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Abstract: We consider the problem of inferring the total causal effect of
a single continuous variable intervention on a (response) variable of in-
terest. We propose a certain marginal integration regression technique for
a very general class of potentially nonlinear structural equation models
(SEMs) with known structure, or at least known superset of adjustment
variables: we call the procedure S-mint regression. We easily derive that it
achieves the convergence rate as for nonparametric regression: for example,
single variable intervention effects can be estimated with convergence rate
n−2/5 assuming smoothness with twice differentiable functions. Our result
can also be seen as a major robustness property with respect to model
misspecification which goes much beyond the notion of double robustness.
Furthermore, when the structure of the SEM is not known, we can esti-
mate (the equivalence class of) the directed acyclic graph corresponding
to the SEM, and then proceed by using S-mint based on these estimates.
We empirically compare the S-mint regression method with more classical
approaches and argue that the former is indeed more robust, more reliable
and substantially simpler.
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1. Introduction

Understanding cause-effect relationships between variables is of great interest in
many fields of science. An ambitious but highly desirable goal is to infer causal
effects from observational data obtained by observing a system of interest with-
out subjecting it to interventions.1 This would allow to circumvent potentially
severe experimental constraints or to substantially lower experimental costs.
The words “causal inference” (usually) refer to the problem of inferring effects
which are due to (or caused by) interventions: if we make an outside inter-
vention at a variable X, say, what is its effect on another response variable of

∗Partially supported by the Swiss National Science Foundation grant no. 20PA20E-134493.
1More generally, in the presence of both, interventional and observational data, the goal is

to infer intervention or causal effects among variables which are not directly targeted by the
interventions from interventional data.
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interest Y . We describe examples in Section 1.3. Various fields and concepts
have contributed to the understanding and quantification of causal inference:
the framework of potential outcomes and counterfactuals (cf. Rubin, 2005), see
also Dawid (2000), structural equation modeling (cf. Bollen, 1998), and graphi-
cal modeling (cf. Lauritzen and Spiegelhalter, 1988; Greenland et al., 1999); the
book by Pearl (2000) provides a nice overview.

We consider aspects of the problem indicated above, namely inferring inter-
vention or causal effects from observational data without external interventions.
Thus, we deal (in part) with the question of how to infer causal effects without
relying on randomized experiments or randomized studies. Besides fundamental
conceptual aspects, as treated for example in the books by Pearl (2000), Spirtes
et al. (2000) and Koller and Friedman (2009), important issues include statis-
tical tasks such as estimation accuracy and robustness with respect to model
misspecification. This paper focuses on the two latter topics, covering also high-
dimensional sparse settings with many variables (parameters) but relatively few
observational data points.

In general, the tools for inferring causal effects are different from regres-
sion methods, but as we will argue, the regression methods, when properly
applied, remain a useful tool for causal inference. In fact, for the estimation of
total causal effects, we make use of a marginal integration regression method
which has originally been proposed for additive regression modeling (Linton and
Nielsen, 1995). Its use in causal inference is novel. Relying on known theory for
marginal integration in regression (Fan et al., 1998), our main result (Theo-
rem 1) establishes optimal convergence properties and justifies the method as
a fully robust procedure against model misspecification, as explained further in
Section 1.2.

1.1. Basic concepts and definitions for causal inference

We very briefly introduce some of the basic concepts for causal inference (and
the reader who is familiar with them can skip this subsection). We consider p
random variables X1, . . . , Xp, where one of them is a response variable Y of
interest and one of them an intervention variable X, that is, the variable where
we make an external intervention by setting X to a certain value x. Such an
intervention is denoted by Pearl’s do-operator do(X = x) (cf. Pearl, 2000). We
denote the indices corresponding to Y and X by jY and jX , respectively: thus,
Y = XjY and X = XjX . We assume a setting where all relevant variables are
observed, i.e., there are no relevant hidden variables.2

The system of variables is assumed to be generated from a structural equation
model (SEM):

Xj ← fj(Xpa(j), εj), j = 1, . . . , p. (1)

Thereby, ε1, . . . , εp are independent noise (or innovation) variables, and there
is an underlying structure in terms of a directed acyclic graph (DAG) D,

2It suffices to assume that Y , X and Xpa(jX ) (the parents of X) are observed, see (3).
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where each node j corresponds to the random variable Xj : We denote by
pa(j) = paD(j) the set of parents of node j in the underlying DAG D,3 and
fj(·) are assumed to be real-valued (measurable) functions. For any index set
U ⊆ {1, . . . , p} we write XU := (Xv)v∈U , for example, Xpa(j) = (Xv)v∈pa(j).

The causal mechanism we are interested in is the total effect of an intervention
at a single variable X on a response variable Y of interest.4 The distribution of
Y when doing an external intervention do(X = x) by setting variable X to x is
identified with its density (assumed to exist) or discrete probability function and
is denoted by p(y|do(X = x)). The mathematical definition of p(y|do(X = x))
can be given in terms of a so-called truncated Markov factorization or maybe
more intuitively, by direct plug-in of the intervention value x for variable X and
propagating this intervention value x to all other random variables including Y
in the structural equation model (1); precise definitions are given in e.g. Pearl
(2000) or Spirtes et al. (2000). The underlying important assumption in the
definition of p(y|do(X = x)) is that the functional forms and error distributions
of the structural equations for all the variables Xj which are different from X
do not change when making an intervention at X.

A very powerful representation of the intervention distribution is given by
the well-known backdoor adjustment formula.5 We say that a path in a DAG D
is blocked by a set of nodes S if and only if it contains a chain .. → m → .. or
a fork .. ← m → .. with m ∈ S or a collider .. → m ← .. such that m �∈ S and
no descendant of m is in S. Furthermore, a set of variables S is said to satisfy
the backdoor criterion relative to (X,Y ) if no node in S is a descendant of X
and if S blocks every path between X and Y with an arrow pointing into X.
For a set S that satisfies the backdoor criterion relative to (X,Y ), the backdoor
adjustment formula reads:

p(y|do(X = x)) =

∫
p(y|X = x,XS)dP (XS), (2)

where p(·) and P (·) are generic notations for the density or distribution (Pearl,
2000, Theorem 3.3.2). An important special case of the backdoor adjustment
formula is obtained when considering the adjustment set S = pa(jX): if jY /∈
pa(jX), that is, if Y is not in the parental set of the variable X, then:

p(y|do(X = x)) =

∫
p(y|X = x,Xpa(jX))dP (Xpa(jX)). (3)

Thus, if the parental set pa(jX) is known, the intervention distribution can
be calculated from the standard observational conditional and marginal distri-
butions. Our main focus is the expectation of Y when doing the intervention
do(X = x), the so-called total effect:

E[Y |do(X = x)] =

∫
y p(y|do(X = x))dy.

3The set of parents is paD(j) = {k; there exists a directed edge k → j in DAG D}.
4A total effect is the effect of an intervention at a variable X to another variable Y , taking

into account the total of all (directed) paths from X to Y .
5For a simple version of the formula, skip the text until the second line after formula (2).
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A general and often used route for inferring E[Y |do(X = x)] is as follows: the
directed acyclic graph (DAG) corresponding to the structural equation model
(SEM) is either known or (its Markov equivalence class) estimated from data;
building on this, one can estimate the functions in the SEM (edge functions in
the DAG), the error distributions in the SEM, and finally extract an estimate
of E[Y |do(X = x)] (or bounds of this quantity if the DAG is not identifiable)
from the observational distribution. See for example Spirtes et al. (2000); Pearl
(2000); Maathuis et al. (2009); Spirtes (2010).

1.2. Our contribution

The new results from this paper should be explained for two different scenarios
and application areas: one where the structure of the DAG D in the SEM is
known, and the other where the structure and the DAG D are unknown and
estimated from data. Of course, the second setting is linked to the first by
treating the estimated as the true known structure. However, due to estimation
errors, a separate discussion is in place.

1.2.1. Structural equation models with known structure

We consider a general SEM as in (1) with known structure in form of a DAG D
but unknown functions fj and unknown error distributions for εj . As already
mentioned before, our focus is on inferring the total effect

E[Y |do(X = x)] =

∫
y p(y|do(X = x))dy, (4)

where p(y|do(X = x)) is the interventional density (or discrete probability func-
tion) of Y as loosely described in Section 1.1.

The first approach to infer the total effect in (4) is to estimate the functions
fj and error distributions for εj in the SEM. It is then possible to calculate
E[Y |do(X = x)], typically using a path-based method based on the DAG D
(see also Section 3.1). This route is essentially impossible without putting further
assumptions on the functional form of fj in the SEM (1). For example, one often
makes the assumption of additive errors, and if the cardinality of the parental
set |pa(j)| is large, additional constraints like additivity of a nonparametric
function are in place to avoid the curse of dimensionality. Thus, by keeping the
general possibly non-additive structure of the functions fj in the SEM, we have
to reject this approach.

The second approach for inferring the total effect in (4) relies on the pow-
erful backdoor adjustment formula in (2). At first sight, the problem seems
ill-posed because of the appearance of p(Y |X = x,XS) for a set S with possibly
large cardinality |S|. But since we integrate over the variables XS in (2), we
are not entering the curse of dimensionality. This simple observation is a key
idea of this paper. We present an estimation technique for E[Y |do(X = x)], or
other functionals of p(y|do(X = x)), using marginal integration which has been
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proposed and analyzed for additive regression modeling (Linton and Nielsen,
1995). The idea of our marginal integration approach is to first estimate a fully
nonparametric regression of Y versus X and the variables XS from a valid ad-
justment set satisfying the backdoor criterion (for example the parents of X or
a superset thereof) and then average the obtained estimate over the variables
XS . We call the procedure “S-mint” standing for marginal integration with ad-
justment set S. Our main result in Theorem 1 establishes that E[Y |do(X = x)]
can be inferred via marginal integration with the same rate of convergence as
for one-dimensional nonparametric function estimation for a very large class
of structural equation models with potentially non-additive functional forms in
the equations. We thereby achieve a major robustness result against model mis-
specification, as we only assume some standard smoothness assumptions but no
further conditions on the functional form or nonlinearity of the functions fj in
the SEM, not even additive errors. Our main result (Theorem 1) also applies
using a superset of the true underlying DAG D (i.e. there might be additional
directed edges in the superset), see Section 2.3. For example, such a superset
could arise from knowing the order of the variables (e.g. in a time series con-
text), or an approximate superset might be available from estimation of the
DAG where one would not care too much about slight or moderate overfitting.

