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Abstract: This article considers the problem of multi-group classification
in the setting where the number of variables p is larger than the number of
observations n. Several methods have been proposed in the literature that
address this problem, however their variable selection performance is either
unknown or suboptimal to the results known in the two-group case. In this
work we provide sharp conditions for the consistent recovery of relevant
variables in the multi-group case using the discriminant analysis proposal
of Gaynanova et al. [7]. We achieve the rates of convergence that attain
the optimal scaling of the sample size n, number of variables p and the
sparsity level s. These rates are significantly faster than the best known
results in the multi-group case. Moreover, they coincide with the minimax
optimal rates for the two-group case. We validate our theoretical results
with numerical analysis.
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1. Introduction

We consider a problem of multi-group classification in the high-dimensional
setting, where the number of variables p is much larger than the number of
observations n. Given n independent observations {(Xi, Yi), i = 1, . . . , n} from
a joint distribution (X,Y ) on R

p × {1, . . . , G}, our goal is to learn a rule that
will classify a new data point X ∈ R

p into one of the G groups.

In a low dimensional setting (when p � n), Fisher’s Linear Discriminant
Analysis (FLDA) is a classical approach for obtaining a classification rule in
the multi-group setting. Let ng be the number of samples in the group g, ng =
| {i | Yi = g} |, and let X̄g = n−1

g

∑
i|Yi=g Xi be the gth group sample mean. Let

W be a pooled sample covariance matrix,

W = (n−G)−1
G∑

g=1

(ng − 1)Sg, (1.1)

where Sg = (ng − 1)−1
∑

i|Yi=g(Xi − X̄g)(Xi − X̄g). Furthermore, let D =

[D1, . . . , DG−1] ∈ R
p×(G−1) be the matrix of sample mean contrasts between G

groups, with

Dr =

√
nr+1

∑r
g=1 ng(X̄g − X̄r+1)

√
n
√∑r

g=1 ng

∑r+1
g=1 ng

, r = 1, . . . , G− 1. (1.2)

FLDA estimates vectors {vg}G−1
g=1 , which are linear combinations of p variables,

through the following optimization program

vg = argmax
v∈Rp

{
v�DD�v

}
s.t. v�Wv = 1;

v�Wvg′ = 0 for g′ < g.

(1.3)

These combinations are called canonical vectors and they define the (G − 1)-
dimensional eigenspace of the matrix W−1DD� (see, for example, Chapter 11.5



Sparsistent multi-group sparse discriminant analysis 2009

of [13]). Given the matrix V ∈ Rp×(G−1) of vectors {vg}G−1
g=1 , a new data point

X ∈ R
p is classified into group ĝ if

ĝ = arg min
g∈{1,...,G}

(X − X̄g)
�V (V �WV )−1V �(X − X̄g)− 2 log

ng

n
. (1.4)

This rule is a sample version of the optimal classification rule derived under
the assumption of multivariate Gaussian class-conditional distributions with a
common covariance matrix [14, Chapter 3.9]. Throughout the paper, we will
assume that X | Y = g ∼ N (μg,Σ).

Unfortunately when the number of samples is small compared to the number
of variables, the classification rule described above does not perform well [1, 19].
As a result a large body of literature has emerged to deal with classification in
high-dimensions. To prevent overfitting, these methods assume that the optimal
classification rule depends only on the few s variables out of p. In the context of
classification rule (1.4), this means that the matrix of canonical vectors V only
uses s of these variables, that is, V is row-sparse. In the context of binary clas-
sification (G = 2), we point the reader to [3, 5, 6, 9, 11, 12, 19, 20, 23, 25] and
references therein for recent progress on high-dimensional classification. Work
on multi-group classification is less abundant. Initial progress has been reported
in [4, 17, 18, 24], however, theoretical properties of the proposed methods were
not studied. In a recent work, Gaynanova et al. [7] propose a convex estima-
tion procedure that simultaneously estimates all the discriminant directions and
establish sufficient conditions under which the correct set of discriminating vari-
ables is selected.

The focus of this paper is on establishing optimal conditions under which the
Multi-Group Sparse Discriminant Analysis (MGSDA) procedure [7], described
in §2, consistently recovers the relevant variables for classification. Consistent
variable selection is an important property, since many domain scientist use the
selected variables for hypothesis generation, downstream analysis and scientific
discovery. [7] established equivalence between MGSDA and direct sparse dis-
criminant analysis in the two-group case [12] and, therefore, MGSDA is also
equivalent to methods proposed in [4] and [6] as shown in [11]. Furthermore,
[7] extended the proof technique of [12] to show variable selection consistency,
which does not lead to optimal sample size scaling [9]. In this paper, we use a re-
fined proof strategy to establish consistent variable selection in the multi-group
(with G = O(1)) case under the same sample size scaling as in the two-group
case, which is optimal in the minimax sense [9]. In particular, we establish that
the sample size n needs to satisfy

n ≥ K|||Σ−1
AA|||2

(
max
j∈Ac

σjj·A

)
(G− 1)s log((p− s) log(n))

in order for MGSDA to recover the correct variables. Here A is an index set of
nonzero variables, s is the cardinality of A, K is a fixed constant independent
from n, p, s and G, and σjj·A = Σjj−ΣjAΣ

−1
AAΣAj . high-level, we will follow the

primal-dual strategy used in [9], however, there are a number of details that re-
quire more careful analysis in order to establish the desired scaling. In particular,
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[7] showed that {vg}G−1
g=1 from (1.3) correspond to the columns of V = W−1DR,

where R is a (G−1)-dimensional orthogonal matrix. Furthermore, at the optima
{vg}G−1

g=1 , the objective values in (1.3) are equal to the non-zero eigenvalues of

D�W−1D. However, [7] separately considers the deviations of W−1 and D from
their population counterparts, which is not sufficient to establish the optimal
scaling of (n, p, s) for consistent variable selection. In contrast, here we consider
these quantities jointly. In the two-group case, W−1D is a vector and D�W−1D
is a scalar, which allows [9] to use concentration inequalities for χ2 distributed
random variables to achieve the optimal rate. In the multi-group case, one needs
to characterize the joint distribution of the columns of W−1D and the behavior
of the |||D�W−1D|||2, hence an analysis different from [9] is required. In particu-
lar, we use the distributional results of [2] to characterize W−1D and the results
from random matrix theory [21, 22] to characterize |||D�W−1D|||2.

The rest of the paper is organized as follows. In §2, we summarize the notation
used throughout the paper and introduce the MGSDA procedure. In §3, we
study the population version of the MGSDA estimator. Our main result is stated
in §4. Illustrative simulation studies, which corroborate our theoretical findings,
are provided in §5. Technical proofs are given in §7.

2. Preliminaries

In this section, we introduce the notation and the Multi-Group Sparse Discrim-
inant Analysis problem.

For a vector v ∈ R
p we define ‖v‖2 =

√∑p
i=1 v

2
i , ‖v‖1 =

∑p
i=1 |vi|, ‖v‖∞ =

maxi |vi|. We use ej to define a unit norm vector with jth element being equal to
1. For a matrix M we define by mi the ith row of M and by Mj the jth column
of M . We also define |||M |||∞,2 = maxi ‖mi‖2, |||M |||∞ = |||M |||∞,∞ = maxi ‖mi‖1,
|||M |||2 = σmax(M) and ‖M‖F =

√∑
i

∑
j m

2
ij . Given an index set A, we define

MAA to be the submatrix of M with rows and columns indexed by A. For two
sequences {an} and {bn}, we write an = O(bn) to define an < Cbn for some
positive constant C. We write an = o(bn) to define anb

−1
n → 0.

