A = (Aij), we define its restriction on I, AI , in the following way: (AI)ij =
Aij if (ij) ∈ I and (AI)ij = 0 if not.

• We denote ‖A‖2L2(Π) =
∑

(i,j) πijA
2
ij and Assumption 2 implies

‖A‖2L2(Π) ≥ p‖A‖22.

• Let {εij} be an i.i.d. Rademacher sequence and Xij = ei(m1)e
∗
j (m2) where

ek(l) are the canonical basis vectors in R
l. We define

ΣR =
∑
(i,j)

ηijεijXij and Σ =
∑
(i,j)

ηijξijXij . (5)

3. The singular value thresholding algorithm

In this section we introduce an iterative singular value thresholding algorithm
and discuss its theoretical properties. We show that it enjoys strong theoretical
guarantees and, unlike one-step thresholding procedures, is well adapted for
general non-uniform sampling distributions.
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3.1. Algorithm

Our algorithm is based on the softImpute algorithm proposed by Mazumder et
al in [20]. SoftImpute algorithm is inspired by SVD-Impute of Troyanskaya et
al [24]. It alternates between imputing the missing values from a current SVD,
and updating the SVD using the data matrix.

Algorithm 1
Require: Matrix Y , regularization parameter λ and a, an upper bound on the sup-norm
of M0.

1. Mold = 0

2. (a) Repeat

(i) Compute Mnew ← Sλ

(
Y + (Mold)Ω̄

)
.

(ii) If
∥∥(Mnew −Mold

)
Ω̄

∥∥ < λ/3 and
∥∥Mnew −Mold

∥∥
∞ < a exit.

(iii) Put Mold =
(
Mold

ij

)

Mold
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mnew
ij if |Mnew

ij | ≤ a

a if Mnew
ij > a

−a if Mnew
ij < −a.

(6)

(b) Assign M̂ ← Mnew.

3. Output M̂ .

This algorithm repeatedly replaces the missing entries with the current guess,
updates the guess by solving

Mnew ∈ minimize
M

fλ(M) =
1

2
‖Y + (Mold)Ω̄ −M‖22 + λ‖M‖∗ (7)

and truncates Mnew. Let us denote by (Mk)k≥0 the sequence of solutions pro-
duced by Algorithm 1. We have the following result:

Lemma 1. For the successive differences of the sequence (Mk)k≥0 we have that∥∥Mk+1 −Mk
∥∥
2
→ 0 as k → 0 (8)

which implies∥∥(Mk+1 −Mk
)
Ω̄

∥∥→ 0 and
∥∥Mk+1 −Mk

∥∥
∞ → 0 as k → 0. (9)

3.2. Upper bound on the estimation error

In this section we derive an upper bound on the estimation error of M̂ produced
by Algorithm 1. This bound is non-asymptotic and implies, in particular, that
the proposed estimator is minimax optimal. We start by a general result which
is proven in Appendix A.
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Theorem 2. Let Assumptions 1 and 2 be satisfied and ‖M0‖∞ ≤ a. Assume
that λ ≥ 3 ‖Σ‖. Then, with probability at least 1− 8/d,

‖M̂ −M0‖2L2(Π) ≤ C p−1
{
rank(M0)

(
λ2 + a2 (E (‖ΣR‖))2

)
+ a2 + log(d)

}
.

where d = m1 +m2.

Using Assumption 2, Theorem 2 implies the following bound on the estima-
tion error measured in normalized Frobenius norm

Corollary 3. Under assumptions of Theorem 2 and with probability at least
1− 8/d,

‖M̂ −M0‖22
m1m2

≤ C

p2m1m2

{
rank(M0)

(
λ2 + a2 (E (‖ΣR‖))2

)
+ a2 + log(d)

}
.

In order to get a bound in a closed form we need to obtain a suitable upper
bounds on E (‖ΣR‖) and, with probability close to 1, on ‖Σ‖.
Lemma 4. Suppose that (ξij) are independent and satisfy Assumption 1. Then,
there exists absolute constants c∗, C∗ > 0 such that, for all t > 0 with probability
at least 1−me−t2 we have

‖Σ‖ ≤ 3σ
√
2L+ c∗b t (10)

where L ≤ 1 is defined in (4).
Moreover, we have

E ‖ΣR‖ ≤ C∗
(√

L+
√

logm
)
. (11)

This Lemma is proven in Appendix F.
Taking t =

√
2 log(d) in Lemma 4, we get that with probability at least

1− 1/d,

‖Σ‖ ≤ 3σ
√
2L+ c∗b

√
2 log(d),

then, we can choose

λ = 3
(
3σ

√
2L+ c∗b

√
2 log(d)

)
. (12)

With this choice of λ we obtain the following Theorem.