Inferring E[Y |do(X = x)] under model-misspecification is the theme of double
robustness in causal inference, typically with a binary treatment variable X (cf.
van der Laan and Robins, 2003). There, misspecification of either the regression
or the propensity score model6 is allowed but at least one of them has to be
correct to allow for consistent estimation: the terminology “double robustness”
is intended to reflect this kind of robustness. In contrast to double robustness, we
achieve here “full robustness” where essentially any form of “misspecification”
is allowed, in the sense that S-mint does not require any specification of the
functional form of the structural equations in the SEM. More details are given
in Section 2.1.1.

The local nature of parental sets.Our S-mint procedure requires the specification
of a valid adjustment set S: as described in (3), we can always use the parental
set pa(jX) if jY /∈ pa(jX). The parental variables are often an interesting choice
for an adjustment set which corresponds to a local operation. Furthermore, as
discussed below, the local nature of the parental sets can be very beneficial in
presence of only approximate knowledge of the true underlying DAG D.

1.2.2. Structural equation models with unknown structure

Consider the SEM (1), but now we assume that the DAG D is unknown. For this
setting, we propose a two-stage scheme (“est S-mint”, Section 3.5). First, we
estimate the structure of the DAG (or the Markov equivalence class of DAGs)
or the order of the variables from observational data. To do this, all of the
current approaches make further assumptions for the SEM in (1), see for example

6Definitions can be found in Section 2.1.1
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Chickering (2002); Teyssier and Koller (2005); Shimizu et al. (2006); Kalisch
and Bühlmann (2007); Schmidt et al. (2007); Hoyer et al. (2009); Shojaie and
Michailidis (2010); Bühlmann et al. (2014).

We can then infer E[Y |do(X = x)] as before with S-mint model fitting, but
based on an estimated (instead of the true) adjustment set S. This seems often
more advisable than using the estimated functions in the SEM, which are readily
available from structure estimation, and pursuing a path-based method with the
estimated DAG. Since estimation of (the Markov equivalence class of) the DAG
or of the order of variables is often very difficult and with limited accuracy for fi-
nite sample size, the second stage with S-mint model fitting is fairly robust with
respect to errors in order- or structure-estimation and model misspecification,
as suggested by our empirical results in Section 5.3. Therefore, such a two-stage
procedure with structure- or order-search7 and subsequent marginal integration
leads to reasonably accurate and sometimes better results. For example, Sec-
tion 5 reports a comparable performance to the direct CAM method (Bühlmann
et al., 2014) with subsequent path-based estimation of causal effects, which is
based on, or assuming, a correctly specified additive SEM.8 Thus, even if the
est S-mint approach with fully nonparametric S-mint modeling in the second
stage is not exploiting the additional structural assumption of an additive SEM,
it exhibits a competitive performance.

As mentioned in the previous subsection, the parental sets (or supersets
thereof) with their local nature are often a very good choice in presence of
estimation errors with respect to inferring the true DAG (or equivalence class
thereof): instead of assuming high accuracy for recovering the entire (equiva-
lence class of the) DAG, we only need to have a reasonably accurate estimate
of the much smaller and local parental set.

A combined structured (or parametric) and fully nonparametric approach. The
two-stage est S-mint procedure is typically a combination of a structured non-
parametric or parametric approach for estimating the DAG (or the equivalence
class thereof) and the fully nonparametric S-mint method in the subsequent
second stage. As outlined above, it exhibits comparatively good performance.
One could think of pursuing the first stage in a fully nonparametric fashion as
well, for example by using the PC-algorithm with nonparametric conditional
independence tests (Spirtes et al., 2000), see also Song et al. (2013). For finite
amount of data and a fairly large number of variables, this is a very ambitious if
not ill-posed task. In view of this, we almost have to make additional structural
or parametric assumptions for structure learning of the DAG (or its equiva-
lence class). However, since the fully nonparametric S-mint procedure in the
second stage is less sensitive to incorrect specification of the DAG (or its equiv-
alence class), the combined approach exhibits better robustness. Vice-versa, if
the structural or parametric model is correct which is used for structural learn-
ing in the first stage, we do not lose much efficiency when “throwing away” (or

7We do not make use of e.g. estimated edge functions, even if they were implicitly estimated
for structure-search, as e.g. in Chickering (2002).

8For a short description of the CAM method, see the last paragraph of Section 3.4.
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not exploiting) such structural information in the second stage with S-mint. We
only have empirical results to support such accuracy statements.

1.3. The scope of possible applications

Genetic network inference is a prominent example where causal inference meth-
ods are used; mainly for estimating an underlying network in terms of a di-
rected graph (cf. Smith et al., 2002; Husmeier, 2003; Friedman, 2004; Yu et al.,
2004). The goal is very ambitious, namely to recover relevant edges in a com-
plex network from observational or a few interventional data. This paper does
not address this issue: instead of recovering a network (structure), inferring to-
tal causal or intervention effects from observational data is a different, maybe
more realistic but still very challenging goal in its full generality. Yet making
progress can be very useful in many areas of applications, notably for prioritiz-
ing and designing future randomized experiments which have a large total effect
on a response variable of interest, ranging from molecular biology and bioinfor-
matics (Editorial Nat. Methods, 2010) to many other fields including economy,
medicine or social sciences. Such model-driven prioritization for gene interven-
tion experiments in molecular biology has been experimentally validated with
some success (Maathuis et al., 2010; Stekhoven et al., 2012).

We will discuss an application from molecular biology on a rather “toy-like”
level in Section 6. Despite all simplifying considerations, however, we believe
that it indicates a broader scope of possible applications. When having approx-
imate knowledge of the parental set of the variables in a potentially large-scale
system, one would not need to worry much about the underlying form of the
dependences of (or structural equations linking) the variables: for quantifying
the effect of single variable interventions, the proposed S-mint marginal integra-
tion estimator converges with the univariate rate, as stated in (the main result)
Theorem 1.

Quantifying single variable interventions from observational data is indeed a
useful first step. Further work is needed to address the following issues: (i) infer-
ence in settings with additional hidden, unobserved variables (cf. Spirtes et al.,
2000; Zhang, 2008; Shpitser et al., 2011; Colombo et al., 2012); (ii) inference
based on both observational and interventional data (cf. He and Geng., 2008;
Hauser and Bühlmann, 2012, 2014, 2015); and finally (iii) developing sound tools
and methods towards more confirmatory conclusions. The appropriate modifica-
tions and further developments of our new results (mainly Theorem 1) towards
these points (i)-(iii) are not straightforward.

2. Causal effects for general nonlinear systems via backdoor
adjustment: Marginal integration suffices

We present here the, maybe surprising, result that marginal integration allows
us to infer the causal effect of a single variable intervention with a convergence
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rate as for one-dimensional nonparametric function estimation in essentially any
nonlinear structural equation model.

We assume a structural equation model (as already introduced in Section 1.1)

Xj ← f0
j (Xpa(j), εj), j = 1, . . . , p, (5)

where ε1, . . . , εp are independent noise (or innovation) variables, pa(j) denotes
the set of parents of node j in the underlying DAG D0, and f0

j (·) are real-
valued (measurable) functions. We emphasize the true underlying quantities
with a superscript “0”. We assume in this section that the DAG D0, or at
least a (super-) DAG D0

super which contains D0 (see Section 2.3), is known. As
mentioned earlier, our goal is to give a representation of the expected value of the
intervention distribution E[Y |do(X = x)] for two variables Y,X ∈ {X1, . . . , Xp}.
That is, we want to study the total effect that an intervention at X has on a
target variable Y . Let S be a set of variables satisfying the backdoor criterion
relative to (X,Y ), implying that

p(y|do(X = x)) =

∫
p(y|X = x,XS)dP (XS),

where p(·) and P (·) are generic notations for the density or distribution (see
Section 1.1). Assuming that we can interchange the order of integration (cf.
part 6 of Assumption 1) we obtain

E[Y |do(X = x)] =

∫
E[Y |X = x,XS ]dP (XS). (6)

This is a function depending on the one-dimensional variable x only and there-
fore, intuitively, its estimation should not be much exposed to the curse of
dimensionality. We will argue below that this is indeed the case.

2.1. Marginal integration

Marginal integration is an estimation method which has been primarily de-
signed for additive and structured regression fitting (Linton and Nielsen, 1995).
Without any modifications though, it is also suitable for the estimation of
E[Y |do(X = x)] in (6).

Let S be a set of variables satisfying the backdoor criterion relative to (X,Y )
(see Section 1.1) and denote by s the cardinality of S. We use a nonparamet-
ric partial local estimator of the multivariate regression function m(x, xS) =
E[Y |X = x,XS = xS ] of the form

(α̂, β̂) = argmin
α,β

n∑
i=1

(Yi − α− β(X(i) − x))2Kh1(X
(i) − x)Lh2(X

(i)
S − xS), (7)

where α̂ = α̂(x, xS), β̂ = β̂(x, xS), K and L are two kernel functions and h1, h2

the respective bandwidths, i.e.,

Kh1(t) =
1

h1
K

(
t

h1

)
, Lh2(t) =

1

hs
2

L

(
t

h2

)
.
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We obtain the partial local linear estimator at (x, xS) as m̂(x, xS) = α̂(x, xS).
We then integrate over the variables XS with the empirical mean and obtain:

Ê[Y |do(X = x)] = n−1
n∑

k=1

m̂(x,X
(k)
S ) (8)

This is a locally weighted average, with localization through the one-dimensional
variable x. For our main theoretical result to hold, we make the following as-
sumptions:

Assumption 1.

1. The variables XS have a bounded support supp(XS).
2. The regression function m(u, uS) = E[Y |X = u,XS = uS ] exists and has

bounded partial derivatives up to order 2 with respect to u and up to order
d with respect to uS for u in a neighborhood of x and uS ∈ supp(XS).

