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Multivariate sharp quadratic bounds

via Σ-strong convexity and the Fenchel

connection
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Abstract: Sharp majorization is extended to the multivariate case. To
achieve this, the notions of σ-strong convexity, monotonicity, and one-sided
Lipschitz continuity are extended to Σ-strong convexity, monotonicity, and
Lipschitz continuity, respectively. The connection between a convex func-
tion and its Fenchel-Legendre transform is then developed. Sharp majoriza-
tion is illustrated in single and multiple dimensions, and we show that these
extensions yield improvements on bounds given within the literature. The
new methodology introduced herein is used to develop a variational ap-
proximation for the Bayesian multinomial regression model.
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1. Introduction

With the ever increasing importance of computational tasks in statistics, the
class of majorization-maximization algorithms is becoming ever more relevant
[7, 10, 14, 11]. Suppose a complicated objective function f is to be minimized.
This can be achieved iteratively by constructing a majorizing function g at the
current solution xk and finding a new solution xk+1 by minimizing the ma-
jorization function. Such an algorithm is an MM algorithm of the majorization-
minimization variety, cf. [11]. A function g majorizes a function f at a point y
if g(y) = f(y) and g(x) ≥ f(x) for all x �= y. Majorization-minimization algo-
rithms are useful when a majorizing function g is easier to minimize than the
original objective function f .

[7] present a detailed examination of majorization-minimization with univari-
ate quadratic majorizing functions, i.e., they find sharp quadratic univariate
majorizers that are ‘closest’ to the original function. In this paper, the connec-
tion between majorization of f and minorization of f∗, the Fenchel-Legendre
transform of f , is illustrated. Notably, this is done both in the univariate and
multivariate cases. Before this connection can be established, the notions of σ-
strong convexity, monotonicity, and one-sided Lipschitz continuity are extended
to Σ-strong convexity, monotonicity, and Lipschitz continuity, respectively.

First, the notions of σ-strong convexity and monotonicity are presented (Sec-
tion 2.1). Section 2.2 extends these definitions and gives a theorem that estab-
lishes the connection amongst the concepts. In Section 3, the relationship be-
tween quadratic majorization of f and quadratic minorization of f∗ is proved.
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The principles in Sections 2.2 and 3 are then illustrated via univariate and mul-
tivariate examples (Section 4). In Section 5, the new methodology is used to
develop a variational approximation for Bayesian multinomial regression, and
the resulting method is used to analyze data on the prevalence of pneumoconiosis
among coalminers. Then a simulation is carried out to study the computational
efficiency of our approach (Section 6), and the paper concludes with a brief
discussion (Section 7).

2. Methodology

2.1. Background definitions

A function f : Rn → R is convex if

f((1− α)y + αx) � (1− α)f(y) + αf(x) (1)

for all x,y ∈ R
n and α ∈ (0, 1). Given a differentiable convex function f and

expansion point y, a supporting hyperplane can be constructed such that

f(x) � f(y) +∇f(x) (x− y) (2)

for all x,y ∈ R
n.

For any function f : Rn → R, the Legendre-Fenchel transform or conjugate
function is the function f∗ : Rn → R given by

f∗(p) := sup
x

{p′x− f(x)} . (3)

Note that the function f∗ is convex and closed regardless of whether f is convex
because it is the intersection of the epigraphs of the linear functions of p. The
conjugate of the conjugate, f∗∗, will not be the original function f ; however,
by the conjugacy theorem, if f is convex and closed then f∗∗ = f . The Fenchel
inequality shows that the functions f and f∗ satisfy

f(x) + f∗(p) ≥ p′x

for all x,p; cf. [17] for a general discussion of the Legendre-Fenchel transform.
A function f : Rn → R is σ-strongly convex if there is a constant σ > 0 such

that

f((1− α)y + αx) � (1− α)f(y) + αf(x)− σ

2
α(1− α) ‖ y − x ‖2 (4)

for all x,y ∈ R
k and α ∈ (0, 1). A mapping T : Rn → R

n is called monotone if
it has the property that

(T (x)− T (y))
′
(x− y) = (p− q)

′
(x− y) � 0 (5)

whenever q ∈ T (y) and p ∈ T (x), and strictly monotone if this inequality is
strict when y �= x. A function f is σ-strong monotone if