Theorem 5. Let Assumptions 1 and 2 be satisfied and ‖M0‖∞ ≤ a. Then, with
probability at least 1− 8/d,

‖M̂ −M0‖2L2(Π) ≤ C p−1 rank(M0)
{
(a ∨ σ)

2
L+ a2 log(m) + b2 log(d)

}
.

and

‖M̂ −M0‖22
m1m2

≤ C rank(M0)

p2m1m2

{
(a ∨ σ)

2
L+ a2 log(m) + b2 log(d)

}
.
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Remark 1. Note that πij ≥ p yields L ≥ (m1 ∨m2)p. Then, the upper bound

on the estimation error in the Theorem 5 is at least a constant times rank(M0)
pm .

So, in order to get a small estimation error, p should be larger then rank(M0)
m .

We denote by n =
∑

ij πij the expected number of observations. Condition

p ≥ rank(M0)
m implies the following condition on n

n ≥ C rank(M0) (m1 ∨m2). (13)

When the rank of the matrix M0 is small, this necessary number of observations
is close to the number of degree of freedom of the matrix M0, which is

(m1 +m2)rank(M0)− (rank(M0))
2
.

Let us restrict our attention to the non-degenerated case M0 �= 0 (we can
easily include this case replacing rank(M0) by rank(M0)∨1). Assuming that the
expected number of observations n is not too small, we can get simpler bound
on the estimation error. Suppose that n > c∗m log(d). Then, using

Lm ≥ n ≥ c∗m log d

we get L ≥ c∗ log d and we can chose λ in the following way

λ = 18b
√
2L. (14)

With this choice of λ we get the following bound on the estimation error

Corollary 6. Let Assumptions 1 and 2 be satisfied and ‖M0‖∞ ≤ a. Assume
that n ≥ c∗m log(d) and M0 �= 0. Then, with probability at least 1− 8/d,

‖M̂ −M0‖22
m1m2

≤ C rank(M0) (a ∨ b)
2
L

p2m1m2
.

In order to compare this result with previous results on noisy matrix com-
pletion we consider a more restrictive assumption on the sampling distribution.
That is, we assume that this distribution is close to the uniform one:

Assumption 3. There exists positives constants μ1 and μ2 independent on m1

and m2 and a 0 < p < 1 such that for every (i, j) ∈ {1, . . . ,m1} × {1, . . . ,m2}
we have

μ2p ≤ πij ≤ μ1p.

Under this assumption Theorem 2 yields

Corollary 7. Let Assumptions 1 and 3 be satisfied and ‖M0‖∞ ≤ a. Assume
that n ≥ m log(d) and λ given by (14). Then, with probability at least 1− 8/d,

‖M̂ −M0‖22
m1m2

≤ C rank(M0) (a ∨ b)
2

pm
.
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Remark 2. Let us compare the bound given by Corollary 7 with bounds
available in the literature. Our model was previously considered by Chatter-
jee in [9] in the case of uniform sampling distribution, that is πij = p for any
(i, j) ∈ {1, . . . ,m1}×{1, . . . ,m2}. In [9], Chatterjee introduces a simple estima-
tion procedure, called Universal Singular Value Thresholding which is applied
to a number of questions in low rank matrix estimation, blockmodels, distance
matrix completion, latent space models and etc. For matrix completion prob-
lem and under the additional assumption p ≥ n−1+ε for some ε > 0, the bound
obtained in [9] is the following one

‖M̂ −M0‖22
m1m2

≤ C

√
rank(M0) (a ∨ b)

2

pm
.

The rate of convergence given by Corollary 7 is faster and, as we will see in
Section 4, is minimax optimal. Note that the additional assumption p ≥ n−1+ε

yields the following condition on the expected number of observations

n > mεM. (15)

For low rank matrices, this necessary number of observations is larger than the
number of observations required by our method and given by (13).

In [21, 18, 16] a closely related set up for matrix completion problem using
the trace regression model was considered. The main difference between these
two settings is that in the case of the trace regression the number of observations
is not random and each entry may be observed multiple times. In our setting
the number of observations is random and each entry is observed at most once.
Comparing with Corollary 7 and using n = pm1m2 we see that bounds obtained
in [21, 18, 16] contain an additional logarithmic factor log(m1 +m2).

4. Minimax lower bounds

In this section, we prove the minimax lower bound showing that the rates at-
tained by our estimator are optimal. The minimax lower bound in a closely
related problem was obtained by Koltchinskii et al in [18]. We adapt their proof
to our set up.

We will denote by infM̂ the infimum over all the estimators. For any M0 ∈
R

m1×m2 , let PM0 denote the probability distribution of the observations

(η11X11, . . . , ηm1m2Xm1m2)

satisfying (2).
For any integer 0 ≤ r ≤ min(m1,m2) and any a > 0, we consider the class of

matrices

A(r, a) =
{
M ∈ R

m1×m2 : rank(M) ≤ r, ‖M‖∞ ≤ a,
}
. (16)
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We will prove the lower bound in the case of the uniform sampling distribution,
that is, we suppose that each entry is observed with the same probability p. As
it was noted in Remark 1, in order to get a small estimation error we need to
observe a sufficiently large number of entries, or, equivalently, the probability
p should be larger then r/m. We prove a lower bound on the estimation risk
when this condition is satisfied.