3. The variables X,XS have a density p(., .) with respect to Lebesgue measure
and p(u, uS) has bounded partial derivatives up to order 2 with respect to
u and up to order d with respect to uS. In addition, it holds that

inf
u∈x±δ

xS∈supp(XS)

p(u, xS) > 0 for some δ > 0.

4. The kernel functions K and L are symmetric with bounded supports and
L is an order-d kernel.

5. For ε = Y −E[Y |X,XS ], it holds that E[ε
4] is finite and E[ε2|X = x,XS =

xS ] is continuous. Furthermore, for a δ > 0, E[|ε|2+δ | X = u] is bounded
for u in a neighborhood of x.

6. There exists c < ∞ such that E[|Y ||X = x,XS = xS ] ≤ c for all xS.

Note that part 6 of Assumption 1 is only needed for interchanging the order
of integration in (6). Due to the bounded support of the variables XS it is not
overly restrictive.

As a consequence, the following result from Fan et al. (1998) establishes a
convergence rate for the estimator as for one-dimensional nonparametric func-
tion estimation.

Theorem 1. Suppose that Assumption 1 holds for a set S satisfying the back-
door criterion relative to (X,Y ) in the DAG D0 from model (5). Consider the es-
timator in (8). Assume that the bandwidths are chosen such that h1, h2 → 0 with
nh1h

2s
2 / log2(n) → ∞, hd

2/h
2
1 → 0, and in addition satisfying nh1h

s
2/ log(n) →

∞ and h4
1 log(n)/h

s
2 → 0 (and all these conditions hold when choosing the band-

widths in a properly chosen optimal range, see below). Then,

Ê[Y |do(X = x)]− E[Y |do(X = x)] = O(h2
1) +OP (1/

√
nh1).

Proof. The statement follows from Fan et al. (1998, Theorem 1 and Re-
mark 3).



3164 J. Ernest and P. Bühlmann

When assuming the smoothness condition d > s for m(u, uS) with respect to
the variable uS , and when choosing h1 	 n−1/5 and h2 	 n−α with 2/(5d) <
α < 2/(5s) (which requires d > s), all the conditions for the bandwidths are sat-
isfied: Theorem 1 then establishes the convergence rate O(n−2/5) which matches
the optimal rate for estimation of one-dimensional smooth functions having sec-
ond derivatives, and such a smoothness condition is assumed for m(u, uS) with
respect to the variable u in part 2 of Assumption 1. Thus, the implication is the
important robustness fact that for any potentially nonlinear structural equa-
tion model satisfying the regularity conditions in Theorem 1, we can estimate
the expected value of the intervention distribution with the same accuracy as in
nonparametric estimation of a smooth function with one-dimensional argument.
We note, as mentioned already in Section 1.2.1, that it would be essentially im-
possible to estimate the functions fj in (1) in full generality: interestingly, when
focusing on inferring the total effect E[Y |do(X = x)], the problem is much better
posed as demonstrated with our concrete S-mint procedure. Furthermore, with
the (valid) choice S = pa(jX) or an (estimated) superset thereof, one obtains a
procedure that is only based on local information in the graph: this turns out to
be advantageous, see also Section 1.2.1, particularly when the underlying DAG
structure is not correctly specified (see Section 5.3). We will report about the
performance of such an S-mint estimation method in Sections 4 and 5. Note
that the rate of Theorem 1 remains valid (for a slightly modified estimator) if
we allow for discrete variables in the parental set of X (Fan et al., 1998).

It is also worthwhile to point out that S-mint becomes more challenging for
inferring multiple variable interventions such as E[Y |do(X1 = x1, X2 = x2)]: the
convergence rate is then of the order n−1/3 for a twice differentiable regression
function.

Remark 1. Theorem 1 generalizes to real-valued transformations t(·) of Y .
By using the argument as in (6) and replacing part 6 of Assumption 1 by the
corresponding statement for t(Y ), we obtain

E[t(Y )|do(X = x)] =

∫
t(y)p(y|do(X = x))dy

=

∫
E[t(Y )|X = x,XS ]dP (XS).

For example, for t(y) = y2 we obtain second moments and we can then estimate
the variance Var(Y |do(X = x)) = E[Y 2|do(X = x)] − (E[Y |do(X = x)])2. Or
with the indicator function t(y) = I(y ≤ c) (c ∈ R) we obtain a procedure for
estimating P[Y ≤ c|do(X = x)] with the same convergence rate as for one-
dimensional nonparametric function estimation using marginal integration of
t(Y ) versus X,XS.

2.1.1. Binary treatment and connection to double robustness

For the special but important case with binary treatment, where X ∈ {0, 1}
and XS ∈ R

s is continuous, we can use marginal integration as well. We can
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estimate the regression function m(x, xS) for x ∈ {0, 1} by using a kernel esti-
mator based on data with the observed X(k) = 0 and X(k) = 1, respectively,
denoted by m̂(x, xS) (x ∈ {0, 1}). We then integrate over xS with the empirical

mean n−1
∑n

k=1 m̂(x,X
(k)
S ) (x ∈ {0, 1}). When choosing the bandwidth h2 (for

smoothing over the XS variables) smaller than for the non-integrated quantity
m(x, xS), and assuming smoothness conditions, we anticipate the n−1/2 con-
vergence rate for estimating E[Y |do(X = x)] with x ∈ {0, 1}; see for example
Hall and Marron (1987) in the context of nonparametric squared density esti-
mation. We note that this establishes only the optimal parametric convergence
rate but does not generally lead to asymptotic efficiency. For the case of binary
treatment, semiparametric minimax rates have been established in Robins et al.
(2009) and asymptotically efficient methods can be constructed using higher
order influence functions (Li et al., 2011) or targeted maximum likelihood esti-
mation (van der Laan and Rose, 2011) which both might be more suitable than
marginal integration.

Theorem 1 establishes that S-mint is “fully robust” against model-misspeci-
fication for inferring E[Y |do(X = x)] or related quantities as mentioned in Re-
mark 1. The existing framework of double robustness is related to the issue
of misspecification and we clarify here the connection. One specifies regres-
sion models for E[Y |X,XS ] = m(X,XS) for both X = 0 and X = 1 and a
propensity score (Rosenbaum and Rubin, 1983) or inverse probability weight-
ing model (IPW; Robins et al. (1994)): for a binary intervention variable where
X encodes “exposure” (X = 1) and “control” (X = 0), the latter is a (often
parametric logistic) model for P[X = 1|XS ]. A double robust (DR) estimator for
E[Y |do(X = x)] requires that either the regression model or the propensity score
model is correctly specified. If both of them are misspecified, the DR estimator
is inconsistent. Double robustness of the augmented IPW approach has been
proved by Scharfstein et al. (1999) and double robustness in general was further
developed by many others, see e.g. Bang and Robins (2005). The targeted max-
imum likelihood estimation (TMLE) framework (van der Laan and Rose, 2011)
is also double robust. It uses a second step where the initial estimate is modified
in order to make it less biased for the target parameter (e.g. the average causal
effect between “exposure” and “control”). If both, the initial estimator and the
treatment mechanism, are consistently estimated, TMLE can be shown to be
asymptotically efficient. TMLE with a super-learner or also the approach of
higher order influence functions (Li et al., 2011) can deal with a nonparametric
model. Robins et al. (2009) prove that s = dim(XS) ≤ 2(βregr+βpropens), where
β‘name′ denotes the smoothness of the regression or propensity score function,
is a necessary condition for an estimator to achieve the 1/

√
n convergence rate.

Our S-mint procedure is related to these nonparametric approaches: it dif-
fers though in that it deals with a continuous treatment variable. Similar to the
smoothness requirement above we have discussed after Theorem 1 that we can
achieve the n−2/5 nonparametric optimal rate (when assuming bounded deriva-
tives up to order 2 of the regression function with respect to the treatment
variable) if s = dim(XS) < d, where d plays the role of βregr. The condition
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s < d is stronger than for the optimal 1/
√
n convergence rate with binary treat-

ment: however, this could be relaxed to the regime s < 2d when invoking Fan
et al. (1998, Remark 1). Therefore, rate optimal estimation with continuous
treatment can be achieved under a “comparable” smoothness assumption as in
the binary treatment case.

2.2. Implementation of marginal integration

Theorem 1 justifies marginal integration as in (8) asymptotically. One issue is
the choice of the two bandwidths h1 and h2: we cannot rely on cross-validation
because E[Y |do(X = x)] is not a regression function and is not linked to predic-
tion of a new observation Ynew, nor can we use penalized likelihood techniques
with e.g. BIC since E[Y |do(X = x)] does not appear in the likelihood. Besides
the difficulty of choosing the smoothing parameters, we think that addressing
such a smoothing problem will become easier, at least in practice, using an
iterative boosting approach (cf. Friedman, 2001; Bühlmann and Yu, 2003).

We propose here a scheme, without complicated tuning of parameters, which
we found to be most stable and accurate in extensive simulations. The idea is to
elaborate on the estimation of the function m(x, xS) = E[Y |X = x,XS = xS ],
from a simple starting point to more complex estimates, while the integration
over the variables XS is done with the empirical mean as in (8).

We start with the following simple but useful result.

Proposition 1. If pa(jX) = ∅ or if there are no backdoor paths from jX to jY
in the true DAG D0 from model (5), then

E[Y |do(X = x)] = E[Y |X = x].

Proof. If there are no backdoor paths from jX to jY , the empty set S = ∅
satisfies the backdoor criterion relative to (X,Y ). The statement then directly
follows from the backdoor adjustment formula (2).