(T (x)− T (y))
′
(x− y) = (p− q)

′
(x− y) � σ ‖ y − x ‖2 (6)

whenever q ∈ T (y) and p ∈ T (x).
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2.2. Definitions

A function f : Rn → R is Σ-strongly convex if there is a positive definite matrix
Σ � 0 such that

f((1− α)y + αx) � (1− α)f(y) + αf(x)− 1

2
α(1− α) (y − x)

′
Σ (y − x) (7)

for all y,x ∈ Rn and α ∈ (0, 1).
A mapping T : Rn → R

n is Σ-strong monotone if there exists a positive
definite matrix Σ � 0 such that T −Σ is monotone that is

[(p−Σx)− (q−Σy)]
′
(x− y) � 0 (8)

whenever q ∈ T (y) and p ∈ T (x). Equivalently, we have (p− q)
′
(x− y) �

(x− y)
′
Σ (x− y).

A function T : Rn → R
n is one-sided Lipschitz continuous on C if there exists

a positive definite matrix Σ � 0 such that

(T (x)− T (y))
′
(x− y) � (x− y)

′
Σ (x− y) (9)

for all x,y ∈ C. In this case, Σ is called the Lipschitz matrix on C. This is an
extension of one-sided Lipschitz continuity, cf. [9].

If a function is one-sided Lipschitz continuous with Lipschitz matrixΣ then it
is Lipschitz continuous with a constant λmax(Σ) because λmax(Σ)Ip � Σ, where
λmax(Σ) is the largest eigenvalue of Σ. If a mapping is Σ-strong monotone then
it is σ-strong monotone because Σ � Ipλmin(Σ), where λmin(Σ) is the smallest
eigenvalue of Σ. If a mapping is Σ-strong convex then it is σ-strong convex
because Σ � Ipλmin(Σ).

2.3. Theorems

Proofs for the following theorems are given in Appendix A.

Theorem 2.1 (Σ-strong Equivalenence). Given a function f and a positive
definite matrix Σ � 0, the following are equivalent:

1. f(y) is Σ-strongly convex.
2. h(y) = f(y)− 1

2y
′Σy is convex.

3. ∇f is Σ-strongly monotone.
4. f(x) � f(y) +∇f(y)′ (x− y) + 1

2 (x− y)
′
Σ (x− y), for all y,x ∈ R

n.

Theorem 2.2 (Σ-Bounds). Given a function f and a positive definite matrix
Σ � 0, the following are equivalent:

1. ∇f is one-sided Σ-Lipschitz continuous.
2. f(x) � f(y) +∇f(x)′ (x− y) + 1

2 (x− y)
′
Σ (x− y), for all x,y ∈ R

n.
3. For some x, y ∈ R and t ∈ [0, 1], f satisfies

f(tx+(1− t)y) � tf(x)+(1− t)f(y)− 1

2
t(1− t) (x− y)

′
Σ (x− y) . (10)
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Theorem 2.3 (Σ-strong Dualization). Given a function f and a positive defi-
nite matrix Σ � 0, the following are equivalent:

1. f has a quadratic upper bound

f(x) � f(y) +∇f(y)′ (x− y) +
1

2
(x− y)

′
Σ (x− y) , (11)

for all x,y ∈ R
n.

2. f∗ has a quadratic lower bound

f(p) � f(q) +∇f(q)′ (p− q) +
1

2
(p− q)

′
Σ−1 (p− q) , (12)

for all q,p.

Corollary 2.4 (The Σ−1-strong gradient inequality). If f∗ is Σ−1-strong con-
vex, then ∇f and ∇f∗ satisfy the inequality

0 � (p− q)
′
Σ−1 (p− q) � (p− q)

′
(x− y) � (x− y)

′
Σ (x− y) (13)

for any q ∈ ∇f(y) and p ∈ ∇f(x) or, equivalently, y ∈ ∇f∗(q) and x ∈
∇f∗(p).

Proof. f∗ being Σ−1-strong convex is equivalent to ∇f∗ being Σ−1-strong
monotone, which is the left side of inequality. For the right side, by combing the
Σ−1-strong dualization theorem and the Σ bound theorem, this is equivalent
to f being one-sided Lipschitiz continuous with a matrix Σ.