The MGSDA estimator [7] is found as the solution to the following convex
optimization problem

V̂ = arg min
V ∈Rp×(G−1)

{
1

2
Tr(V �WV ) +

1

2
‖D�V − I‖2F + λ

p∑
i=1

‖vi‖2

}
, (2.1)

where W and D are defined in (1.1) and (1.2), respectively. The sparsity of

the estimated canonical vectors V̂ is controlled by the user specified parameter
λ > 0. Note that the �2-norm penalty encourages the rows of V̂ to be sparse
leading to the variable selection. The same penalty is used in the group lasso
setting to select groups of non-zero variables [26]. When λ = 0 and W is non-

singular, V̂ = (W + DD�)−1D spans the (G − 1)-dimensional eigenspace of
W−1DDt. Since the classification rule (1.4) is invariant with respect to linear
transformations, the MGSDA coincides with classical sample canonical correla-
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tion analysis. Intuitively, the three components of the objective function in (2.1)
minimize the within-class variability, control the level of between-class variabil-
ity and provide regularization by inducing sparsity respectively.

In the next two sections, we study conditions under which the MGSDA con-
sistently recovers the correct set of discriminant variables.

3. Variable selection in the population setting

In this section, we analyze MGSDA in the limit of infinite amount of data. This
allows us to understand the limitations of the procedure for consistent variable
selection.

Let πg be the prior group probabilities, P (Yi = g) = πg. Let μg be the
population within-group mean, μg = E(Xi | Yi = g). Let Σ be the population
within-group covariance matrix, Cov(Xi | Yi = g) = Σ, and Δ ∈ R

p×(G−1) be
the matrix of population mean contrasts between G groups with rth column

Δr =

√
πr+1

∑r
g=1 πg(μg − μr+1)√∑r

g=1 πg

∑r+1
g=1 πg

.

The population canonical vectors are eigenvectors of matrix Σ−1ΔΔ�. The col-
umn vectors of matrix Ψ = Σ−1Δ define the (G− 1)-dimensional eigenspace of
Σ−1ΔΔt [7]. Since the canonical vectors determine the variables that are rele-
vant for the classification rule, in the high-dimensional setting we assume that
the matrix Ψ is row sparse. Let A be the support of Ψ, A = {i | ‖Ψi‖2 
= 0},
and s be the cardinality of A, s = |A|.

The population version of MGSDA optimization problem is

Ψ̂ = arg min
V ∈Rp×(G−1)

{
1

2
Tr(V �ΣV ) +

1

2
‖V �Δ− I‖2F + λ

p∑
i=1

‖vi‖2

}
. (3.1)

Compared to the optimization program in (2.1), in (3.1) we assume access to
the population covariance Σ and mean contrasts Δ. Theorem 1 characterizes
conditions under which Ψ̂ = (Ψ̂�

A, 0
�
p−s)

� and ||e�j Ψ̂A||2 
= 0 for all j ∈ A.

Theorem 1. Suppose that

|||ΣAcAΣ
−1
AAsA|||∞,2 < 1 (3.2)

and the tuning parameter λ in (3.1) satisfies

λ <
Ψmin

|||(ΣAA +ΔAΔ�
A)

−1|||∞
(
1 + |||Δ�

AΣ
−1
AAΔA|||2

) , (3.3)

where Ψmin = minj∈A ‖e�j ΨA‖2 = minj∈A ‖e�j Σ−1Δ‖2. Then the solution Ψ̂ to

(3.1) is of the form Ψ̂ = (Ψ̂�
A, 0

�
p−s)

�, where

Ψ̂A = ΨA(I +Δ�
AΣ

−1
AAΔA)

−1 − λ(ΣAA +ΔAΔ
�
A)

−1sA, (3.4)

and sA is the sub-gradient of
∑

i∈A ‖ψ̂i‖2. Furthermore, we have that

||e�j Ψ̂A||2 
= 0 for all j ∈ A.



2012 I. Gaynanova and M. Kolar

Theorem 1 provides sufficient conditions (3.2) and (3.3) under which the
solution to (3.1) recovers the true support A. The condition (3.2) is of the
same form as the irrepresentable condition in a multi-task regression [16]. The
condition (3.3) relates the tuning parameter λ and the minimal signal strength
Ψmin. The tuning parameter λ should not be too large, so that the relevant
variables in A are nonzero. The upper bound depends on the minimal signal
strength Ψmin and the classification difficulty characterized by |||Δ�

AΣ
−1
AAΔA|||2.

Note that |||(ΣAA + ΔAΔ
�
A)

−1|||∞ ≤ √
s|||(ΣAA + ΔAΔ

�
A)

−1|||2, therefore it is
sufficient for λ to satisfy

λ <
Ψmin√

s|||(ΣAA +ΔAΔ�
A)

−1|||2
(
1 + |||Δ�

AΣ
−1
AAΔA|||2

) . (3.5)

Equation (3.4) provides an explicit form for the solution Ψ̂. Note that it esti-
mates ΨA up to the linear transformation (I+Δ�

AΣ
−1
AAΔA)

−1 and the bias term
due to the penalty. The linear transformation has no effect on the support or
the classification assignment due to invariance of classification rule (1.4). The
bias term has no effect on the support as long as λ satisfies (3.3). Note that
Theorem 1 of [9] is a special case of our result in the two-group case.

4. Consistent variable selection of MGSDA

In this section, we establish our main result on the sample complexity needed
for the variable selection consistency of the MGSDA.

We require the following assumptions.

(C1) Irrepresentability. There exists a constant α ∈ (0, 1] such that

|||ΣAcAΣ
−1
AAsA|||∞,2 ≤ 1− α.

(C2) Minimal signal strength. There exists a constant Kψ > 0 such that

Ψmin = min
j∈A

||e�j ΨA||

≥ λ
√
s|||(ΣAA +ΔAΔ�

A)−1|||2×

×
(
1 +Kψ

[
|||Δ�

AΣ−1
AAΔA|||2 ∨ 1

] (
1 +

√
max
j∈A

(Σ−1
AA)jj

(G− 1) log(s log(n))

n

))
.

Irrepresentable condition is commonly used in the high-dimensional literature
as a way to ensure exact variable selection of lasso like procedures [27, 22, 16, 9].
The second condition is commonly known as a beta-min condition and it states
that the relevant variables should have sufficiently large signal in order for the
procedure to distinguish them from noise.

Let Â be the support of V̂ defined in (2.1), Â = {i : ‖v̂i‖2 
= 0}.
Theorem 2. Assume that the conditions (C1) and (C2) are satisfied. Further-
more, suppose that the sample size satisfies

n ≥ K

(
max
j∈Ac

σjj·A

)
|||Σ−1

AA|||2(G− 1)s log((p− s) log(n))
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for some absolute constant K > 0. If the tuning parameter λ is selected as

λ ≥ Kλ(1 + |||Δ�
AΣ

−1
AAΔA|||2)−1

√(
max
j∈Ac

σjj·A

)
(G− 1) log((p− s) log(n))

n
,

where Kλ is an absolute constant that does not depend on the problem parame-
ters, then the MGSDA procedure defined in (2.1) satisfies

Â = A,

with probability at least 1−O(log−1(n)).

Theorem 2 is the finite sample version of Theorem 1. The main result states
that the set of relevant variables will be recovered with high probability when the
sample size n is of the order O(s log(p)) and the minimal signal strength is of the
order O(

√
n−1s log(p)). The

√
s term in the minimal signal strength condition

comes from the substitutions of |||(ΣAA+ΔAΔ
�
A)

−1|||∞ by |||(ΣAA+ΔAΔ
�
A)

−1|||2.
Theorem 2 significantly improves on the result in [7] which requires n to be of
the order O(s2 log(ps)) and Ψmin to be of the order O(

√
n−1s2 log(ps)). These

improvements are achieved through the joint characterization of the distribution
of W−1

AADA and deviations of |||D�
AW

−1
AADA|||2 from |||Δ�

AΣ
−1
AAΔA|||2. When G = 2,

Theorem 2 recovers minimax optimal sample size scaling of [9]. In [9] there

is an additional factor
√

[|||Δ�
AΣ

−1
AAΔA|||2 ∨ 1] in the conditions for the tuning

parameter λ, which we avoid due to the use of a different proof technique.

4.1. Outline of the proof

The proof of Theorem 2 is based on the primal-dual witness technique [22]. In

the course of the proof, one proposes a solution V̂ to (2.1) and verifies that the
optimality conditions are satisfied.