We learn from Proposition 1 that in simple cases, a standard one-dimensional
regression estimator for E[Y |X = x] would suffice. On the other hand, we know
from the backdoor adjustment formula in (6), that we should adjust with the
variables XS . Therefore, it seems natural to use an additive regression approx-
imation for m(x, xS) as a simple starting point. If the assumptions of Proposi-
tion 1 hold, such an additive model fit would yield a consistent estimate for the
component of the variable x: in fact, it is asymptotically as efficient as when us-
ing one-dimensional function estimation for E[Y |X = x] (Horowitz et al., 2006).
If the assumptions of Proposition 1 would not hold, we can still view an addi-
tive model fit m̂add(x, xS) = μ̂ + m̂add,jX (x) +

∑
j∈S m̂add,j(xj) as one of the

simplest starting points to approximate the more complex function m(x, xS).
When integrating out with the empirical mean as in (8), we obtain the estimate

Êadd[Y |do(X = x)] = μ̂ + m̂add,jX (x). As motivated above and backed up by
simulations, μ̂ + m̂add,jX (x) is quite often already a reasonable estimator for
E[Y |do(X = x)].
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In the presence of strong interactions between the variables, the additive ap-
proximation may drastically fail though. Thus, we want to implement marginal
integration as follows: starting from m̂add, we implement L2-Boosting with a
nonparametric kernel estimator similar to the one in (7). More precisely, we
compute residuals

R
(i)
1 = Y (i) − m̂add(X

(i), X
(i)
S ), i = 1, . . . , n,

which, for simplicity, are fitted with a locally constant estimator of the form

α̂(x, xS) = argmin
α

n∑
i=1

(R
(i)
1 − α)2Kh1(X

(i) − x)Lh2(X
(i)
S − xS). (9)

The resulting fit is denoted by ĝR1(x, xS) := α̂(x, xS). We add this new function
fit to the previous one and compute again residuals, and we then iterate the
procedure bstop times. To summarize, for b = 1, . . . , bstop − 1,

m̂1(x, xS) = m̂add(x, xS),

m̂b+1(x, xS) = m̂b(x, xS) + ĝRb
(x, xS),

R
(i)
b+1 = Y (i) − m̂b+1(X

(i), X
(i)
S ), i = 1, ..., n.

The final estimate for the total causal effect is obtained by marginally integrating
over the variables XS with the empirical mean as in (8), that is

Ê[Y |do(X = x)] = n−1
n∑

k=1

m̂bstop(x,X
(k)
S ).

The concrete implementation of the additive model fitting is according to the
default from the R-package mgcv, using penalized thin plate splines and choosing
the regularization parameter in the penalty by generalized cross-validation, see
e.g. Wood (2006, 2003). The basis dimension for each smooth is set to 10. For
the product kernel in (9), we choose K to be a Gaussian kernel and L to be a
product of Gaussian kernels. The bandwidths h1 and h2 in the kernel estimator
should be chosen “large” to yield an estimator with low variance but typically
high bias. The iterations then reduce the bias. Once we have fixed h1 and h2 (and
this choice is not very important as long as the bandwidths are “large”), the only
regularization parameter is bstop. It is chosen by the following considerations:
for each iteration we approximate the sum of the differences to the previous
approximation on the set of intervention values I (typically the nine deciles, see
Section 5), that is ∑

x∈I
|n−1

n∑
k=1

ĝRb
(x,X

(k)
S )|. (10)

When it becomes reasonably “small”, and this needs to be specified depending
on the context, we stop the boosting procedure. Such an iterative boosting
scheme has the advantage that it is more insensitive to the choice of bstop than
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the original estimator in (8) to the specification of the tuning parameters, and
in addition, boosting adapts to some extent to different smoothness in different
directions (variables). All these ideas are presented at various places in the
boosting literature, particularly in Friedman (2001); Bühlmann and Yu (2003);
Bühlmann and Hothorn (2007). In Section 4.2 we provide an example of a DAG
with backdoor paths, where the additive approximation is incorrect and several
boosting iterations are needed to account for interaction effects between the
variables. The implementation of our method is summarized in Algorithm 1: we
call it also S-mint, and we use it for all our empirical results in Sections 4–6.

Algorithm 1 S-mint
1: if S = ∅ is a valid adjustment set (for example, if pa(jX) = ∅) then
2: Fit an additive regression of Y versus X to obtain m̂add

3: return m̂add

4: else
5: Fit an additive regression of Y versus X and the adjustment set variables XS to obtain

m̂1 = m̂add

6: for b = 1, ..., bstop − 1 do
7: Apply L2-boosting to capture deviations from an additive regression model:
8: (i) Compute residuals Rb = Y − m̂b

9: (ii) Fit the residuals with the kernel estimator (9) to obtain ĝRb

10: (iii) Set m̂b+1 = m̂b + ĝRb

11: end for
12: return Do marginal integration: output 1

n

∑n
k=1 m̂bstop (x,X

(k)
S )

13: end if

We note the following about L2-boosting: if the initial estimator is a weighted

mean m̂1(x, xS) =
∑n

i=1 w
(1)
i (x, xS)Yi with

∑n
i=1 w

(1)
i (x, xS) = 1 (e.g. many ad-

ditive function estimators are of this form), then, since the kernel estimator ĝRb

in the boosting step 9 is a weighted mean too, m̂b(x, xS) =
∑n

i=1 w
(b)
i (x, xS)Yi

is a weighted mean. Thus, L2-boosting has the form of a weighted mean esti-
mator. When using kernel estimation for ĝRb

, the boosting estimator m̂bstop is
related to an estimator with a higher order kernel (Marzio and Taylor, 2008)
which depends on the bandwidth in ĝRb

and the number of boosting iterations
in a rather non-explicit way. Establishing the theoretical properties of the L2-

boosting estimator Ê[Y |do(X = x)] = n−1
n∑

k=1

m̂bstop(x,X
(k)
S ) is beyond the

scope of this paper.

2.3. Knowledge of a superset of the DAG

It is known that a superset of the parental set pa(jX) suffices for the backdoor
adjustment in (3). To be precise, let

S(jX) ⊇ pa(jX) with S(jX) ∩ de(jX) = ∅, (11)

where de(jX) are the descendants of jX (in the true DAG D0). For example,
S(jX) could be the parents of X in a superset of the true underlying DAG (a
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DAG with additional edges relative to the true DAG). We can then choose the
adjustment set S in (8) as S(jX) and Theorem 1 still holds true, assuming that
the cardinality |S(jX)| ≤ M < ∞ is bounded. Thus, with the choice S = S(jX),
we can use marginal integration by marginalizing over the variables XS(jX).

A prime example where we are provided with a superset S(jX) ⊇ pa(jX)
with S(jX) ∩ de(jX) = ∅ is when we know the order of the variables and can
deduct an approximate superset of the parents from that. When the variables
are ordered with Xj ≺ Xk for j < k, we would use

S(jX) = {k; jX − pmax ≤ k < jX} ⊇ pa(jX), (12)

where “≺” and pmax denote the order relation among the variables and an upper
bound on the size of the superset to ensure that S(jX) ⊇ pa(jX).

Corollary 1. Consider the estimator in (8) and assume the conditions of The-
orem 1 for the variables Y,X and XS(jX) with S(jX) in (11) or S(jX) as in
(12) for ordered variables. Then,

Ê[Y |do(X = x)]− E[Y |do(X = x)] = O(h2
1) +OP (1/

√
nh1).

Proof. The statement is an immediate consequence of Theorem 1, as S(jX)
in (11) and (12) satisfies the backdoor criterion relative to (X,Y ).

3. Path-based methods

We assume in the following until Section 3.5 that we know the true DAG and all
true functions and error distributions in the general SEM (1). Thus, in contrast
to Section 2, we have here also knowledge of the entire structure in form of the
DAG D0 (and not only a valid adjustment set S assumed for Theorem 1). This
allows us to infer E[Y |do(X = x)] in different ways than the generic S-mint
regression from Section 2. The motivation to look at other methods is driven by
potential gains in statistical accuracy when including the additional information
of the functional form or of the entire DAG in the structural equation model.
We will empirically analyze this issue in Section 5.

3.1. Entire path-based method from root nodes

Based on the true DAG, the variables can always be ordered such that

Xj1 ≺ Xj2 ≺ . . . ≺ Xjp .

Denote by jX and jY the indices of the variables X and Y , respectively.
IfX is not an ancestor of Y , we trivially know that E[Y |do(X = x)] = E[Y ]. If

X is an ancestor of Y it must hold that jX < jY . We can then generate the inter-
vention distribution of the random variables Xj1 ≺ Xj2 ≺ . . . ≺ Y | do(X = x)
in the model (1) as follows (Pearl, 2000, Def. 3.2.1.):
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Step 1 Generate εj1 , . . . , εjY .
Step 2 Based on Step 1, recursively generate:

Xj1 ← εj1 ,

Xj2 ← f0
j2(Xpa(j2), εj2),

. . . ,

XjX ← x,

. . . ,

XjY ← f0
jY (Xpa(jY ), εjY ).

Instead of an analytic expression for p(Y |do(X = x)) by integrating out over
the other variables {Xjk ; k �= jX , jY } we rather rely on simulation. We draw

B samples Y (1) = X
(1)
jY

, . . . , Y (B) = X
(B)
jY

by B independent simulations of
Steps 1-2 above and we then approximate, for B large,

E[Y |do(X = x)] ≈ B−1
B∑

b=1

Y (b).

Furthermore, the simulation technique allows to obtain the distribution of
p(Y |do(X = x)) via e.g. density estimation or histogram approximation based
on Y (1), . . . , Y (B).

The method has an implementation in Algorithm 2 which uses propagation of
simulated random variables along directed paths in the DAG. The method ex-
ploits the entire paths in the DAG from the root nodes to node jY corresponding
to the random variable Y . Figure 1 provides an illustration.

Algorithm 2 Entire path-based algorithm for simulating the intervention dis-
tribution
1: If there is no directed path from jX to jY , the interventional and observational quantities

coincide: p(Y |do(X = x)) ≡ p(Y ) and E[Y |do(X = x)] ≡ E[Y ].
2: If there is a directed path from jX to jY , proceed with steps 3-9.
3: Set X = XjX = x and delete all in-going arcs into X.
4: Find all directed paths from root nodes (including jX) to jY , and denote them by

p1, . . . , pq .
5: for b = 1, . . . , B do
6: for every path, recursively simulate the corresponding random variables according to

the order of the variables in the DAG:

(i) Simulate the random variables corresponding to the root nodes of p1, . . . , pq ;

(ii) Simulate in each path p1, . . . , pq the random variables following the root nodes;
proceed recursively, according to the order of the variables in the DAG.