Theorem 8. Suppose that m1,m2 ≥ 2 and p ≥ r
m . Fix a > 0 and integer

1 ≤ r ≤ min(m1,m2). Suppose that the variables ξi are i.i.d. Gaussian N (0, σ2),
σ2 > 0, for i = 1, . . . , n. Then, there exist absolute constants β ∈ (0, 1) and
c > 0, such that

inf
M̂

sup
M0∈A(r,a)

PM0

(
‖M̂ −M0‖22

m1m2
>

c r (a ∧ σ)
2

pm

)
≥ β.

Appendix A: Proof of Theorem 2

1. By Lemma 1 in [20], M̂ minimizes

fλ(M) =
1

2

∥∥Y + (Mold)Ω̄ −M‖22 + λ‖M
∥∥
∗ .

Then, using the sub-gradient stationary conditions we have

−
〈
Y + (Mold)Ω̄ − M̂, M̂ −M0

〉
+ λ

〈
V̂ , M̂ −M0

〉
≤ 0

where V̂ ∈ ∂‖M̂‖∗. A simple calculation yields∥∥∥(M0 − M̂
)
Ω

∥∥∥2
2
≤
∣∣∣〈(Y −M0)Ω , M̂ −M0

〉∣∣∣︸ ︷︷ ︸
I

+
∣∣∣〈(Mold − M̂

)
Ω̄
, M̂ −M0

〉∣∣∣︸ ︷︷ ︸
II

+ λ
〈
V̂ ,M0 − M̂

〉
︸ ︷︷ ︸

III

.

(17)

2. We estimate each term in (17) separately. For the first term, we have that
(Y −M0)Ω = Σ where Σ =

∑
(i,j) ηijξijXij . Then, by the duality between the

nuclear and the operator norms, we obtain∣∣∣〈(Y −M0)Ω , M̂ −M0

〉∣∣∣ ≤ ‖Σ‖‖M̂ −M0‖∗. (18)

For the second term, using again the duality between the nuclear and the oper-
ator norms and the stopping criteria for the Algorithm 1, we obtain∣∣∣〈(Mold − M̂

)
Ω̄
, M̂ −M0

〉∣∣∣ ≤ ∥∥∥(Mold − M̂
)
Ω̄

∥∥∥ ∥∥∥M̂ −M0

∥∥∥
∗

≤ λ/3
∥∥∥M̂ −M0

∥∥∥
∗
.

(19)
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3. In order to estimate the third term, we use that by monotonicity of sub-
differentails of convex functions we have that 〈V̂ − V, M̂ − M0〉 ≥ 0, for any
V ∈ ∂‖M0‖∗. This implies〈

V̂ ,M0 − M̂
〉
≤
〈
V,M0 − M̂

〉
. (20)

Let PS be the projector on the linear vector subspace S and let S⊥ be the
orthogonal complement of S. Let uj(A) and vj(A) denote respectively the left
and right orthonormal singular vectors of a matrix A. S1(A) is the linear span
of {uj(A)}, S2(A) is the linear span of {vj(A)}. We set

P⊥
A(B) = PS⊥

1 (A)BPS⊥
2 (A) and PA(B) = B −P⊥

A(B). (21)

Since PA(B) = PS⊥
1 (A)BPS2(A) + PS1(A)B and rank(PSi(A)B) ≤ rank(A) we

have that
rank(PA(B)) ≤ 2 rank(A). (22)

Note that the subdifferential of the convex function A → ‖A‖∗ is the following
set of matrices (cf. [27])

∂‖A‖∗ =

⎧⎨
⎩

rank(A)∑
j=1

uj(A)v
T
j (A) +P⊥

A(W ) : ‖W‖ ≤ 1

⎫⎬
⎭ . (23)

Inequality (19) and (23) imply

III ≤ λ

〈
R∑

j=1

uj(M0)v
T
j (M0),M0 − M̂

〉
+
〈
P⊥

M0
(W ),M0 − M̂

〉
. (24)

Using the fact that ‖
R∑
j=1uj(M0)v

T
j (M0)‖ = 1 and〈

R∑
j=1

uj(M0)v
T
j (M0),M0 − M̂

〉
=

〈
R∑

j=1

uj(M0)v
T
j (M0),PM0

(
M0 − M̂

)〉

we obtain

III ≤ λ
∥∥∥PM0

(
M0 − M̂

)∥∥∥
∗
+
〈
P⊥

M0
(W ),M0 − M̂

〉
. (25)

Now, by the duality between the nuclear and the operator norms, there exists
W with ‖W‖ ≤ 1 and such that〈

P⊥
M0

(W ),M0 − M̂
〉
= −

〈
W,P⊥

M0

(
M̂
)〉

= −
∥∥∥P⊥

M0

(
M̂
)∥∥∥

∗
. (26)

For this particular choice of W , (25) and (26) imply

III ≤ λ
(∥∥∥PM0

(
M0 − M̂

)∥∥∥
∗
−
∥∥∥P⊥

M0

(
M̂
)∥∥∥

∗

)
. (27)
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Putting (18), (19), and (27) into (17) and using λ ≥ 3 ‖Σ‖ we obtain∥∥∥(M0 − M̂
)
Ω

∥∥∥2
2
≤ 2λ

3

∥∥∥M̂ −M0

∥∥∥
∗
+ λ

(∥∥∥PM0

(
M0 − M̂

)∥∥∥
∗
−
∥∥∥P⊥

M0

(
M̂
)∥∥∥

∗

)
.