We will verify that the vector (Ṽ �
A , 0�)�, where ṼA is the solution to the

following oracle optimization program

ṼA = arg min
V ∈Rs×(G−1)

1

2
Tr(V �WAAV ) +

1

2
‖D�

AV − I‖2F + λ
∑
i∈A

‖vi‖2,

satisfies the Karush-Kuhn-Tucker conditions for (2.1). The next lemma charac-

terizes the form of the oracle solution ṼA.

Lemma 3. The oracle solution satisfies

ṼA = W−1
AADA(I +D�

AW
−1
AADA)

−1 − λ(WAA +DAD
�
A)

−1sA,

where sA is sub-gradient of
∑

i∈A ‖ṽi‖2.

Lemma 4 provides the sufficient conditions for the estimator (Ṽ �
A , 0�)� to

be the oracle solution.
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Lemma 4. If

|||(WAcA +DAcD�
A)ṼA −DAc |||∞,2 ≤ λ; (4.1)

min
j∈A

‖e�j W−1
AADA‖2 > λ|||(WAA +DAD

�
A)

−1|||∞(1 + |||D�
AW

−1
AADA|||2), (4.2)

then V̂ = (Ṽ �
A , 0�)� and ‖e�j ṼA‖2 
= 0 for all j ∈ A.

Lemma 4 is deterministic in nature. We proceed to show that (4.1) and (4.2)
are satisfied with high probability under conditions of Theorem 2. In particular,
next theorem established that the correct variables j, j ∈ A, are estimated as
nonzero by ṼA

Theorem 5. Under conditions of Theorem 2, with probability at least 1 −
O(log−1(n))

min
j∈A

‖e�j W−1
AADA‖2 > λ|||(WAA +DAD

�
A)

−1|||∞(1 + |||D�
AW

−1
AADA|||2).

To complete the proof, in the following theorem we establish that the wrong
variables j, j ∈ Ac, are zero in V̂ .

Theorem 6. Under conditions of Theorem 2, with probability at least 1 −
O(log−1(n))

|||(WAcA +DAcD�
A)ṼA −DAc |||∞,2 ≤ λ.

5. Simulation results

We conduct several simulations to numerically illustrate finite sample properties
of the MGSDA for the task of variable selection. The number of groups G = 3
and we change the size of the set A, s ∈ {10, 20, 30}, and the ambient dimension
p ∈ {100, 200, 300}. The sample size is set as n = θs log(p) where θ is a control
parameter that is varied. We report how well the MGSDA estimator recovers
the set of variables A as the control parameter θ varies. According to Theorem 2,
the MGSDA recovers the correct variables when n = Ks log(p) for some K > 0
and this will be illustrated in our simulations.

Next, we describe the data generating model. We set P(Y = g) = 1
3 for

g ∈ {1, 2, 3} and X | Y = g ∼ N (μg,Σ) with

μ1 = 0, μ2 = (1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
p−s

)� and μ3 = (1, . . . , 1︸ ︷︷ ︸
s/2

,−1, . . . ,−1︸ ︷︷ ︸
s/2

, 0, . . . , 0︸ ︷︷ ︸
p−s

)�.

We specify the covariance matrix Σ as

Σ =

(
ΣAA 0s×p−s

0p−s×s Ip−s

)
and consider two cases for the component ΣAA:

1. Toeplitz matrix, where ΣTT = [Σab]a,b∈T and Σab = ρ|a−b| with ρ ∈
{0, 0.25, 0.5, 0.75, 0.9}, and

2. equal correlation matrix, where Σab = ρ when a 
= b and σaa = 1, ρ ∈
{0, 0.25, 0.5, 0.75, 0.9}.
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Fig 1. Performance of the MGSDA estimator averaged over 100 simulation runs. Plots
of the rescaled sample size n/(s log(p)) versus the Hamming distance between Â and
A for the Toeplitz matrix (see main text for details). Columns correspond to the size
of A, s ∈ {10, 20, 30}, and rows correspond to different correlation strengths ρ ∈
{0, 0.25, 0.5, 0.75, 0.9}. Each subfigure shows three curves, corresponding to the problem sizes
p ∈ {100, 200, 300}.

Finally, we set the penalty parameter as

λ = 0.5×
(
1 + |||Δ�

AΣ
−1
AAΔ

�
A|||2
)−1

√
log (p− s)

n

for all cases, as suggested by Theorem 2. For each setting, we report the Ham-
ming distance between the estimated set Â and the true set A averaged over
200 independent simulation runs.

Figure 1 and Figure 2 illustrate finite sample performance of the MGSDA
procedure. The Hamming distance is plotted against the control parameter θ,
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Fig 2. Performance of the MGSDA estimator averaged over 100 simulation runs. Plots
of the rescaled sample size n/(s log(p)) versus the Hamming distance between Â and
A for equal correlation matrix (see main text for details). Columns correspond to the
size of A, s ∈ {10, 20, 30}, and rows correspond to different correlation strengths ρ ∈
{0, 0.25, 0.5, 0.75, 0.9}. Each subfigure shows three curves, corresponding to the problem sizes
p ∈ {100, 200, 300}.

which represents the rescaled number of samples. Each figure contains a num-
ber of subfigures, which correspond to different simulation settings. Columns
correspond to different number of relevant variables, |A| = s ∈ {10, 20, 30},
and rows correspond to different values of ρ, ρ ∈ {0, 0.25, 0.5, 0.75, 0.9}. Each
subfigure contains three curves for different problem sizes p ∈ {100, 200, 300}.
We observe that as the control parameter θ increases the MGSDA procedure
starts to recover the true set of variables, A, irrespective of the problem size,
therefore, illustrating that our theoretical results describe well the finite sample
performance of the procedure.
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6. Discussion

In this paper we consider the problem of variable selection in discriminant anal-
ysis. This is the first time that the consistent variable selection in the multi-class
setting has been established under the same conditions as in the two-class set-
ting. Throughout the paper we have assumed that the number of classes G does
not increase with the sample size n, however this condition is not necessary
for consistent variable selection and is used for the simplicity of exposition. We
hope to address this issue in future work.

7. Technical proofs

7.1. Proof of Theorem 1

Using the Karush-Kuhn-Tucker conditions, we have that any solution Ψ̂ of (3.1)
satisfies

(ΣAA +ΔAΔ
�
A)Ψ̂A + (ΣAAc +ΔAΔ

�
Ac)Ψ̂Ac −ΔA = −λsA; (7.1)

(ΣAcA +ΔAcΔ�
A)Ψ̂A + (ΣAcAc +ΔAcΔ�

Ac)Ψ̂Ac −ΔAc = −λsAc . (7.2)

We proceed to verify that these conditions are satisfied by Ψ̂ = (Ψ̂�
A, 0

�)� where

Ψ̂�
A is given in (3.4). It is immediately clear that (7.1) is satisfied. We proceed

to show that (7.2) is also satisfied. In particular, we show that

|||(ΣAcA +ΔAcΔ�
A)Ψ̂A −ΔAc |||∞,2 < λ.