3. Sharp quadratic majorization

A quadratic function q(x|y, f,Σ) is aΣ-quadratic majorizor of f(x) at the point
y if

f(x) � q(x|y, f,Σ) = f(y) +∇f(y)′ (x− y) +
1

2
(x− y)

′
Σ (x− y) (14)

for all x and any Σ � 0. A quadratic majorizor q(x|y, f,Σ∗) of f(x) at y
is the sharp quadratic majorizer if q(x|y, f,Σ∗) � q(x|y, f,Σ) for all x or,
equivalently, Σ 	 Σ∗ � 0.

A quadratic function q(x|y, f,Σ) is a Σ-quadratic minorizor of f(x) at the
point y if

f(x) � q(x|y, f,Σ) = f(y) +∇f(y)′ (x− y) +
1

2
(x− y)

′
Σ (x− y) (15)

for all x and any Σ � 0. A quadratic minorizor q(x|y, f,Σ∗) of f(x) at y
is the sharp quadratic minorizor if q(x|y, f,Σ∗) � q(x|y, f,Σ) for all x or,
equivalently, Σ 	 Σ∗ � 0.

Lemma 3.1 (Σ-Sharp Quadratic Dualization (Majorization-Minorization)).
A matrix Σ is the sharp quadratic majorizor of a convex function f if and
only if Σ−1 is the sharp quadratic minorizor of f∗.
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Proof. By contradiction. Assume that Σ is the sharp quadratic majorizor of f
and Σ−1

∗ is the sharp quadratic minorizor of f∗, where Σ �= Σ∗. By the strong
dualization theorem, Σ−1 is a quadratic minorizor of f∗ and Σ∗ is a quadratic
majorizor of f . Because Σ is the sharp quadratic majorizor of f and Σ−1

∗ is
the sharp quadratic minorizor of f∗, we have that Σ∗ 	 Σ and Σ−1

∗ 	 Σ−1.
However, by the properties of Löwner ordering, if Σ∗ 	 Σ then Σ−1 	 Σ−1

∗ ;
however, we require Σ−1

∗ 	 Σ−1 because Σ−1
∗ is the sharp quadratic minorizor

of f∗. This can only be true if Σ−1 = Σ−1
∗ , which is a contradiction.

4. Examples of sharp quadratic majorization

In this section, we illustrate the above methodology in univariate and multivari-
ate cases. The univariate case illustrates duality with other results within the
literature. The multivariate case presents a solution that could not be obtained
without the methodology presented herein.

4.1. Univariate example: Univariate logistic function

The Fenchel connection is illustrated and compared with results obtained from
[7], who examined sharp quadratic majorization in the univariate case. We begin
this comparison with a Taylor expansion with the remainder in integral form
for a convex function f(x) at the expansion point y, i.e.,

f(x) = f(y) + f ′(y)(x− y) +
(x− y)2

2
a(x, y),

where

a(x, y) = 2

∫ 1

0

(1− t)f ′′(t)(y + t(x− y))dt.

If a(x, y) is bounded, we can form a quadratic majorization function. In sharp
quadratic majorization, we are interested in σ(y) = supx a(x, y) for a particular
y because we can form the sharp majorization function with the property

f(x) � f(y) + f ′(y)(x− y) +
(x− y)2

2
σ(y).

We are interested in the latter term. If the supx a(x, y) is attained at z �= y,
then the results of [7] tell us we have

σ(y) =
f ′(z)− f ′(y)

z − y
(16)

and we can see duality via

1

σ
=

z − y

f ′(z)− f ′(y)
=

g′(w)− g′(q)

w − q
, (17)

where g = f∗, the Fenchel transform of f .
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For the univariate logistic function, we have

f(x) = log (1 + ex) , f ′(x) =
1

(1 + e−x)
, and f ′′(x) =

ex

(1 + ex)
2 . (18)

Note, the second derivative is bounded above by 1/4.
[5] suggest using a bound on the second derivative for the binomial function.

We have

a(x, y) = 2

∫ 1

0

(1− t)f ′′(t)(y + t(x− y))dt ≤ 2

∫ 1

0

(1− t)
1

4
dt =

1

4
.