(iii) Continue with the recursive simulation of random variables until Y is simulated.

7: Store the simulated variable Y (b).
8: end for
9: Use the simulated sample Y (1), . . . , Y (B) to approximate the intervention distribution

p(y|do(X = x)) or its expectation E[Y |do(X = x)].

When having estimates of the true DAG, all true functions and error dis-
tributions in the additive structural equation model (14), we would use the
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procedure above based on these estimated quantities; for the error distribu-
tions, we either use the estimated variances in Gaussian distributions, or we
rely on bootstrapping residuals from the structural equation model (typically
with residuals centered around zero).

3.2. Partially path-based method with short-cuts

Mainly motivated by computational considerations (see also Section 3.3), a mod-
ification of the procedure in Algorithm 2 is valid. Instead of considering all paths
from root nodes to jY (corresponding to variable Y ), we only consider all paths
from jX (corresponding to variable X) to jY and simulate the random variables
on these paths p′1, . . . , p

′
m. Obviously, in comparison to Algorithm 2, m ≤ q and

every p′k corresponds to a path pr for an r ∈ {1, . . . , q}.
Every path p′k is of the form

jX = jk,1 → jk,2 → . . . → jk,�k−1 → jk,�k = jY ,

having length �k. For recursively simulating the random variables on the paths
p′1, . . . , p

′
m we start with setting

X = XjX ← x.

Then we recursively simulate the random variables corresponding to all the
paths p′1, . . . , p

′
m according to the order of the variables in the DAG. For each

of these random variables Xj with j ∈ {p′1, . . . , p′m} and j �= jX , we need the
corresponding parental variables and error terms in

Xj ← f0
j (Xpa(j), εj),

where for every k ∈ pa(j) we set

Xk =

{
the previously simulated value, if k ∈ {p′1, . . . , p′m},
bootstrap resampled X∗

k , otherwise,
(13)

where the bootstrap resampling is with replacement from the entire data. The
errors are simulated according to the error distribution.

We summarize the procedure in Algorithm 3 and Figure 1 provides an illus-
tration.

Proposition 2. Consider the population case where the bootstrap resampling
in (13) yields the correct distribution of the random variables X1, . . . , Xp. Then,
as B → ∞, the partially path-based Algorithm 3 yields the correct intervention
distribution p(y|do(X = x)) and its expected value E[Y |do(X = x)].

Proof. The statement of Proposition 2 directly follows from the definition of
the intervention distribution in a structural equation model.

The same comment as in Section 3.1 applies here: when having estimates
of the quantities in the additive structural equation model (14), we would use
Algorithm 3 based on the plugged-in estimates. The computational benefit of
using Algorithm 3 instead of Algorithm 2 is illustrated in Figure 7.
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Algorithm 3 Partially path-based algorithm for simulating the intervention
distribution
1: If there is no directed path from jX to jY , the interventional and observational quantities

coincide: p(Y |do(X = x)) ≡ p(Y ) and E[Y |do(X = x)] ≡ E[Y ].
2: If there is a directed path from jX to jY , proceed with steps 3-9.
3: Set X = XjX = x and delete all in-going arcs into X.
4: Find all directed paths from jX to jY , and denote them by p′1, . . . , p

′
m.

5: for b = 1, . . . , B do
6: for every path, recursively simulate the corresponding random variables according to

the order of the variables in the DAG:

(i) Simulate in each path p′1, . . . , p
′
m the random variables following the node jX ;

proceed recursively as described in (13) according to the order of the variables
in the DAG.

(ii) Continue with the recursive simulation of random variables until Y is simulated.

7: Store the simulated variable Y (b).
8: end for
9: Use the simulated sample Y (1), . . . , Y (B) to approximate the intervention distribution

p(y|do(X = x)) or its expectation E[Y |do(X = x)].

Fig 1. (a) True DAG D0. (b) Illustration of Algorithm 1. X is set to x, the roots R1, R2 and
all paths from the root nodes and X to Y are enumerated (here: p1, p2, p3). The interventional
distribution at node Y is obtained by propagating samples along the three paths. (c) Illustration
of Algorithm 2. X is set to x and all directed paths from X to Y are labeled (here: p′1). In
order to obtain the interventional distribution at node Y , samples are propagated along the
path p′1 and bootstrap resampled X∗

k and X∗
l are used according to (13). (d) Illustration of

the S-mint method with adjustment set S = pa(jX): it only uses information about Y,X and
the parents of X (here: Pa1,Pa2).

3.3. Degree of localness

We can classify the different methods according to the degree of which the entire
or only a small (local) fraction of the DAG is used. Algorithm 2 is a rather global
procedure as it uses entire paths from root nodes to jY . Only when jY is close
to the relevant root nodes, the method does involve a smaller aspect of the
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DAG. Algorithm 3 is of semi-local nature as it does not require to consider
paths going from root nodes to jY : it only considers paths from jX to jY and
all parental variables along these paths. The S-mint method based on marginal
integration described in Section 2 and Theorem 1 is of very local character as it
only requires the knowledge of Y,X and the parental set pa(jX) (or a superset
thereof) but no further information about paths from jX to jY .

In the presence of estimation errors, a local method might be more “reliable”
as only a smaller fraction of the DAG needs to be approximately correct; global
methods, in contrast, require that entire paths in the DAG are approximately
correct. The local versus global issue is illustrated qualitatively in Figure 1, and
empirical results about statistical accuracy of the various methods are given in
Section 5.

3.4. Estimation of DAG, edge functions and error distributions

With observational data, in general, it is impossible to infer the true underlying
DAGD0 in the structural equation model (5), or its parental sets, even as sample
size tends to infinity. One can only estimate the Markov equivalence class of the
true DAG, assuming faithfulness of the data-generating distribution, see Spirtes
et al. (2000); Pearl (2000); Chickering (2002); Kalisch and Bühlmann (2007);
van de Geer and Bühlmann (2013); Bühlmann (2013). The latter three references
focus on the high-dimensional Gaussian scenario with the number of random
variables p � n but assuming a sparsity condition in terms of the maximal
degree of the skeleton of the DAG D0. The edge functions and error variances
can then be estimated for every DAG member in the Markov equivalence class
by pursuing regression of a variable versus its parents.

However, there are interesting exceptions regarding identifiability of the DAG
from the observational distribution. For nonlinear structural equation models
with additive error terms, it is possible to infer the true underlying DAG from
infinitely many observational data (Hoyer et al., 2009; Peters et al., 2014). Var-
ious methods have been proposed to infer the true underlying DAG D0 and its
corresponding functions f0

j (·) and error distributions of the εj ’s: see for example
Imoto et al. (2002); Hoyer et al. (2009); Peters et al. (2014); Bühlmann et al.
(2014); van de Geer (2014); Nowzohour and Bühlmann (2015) (the fourth and
fifth references are considering high-dimensional scenarios). Another interesting
class of models where the DAG D0 can be identified from the observational
data distribution are linear structural equation models with non-Gaussian noise
(Shimizu et al., 2006), or with Gaussian noise but equal or approximately equal
error variances (van de Geer and Bühlmann, 2013; Peters and Bühlmann, 2014;
Loh and Bühlmann, 2014) (the first and third references are considering the
high-dimensional setting).

As an example of a model with identifiable structure (DAG D0) we can
specialize (5) to an additive structural equation model of the form

Xj ←
∑

k∈pa(j)

f0
jk(Xk) + εj , j = 1, . . . , p, (14)
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where ε1, . . . , εp are independent with εj ∼ N (0, (σ0
j )

2), and the true underlying

DAG is denoted by D0. This model is used for all numerical comparisons of the
S-mint procedure and the path-based algorithms in Section 5. Estimation of
the unknown quantities D0, f0

jk and error variances (σ0
j )

2 can be done with the
“CAM” method outlined below and used for the empirical results in Section 5.4
in connection with the two-stage procedure est S-mint that will be introduced
in Section 3.5.

The CAM method (Bühlmann et al., 2014). The abbreviation “CAM” stands
for Causal Additive Model, the additive structural equation model in (14). The
CAM method is a nonparametric technique fitting smooth additive functions
and Gaussian error terms in such an additive SEM. The unknown DAG D0

is estimated by restricted maximum likelihood: the restriction is on a space
of sparse graphs (which can be determined by e.g. neighborhood selection with
Group Lasso for an undirected additive association graph) and there is no further
regularization of such a restricted MLE. The CAM method is consistent, even
in the high-dimensional scenario with p � n but assuming a sparse underlying
true DAG.

3.5. Two-stage procedure: est S-mint

If the order of the variables or (a superset of) the parental set is unknown, we
have to estimate it from observational data; this leads to the following two-
stage procedure described here for the case where the parental set pa(jX) is
identifiable:

Stage 1 Estimate a superset of the parental set S(jX) (defined in (11)) from
observational data.

Stage 2 Based on the estimate Ŝ(jX), run S-mint regression with S = Ŝ(jX).

Even if in Stage 1 one would also obtain estimates of functions in a specified
SEM besides an estimate of S(jX), we would not use the estimated functions in
Stage 2. We present empirical results for the est S-mint procedure in connection
with the CAM method for Stage 1 for estimating a valid adjustment set S(jX)
in Section 5.4.

If the parental set pa(jX) is not identifiable (see Section 3.4), one could ap-
ply Stage 1 to obtain a set {Ŝ(jX)(1), . . . , Ŝ(jX)(cj)} such that the parental
sets from each Markov-equivalent DAG would be contained in at least one of
the Ŝ(jX)(k) for some k. Stage 2 would then be performed for all estimates
{Ŝ(jX)(1), . . . , Ŝ(jX)(cj)} and one could then derive bounds of the quantity
E[Y |do(X = x)] in the spirit of the approach of Maathuis et al. (2009).