Since ΣΣ−1Δ = Δ, it follows that ΣAcAΣ
−1
AAΔA = ΔAc . Therefore,(

ΣAcA +ΔAcΔ�
A

)
Ψ̂A

= (ΣAcA +ΔAcΔ�
A)(ΨA(I +Δ�

AΣ
−1
AAΔA)

−1 − λ(ΣAA +ΔAΔ
�
A)

−1sA)

= ΣAcAΣ
−1
AAΔA(I +Δ�

AΣ
−1
AAΔA)

−1 +ΔAcΔ�
AΣ

−1
AAΔA(I +Δ�

AΣ
−1
AAΔA)

−1

− λΣAcA(ΣA +ΔAΔ
�
A)

−1sA − λΔAcΔ�
A(ΣA +ΔAΔ

�
A)

−1sA

= ΔAc(I +Δ�
AΣ

−1
AAΔA)

−1 +ΔAc(I − (I +Δ�
AΣ

−1
AAΔA)

−1)

− λΣAcA(Σ
−1
AA − Σ−1

AAΔA(I +Δ�
AΣ

−1
AAΔA)

−1Δ�
AΣ

−1
AA)sA

− λΔAcΔ�
A(Σ

−1
AA − Σ−1

AAΔA(I +Δ�
AΣ

−1
AAΔA)

−1Δ�
AΣ

−1
AA)sA

= ΔAc − λΣAcAΣ
−1
AAsA + λΔAc(I +Δ�

AΣ
−1
AAΔA)

−1Δ�
AΣ

−1
AAsA

− λΔAcΔ�
AΣ

−1
AAsA + λΔAcΔ�

AΣ
−1
AAΔA(I +Δ�

AΣ
−1
AAΔA)

−1Δ�
AΣ

−1
AAsA

= ΔAc − λΣAcAΣ
−1
AAsA + λΔAcΔ�

AΣ
−1
AAsA − λΔAcΔ�

AΣ
−1
AAsA

= ΔAc − λΣAcAΣ
−1
AAsA.

By assumption (3.2),

|||(ΣAcA +ΔAcΔ�
A)Ψ̂A −ΔAc |||∞,2 = λ|||ΣAcAΣ

−1
AAsA|||∞,2 < λ,

which verifies that Ψ̂ also satisfies (7.2).
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To complete the proof, we show that no component of Ψ̂A is set to zero. From
(3.4),

e�j V̂A = e�j ΨA(I +Δ�
AΣ

−1
AAΔA)

−1 − λe�j (ΣAA +ΔAΔ
�
A)

−1sA.

Since

‖e�j ΨA(I +Δ�
AΣ

−1
AAΔA)

−1‖2 ≥ 1

|||I +Δ�
AΣ

−1
AAΔA|||2

‖e�j ΨA‖2

≥ Ψmin

1 + |||Δ�
AΣ

−1
AAΔA|||2

and
‖λe�j (ΣAA +ΔAΔ

�
A)

−1sA‖2 ≤ λ|||(ΣAA +ΔAΔ
�
A)

−1|||∞,

the result follows.

Proof of Lemma 3 and 4. The proof follows the proof of Theorem 1.

Proof of Theorem 5. From Lemma 11, with probability at least 1−O(log−1(n))

|||(WAA+DAD
�
A)

−1|||∞ ≤
√
s|||(ΣAA+ΔAΔ

�
A)

−1|||2

(
1 +O

(√
s log(log(n))

n

))
.

From Lemma 14, with probability at least 1−O(log−1(n))

|||D�
AW

−1
AADA|||2 ≤ C|||Δ�

AΣ
−1
AAΔA|||2

+O
(
(G− 1)s log(log(n))

n
∨
√

|||Δ�
AΣ

−1
AAΔA|||2

(G− 1) log(log(n))

n

)
.

Therefore, with probability at least 1−O(log−1(n))

λ|||(WAA +DAD
�
A)

−1|||∞(1 + |||D�
AW

−1
AADA|||2)

≤ λ
√
s|||(ΣAA +ΔAΔ

�
A)

−1|||2×

×
(
1 + C

[
|||Δ�

AΣ
−1
AAΔA|||2 ∨ 1

](
1 +

√
(G− 1) log(log(n))

n

))
.

On the other hand, from Lemma 7, with probability at least 1−O(log−1(n))

min
j∈A

||e�j W−1
AADA||2

≥ min
j∈A

‖e�j Σ−1
AAΔA‖2×

×
(
1−O

(√[
|||Δ�

AΣ
−1
AAΔA|||2 ∨ 1

]
max
j∈A

(Σ−1
AA)jj

(G− 1) log(s log(n))

n

))

≥ Ψmin

(
1−O

(√[
|||Δ�

AΣ
−1
AAΔA|||2 ∨ 1

]
max
j∈A

(Σ−1
AA)jj

(G− 1) log(s log(n))

n

))
.

The final result follows from the condition on the sample size n and (C2).
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Lemma 7. With probability at least 1− log−1(n), ∀j ∈ A

‖e�j W−1
AADA‖2

‖e�j Σ−1
AAΔA‖2

≥ 1−O
(√[

|||Δ�
AΣ

−1
AAΔA|||2 ∨ 1

]
(Σ−1

AA)jj
(G− 1) log(s log(n))

n

)
.

Proof of Lemma 7. By triangle inequality

‖e�j W−1
AADA − e�j Σ

−1
AAΔA‖2 ≤ ‖e�j W−1

AADA − e�j Σ
−1
AADA‖2

+ ‖e�j Σ−1
AADA − e�j Σ

−1
AAΔA‖2.

Consider the first term,

‖e�j W−1
AADA − e�j Σ

−1
AADA‖2

≤ e�j W
−1
AAej

∥∥∥∥∥D�
AW

−1
AAej

e�j W
−1
AAej

− D�
AΣ

−1
AAej

e�j Σ
−1
AAej

∥∥∥∥∥
2

+ ‖e�j Σ−1
AADA‖2

∣∣∣∣∣ e�j Σ
−1
AAej

e�j W
−1
AAej

− 1

∣∣∣∣∣ .
From [9, Lemma 14], ∀j ∈ A∣∣∣∣∣ e�j Σ

−1
AAej

e�j W
−1
AAej

− 1

∣∣∣∣∣ ≤ C2

√
log(s log(n))

n

with probability at least 1− (log(n))−1. Further, using Lemma 10∥∥∥∥∥D�
AW

−1
AAej

e�j W
−1
AAej

− D�
AΣ

−1
AAej

e�j Σ
−1
AAej

∥∥∥∥∥
2

= ‖Ĥ12Ĥ
−1
22 −H12H

−1
22 ‖2 = ‖Ĥ12Ĥ

−1
22 − μh‖2,

where
Ĥ12Ĥ

−1
22 |DA ∼ tG−1(dH , μH ,ΓH)

with degrees of freedom dH = n − s − G + 2, mean μH = H12H
−1
22 and scale

parameter ΓH = 1
dH

(D�
ARDA)/(e

�
j Σ

−1
AAej) withR = Σ−1

AA−
Σ−1

AAeje
�
j Σ−1

AA

e�j Σ−1
AAej

. Hence,

Ĥ12Ĥ
−1
22 − μH =

Γ
1/2
H yH√
ZH/dH

and ‖Ĥ12Ĥ
−1
22 − μH‖22 =

y�HΓHyH
ZH/dH

,

where yH ∼ N (0, IG−1) and zH ∼ χ2
dH

are independent. Therefore,

P

(
‖Ĥ12Ĥ

−1
22 − μH‖2 ≤

√
ε1
ε2

)
= P

(
‖Ĥ12Ĥ

−1
22 − μH‖22 ≤ ε1

ε2

)
= P

(
y�HΓHyH
ZH/dH

≤ ε1
ε2

)
≥ P (y�HΓHyH ≤ ε1, ZH/dH ≥ ε2)

≥ P (y�HΓHyH ≤ ε1)P (ZH/dH ≥ ε2).
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Since ZH ∼ χ2
dH

, by Lemma 1 in [10] for all y ≥ 0

P (ZH/dH ≥ 1− y) ≥ 1− exp

(
−dH

y2

4

)
.

Since yH ∼ N (0, IG−1), using Proposition 1.1 in [8]

P (y�HΓHyH ≥ Tr(ΓH) + 2
√

Tr(Γ2
H)t+ 2|||ΓH |||2t) ≤ exp(−t).

Combining the above displays,

‖Ĥ12Ĥ
−1
22 − μH‖2 ≤

√
Tr(ΓH) + 2

√
Tr(Γ2

H)t+ 2|||ΓH |||2t
1− y

with probability at least

(1− exp(−t))(1− exp(−dH
y2

4
))

= 1− (exp(−t) + exp(−dHy2/4)− exp(−t) exp(−dHy2/4)).