The quadratic majorization function based on the Böhning bound is

f(x) = f(y) + f ′(y)(x− y) +
1

2

1

4
(x− y)2.

[12] use convexity as an argument for their bound. [7] show that it can be a
one-dimensional sharp quadratic bound. Here, we motive it through minimizing
the Taylor remainder for an expansion point y. Using integration by parts, we
obtain

a(x, y) =
f ′(y)(x− y) + f(x)− f(y)

1
2 (x− y)2

.

Taking the derivative and solving gives

σ(y) = a(−y, y) =
f ′(y)(−2y)− y

2y2
=

1

y

(
1

1 + e−y
− 1

2

)
,

which is the bound used by [12]. This bound minimizes the remainder term for
a quadratic Taylor expansion at a particular expansion point a; thus, it is the
sharp quadratic majorization bound.

The Fenchel transform for the univariate logistic function is

g(p) = f∗(p) = p log(p) + (1− p) log(1− p),

for p ∈ (0, 1); accordingly,

g′(p) = log(p)− log(1− p) and g′′(p) =
1

p
+

1

1− p
.

The second derivative is bounded below by 4. The Taylor expansion in remainder
form of the Fenchel transform at a given point p is

g(p) = g(q) + g′(q)(p− q) +
(p− q)2

2
b(x, y),

where

b(p, q) = 2

∫ 1

0

(1− t)g′′(t)(q + t(p− q))dt =
g′(q)(p− q) + g(p)− g(q)

1
2 (p− q)2

.
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Fig 1. Plots comparing the bounds on the univariate function f(x) = log(1 + ex) and its
conjugate function p log(p) + (1 − p) log(1 − p) using the expansion point y = 2 or q = 0.88.
The black, dashed-blue, and red lines represent the function, the sharp quadratic bound, and
the Böhning quadratic bound, respectively.

Now, we want the sharp quadratic minorization bound,

g(p) ≥ g(q) + g′(q)(p− q) +
(p− q)2

2
λ(q),

where λ(q) ≥ b(p, q) for all p. We find that

λ(q) = b(1− q, q) =
g′(1− q)(1− q− q) + g(1− p)− g(q)

1
2 (1− q− q)2

=
log(1− q)− log(q)

1
2 (1− 2q)

.

Note that when q = f ′(y) or y = g′(q), we have the relation 1/λ(q) = σ(y).
Now, we illustrate and compare the univariate bounds in Figure 1, which is

obtained using the expansion point y = 2 and the conjugate expansion point
q = e2/(1 + e2) ≈ 0.88, and then computing the corresponding sharp bounds
using the functions σ(y) = 0.19 and λ(q) = 5.25. The sharp upper quadratic
bound (y = 2, q = 0.88) is

log (1 + ex) ≤ 2.13 + 0.88(x− 2) +
0.19

2
(x− 2)

2
,

and the corresponding sharp lower bound for conjugate function using the ex-
pansion q = e2/(1 + e2) = 0.88 is

p log (p) + (1− p) log (1− p) ≥ −0.37 + 2(x− 2) +
5.25

2
(x− 0.88)

2
.

4.2. Multivariate example: Multivariate log-exp function

Here, we illustrate the Fenchel connection in the multivariate setting and then
obtain a new quadratic majorization function that cannot be obtained with-
out the methodology introduced herein. Then, this new quadratic majorization
function is compared to the quadratic majorization function given by [5].

The multivariate log-exp function is

f(x) = log

⎛
⎝1 +

k∑
j=1

exj

⎞
⎠ , (19)
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for x ∈ R
k. Its gradient and Hessian are given by