In Section 5.5 we will give some intuition why the two stage est S-mint is
often leading to better and more reliable results than (at least some) other
methods which rely on path-based estimation.
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4. Empirical results: Non-additive structural equation models

In this section we provide simple proof-of-concept examples for the generality
of the proposed S-mint estimation method (Algorithm 1). In particular, the
robustness of S-mint is experimentally validated for models where the structural
equation model is not additive as in (14) but given in its general form (5). We
make a naive comparison to path-based methods which are inconsistent due to
incorrect specification of the model in Section 4.1. However, taking the view of
classical robustness (cf. Hampel et al., 2011), we consider a complementary and
interesting issue in Section 5: namely the “efficiency” of a robust procedure in
comparison to other methods relying on the correct model specification.

In Section 4.1 we empirically show that the path-based methods based on the
wrong additive model assumption in (14) may fail even in the absence of back-
door paths where the S-mint method boils down to estimation of an additive
model. In Section 4.2 we add backdoor paths to the graph and a strong interac-
tion term to the corresponding structural equation model. We then empirically
show that S-mint manages to approximate the true causal effect, whereas fitting
only an additive regression fails. Section 4.3 contains an example that demon-
strates a good performance of S-mint even in the presence of non-additive noise
in the structural equation model. Finally, Section 4.4 empirically illustrates is-
sues with the fixed choice of the bandwidths in the product kernel in (9) in some
cases. Unless stated differently, we set both bandwidths to 0.4.

4.1. Causal effects in the absence of backdoor paths

First let us illustrate the sensitivity of the path-based methods with respect to
model specification, using a simple example of a 4-node graph with no backdoor
paths between X1 = X and Y (see Figure 2). We consider a corresponding
(non-additive) structural equation model of the form

X1 ← ε1

X2 ← ε2

X3 ← cos(4 · (X1 +X2)) · exp(X1/2 +X2/4) + ε3

Y ← cos(X3) · exp(X3/4) + ε4 (15)

where εj ∼ N (0, σ2
j ) with σ1 = σ2 = 0.7 and σ3 = σ4 = 0.2. We generate n

samples from this model. From Proposition 1 we know that for j ∈ {1, 2, 3},
fitting an additive regression of Y versus Xj and Xpa(j) suffices to obtain the
causal effect E[Y |do(Xj = x)], that is, all causal effects can be readily estimated
with an additive model. Our goal is to infer E[Y |do(X1 = x)], based on n = 500
and n = 10′000 samples of the joint distribution of the 4 nodes. The results are
displayed in Figure 2.

We consider the entire path-based Algorithm 2 (and Algorithm 3 as well, not
shown) assuming an additive structural equation model as in (14). We impres-
sively see that this approach is exposed to model misspecification while S-mint
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Fig 2. Left: DAG corresponding to the structural equation model (15). Right: S-mint regres-
sion estimates of E[Y |do(X1 = x)] for the model in (15), with S = S(jX = 1) = ∅, based
on one representative sample each for sample sizes n = 500 (top) and n = 10′000 (bottom).
S-mint regression is consistent while the entire path-based method with a misspecified additive
SEM (Algorithm 2) is not. The relative squared errors (over the 51 points x) are 0.013 for
S-mint regression and 6.239 for the entire path-based method, both for n = 10000.

(in this case simply fitting of an additive model, i.e., bstop = 1 with the number
of additional boosting iterations equaling zero) is not and leads to reliable and
correct results. We included two settings; n = 500 to be consistent with the
settings in the numerical study from Section 5 and n = 10000 to demonstrate
that the failure of the path-based methods is not a small sample size but an
inconsistency phenomenon.

4.2. Causal effects in the presence of backdoor paths

We now consider a slight (but crucial) modification of the above DAG that has
been proposed by Linbo Wang and Mathias Drton through private communi-
cation. We consider the 4-node graph from Section 4.1 with additional edges
X1 → Y and X2 → Y and corresponding structural equation model

X1 ← ε1

X2 ← ε2

X3 ← X1 +X2 + ε3

Y ← X1 ·X2 ·X3 + ε4 (16)

where εj ∼ N (0, σ2
j ) with σ1 = σ2 = 0.7 and σ3 = σ4 = 0.2. Note that this mod-

ification introduces two backdoor paths from X3 to Y . The goal is to estimate
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Fig 3. Approximation of the causal effect E[Y |do(X3 = x)] in model (16) with S-mint re-
gression for additive model fit (starting value) and various boosting iterations (left), absolute
differences between consecutive boosting iterations as in (10) (upper right) and integrated
squared error for approximating the true effect as a function of boosting iterations (lower
right). The boosting iterations in the S-mint procedure account for interactions between the
variables. The adjustment set is chosen as the parental set of X3, that is S(jX = 3) = {1, 2}.
The results are based on one representative sample of size n = 500 (top) and n = 10000
(bottom).

the causal effect E[Y |do(X3 = x)] using the S-mint estimation procedure intro-
duced in Algorithm 1 with different numbers of boosting iterations. In Figure 3
one clearly sees that the additive approximation (with no additional boosting
iterations) fails to approximate the total causal effect. It is not able to capture
the full interaction term X1 ·X2 ·X3. However, adding boosting iterations signif-
icantly improves the approximation of the true causal effect even for the small
sample size n = 500.

4.3. Causal effects in the presence of non-additive noise

Theorem 1 does not put any explicit restrictions on the noise structure in the
structural equation model. In particular, S-mint also works well in the case of
non-additive noise. As an example, we consider the causal graph and SEM from
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Fig 4. Approximation of the causal effect E[Y |do(X3 = x)] in model (17) exhibiting non-
additive noise in the structural equation model, with S-mint regression for additive model fit
(starting value) and various boosting iterations (left). Absolute differences between consecutive
boosting iterations as in (10) (upper right) and integrated squared error for approximating the
true effect as a function of boosting iterations (lower right). The adjustment set is chosen as
the parental set of X3, that is S(jX = 3) = {1, 2}. The results are based on one representative
sample of size n = 500.

Section 4.2 but replace the structural equation corresponding to Y in (16) with

Y ← exp(X1) · cos(X2 ·X3 + ε4). (17)

The goal is again to estimate the causal effect E[Y |do(X3 = x)] based on n = 500
observed samples of the joint distribution. Figure 4 shows that S-mint yields a
close approximation to the true causal effect.

4.4. Choice of the bandwidth

Theorem 1 provides an asymptotic result but does not specify how to choose
the bandwidths h1 and h2 in the finite sample case. In particular, the same fixed
choice of h2 for all variables in the adjustment set S can be suboptimal in some
situations. As an example let us consider the graph and structural equations
from Section 4.2 where we replace one equation in (16) by

Y ← X1 + sin(X2 ·X3) + ε4. (18)

The goal is to approximate the causal effect E[Y |do(X3 = x)] based on n = 500
samples of the joint distribution. Inspecting the scatterplots of Y versus X1, X2

and X3 (see Figure 5) suggests that the bandwidth h
(1)
2 corresponding to X1

should be larger than the bandwidth h
(2)
2 corresponding to X2. Figure 6 de-

picts the corresponding approximated causal effects using the S-mint method

for a fixed bandwidth h2 = (h
(1)
2 , h

(2)
2 ) = (0.4, 0.4) and for a variable bandwidth

h2 = (h
(1)
2 , h

(2)
2 ) = (0.8, 0.4) respectively. Clearly, the approximation with the

variable bandwidth outperforms the approximation with the fixed bandwidth.
Adaptive bandwidths choice methods as proposed by Polzehl and Spokoiny
(2000) might be suitable, at the price of a more complicated and hence more
variable estimation scheme.
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Fig 5. Scatterplots of the data from model (18) of Y versus X1, X2 and X3. They reveal a
difference in wigglyness.

Fig 6. Approximation of the causal effect E[Y |do(X3 = x)] in model (18). The adjustment
set is chosen as the parental set of X3, that is S(jX = 3) = {1, 2} and with corresponding

fixed bandwidths h
(1)
2 = h

(2)
2 = 0.4 (left) and varying bandwidths h

(1)
2 = 0.8 and h

(2)
2 = 0.4

(right). The results are based on one representative sample of size n = 500.

5. Empirical results: Additive structural equation models

The goal of the numerical experiments in this section is to quantify the esti-
mation accuracy of the total causal effect E[Y |do(X = x)] for two variables
X,Y ∈ {X1, ..., Xp} such that Y is a descendant of X (if Y is an ancestor
of X, then the interventional expectation corresponds to the observational ex-
pectation E[Y ]). We consider in this section only additive structural equation
models as in (14). This allows for a comparison of the S-mint method and the
path-based methods.

For S-mint regression, we use the implementation described in Section 2.2.
The kernel functions K and L in the S-mint procedure are chosen to be a
Gaussian kernel with bandwidth h1 and a product of Gaussian kernels with
bandwidth h2 respectively. For simplicity, in the style of Fan et al. (1998), we
choose h1 and h2 as 0.5 times the empirical standard deviation of the respective
covariables in all of our simulations in this section. We use the following two
criteria for bstop, that is, as an automated stopping criterion for the boosting
iterations:
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1. Stop if an iteration changes the approximation by less than 1%. That
is, the integrated difference (10) to the previous approximation is less
than 0.01.

2. Stop if the integrated difference between two consecutive approximations
is less than 5% of the initial integrated difference.

When using the path-based methods from Section 3, we estimate the func-
tions f0

j by additive functions using the R-package mgcv with default values
(and thus using the knowledge of the form of the nonlinear functions in the
SEM).

We test the performance of four different methods: S-mint with parental
sets (Algorithm 1) with the stopping of boosting iterations as described above,
additive regression with parental sets (first step of S-mint, without additional
boosting iterations), entire path-based method from root nodes (Algorithm 2)
and partially path-based method with short-cuts (Algorithm 3). The reference
effect E[Y |do(X = x)] is computed using Algorithm 2 with known (true) func-
tions f0

j,k and error variances (σ0
j )

2 based on 5n samples.