Setting it to be 1 − O(log−1(n)) for all j ∈ A, we get t = log(s log(n)), y =

2
√

log(s log(n))
n−s−G+2 and

‖Ĥ12Ĥ
−1
22 − μH‖2

≤
√√√√Tr(ΓH) + 2

√
Tr(Γ2

H) log(s log(n)) + 2|||ΓH |||2 log(s log(n))

1− 2
√

log(s log(n))
n−s−G+2

.

Since Tr(ΓH) ≤ (G− 1)|||ΓH |||2 and Tr(Γ2
H) ≤ (G− 1)2|||ΓH |||22, the above display

can be rewritten as

‖Ĥ12Ĥ
−1
22 − μH‖2

≤

√√√√C1|||ΓH |||2(G− 1) log(s log(n))

(
1 +O

(√
log(s log(n))

n

))

for some constant C1. Hence, there exists constant C > 0 such that with prob-
ability at least 1−O(log−1(n))

‖Ĥ12Ĥ
−1
22 − μH‖2 ≤ C

√
|||ΓH |||2(G− 1) log(s log(n)).

Using the definition of R,

|||ΓH |||2 =
1

n− s−G− 2

1

(Σ−1
AA)jj

|||D�
ARDA|||2

≤ 1

n− s−G− 2

1

(Σ−1
AA)jj

|||D�
AΣ

−1
AADA|||2.
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Applying Lemma 13, with probability at least 1− log−1(n)

|||ΓH |||2 ≤ C
1

n− s−G− 2

1

(Σ−1
AA)jj

[
|||Δ�

AΣ
−1
AAΔA|||2 ∨

√
|||Δ�

AΣ
−1
AAΔA|||2

]
.

Therefore, with probability at least 1− log−1(n)

‖Ĥ12Ĥ
−1
22 − μH‖2 ≤ O

(√[
|||Δ�

AΣ
−1
AAΔA|||2 ∨ 1

]
(Σ−1

AA)jj

(G− 1) log(s log(n))

n

)
.

Consider ‖e�j Σ−1
AADA − e�j Σ

−1
AAΔA‖2. From Lemma 8,

Σ−1
AADA ∼ N

(
Σ−1

AAΔA,
Σ−1

AA

n
⊗ IG−1

)
.

Hence,

P
(
‖e�j Σ−1

AADA − e�j Σ
−1
AAΔA‖2 ≥ ε

)
≤ P
(√

G− 1‖e�j Σ−1
AADA − e�j Σ

−1
AAΔA‖∞ ≥ ε

)
≤ 2(G− 1) exp

(
− nε2

2(Σ−1
AA)jj(G− 1)

)
.

Let ε =
√

2(Σ−1
AA)jj(G− 1) log(2(G−1)s log(n))

n . Then for all j ∈ A

‖e�j Σ−1
AADA − e�j Σ

−1
AAΔA‖2 ≤

√
2(Σ−1

AA)jj(G− 1)
log(2(G− 1)s log(n))

n

with probability at least 1− log−1(n). Also,

‖e�j Σ−1
AADA‖2 ≤ ‖e�j Σ−1

AADA − e�j Σ
−1
AAΔA‖2 + ‖e�j Σ−1

AAΔA‖2

≤ ‖e�j Σ−1
AAΔA‖2 +

√
2(Σ−1

AA)jj(G− 1)
log(2(G− 1)s log(n))

n
.

Combining the above displays, with probability at least 1 − (log(n))−1, for all
j ∈ A

‖e�j W−1
AADA − e�j Σ

−1
AAΔA‖2

≤ C1(Σ
−1
AA)jj

√[
|||Δ�

AΣ
−1
AAΔA|||2 ∨ 1

]
(Σ−1

AA)jj

(G− 1) log(s log(n))

n

+ ‖e�j Σ−1
AAΔA‖2C2

√
log(s log(n))

n
+ C3

√
(Σ−1

AA)jj(G− 1)
log(s log(n))

n

≤ C‖e�j Σ−1
AAΔA‖2

√[
|||Δ�

AΣ
−1
AAΔA|||2 ∨ 1

]
(Σ−1

AA)jj
(G− 1) log(s log(n))

n
.

The final result follows form triangle inequality.
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Proof of Theorem 6. Since (n−G)W ∼ Wp(n−G,Σ), then (n−G)W = UU�,

where U ∈ R
p×(n−G) with columns ui

iid∼ N (0,Σ). Let

ED = DAc − ΣAcAΣ
−1
AADA;

EU = UAc − ΣAcAΣ
−1
AAUA with (n−G)WAcA = UAcU�

A .

Then,

DAc = ΣAcAΣ
−1
AADA + ED;

(n−G)WAcA = UAcU�
A

= (ΣAcAΣ
−1
AAUA + EU )U

�
A = ΣAcAΣ

−1
AA(n−G)WAA + EUU

�
A .

and therefore

(WAcA +DAcD�
A)ṼA −DAc

=(ΣAcAΣ
−1
AAWAA + (n−G)−1EUU

�
A + (ΣAcAΣ

−1
AADA + ED)D�

A)×
× (W−1

AADA(I +D�
AW

−1
AADA)

−1 − λ(WAA +DAD
�
A)

−1sA)

− ΣAcAΣ
−1
AADA − ED

=ΣAcAΣ
−1
AADA((I +D�

AW
−1
AADA)

−1 +D�
AW

−1
AADA(I +D�

AW
−1
AADA)

−1 − I)

+ ΣAcAΣ
−1
AA(−λWAA(WAA +DAD

�
A)

−1sA − λDAD
�
A(WAA +DAD

�
A)

−1sA)

+ (n−G)−1EUU
�
A (W−1

AADA(I +D�
AW

−1
AADA)

−1 − λ(WAA +DAD
�
A)

−1sA)

+ ED(D�
AW

−1
AADA(I +D�

AW
−1
AADA)

−1 − λD�
A(WAA +DAD

�
A)

−1sA − I)

=− λΣAcAΣ
−1
AAsA + (n−G)−1EUU

�
A (WAA +DAD

�
A)

−1(DA − λsA)

− ED(λD�
A(WAA +DAD

�
A)

−1sA + (I +D�
AW

−1
AADA)

−1)

=− λΣAcAΣ
−1
AAsA + (n−G)−1EUU

�
A (WAA +DAD

�
A)

−1(DA − λsA)

− ED(I +D�
AW

−1
AADA)

−1(λD�
AW

−1
AAsA + I)

We would like to establish the following:

λ|||ΣAcAΣ
−1
AAsA|||∞,2 < λ(1− α) (7.3)

|||(n−G)−1EUU
�
AW−1

AADA(I +D�
AW

−1
AADA)

−1|||∞,2 < λα/4 (7.4)

λ|||(n−G)−1EUU
�
AW−1

AA(I +W−1
AADAD

�
A)

−1sA|||∞,2 ≤ λα/4 (7.5)

λ|||ED(I +D�
AW

−1
AADA)

−1D�
AW

−1
AAsA|||∞,2 ≤ λα/4 (7.6)

|||ED(I +D�
AW

−1
AADA)

−1|||∞,2 ≤ λα/4. (7.7)

1. Show |||ED(I +D�
AW

−1
AADA)

−1|||∞,2 ≤ λα/4.

Consider ED = ΣAcAΣ
−1
AADA − DAc . Since ΣΣ−1Δ = Δ, it follows that

ΣAcAΣ
−1
AAΔA = ΔAc . Hence E(DAc) = ΔAc = ΣAcAΣ

−1
AAΔA. Therefore
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E(ED) = 0. Moreover,

Cov(ED, DA) = Cov(ΣAcAΣ
−1
AADA −DAc , DA)

= Cov(ΣAcAΣ
−1
AADA, DA)− Cov(DAc , DA)

= ΣAcAΣ
−1
AA Cov(DA)− Cov(DAc , DA)

= ΣAcAΣ
−1
AA Cov(DA)− ΣAcAΣ

−1
AA Cov(DA)

= 0.