∇f(x) =

(
ex1

1 +
∑k

j=1 e
xj

, . . . ,
exp

1 +
∑k

j=1 e
xj

)
and

∇2f(x) = diag(∇f(x))−∇f(x)∇f(x)′,

(20)

respectively, and we note that the Hessian is bounded. The Fenchel transform
for f is given by

f∗(p) =
k∑

j=1

pj log pj +

⎛
⎝1−

k∑
j=1

pj

⎞
⎠ log

⎛
⎝1−

k∑
j=1

pj

⎞
⎠ , (21)

for all pj > 0, j = 1, . . . , k, and
∑k

j=1 pj < 1. The gradient and Hessian of the
Fenchel transform are given by

∇f∗(p) = (log p1, . . . , log pk)− log

⎛
⎝1−

k∑
j=1

pj

⎞
⎠1k,

=

⎛
⎝log p1 − log

⎛
⎝1−

k∑
j=1

pj

⎞
⎠ , . . . , log pk − log

⎛
⎝1−

k∑
j=1

pj

⎞
⎠
⎞
⎠ ,

and

∇2f∗(p) = diag

(
1

p1
, . . . ,

1

pk

)
+

(
1

1−
∑k

j=1 pj

)
J, (22)

respectively, where J is a k × k matrix of ones. Note the duality between the

Hessians of f and f∗, i.e., ∇2f(x) =
[
∇2f∗(p)

]−1
, where p = ∇f(x) or x =

∇f∗(p).
[5] show that the matrix

B =
1

2

[
In − 1

n+ 1
Jn

]

has the property that B 	 ∇2f and can be used as a quadratic majorization
bound in this case.

A multivariate Taylor expansion for a function f(x) at the point y is

f(x) = f(y) +∇f(y)(x− y) +
1

2
(x− y)′∇2f(c)(x− y), (23)

where ∇2f(c) is the Hessian evaluated at some point c on the line connecting
a to y. A multivariate Taylor expansion with the remainder in integral form is
given by

f(x) = f(y) +∇f(y)(x− y) +
1

2
(x− y)′A(x,y)(x− y),



Multivariate sharp quadratic bounds 1921

where

A(x,y) = 2

∫ 1

0

(1− t)∇2f (x+ t(y − x)) dt. (24)

Note, the integral is with respect to each element of A(x,y).
We cannot derive an optimal bound via the direct method here because the

integral involving ∇2f in (24) does not have a closed form. However, the integral
involving ∇2f∗ has a closed form.

4.2.1. Deriving the Böhning bound via the Fenchel connection

The Hessian of the Fenchel transform of f is given in (22). For any vector v, we
have

v′ [∇2f∗(q)
]
v =

n∑
j=1

v2j
qj

+

(∑n
j=1 vj

)2
1−

∑n
j=1 qj

. (25)

Now, we put a bound on this expression for any q ∈ Sp, the p-simplex. One
particular bound can be obtained by using a matrix of the same form, namely
B−1 = D + λJ (because we are actually interested in B), where D = diag(d1,
. . ., dn). This gives

v′B−1v = v′ [D+ λJ]v =

n∑
j=1

djv
2
j + λ

⎛
⎝ n∑

j=1

vj

⎞
⎠

2

. (26)

We can ensure that ∇2f∗(q) � B−1, if all d1 = · · · = dn = λ = 2. Therefore,
because B−1 is similar to a rank-one update, we can obtain its inverse

B−1 = 2 [In + Jn] ⇒ B =
1

2

[
In − 1

n+ 1
Jn

]
, (27)

which is the Böhning bound derived by [5].

4.2.2. Multivariate Taylor expansion for conjugate function

If q = (q1, . . . , qn) and p = (p1, . . . , pn), then

A (p,q) =

[
2

∫ 1

0

(1− t)∇2f∗ (q+ t(p− q)) dt

]
= diag (δ(p1, q1), . . . , δ(pn, qn)) + δ(pn+1, qn+1)J, (28)

where

δ(p, q) = 2
q − p+ p [log(p)− log(q)]

(p− q)
2 , (29)

for j = 1, . . . , n, pn+1 = 1 −
∑n

j=1 pj , and qn+1 = 1 −
∑n

j=1 qj . Now, we need
to find a matrix E(q) such that A(p,q) 	 E(q) for all p. If we minimize
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A (p,q) or minimize each δ(p, q) with respect to (p1, . . . , pn) and (q1, . . . , qn),
then we obtain the Böhning bound. Another approach is to find such an E(p) by
minimizing each δ(pj , qj) with respect to pj , for j = 1, . . . , n, n+1, individually.
The function δ(p, q) is monotone decreasing over (0,1) with respect to p and so
a natural bound would be

a(q) = lim
p→1

δ(p, q) = 2
q − 1− log(q)