(28)

4. The triangle inequality and (22) lead to

∥∥∥(M0 − M̂
)
Ω

∥∥∥2
2
≤ 5λ

3

∥∥∥PM0

(
M0 − M̂

)∥∥∥
∗
≤ 5λ

√
2rank(M0)

3

∥∥∥M0 − M̂
∥∥∥
2

(29)

and

λ

3

∥∥∥P⊥
M0

(
M̂
)∥∥∥

∗
≤ 5λ

3

∥∥∥PM0

(
M0 − M̂

)∥∥∥
∗
. (30)

Inequality (30) implies∥∥∥P⊥
M0

(
M̂
)∥∥∥

∗
≤ 5

∥∥∥PM0

(
M0 − M̂

)∥∥∥
∗

and

∥∥∥M̂ −M0

∥∥∥
∗
≤ 6

∥∥∥PM0(M̂ −M0)
∥∥∥
∗
≤
√
72 rank(M0)

∥∥∥M̂ −M0

∥∥∥
2
. (31)

5. For a 0 < r ≤ m we consider the following constrain set

C(r) =
{
A ∈ R

m1×m2 : ‖A‖∞ = 1,

‖A‖2L2(Π) ≥
log(d)

0.0006 log (6/5) p
, ‖A‖∗ ≤

√
r ‖A‖2

}
. (32)

Note that the condition ‖A‖∗ ≤ √
r ‖A‖2 is satisfied if rank(A) ≤ r.

We have the following result for matrices in C(r). Its proof is given in Ap-
pendix C.

Lemma 9. For all A ∈ C(r)

‖AΩ‖22 ≥
‖A‖2L2(Π)

2
− 44 p−1

[
r (E (‖ΣR‖))2 + 18

]
with probability at least 1− 8/d.

Note that condition ‖M̂ −Mold‖∞ < a and ‖Mold‖∞ < a imply∥∥∥M̂ −M0

∥∥∥
∞

≤ 3a.



2360 O. Klopp

We now consider two cases, depending on whether the matrix
(M̂−M0)

3a belongs
to the set C (72 rank(M0)) or not.

Case 1: Suppose first that ‖M̂ −M0‖2L2(Π) <
log(d)

0.0006 log(6/5) p , then the state-

ment of the Theorem 2 is true.

Case 2: It remains to consider the case ‖M̂ − M0‖2L2(Π) ≥ log(d)
0.0006 log(6/5) p .

Then (31) implies that 1
3a (M̂−M0) ∈ C(72 rank(M0)) and we can apply Lemma 9.

From Lemma 9 and (29) we obtain that with probability at least 1 − 8/d one
has

1

2
‖M̂ −M0‖2L2(Π) ≤

5λ
√

2rank(M0)

3

∥∥∥M0 − M̂
∥∥∥
2

+ 369 a2 p−1
[
72 rank(M0) (E (‖ΣR‖))2 + 18

]
≤ 6λ2 p−1rank(M0) +

p

4

∥∥∥M̂ −M0

∥∥∥2
2

+ 369 a2 p−1
[
72 rank(M0) (E (‖ΣR‖))2 + 18

]
.

Now (3) imply that, there exist numerical constants C such that

‖M̂ −M0‖2L2(Π) ≤ C p−1
{
rank(M0)

(
λ2 + a2 (E (‖ΣR‖))2

)
+ a2

}
,

which leads to the statement of the Theorem 2.

Appendix B: Proof of Theorem 8

We adopt the proof of Theorem 5 in [18] to our setting. Assume w.l.o.g. that
m1 ≥ m2. For a γ ≤ 1, define

L̃ =

{
L̃ = (lij) ∈ R

m1×r : lij ∈
{
0, γ(σ ∧ a)

(
r

pm

)1/2}
,

∀ 1 ≤ i ≤ m1, 1 ≤ j ≤ r

}
,

and consider the associated set of block matrices

A =
{
L = ( L̃ · · · L̃ O ) ∈ R

m1×m2 : L̃ ∈ L̃
}
,

where O denotes the m1×(m2−r�m2/(2r)�) zero matrix, and �x� is the integer
part of x.