From Lemma 8, for all j ∈ Ac

e�j ED ∼ N
(
0,

1

n
σjj·AIG−1

)
where σjj·A = Σjj − ΣjAΣ

−1
AAΣAj and e�j ED is independent of DA. Note that

|||ED(I +D�
AW

−1
AADA)

−1|||∞,2 = max
j∈Ac

‖e�j ED(I +D�
AW

−1
AADA)

−1‖2

≤
maxj∈Ac ‖e�j ED‖2

1 + σmin(D�
AW

−1
AADA)

≤ max
j∈Ac

‖e�j ED‖2

Using Proposition 1.1 in [8]⋂
j∈AC

{
||e�j ED||22
σjj·A

≤ (G− 1)

n
+ 2

√
(G− 1) log((p− s) log(n))

n
+ 2

log((p− s) log(n))

n

}
with probability at least 1 − log−1(n). Hence, with probability at least 1 −
log−1(n)

max
j∈Ac

‖e�j ED‖22
σjj·A

≤ O
(
(G− 1) log((p− s) log(n))

n

)
,

or equivalently

max
j∈Ac

‖e�j ED‖2 ≤ O
(√

max
j∈Ac

σjj·A
(G− 1) log((p− s) log(n))

n

)
.

2. Show λ|||ED(I +D�
AW

−1
AADA)

−1D�
AW

−1
AAsA|||∞,2 ≤ λα/4.

Since e�j ED ∼ N
(
0, n−1σjj·AIG−1

)
, it follows that

e�j ED(I +D�
AW

−1
AADA)

−1D�
AW

−1
AAsA

∼ N
(
0,

σjj·A
n

s�AW
−1
AADA(I +D�

AW
−1
AADA)

−2D�
AW

−1
AAsA

)
.

Following the above arguments, the following event has probability at least
1− log−1(n)



2024 I. Gaynanova and M. Kolar

⋂
j∈AC

{
||e�j ED(I +D�

AW
−1
AADA)

−1D�
AW

−1
AAsAL

−1/2||22
σjj·A

≤ O
(
(G− 1) log((p− s) log(n))

n

)}
,

where L = s�AW
−1
AADA(I + D�

AW
−1
AADA)

−2D�
AW

−1
AAsA. This implies that with

probability at least 1− log−1(n)

max
j∈Ac

||e�j ED(I +D�
AW

−1
AADA)

−1D�
AW

−1
AAsA||22

σjj·A

≤ |||L|||2O
(
(G− 1) log((p− s) log(n))

n

)
By triangle inequality

|||L|||2 = |||s�AW−1
AADA(I +D�

AW
−1
AADA)

−2D�
AW

−1
AAsA|||2

≤ |||s�AW−1
AAsA|||2|||(I +D�

AW
−1
AADA)

−1D�
AW

−1/2
AA |||22

≤ |||s�AW−1
AAsA|||2

≤ s|||sA|||2∞,2|||W−1
AA|||2

≤ s|||W−1
AA|||2.

From Lemma 9 in [22], with probability at least 1− log−1(n)

|||W−1
AA|||2 ≤ |||Σ−1

AA|||2

(
1 +O

(√
s log(log(n))

n

))
.

Combining the above displays, with probability at least 1−O(log−1(n))

max
j∈Ac

||e�j ED(I +D�
AW

−1
AADA)

−1D�
AW

−1
AAsA||22

σjj·A

≤ |||Σ−1
AA|||2O

(
(G− 1)s log((p− s) log(n))

n

)
,

or equivalently

max
j∈Ac

||e�j ED(I +D�
AW

−1
AADA)

−1D�
AW

−1
AAsA||2

≤ O
(√

|||Σ−1
AA|||2 max

j∈Ac
σjj·A

(G− 1)s log((p− s) log(n))

n

)
.

3. Show |||(n−G)−1EUU
�
AW−1

AADA(I +D�
AW

−1
AADA)

−1|||∞,2 < λα/4.
By definition EU = UAc − ΣAcAΣ

−1
AAUA, hence

vec(EU ) ∼ N (0,ΣAcAc·A ⊗ In−G)
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and is independent of UA. Therefore

(n−G)−1e�j EU ∼ N
(
0,

1

(n−G)2
σjj·AIn−G

)
,

where σjj·A = Σjj − ΣjAΣ
−1
AAΣAj . Conditional on XA,

1

n−G
e�j EUU

�
AW−1

AADA(I +D�
AW

−1
AADA)

−1

∼ N
(
0,

σjj·A
n−G

(I +D�
AW

−1
AADA)

−1D�
AW

−1
AADA(I +D�

AW
−1
AADA)

−1

)
.

Let (I +D�
AW

−1
AADA)

−1D�
AW

−1
AADA(I +D�

AW
−1
AADA)

−1 = L. Then by Propo-
sition 1.1 in [8]

⋂
j∈AC

{
||(n−G)−1e�j EUU

�
AW−1

AADA(I +D�
AW

−1
AADA)

−1L−1/2||22
σjj·A

≤ (G− 1)

n−G
+ 2

√
(G− 1) log((p− s) log(n))

n−G
+ 2

log((p− s) log(n))

n−G

}

with probability at least 1− log−1(n). Therefore,

⋂
j∈AC

{
||(n−G)−1e�j EUU

�
AW−1

AADA(I +D�
AW

−1
AADA)

−1||22
σjj·A

≤ |||L|||2O
(
(G− 1) log((p− s) log(n))

n−G

)}

with probability at least 1− log−1(n). Since

|||L|||2 = |||(I +D�
AW

−1
AADA)

−1D�
AW

−1
AADA(I +D�

AW
−1
AADA)

−1|||2
= |||(I +D�

AW
−1
AADA)

−2D�
AW

−1
AADA|||2 < 1,

with probability at least 1− log−1(n)

max
j∈Ac

||(n−G)−1e�j EUU
�
AW−1

AADA(I +D�
AW

−1
AADA)

−1||22
σjj·A

≤ O
(
(G− 1) log((p− s) log(n))

n−G

)
,

or equivalently

max
j∈Ac

||(n−G)−1e�j EUU
�
AW−1

AADA(I +D�
AW

−1
AADA)

−1||2

≤ O
(√

max
j∈Ac

σjj·A
(G− 1) log((p− s) log(n))

n−G

)
,
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4. Show λ|||(n−G)−1EUU
�
AW−1

AA(I +W−1
AADAD

�
A)

−1sA|||∞,2 ≤ λα/4.
Since (n−G)−1e�j EU ∼ N

(
0, (n−G)−2σjj·AIn−G

)
, it follows that

1

n−G
e�j EUU

�
A (WAA +DAD

�
A)

−1sA

∼ N
(
0,

σjj·A
n−G

s�A(WAA +DAD
�
A)

−1WAA(WAA +DAD
�
A)

−1sA

)
.

Similar to parts 2 and 3, with probability at least 1− log−1(n)

max
j∈Ac

|| 1

n−G
e�j EUU

�
A (WAA +DAD

�
A)

−1sA||2

≤ O
(√

|||L|||2 max
j∈Ac

σjj·A
(G− 1) log((p− s) log(n))

n

)
,

where

|||L|||2 = |||s�A(WAA +DAD
�
A)

−1WAA(WAA +DAD
�
A)

−1sA|||2
= |||W 1/2

AA (WAA +DAD
�
A)

−1sA|||22
≤ s|||W 1/2

AAW
−1/2
AA (I +W

−1/2
AA DAD

�
AW

−1/2
AA )−1W

−1/2
AA |||22

≤ s|||(I +W
−1/2
AA DAD

�
AW

−1/2
AA )−1|||22|||W

−1/2
AA |||22

≤ s|||W−1
AA|||2.

Following the same argument as in part 2, with probability at least 1−O(log−1 n)

max
j∈Ac

|| 1

n−G
e�j EUU

�
A (WAA +DAD

�
A)

−1sA||2

≤ O
(√

|||Σ−1
AA|||2 max

j∈Ac
σjj·A

(G− 1)s log((p− s) log(n))

n

)
.