Since in a nonlinear structural equation model (in contrast to a linear struc-
tural equation model) E[Y |do(X = x)] is a nonlinear function of the intervention
value x, we compute the interventional expectation for several values x: typi-
cally, for the nine deciles d1(X), ..., d9(X) of X. To compare the estimation
accuracy of the three methods on DAG D, we compute a relative squared error
e(D) over all considered pairs (X,Y ) (for details see below), denoted by L, and
over all intervention values d1(X), ..., d9(X) as

e(D) =

∑
(X,Y )∈L

9∑
i=1

(
Ê[Y |do(X = di(X))]− E

0[Y |do(X = di(X))]
)2

∑
(X,Y )∈L

9∑
i=1

(E0[Y |do(X = di(X))])
2

. (19)

Typically, we repeat every experiment on N = 50 or N = 100 random DAGs
(described in Section 5.1) and record the relative error e(D) of all methods for
each repetition.

5.1. Data simulation

To simulate data we first fix a causal order π0 of the variables, that is
Xπ0(1) ≺ Xπ0(2) ≺ · · · ≺ Xπ0(p) and include each of the

(
p
2

)
possible directed

edges, independently of each other, with probability pc. In the sparse setting we
typically choose pc = 2

p−1 which yields an expected number of p edges in the
resulting DAG. Based on the causal structure of the graph we then build the
structural equation model. We simulate from the additive structural equation
model (14), where every edge k → j in the DAG is associated with a nonlinear
function f0

j,k in the structural equation model. We use two function types:
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1. edge functions f0
j,k drawn from a Gaussian process with a Gaussian kernel

with bandwidth one
2. sigmoid-type edge functions of the form f0

j,k(x) = a · b·(x+c)
1+|b·(x+c)| with

a ∼ Exp(4) + 1, b ∼ Unif([−2,−0.5] ∪ [0.5, 2]) and c ∼ Unif([−2, 2]).

All variables with empty parental set (root nodes in the DAG) follow a Gaus-
sian distribution with mean zero and standard deviation which is uniformly
distributed in the interval [1,

√
2]. To all remaining variables we add Gaussian

noise with standard deviation uniformly distributed in [1/5,
√
2/5]. Note that

both simulation settings correspond to the ones used by Bühlmann et al. (2014).

5.2. Estimation of causal effects with known graphs

In this section we compare the different methods in terms of estimation accu-
racy and CPU time consumption for known underlying DAGs D0. To that end
we generate random DAGs with p = 10 variables and simulate n = 500 samples
of the joint distribution applying the simulation procedure introduced in Sec-
tion 5.1. We then select all index pairs (k, j) such that there exists a directed
path from Xk to Xj and estimate the causal effect E[Xj |do(Xk)] for all k, j on
the nine deciles of Xk.

The experiment is done for two different levels of sparsity, a sparse graph
with an expected number of p edges and a non-sparse graph with an expected
number of 4p edges. We record the relative squared error (19) and the CPU
time consumption, both averaged over all index pairs, for N = 100 (N = 20 in
the dense setting, respectively) different DAGs D0. The results are displayed in
Figure 7 for the sigmoid-type edge functions and in Figure 8 for the Gaussian
process-type edge functions.

The method based on the entire paths (Algorithm 2) yields the smallest
errors followed by the path-based methods with short-cuts (Algorithm 3). The
S-mint and additive regression exhibit a slightly worse performance. This finding
can be explained by the fact that the path-based methods benefit from the
full (and correct) structural information of the DAG whereas the S-mint and
additive regression methods only use local information (cf. Section 3.3). For the
monotone sigmoid-type function class, additive regression provides a very good
approximation to the true causal effect even in dense settings. For both settings
we observe that the boosting iterations in S-mint do not improve the additive
approximation substantially.

In terms of CPU time consumption, S-mint and additive regression outper-
form the path-based methods. Additive regression is particularly fast as it only
requires the fit of one nonparametric additive regression of Xj versus Xk and
Xpa(k) whereas the path-based methods each require one nonparametric addi-
tive model fit for every node on all the traversed paths. As the set of paths in
the partially path-based method is a subset of the one in the entire path-based
method (cf. Section 3.2 and Figure 1), the partially path-based method needs
less model fits which explains the reduction of time consumption. In particular,
both S-mint and additive regression are computationally feasible for computing
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Fig 7. Comparison of the performance of the methods in terms of relative squared error
as in (19) (left) and CPU time consumption (right) for the case where the true DAGs D0

are known and the edge functions belong to the sigmoid-type setting. The adjustment set is
S = pa(Xk) for additive regression and S-mint. Number of variables p = 10 and sample size
n = 500.

Fig 8. Comparison of the performance of the methods in terms of relative squared error as
in (19) (left) and CPU time consumption (right) for the case where the true DAGs D0 are
known and the edge functions are drawn from a Gaussian process with bandwidth one. The
adjustment set is S = pa(Xk) for additive regression and S-mint. Number of variables p = 10
and sample size n = 500.

E[Xj |do(Xk)] for all pairs (k, j), even when p is large and in the thousands as-
suming that the cardinality of the corresponding adjustment sets is reasonably
small.

5.3. Estimation of causal effects on perturbed graphs

In the previous section we demonstrated that the two path-based methods ex-
hibit a better performance than S-mint and the additive regression approxima-
tion if causal effects are estimated based on the underlying true DAG D0. We
will now focus on the more realistic situation in which we are only provided
with a partially correct DAG D̃. We model this by constructing a set of mod-
ified DAGs {D̃hr}r∈K with pre-specified (fixed) structural Hamming distances
{hr}r∈K to the true DAG D0, where K = {1, 2, . . . , 6} and the corresponding
{hr}r∈K are described in Figures 9 and 10. To do so, we use the following rule:
starting from D0 with p = 50 nodes, for each r ∈ K, we randomly remove and
add hr

2 edges each to obtain D̃hr . The structural Hamming distance between D0

and the perturbed graph D̃hr is then equal to hr, and a percentage of 1− hr

2|E|
edges in D̃hr are still correct, where |E| denotes the expected number of edges in
the DAG D0. Note that this modification may change the order of the variables
(especially for large values of hr).
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Fig 9. The plots compare the relative squared error performance of the three methods on a
set of modified DAGs {D̃hr}r∈K with given structural Hamming distances {hr}r∈K to the
true DAG D0 (or equivalently, with a given percentage of correct edges) for the sigmoid-
type additive structural equation model. The top and bottom panels show the relative squared
error error e(D) (19) in a sparse and dense setting, respectively. The larger the structural
Hamming distance hr between the modified DAG D̃hr and the true DAG D0, the better is
the performance of S-mint with parental sets in comparison with the two path-based methods.
Number of variables p = 50 and sample size n = 500.

Fig 10. The plots compare the relative squared error performance of the three methods on a
set of modified DAGs {D̃hr}r∈K with given structural Hamming distances {hr}r∈K to the
true DAG D0 (or equivalently, with a given percentage of correct edges) for the Gaussian
process-type additive structural equation models. The top and bottom panels show the relative
squared error e(D) (19) in a sparse and dense setting, respectively. The larger the structural
Hamming distance hr between the modified DAG D̃hr and the true DAG D0, the better is
the performance of S-mint with parental sets in comparison with the two path-based methods.
Number of variables p = 50 and sample size n = 500.
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We randomly choose 20 = |L| index pairs (k, j) such that there exists a
directed path from Xk to Xj in D0, but now consider the problem of estimating

the total causal effect E[Xj |do(Xk)] based on the perturbed graph D̃hr for the
adjustment sets or the paths, respectively (and based on sample size n = 500
as in Section 5.2). For every r ∈ K, this is repeated N = 100 times and in
each repetition, we record the relative squared error e(D) in (19). As before,
we distinguish between a sparse graph with an expected number of 50 edges
and a non-sparse graph with an expected number of 200 edges and we use both
simulation settings described in Section 5.1 for generating the edge functions
f0. The results are shown in Figures 9 and 10.

For both, the sparse and non-sparse settings, one observes that the larger
the structural Hamming distance (or equivalently, the smaller the percentage of
correctly specified edges in D0), the better is the performance of S-mint and
additive regression in comparison with the path-based methods. That is, both
methods are substantially more robust with respect to possible misspecifications
of edges in the graph. This may be explained by the different degrees of localness
(cf. Section 3.3) of the respective methods. For the two local methods we can
hope to have approximately correct information in the parental set of Xk even if
the modified DAG is far away from the true DAG D0 in terms of the structural
Hamming distance. For the path-based methods however, randomly removing
edges may break one or several of the traversed paths which results in causal
information being partially or fully lost. This effect is most evident in the two
sparse settings. A similar behavior is also observed in Figure 11.

Note that except for the true DAG D0, the performance of the partially
path-based method is at least as good as for the entire path-based method.
The shortcut introduced in Algorithm 3 does not only yield computational sav-
ings but also improves (relative to the full path-based Algorithm 2) statistical
estimation accuracy of causal effects in incorrect DAGs. Again, a possible ex-
planation for this observation is that the partially path-based method acts more
locally and thus is less affected by edge perturbations.

5.4. Estimation of causal effects in estimated graphs

We now turn our attention to the case where the goal is to compute causal
effects on a DAG D̂ that has been estimated by a structure learning algorithm
(while still relying on a correct model specification). In conjunction with S-mint
regression, this is then the est S-mint method described in Section 3.5.

We generate N = 50 random DAGs with p = 20 nodes for different numbers
n of observational data, which are simulated according to the procedure in
Section 5.1.

Using the knowledge that the structural equation model is additive as in
(14), we apply the recently proposed CAM method (Bühlmann et al., 2014) for
estimation of the true underlying DAG D0 (which is identifiable from the obser-
vational distribution), outlined at the end of Section 3.4. The implementation
is according to the R-package CAM. Regarding the algorithmic details, we use the
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Fig 11. Sigmoid-type additive structural equation models. Relative squared error performance
as in (19), for different numbers of observations (n), computed on graphs that have been esti-
mated using the CAM method (Bühlmann et al., 2014). The algorithm has been applied with-
out the pruning step (left) and with the pruning step (right). We use the estimated parental
sets as adjustment sets and the number of variables is p = 20. The S-mint regression corre-
sponds to est S-mint as described in Section 3.5.

following in the three steps:

1. Preliminary neighborhood selection to restrict the number of potential
parents per node: set to a maximum of 10 by default;

2. Estimation of the correct order by greedy search: we use 6 basis functions
per parent to fit the additive model;

3. Optional: Pruning of the DAG by feature selection to keep only the sig-
nificant edges, where we use the default level α = 0.001.