Remark 3. In the case m1 < m2, we only need to change the construction of
the low rank component of the test set. We first build a matrix L̃ =

(
L̄ O

)
∈
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R
r×m2 where L̄ ∈ Rr×(m2/2) with entries in {0, γ(σ ∧ a)( r

pm )1/2} and, then, we
replicate this matrix to obtain a block matrix L of size m1 ×m2

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̃

...

L̃

O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By construction, any element ofA as well as the difference of any two elements
of A has rank at most r. In addition, condition p ≥ r

m implies that the entries
of any matrix in A take values in [0, a]. Thus, A ⊂ A(r, a).

The Varshamov-Gilbert bound (cf. Lemma 2.9 in [25]) guarantees the exis-
tence of a subset A0 ⊂ A with cardinality |A0| ≥ 2(rM)/8 + 1 containing the
zero m1 ×m2 matrix 0 and such that, for any two distinct elements A1 and A2

of A0,

‖A1 −A2‖22 ≥ Mr

8

(
γ2(σ ∧ a)2

r

pm

)⌊m
r

⌋
≥ γ2

16
(σ ∧ a)2 m1m2

r

pm
. (33)

Using that, conditionally on Xi, the distributions of ξi are Gaussian, we get
that, for any A ∈ A0, the Kullback-Leibler divergence K

(
P0,PA

)
between P0

and PA satisfies

K
(
P0,PA

)
=

1

2σ2
‖A‖2L2(Π) ≤

γ2 Mr

2
. (34)

From (34) we deduce that the condition

1

|A0| − 1

∑
A∈A0

K(P0,PA) ≤ α log
(
|A0| − 1

)
(35)

is satisfied for any α > 0 if γ > 0 is chosen as a sufficiently small numerical
constant depending on α. In view of (33) and (35) and using the application of
Theorem 2.5 in [25] implies

inf
M̂

sup
M0∈A(r,a)

P

(
‖M̂ −M0‖22

m1m2
>

C(σ ∧ a)2 r

pm

)
≥ β (36)

for some absolute constants β ∈ (0, 1), which implies the statement of Theo-
rem 8.

Appendix C: Proof of Lemma 9

This proof is close to the proof of Lemma 12 in [16]. Set

E = 44 p−1
[
r (E (‖ΣR‖))2 + 18

]
.
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We will show that the probability of the following “bad” event is small

B =

{
∃A ∈ C(r) such that

∣∣∣‖AΩ‖22 − ‖A‖2L2(Π)

∣∣∣ > 1

2
‖A‖2L2(Π) + E

}
.

Note that B contains the complement of the event that we are interested in.
In order to estimate the probability of B we use a standard peeling argument.

Let ν = log(d)
0.0006 log(6/5) p and α = 6

5 . For l ∈ N set

Sl =
{
A ∈ C(r) : αl−1ν ≤ ‖A‖2L2(Π) ≤ αlν

}
.

If the event B holds for some matrix A ∈ C(r), then A belongs to some Sl and∣∣∣‖AΩ‖22 − ‖A‖2L2(Π)

∣∣∣ > 1

2
‖A‖2L2(Π) + E

>
1

2
αl−1ν + E

=
5

12
αlν + E .

(37)

For T > ν consider the following set of matrices

C(r, T ) =
{
A ∈ C(r) : ‖A‖2L2(Π) ≤ T

}
and the following event

Bl =

{
∃A ∈ C(r, αlν) :

∣∣∣‖AΩ‖22 − ‖A‖2L2(Π)

∣∣∣ > 5

12
αlν + E

}
.

Note that A ∈ Sl implies that A ∈ C(r, αlν). Then (37) implies that Bl holds and
we get B ⊂ ∪Bl. Thus, it is enough to estimate the probability of the simpler
event Bl and then apply the union bound. Such an estimation is given by the
following lemma. Its proof is given in Appendix D. Let

ZT = sup
A∈C(r,T )

∣∣∣‖AΩ‖22 − ‖A‖2L2(Π)

∣∣∣ .
Lemma 10. We have that

P

(
ZT ≥ 5

12
T + 44 p−1

[
r (E (‖ΣR‖))2 + 18

])
≤ 4e−c1 p T

with c1 ≥ 0.0006.

Lemma 10 implies that P (Bl) ≤ 4 exp(−c1 pα
lν). Using the union bound we

obtain

P (B) ≤
∞
Σ
l=1

P (Bl)

≤ 4
∞
Σ
l=1

exp(−c1 pα
lν)

≤ 4
∞
Σ
l=1

exp (−c1 p ν log(α) l)
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where we used ex ≥ x. We finally compute for ν = log(d)
0.0006 p log(6/5)

P (B) ≤ 4 exp (−c1 p ν log(α))

1− exp (−c1 p ν log(α))
=

4 exp (− log(d))

1− exp (− log(d))
.

This completes the proof of Lemma 9.

Appendix D: Proof of Lemma 10

We will start by showing that ZT concentrates around its expectation and then
we will upper bound the expectation. Recall that by definition,

ZT = sup
A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

ηijA
2
ij − E

⎛
⎝∑

(i,j)

ηijA
2
ij

⎞
⎠
∣∣∣∣∣∣ .