Combining 1–4 . The equations (7.4)–(7.7) are satisfied with probability at
least 1−O(log−1(n)) if for some constants C1 ≥ 0 and C2 ≥ 0

α ≥ C1

√
|||Σ−1

AA|||2 max
j∈Ac

σjj·A
(G− 1)s log((p− s) log(n))

n

and

λ ≥ 1

α
C2

√
max
j∈Ac

σjj·A
(G− 1) log((p− s) log(n))

n−G
.

These inequalities are satisfied by (C1) and the conditions on sample size n and
tuning parameter λ from Theorem 2.

7.2. Auxillary technical results

Lemma 8. If Xi|Yi = g ∼ N (μg,Σ) for i = 1, . . . , n, then

D ∼ N (Δ + o(1),Σ/n⊗ I + o(1)); (n−G)Wp ∼ W (Σ, n−G).
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Remark 9. The bias term o(1) does not depend on either s or p, and therefore
we don’t consider this term in the remaining analysis.

Proof of Lemma 8. The result for W is trivial. The definition of D and the
multivariate normality assumption on Xi imply D ∼ N (μD,ΣD1 ⊗ ΣD2). It
remains to show μD = Δ + o(1), ΣD1 = Σ/n and ΣD2 = I. Consider the rth
column of D,

Dr =

√
nr+1

∑r
g=1 ng(X̄g − X̄r+1)

√
n
√∑r

g=1 ng

∑r+1
g=1 ng

,

and the rth column of Δ,

Δr =

√
πr+1

∑r
g=1 πg(μg − μr+1)√∑r

g=1 πg

∑r+1
g=1 πg

.

Note that E(X̄i−X̄j) = μi−μj for all i, j ∈ {1, . . . , G}. Moreover, (n1, . . . , nG) ∼
Mult(n, (π1, . . . , πG)), and therefore E(ni/n) = πi and Cov(ni/n, nj/n) =
πiπj/n for all i, j ∈ {1, . . . , G}. Hence,

E(Dr) = E(E(Dr|n1, . . . , nG))

= E

⎛⎝√
nr+1

∑r
g=1 ngE((X̄g − X̄r+1)|n1, . . . , nG)
√
n
√∑r

g=1 ng

∑r+1
g=1 ng

⎞⎠
= E

⎛⎝√
nr+1

∑r
g=1 ng(μg − μr+1)

√
n
√∑r

g=1 ng

∑r+1
g=1 ng

⎞⎠
= Δr + o(1).

First, consider the case ng/n = πg for all g ∈ {1, . . . , G}. Since the groups are
independent,

Cov(Dr)

= E
{
(Dr −Δr)(Dr −Δr)

�}
=

E

{
(
∑r

i=1(x̄i − μi)− r(x̄r+1 − μr+1)) (
∑r

i=1(x̄i − μi)− r(x̄r+1 − μr+1))
�
}

Gr(r + 1)

=

∑r
i=1 E

{
(x̄i − μi)(x̄i − μi)

�}+ r2E
{
(x̄r+1 − μr+1)(x̄r+1 − μr+1)

�}
Gr(r + 1)

=
1

Gr(r + 1)
(r + r2)

Σ

n/G
=

Σ

n
,

and for s > r

Cov(Dr, Ds)

= E
{
(Dr −Δr)(Ds −Δs)

�}
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=
E

{
(
∑r

i=1(x̄i − μi)− r(x̄r+1 − μr+1)) (
∑s

i=1(x̄i − μi)− s(x̄s+1 − μs+1))
�
}

G
√

r(r + 1)s(s+ 1)

=

∑r
i=1 E

{
(x̄i − μi)(x̄i − μi)

�}− rE
{
(x̄r+1 − μr+1)(x̄r+1 − μr+1)

�}
G
√
r(r + 1)s(s+ 1)

=
1

G
√

r(r + 1)s(s+ 1)
(r − r)

Σ

n/G
= 0.

The final result follows since |ni/n− πi| = o(1).

Lemma 10.
D�

AW
−1
AAej

e�j W
−1
AAej

|DA ∼ tG−1(dH , μH ,ΓH)

with degrees of freedom dH = n− s−G+ 2, mean μH = D�
AΣ

−1
AAej/(e

�
j Σ

−1
AAej)

and scale parameter ΓH = 1
dH

(D�
ARDA)/(e

�
j Σ

−1
AAej) with

R = Σ−1
AA −

Σ−1
AAeje

�
j Σ

−1
AA

e�j Σ
−1
AAej

.

Proof of Lemma 10. Let

H =

(
D�

AΣ
−1
AADA D�

AΣ
−1
AAej

e�j Σ
−1
AADA e�j Σ

−1
AAej

)
=

(
H11 H12

H�
12 H22

)
,

and

Ĥ =

(
D�

AW
−1
AADA D�

AW
−1
AAej

e�j W
−1
AADA e�j W

−1
AAej

)
=

(
Ĥ11 Ĥ12

Ĥ�
12 Ĥ22

)
.

By definition,
D�

AW−1
AAej

e�j W−1
AAej

= Ĥ12Ĥ
−1
22 . LetM = (DA ej)

� ∈ R
G×s. ThenH can be

rewritten as H = MΣ−1
AAM

� and Ĥ as Ĥ = MW−1
AAM

�. Since (n−G)WAA ∼
Ws(n−G,ΣAA) and rank(M) = G, by [15, Theorem 3.2.11]

(n−G)Ĥ−1 ∼ WG(n− s,H−1),

or equivalently
1

n−G
Ĥ ∼ W−1

G (n− s+G+ 1, H).

By definition of R, H11·2 = D�
ARDA. Using [2, Theorem 3], Ĥ12Ĥ

−1
22 has

density

fĤ12Ĥ
−1
22

(X) =
|D�

ARDA|−
1
2 |e�j Σ−1

AAej |
G−1

2

π(G−1)/2

Γ(n−s+1
2 )

Γ(n−s−G+2
2 )

× |I + e�j Σ
−1
AAej(D

�
ARDA)

−1(X −H12H
−1
22 )(X −H12H

−1
22 )�|− 1

2 (n−s+1).
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Since |I + uv�| = 1 + u�v,

fĤ12Ĥ
−1
22

(X) =
|D�

ARDA|−
1
2 |e�j Σ−1

AAej |
G−1

2

π(G−1)/2

Γ(n−s+1
2 )

Γ(n−s−G+2
2 )

×
(
1 + e�j Σ

−1
AAej(X −H12H

−1
22 )�(D�

ARDA)
−1(X −H12H

−1
22 )
)− 1

2 (n−s+1)
.

This density corresponds to a (G− 1)-dimensional elliptical t-distribution with

n− s−G+ 2 degrees of freedom, mean E(Ĥ12Ĥ
−1
22 ) = H12H

−1
22 and

Cov(Ĥ12Ĥ
−1
22 ) =

1

n− s−G

D�
ARDA

e�j Σ
−1
AAej

.

Lemma 11. With probability at least 1−O(log−1(n))

|||(WAA+DAD
�
A)

−1|||∞ ≤
√
s|||(ΣAA+ΔAΔ

�
A)

−1|||2

(
1 +O

(√
s log(log(n))

n

))
.

Proof of Lemma 11. First, we prove that unconditional distribution of XAi ∈
R

s, i = 1, . . . , n, is sub-gaussian: for all x ∈ R
s, < XAi, x > is sub-gaussian.

Since XAi|Yi = g ∼ N (μgA,ΣAA), XAi can be expressed as

XAi = CAi + ZAi,

where ZAi ∼ N (0,ΣAA) and P (CAi = μgA) = πg for g = 1, . . . , G. Let x̃ =
〈XAi, x〉, c̃ = 〈CAi, x〉 and z̃ = 〈ZAi, x〉. Then x̃ = c̃ + z̃. Consider the sub-
gaussian norm of x̃ [21, Definition 5.7]

‖x̃‖ψ2 = sup
d≥1

d−1/2
(
E|x̃|d

)1/d
.