After having estimated a DAG D̂ with the above procedure, we randomly
select 10 = |L| index pairs (k, j) such that there exists a directed path from Xk

to Xj in the true DAG D0 and approximate the total causal effect E[Xj |do(Xk)]

based on the estimated graph D̂. Figure 11 displays the relative squared errors
as defined in (19).

All four methods show a similar performance with respect to relative squared
error on the DAGs that are obtained applying the CAM method without feature
selection. These DAGs mainly represent the causal order of the variables but
otherwise are densely connected. An incorrectly specified order of the variables
(e.g. for small sample sizes n) seems to comparably affect the S-mint and addi-
tive regression with parental sets and the path-based methods. If the sample size
increases, the estimated graph D̂ is closer to the true graph D0 which improves
the estimation accuracy of causal effects for all the four methods.

The two path-based methods approximate the causal effects more accurately
on the DAGs that are obtained without feature selection, that is, pruning the
DAG is not advantageous for the estimation accuracy of causal effects, at least
for a small number of observations. However, the pruning step yields vast compu-
tational savings for the two path-based methods as demonstrated in Figure 12.
The S-mint regression is very fast in both settings and pruning the DAG before
estimating the causal effects only has a minor effect on the time consumption
and estimation accuracy.
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Fig 12. Sigmoid-type additive structural equation models. CPU time performance for n = 500
for N = 50 graphs of p = 20 variables that have been estimated using the CAM method
(Bühlmann et al., 2014) with and without pruning step. Pruning the DAG yields vast com-
putational savings for the two path-based methods. S-mint and additive regression are barely
affected by the pruning step and are considerably faster than the two path-based methods in
both scenarios.

5.5. Summary of the empirical results, and the advantage of the
proposed two-stage est S-mint method

With respect to statistical accuracy, measured with the relative squared error
as in (19), we find that S-mint and additive regression are substantially more
robust against incorrectness of the true underlying DAG (or against a wrong
order of the variables) and against model misspecification, in comparison to the
alternative path-based methods. The latter robustness of S-mint is rigorously
backed-up by our theory in Theorem 1 and Corollary 1 whereas the former
seems to be due to the higher degree of localness as described in Section 3.3. As
a consequence, the proposed two-stage est S-mint (Section 3.5) where we first
estimate the order of the variables or the structure of the DAG (or the Markov
equivalence class of DAGs) and subsequently perform S-mint is expected in
general to lead to reasonably accurate results (which are empirically quantified
above for some settings). Only when the DAG is perfectly known and the model
correctly specified (here by an additive structural equation model), which is a
rather unrealistic assumption for practical applications, the path-based methods
were found to have a slight advantage. Thus, we recover here a typical robustness
phenomenon against model misspecification of our nonparametric and more
“model-free” S-mint regression procedure.

Our empirical findings support the use of est S-mint, namely the combina-
tion of a structured nonparametric (or parametric) approach for estimating the
DAG (or its equivalence class) in the first stage and using the robust and fully
nonparametric S-mint procedure in the second stage. The second stage leads to
a clear gain in robustness whereas the efficiency loss in case of correctly specified
models is marginal or even minimal.

Regarding computational efficiency, S-mint and in particular also the additive
regression approximation are massively faster than the path-based procedures
making them feasible for larger scales where the number of variables is in the
thousands.
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6. Real data application

In this section we want to provide two examples for the application of our
methodology to real data. We use gene expression data from the isoprenoid
biosynthesis in Arabidopsis thaliana (Wille et al., 2004). The data consists of
n = 118 gene expression measurements from p = 39 genes. In the original
work the authors try to infer connections between the individual genes in the
network using Gaussian graphical modeling. Our goal is to find the strongest
causal connections between the individual genes. We do not standardize the
original data but adjust the bandwidths in S-mint by scaling with the standard
deviations of the corresponding variables.

6.1. Estimation and error control for causal connections between
and within the pathways

We first turn our attention to the whole isoprenoid biosynthesis dataset and
want to find the causal effects within and between the different pathways, with
an error control for false positive selections. To be able to compute the causal
effects we have to estimate a causal network. In order to do that we use the
CAM method (Bühlmann et al., 2014).

We estimate a DAG using CAM with the default settings. We then apply
the S-mint procedure with parental sets obtained from the estimated DAG
(which corresponds to the est S-mint procedure from Section 3.5) to rank the
total causal effects according to their strength. We define the relative causal
strength CSrelk→j of an intervention Xj |do(Xk) as a sum of relative distances
of observational and interventional expectation for different intervention values
divided by the range of the intervention values, i.e.

CSrelk→j =
1

Rk(d)

9∑
i=1

|E[Xj ]− E[Xj |do(Xk = di)]|
|E[Xj ]|

,

where we choose d1(Xk), ..., d9(Xk) to be the nine deciles of Xk and we denote
their range by Rk(d) = d9(Xk)− d1(Xk).

To control the number of false positives (i.e. falsely selected strong causal
effects) we use stability selection (Meinshausen and Bühlmann, 2010) which
provides (conservative) error control under a so-called (and uncheckable) ex-
changeability condition. We randomly select 100 subsamples of size n/2 = 59
and repeat the procedure above 100 times. For each run, we record the indices
of the top 30 ranked causal strengths. At the end we keep all index pairs that
have been selected at least 66 times in the 100 runs as this leads to an ex-
pected number of falsely selected edges (false positives) which is less or equal
to 2 (Meinshausen and Bühlmann, 2010). The graphical representation of the
network in Figure 13 is based on Wille et al. (2004). The dotted arcs represent
the underlying metabolic network (known from biology), the six red solid arcs
correspond to the stable index pairs found by est S-mint with stability selection.
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Fig 13. Stable edges (with stability selection) for the Arabidopsis thaliana dataset. The dotted
arcs represent the metabolic network, the red solid arcs the stable total causal effects found
by the est S-mint method.

None of the stable edges are opposite to the causal direction of the metabolic
network. In particular, we found strong total causal effects between GGPPS
variables in the MEP pathway, MVA pathway and mitochondrion. Note that
in this section we heavily rely on model assumption (14) as the CAM method
for estimating a DAG assumes additivity of the parents. Therefore we cannot
fully exploit the advantage of the S-mint method that it works for arbitrary
non-additive models (5) (but we would hope to be somewhat less sensitive to
model misspecification than with path-based methods, see for example Fig-
ures 9 and 10).

6.2. Estimation and error control of strong causal connections
within the MEP pathway

We now want to present a possible way of exploiting the very general model as-
sumptions of S-mint. If the underlying order and an approximate graph structure
are known a priori, we can use this information to proceed with S-mint using
the order information as described in Corollary 1. This relieves us from any
model assumptions on the functional connections between two variables (e.g.
linearity, additivity, etc.).
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Fig 14. Stable edges (with stability selection) for the MEP pathway in the Arabidopsis thaliana
dataset. The dotted arcs represent the metabolic network whereas the red solid arcs denote
the top ranked causal effects found by S-mint with adjustment sets chosen from the order of
the metabolic network structure by considering all ancestors up to three levels back.

To give an example, let us focus on the genes in the MEP pathway (black
box in Figure 13). The goal is to find the strongest total causal effects within
this pathway. The metabolic network (dotted arcs) is providing us with an or-
der of the variables which we use for S-mint regression as follows: we choose
the adjustment set S(jX) in (12) by going three levels back (pmax = 3) in the
causal order (to achieve a reasonably sized set), for example, the adjustment
set for CMK is DXPS1, DXPS2, DXPS3, DXR, MCT, whereas the adjustment
set for GPPS is HDS, HDR, IPPI1. We cannot use the full set of all ancestors
because there are only n/2 = 59 data points to fit the nonparametric additive
regression and marginal integration, as we again use stability selection based on
subsampling for controlling false positive selections as described in the previous
section. For each among the 100 subsampling runs we record the top 10 ranked
index pairs and keep the ones that are selected at least 65 times out of 100 rep-
etitions. This results in an expected number of false positives being less than 1
(Meinshausen and Bühlmann, 2010). The stable edges are shown in Figure 14.
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One of the four edges corresponds to an edge in the metabolic pathway. We find
that the upper part of the pathway contains the strongest total causal effects
and therefore may be an interesting target for intervention experiments.

7. Conclusions

We considered the problem of estimating expected values of intervention dis-
tributions, also known as total causal effects, from observational data. A first
main result (Theorem 1 and Corollary 1) says that if we know the local parental
variables or a superset thereof (e.g., from the order of the variables), there is no
need to base estimation and computations on a causal graph. In fact, we can di-
rectly infer the expected values of single-intervention distributions via marginal
integration: we call the procedure S-mint. This result holds for any nonlinear
and non-additive structural equation model apart from mild smoothness and
regularity conditions. Hence, from another point of view, S-mint estimation
of expected values of single intervention distributions is a fully nonparametric
technique and thus robust against model misspecification of the functional form
of the structural equations. We propose an L2-boosting approach for S-mint
which is easy to use without complicated tuning of parameters and yields good
empirical results.

We complement the robustness view-point by empirical results indicating
that S-mint also works reasonably well when the DAG- or order-structure is
misspecified to a certain extent, as it will be the case when we estimate these
quantities from data; in fact, S-mint regression is substantially more robust
than methods which follow all directed paths in the DAG to infer causal effects.
This suggests that the two-stage est S-mint procedure is most reliable for causal
inference from observational data: first estimate the DAG- or order-structure (or
equivalence classes thereof) and second, subsequently pursue S-mint regression.
In addition, such a procedure is computationally much faster than methods
which exploit directed paths in (estimated) DAGs.
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van de Geer, S. and Bühlmann, P. (2013). �0-penalized maximum like-
lihood for sparse directed acyclic graphs. Annals of Statistics, 41:536–567.
MR3099113

van der Laan, M. J. and Robins, J. M. (2003). Unified methods for censored
longitudinal data and causality. Springer. MR1958123

van der Laan, M. J. and Rose, S. (2011). Targeted Learning. Causal
Inference for Observational and Experimental Data. Springer, New York.
MR2867111

Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule, O.,
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