We use the following Talagrand’s concentration inequality:

Theorem 11. Suppose that f : [−1, 1]N → R is a convex Lipschitz function
with Lipschitz constant L. Let Ξ1, . . .ΞN be independent random variables taking
value in [−1, 1]. Let Z : = f(Ξ1, . . . ,Ξn). Then for any t ≥ 0,

P (|Z − E(Z)| ≥ 16L+ t) ≤ 4e−t2/2L2

.

For a proof see [23] and [9]. Let f(x11, . . . , xm1m2) : = sup
A∈C(r,T )

|
∑

(i,j)(xij −

pij)A
2
ij |. It is easy to see that f(x11, . . . , xm1m2) is a Lipschitz function with

Lipschitz constant L =
√

p−1T . Indeed,

|f(x11, . . . , xm1m2)− f(z11, . . . , zm1m2)|

=

∣∣∣∣∣∣ sup
A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − pij)A
2
ij

∣∣∣∣∣∣− sup
A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

(zij − pij)A
2
ij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
A∈C(r,T )

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
(i,j)

(xij − pij)A
2
ij

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
(i,j)

(zij − pij)A
2
ij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − pij)A
2
ij −

∑
(i,j)

(zij − pij)A
2
ij

∣∣∣∣∣∣
≤ sup

A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − zij)A
2
ij

∣∣∣∣∣∣
≤ sup

A∈C(r,T )

√∑
(i,j)

π−1
ij (xij − zij)

2
√∑

(i,j)

πijA4
ij
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≤
√
p−1 sup

A∈C(r,T )

√∑
(i,j)

(xij − zij)
2
√∑

(i,j)

πijA2
ij

≤
√
p−1T

√∑
(i,j)

(xij − zij)
2

where we used ||a| − |b|| ≤ |a− b|, ‖A‖∞ ≤ 1 and ‖A‖2L2(Π) ≤ T . Now, Theo-

rem 11 and 2
√
p−1T ≤ T + p−1 imply

P

(
ZT ≥ E(ZT ) + 768 p−1 +

1

12
T + t

)
≤ 4e−t2p/2T .

Taking t = 1
9

(
1
3T
)
we get

P

(
ZT ≥ E(ZT ) + 768 p−1 +

1

9

(
5

12
T

))
≤ 4e−c1 p T (38)

with c1 ≥ 0.0006.
Next we bound the expectation E (ZT ). Using a standard symmetrization

argument (see e.g. [19]) we obtain

E (ZT ) = E

⎛
⎝ sup

A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

ηijA
2
ij − E

(
ηijA

2
ij

)∣∣∣∣∣∣
⎞
⎠

≤ 2E

⎛
⎝ sup

A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

εijηijA
2
ij

∣∣∣∣∣∣
⎞
⎠

where {εij} is an i.i.d. Rademacher sequence. Then, the contraction inequality
(see e.g. [17, Theorem 2.2]) yields

E (ZT ) ≤ 8E

⎛
⎝ sup

A∈C(r,T )

∣∣∣∣∣∣
∑
(i,j)

εijηijAij

∣∣∣∣∣∣
⎞
⎠ = 8E

(
sup

A∈C(r,T )

|〈ΣR, A〉|
)

where ΣR =
∑

(i,j) εijηijXij . For A ∈ C(r, T ) we have that

‖A‖∗ ≤
√
r ‖A‖2

≤
√
r p−1 ‖A‖L2(Π)

≤
√
r p−1 T

where we have used (3). Then, by the duality between nuclear and operator
norms, we compute

E (ZT ) ≤ 8E

⎛
⎝ sup

‖A‖∗≤
√

r p−1 T

|〈ΣR, A〉|

⎞
⎠ ≤ 8

√
r p−1 T E (‖ΣR‖) .

Finally, using



Matrix completion by singular value thresholding 2365

1

9

(
5

12
T

)
+ 8
√
r p−1 T E (‖ΣR‖) ≤

(
1

9
+

8

9

)
5

12
T + 44 r p−1 (E (‖ΣR‖))2

and the concentration bound (38) we obtain that

P

(
ZT ≥ 5

12
T + 44 p−1

[
r (E (‖ΣR‖))2 + 18

])
≤ 4e−c1 p T

with c1 ≥ 0.0006 as stated.

Appendix E: Proof of Lemma 1

It is easy to see that

‖(Mk+1 −Mk)Ω̄‖ ≤ ‖(Mk+1 −Mk)Ω̄‖2 ≤ ‖Mk+1 −Mk‖2
and

‖Mk+1 −Mk‖∞ ≤ ‖Mk+1 −Mk‖2 .
Thus, it is enough to show (8). The proof of (8) is close to the proof of Lemma
4 in [20].