By triangle inequality, ‖x̃‖ψ2 ≤ ‖c̃‖ψ2 + ‖z̃‖ψ2 . Note that ‖c̃‖ψ2 is finite for all
x since CAi is a bounded random vector, and ‖z̃‖ψ2 is finite for all x since ZAi

is a zero-mean gaussian random vector. It follows that ‖x̃‖ψ2 is finite for all x,
hence XAi is unconditionally sub-gaussian.

By definition, ΣAA+ΔAΔ
�
A is unconditional population covariance matrix of

XA and WAA+DAD
�
A is unconditional sample covariance matrix of XA. Using

Theorem 5.39 in [21], with probability at least 1− log−1(n)

|||(ΣAA +ΔAΔ
�
A)

−1/2(WAA +DAD
�
A)(ΣAA +ΔAΔ

�
A)

−1/2 − I|||2

≤ C

√
s log(log(n))

n
.

By submultiplicity of operator norm,

|||(WAA +DAD
�
A)

−1 − (ΣAA +ΔAΔ
�
A)

−1|||2
≤ |||(ΣAA +ΔAΔ

�
A)

−1|||2×
× |||(ΣAA +ΔAΔ

�
A)

1/2(WAA +DAD
�
A)

−1(ΣAA +ΔAΔ
�
A)

1/2 − I|||2.
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Therefore, with probability at least 1− log−1(n)

|||(WAA +DAD
�
A)

−1 − (ΣAA +ΔAΔ
�
A)

−1|||2

≤ C|||(ΣAA +ΔAΔ
�
A)

−1|||2
√

s log(log(n))

n
.

By triangle inequality,

|||(WAA +DAD
�
A)

−1|||∞
≤ |||(ΣAA +ΔAΔ

�
A)

−1|||∞ + |||(ΣAA +ΔAΔ
�
A)

−1 − (WAA +DAD
�
A)

−1|||∞
≤

√
s|||(ΣAA +ΔAΔ

�
A)

−1|||2 +
√
s|||(ΣAA +ΔAΔ

�
A)

−1 − (WAA +DAD
�
A)

−1|||2

≤
√
s|||(ΣAA +ΔAΔ

�
A)

−1|||2

(
1 +O

(√
s log(log(n))

n

))
.

Lemma 12. With probability at least 1− log−1(n)

|||D�
AΣ

−1
AADA −D�

AW
−1
AADA|||2 ≤ C|||D�

AΣ
−1
AADA|||2

√
(G− 1) log(log(n))

n
.

Proof of Lemma 12. By submultiplicity of operator norm,

|||D�
AΣ

−1
AADA −D�

AW
−1
AADA|||2

≤ |||D�
AΣ

−1
AADA|||2|||I − (D�

AΣ
−1
AADA)

−1/2D�
AW

−1
AADA(D

�
AΣ

−1
AADA)

−1/2|||2.

By Theorem 3.2.5 and Theorem 3.2.11 in [15],

(n−G)(D�
AΣ

−1
AADA)

1/2(D�
AW

−1
AADA)

−1(D�
AΣ

−1
AADA)

1/2 ∼ WG−1(n− s− 1, I).

By Lemma 9 in [22], with probability at most 2 exp
(
−(n− s− 1)t2/2

)
,

|||(D�
AΣ

−1
AADA)

−1/2D�
AW

−1
AADA(D

�
AΣ

−1
AADA)

−1/2 − I|||2

≥ (n−G)δ(n− s− 1, G− 1, t)

n− s− 1
,

where

δ(n− s− 1, G− 1, t) = 2

(√
G− 1

n− s− 1
+ t

)
+

(√
G− 1

n− s− 1
+ t

)2

.

Let

t =

√
2 log(2 log n))

n− s− 1
.

Then with probability at least 1− log−1(n)

|||n− s− 1

n−G
(D�

AΣ
−1
AADA)

−1/2D�
AW

−1
AADA(D

�
AΣ

−1
AADA)

−1/2 − I|||2
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≤ 8

√
2(G− 1) log(2 log(n))

n− s− 1
.

Hence, with probability at least 1− log−1(n)

|||(D�
AΣ

−1
AADA)

−1/2D�
AW

−1
AADA(D

�
AΣ

−1
AADA)

−1/2 − I|||2

≤ C

√
(G− 1) log(log(n))

n
.

Lemma 13. With probability at least 1− log−1(n)

|||D�
AΣ

−1
AADA|||2 ≤ (G− 1)|||Δ�

AΣ
−1
AAΔA|||2

+O
(
(G− 1)s log(log(n))

n
∨
√
|||Δ�

AΣ
−1
AAΔA|||2

(G− 1) log(log(n))

n

)
.

Proof of Lemma 13. Since D�
AΣ

−1
AADA is a positive semi-definite matrix,

|||D�
AΣ

−1
AADA|||2 ≤ Tr(D�

AΣ
−1
AADA).

Recall that DA ∼ N (ΔA,ΣAA/n⊗ I). Therefore for all i ∈ {1, .., (G− 1)}

ne�i D
�
AΣ

−1
AADAei ∼ χ2

s

(
ne�i Δ

�
AΣ

−1
AAΔAei

)
.

From [9, Lemma 11], for all i ∈ {1, .., (G − 1)}, with probability at least 1 −
log−1(n),

e�i D
�
AΣ

−1
AADAei ≤ e�i Δ

�
AΣ

−1
AAΔAei

+O
(
s log((G− 1) log(n))

n
∨
√
e�i Δ

�
AΣ

−1
AAΔAei

log((G− 1) log(n))

n

)
,

or equivalently

Tr(D�
AΣ

−1
AADA) ≤ Tr(Δ�

AΣ
−1
AAΔA)

+O
(
(G− 1)s log((G− 1) log(n))

n
∨
√
Tr(Δ�

AΣ
−1
AAΔA)

log((G− 1) log(n))

n

)
.

Since Tr(Δ�
AΣ

−1
AAΔA) ≤ (G − 1)|||Δ�

AΣ
−1
AAΔA|||2 and G = O(1), it follows that

with probability at least 1− log−1(n)

|||D�
AΣ

−1
AADA|||2 ≤ (G− 1)|||Δ�

AΣ
−1
AAΔA|||2

+O
(
(G− 1)s log(log(n))

n
∨
√

|||Δ�
AΣ

−1
AAΔA|||2

(G− 1) log(log(n))

n

)
.

Lemma 14. With probability at least 1−O(log−1(n))

|||D�
AW

−1
AADA|||2 ≤ C|||Δ�

AΣ
−1
AAΔA|||2

+O
(
(G− 1)s log(log(n))

n
∨
√
|||Δ�

AΣ
−1
AAΔA|||2

(G− 1) log(log(n))

n

)
.
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Proof of Lemma 14. By triangle inequality and Lemma 13,

|||D�
AW

−1
AADA|||2 =

|||D�
AW

−1
AADA|||2

|||D�
AΣ

−1
AADA|||2

|||D�
AΣ

−1
AADA|||2

≤ |||D�
AW

−1
AADA|||2

|||D�
AΣ

−1
AADA|||2

(
(G− 1)|||Δ�

AΣ
−1
AAΔA|||2

+O
(
(G− 1)s log(log(n))

n
∨
√
|||Δ�

AΣ
−1
AAΔA|||2

(G− 1) log(log(n))

n

))
.

From Lemma 12, with probability at least 1− log−1(n)

|||D�
AW

−1
AADA|||2

|||D�
AΣ

−1
AADA|||2

≤|||D�
AΣ

−1
AADA|||2 + |||D�

AW
−1
AADA −D�

AΣ
−1
AADA|||2

|||D�
AΣ

−1
AADA|||2

≤1 + C

√
(G− 1) log(log(n))

n

≤C ′.

Combining with the previous display, we obtain with probability at least 1 −
O(log−1(n)) that

|||D�
AW

−1
AADA|||2 ≤ C|||Δ�

AΣ
−1
AAΔA|||2

+O
(
(G− 1)s log(log(n))

n
∨
√

|||Δ�
AΣ

−1
AAΔA|||2

(G− 1) log(log(n))

n

)
.
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