Let us denote for by M̃k the solutions produced by Algorithm 1 after soft-
thresholding step and before truncating step (6). We have that

‖Mk+1−Mk‖2 ≤ ‖M̃k+1−M̃k‖2 ≤ ‖(Mk−Mk−1)Ω̄‖2 ≤ ‖Mk−Mk−1‖2 (39)

where in the second inequality we used the following result (see, for example,
Lemma 3 in [20])

Proposition 12. The soft-thresholding operator Sλ(·) satisfies the following:
for any W1,W2

‖Sλ(W1)− Sλ(W2)‖2 ≤ ‖W1 −W2‖2.
The inequality (39) implies that the sequence {‖Mk−Mk−1‖2}k≥1 converges.

It remains to show that it converges to zero. Note that the inequalities (39) imply
that

‖Mk −Mk−1‖22 − ‖(Mk+1 −Mk)Ω̄‖22 = ‖(Mk+1 −Mk)Ω‖22 → 0.

So, we only need to show that ‖(Mk+1 −Mk)Ω̄‖2 → 0.
We put

Q(A,B) =
1

2
‖(Y −B)Ω‖22 +

1

2
‖(A−B)Ω̄‖22 + λ‖B‖∗.

Note that (7) implies

Q(Mk, M̃k) ≥ Q(Mk, M̃k+1)

=
1

2
‖(Y − M̃k+1)Ω‖22 +

1

2
‖(Mk − M̃k+1)Ω̄‖22 + λ‖M̃k+1‖∗

≥ 1

2
‖(Y − M̃k+1)Ω‖22 +

1

2
‖(Mk+1 − M̃k+1)Ω̄‖22 + λ‖M̃k+1‖∗

= Q(Mk+1, M̃k+1)

(40)
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where in the last inequality we used that

Mk+1
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̃k+1
ij if |M̃k+1

ij | ≤ a

a if M̃k+1
ij > a

−a if M̃k+1
ij < −a.

(41)

The inequality (40) shows that the sequence {Q(Mk, M̃k)}k≥1 converges. This
and (40) yield

Q(Mk, M̃k+1)−Q(Mk+1, M̃k+1)

=
1

2
‖(Mk − M̃k+1)Ω̄‖22 −

1

2
‖(Mk+1 − M̃k+1)Ω̄‖22 → 0.

(42)

Now, it is easy to see that

‖(Mk − M̃k+1)Ω̄‖22 − ‖(Mk+1 − M̃k+1)Ω̄‖22 ≥ ‖(Mk −Mk+1)Ω̄‖22. (43)

Indeed, for (i, j) in Ω̄ such that Mk+1
ij = M̃k+1

ij we have that(
Mk

ij − M̃k+1
ij

)2
−
(
Mk+1

ij − M̃k+1
ij

)2
=
(
Mk

ij −Mk+1
ij

)2
and for (i, j) in Ω̄ such that Mk+1

ij �= Mk+1
ij we have that(

Mk
ij − M̃k+1

ij

)2
−
(
Mk+1

ij − M̃k+1
ij

)2
≥
(
Mk

ij −Mk+1
ij

)2
where we used (41). Now (42) together with (43) imply (8) which completes the
proof of Lemma 1.

Appendix F: Proof of Lemma 4

In order to prove (10), we use the following remarkable bound on the spectral
norms of random matrices. It is obtained by extension to rectangular matrices
via self-adjoint dilation of Corollary 3.12 and Remark 3.13 in [2] (cf., Section
3.1 in [2]).

Proposition 13 ([2]). Let A be the m1 ×m2 rectangular matrix whose entries
Aij are independent centered bounded random variables. Then, for any 0 < ε ≤
1/2 there exists a universal constant cε such that, for every t ≥ 0

P

{
‖A‖ ≥ (1 + ε)2

√
2(σ1 ∨ σ2) + t

}
≤ (m1 ∧m2) exp

(
−t2

cεσ2
∗

)
where we have defined

σ1 = max
i

√∑
j

E[A2
ij ]
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σ2 = max
j

√∑
i

E[A2
ij ]

σ∗ = max
ij

|Aij |.

We apply Proposition 13 to Σ =
∑

(i,j) ηijξijXij . We compute

σ1 = max
i

√∑
j

E[η2ijξ
2
ij ] = σmax

i

√
πi· and σ2 = σmax

j

√
π·j .

Bound (4) implies that σ1∨σ2 ≤ σ
√
L. On the other hand, Assumption 1 implies

max
ij

|ηijξij | ≤ b. Now, taking in Proposition 13 ε = 1/2 we get (10).

In order to prove (11) we use the following result

Proposition 14 (Corollary 3.3 in [2]). Let A be the m1×m2 rectangular matrix
with Aij independent centered bounded random variables. Then, there exists a
universal constant C∗ such that,

E ‖A‖ ≤ C∗
{
σ1 ∨ σ2 + σ∗

√
log(m1 ∧m2)

}
where σ1, σ2, σ∗ are defined in Proposition 13.

We apply Proposition 14 to ΣR =
∑

(i,j) ηijεijXij where {εij} is i.i.d. Rade-

macher sequence. We have that σ1 ∨ σ2 ≤
√
L and σ∗ ≤ 1, then Proposition 14

implies (11).
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tion through nuclear norm regularisation. SIAM International Conference
on Data Mining, pages 623–631, 2014.

[11] Foygel, R. and Srebro, N. Concentration-based guarantees for low-rank
matrix reconstruction. Journal 24nd Annual Conference on Learning The-
ory (COLT), 2011.

[12] Gross, D. Recovering low-rank matrices from few coefficients in any basis.
IEEE Trans. Inform. Theory, 57(3):1548–1566, 2011. MR2815834

[13] Keshavan, R. H., Montanari, A. and Oh, S. Matrix completion
from a few entries. IEEE Trans. Inform. Theory, 56(6):2980–2998, 2010.
MR2683452

[14] Keshavan, R. H., Montanari, A., and Oh, S. Matrix completion from
noisy entries. J. Mach. Learn. Res., 11:2057–2078, 2010. MR2678022

[15] Klopp, O. Rank penalized estimators for high-dimensional matrices. Elec-
tron. J. Statist., 5:1161–1183, 2011. MR2842903

[16] Klopp, O. Noisy low-rank matrix completion with general sampling dis-
tribution. Bernoulli, 20(1):282–303, 2014. MR3160583

[17] Koltchinskii, V. Oracle inequalities in empirical risk minimization and
sparse recovery problems, volume 2033 of Lecture Notes in Mathematics.
Springer, Heidelberg, 2011. Lectures from the 38th Probability Summer
School held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-
Flour. [Saint-Flour Probability Summer School]. MR2829871

[18] Koltchinskii, V., Lounici, K., and Tsybakov, A. B. Nuclear-norm
penalization and optimal rates for noisy low-rank matrix completion. Ann.
Statist., 39(5):2302–2329, 2011. MR2906869

[19] Ledoux, M. The concentration of measure phenomenon, volume 89 of
Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2001. MR1849347

[20] Mazumder, R., Hastie, T., and Tibshirani, R. Spectral regulariza-
tion algorithms for learning large incomplete matrices. Journal of Machine
Learning Research, 11:2287–2322, 2010. MR2719857

[21] Negahban, S. and Wainwright, M. J. Restricted strong convexity and
weighted matrix completion: Optimal bounds with noise. Journal of Ma-
chine Learning Research, 13:1665–1697, 2012. MR2930649

[22] Recht, B. A simpler approach to matrix completion. Journal of Machine
Learning Research, 12:3413–3430, 2011. MR2877360

[23] Talagrand, M. A new look at independence. Ann. Probab., 24(1):1–34,
01 1996. MR1387624

[24] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P.,

Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B. Missing

http://arxiv.org/abs/1502.04654
http://www.ams.org/mathscinet-getitem?mr=3285604
http://www.ams.org/mathscinet-getitem?mr=2815834
http://www.ams.org/mathscinet-getitem?mr=2683452
http://www.ams.org/mathscinet-getitem?mr=2678022
http://www.ams.org/mathscinet-getitem?mr=2842903
http://www.ams.org/mathscinet-getitem?mr=3160583
http://www.ams.org/mathscinet-getitem?mr=2829871
http://www.ams.org/mathscinet-getitem?mr=2906869
http://www.ams.org/mathscinet-getitem?mr=1849347
http://www.ams.org/mathscinet-getitem?mr=2719857
http://www.ams.org/mathscinet-getitem?mr=2930649
http://www.ams.org/mathscinet-getitem?mr=2877360
http://www.ams.org/mathscinet-getitem?mr=1387624


Matrix completion by singular value thresholding 2369

value estimation methods for dna microarrays. Bioinformatics, 17(6):520–
525, 2001.

[25] Tsybakov, A. B. Introduction to nonparametric estimation. Springer Se-
ries in Statistics. Springer, New York, 2009. Revised and extended from the
2004 French original, Translated by Vladimir Zaiats. MR2724359

[26] Wang, Z., Lai, M., Lu, Z., Fan, W., Davulcu, H., andYe, J. Orthogo-
nal rank-one matrix pursuit for low rank matrix completion. Proceedings of
the 31st International Conference on Machine Learning (ICML-14), pages
91–99, 2014.

[27] Watson, G. A. Characterization of the subdifferential of some ma-
trix norms. Linear Algebra and its Applications, 170(0):33 – 45, 1992.
MR1160950

http://www.ams.org/mathscinet-getitem?mr=2724359
http://www.ams.org/mathscinet-getitem?mr=1160950

	Introduction
	Contributions and related work
	Organization of the paper

	Preliminaries
	Model and sampling scheme
	Notation

	The singular value thresholding algorithm
	Algorithm
	Upper bound on the estimation error

	Minimax lower bounds
	Proof of Theorem 2
	Proof of Theorem 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 1
	Proof of Lemma 4
	References