(1− q)
2 . (30)

Thus, we can construct E(q) = diag (a(q1), . . . , a(qn)) + a(qn+1)J. However, if
any qj is bigger than ≈ 0.316, then a(q) will be less than 2 and we know from
the derivation of the Böhning bound that a global bound for δ(p, q) is 2. To
adjust our bound we set

m(q) = 2×max

{
q − 1− log(q)

(1− q)
2 , 1

}
(31)

and construct M(q) in a similar manner to E(q) but with elements given by
(31). Note that as the dimensions increase, any particular qj will be less than
≈ 0.316 implying that m(qj) will be equal to a(qj). Note that if n = 1 then
M(q) is not equal to the bound given by [12].

4.2.3. Comparison to the Böhning bound

The bounds are compared in two dimensions so that they can be plotted as
ellipsoids, presenting a nice visual illustration (Figure 2). To generate these
plots, we choose points in the conjugate space p and then generate the quadratic
term A(p,q) for each p from the expansion point q. Because we are interested
in the original space, A(p,q)−1 is plotted. In Figure 2: the matrix E(q)−1,
which bounds each δ(pj , qj), is in black; M(q)−1, which adjusts the bounds
accordingly, is in blue; and both the multivariate B and ‘univariate’ (1/2)I
Böhning bounds are shown in red. From these plots, we see that bounds we
derive via the Fenchel connection are at least as tight as the Böhning bounds
and, in some cases, are much sharper.

5. A variational approximation for Bayesian multinomial regression

5.1. The variational approximation

In this section, we utilize the methodology from the previous section to develop
a variational approximation for Bayesian multinomial regression. This extends
the work of [12], who used a variational approximation for Bayesian (binary)
logistic regression. This provides an alternative to the frequentist paradigm for
this model.

Variational Bayes approximations are an iterative Bayesian alternative to
the EM algorithm. They have been used for parameter estimation in a variety
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Fig 2. Plots to compare bounds derived via the Fenchel connection with Böhning bounds.
Green ellipsoids represent a sample of A(p,q)−1 from randomly selecting 10 q uniformly
over the 2-simplex. Inner red ellipsoids are Böhning bounds B, and outer red ellipsoids are
1
2
I. The matrix M(q)−1 is a dashed blue line and the matrix E(q)−1 is a black line.

of settings, including graphical models [13], mixture modelling [6, 19, 16, 18],
and mixtures of experts [21]. Variational Bayes approximations have become in-
creasingly popular over the past decade or so due to their fast and deterministic
nature as well as the ability to perform simultaneous model selection and param-
eter estimation. This latter feature circumvents the need for a model selection
criterion, which can significantly reduce the associated computational overhead.
The joint conditional distribution of the parameters and the missing data is
approximated by constructing a tight lower bound on the data marginal likeli-
hood using a computationally convenient density. This approximating density is
obtained by minimizing the Kullback–Leibler (KL) divergence between the true
and approximating densities [c.f., 3, 16]. Due to the non-negative property of
the KL divergence, minimizing the KL divergence is equivalent to maximizing
the (tight) lower bound.

We assume a Gaussian prior for the regression coefficients in the Bayesian
multinomial regression model. The likelihood function for the multinomial re-
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gression model can be constructed by writing a single categorical random vari-
able y, with k+1 distinct categories, as a vector y = (y1, . . . , yk) with dimension
k where ys = 1 if y is equal to category s and zero otherwise for s = 1, . . . , k.
Let Y = (y1, . . . ,yn) be n × k matrix of responses and X = (x1, . . . ,xn) be a
n × p matrix of covariates, then the likelihood for the multinomial regression
model can be written

g(Y|X,Θ) = exp

[
n∑

i=1

x′
iΘyi −

n∑
i=1

f (x′
iΘ)

]
, (32)

where Θ is a p× k matrix of regression coefficients and the function g (z) is the
multivariate log-exp sum function. The posterior density of Θ is

g(Θ|Y) =
g(Y,Θ)∫
g(Y,Θ)dΘ

, (33)

which cannot be obtained in closed form. Luckily, the multivariate log-exp sum
function is Σ-strong convex; accordingly, using the methodology developed in
the previous section, we can create a surrogate function q based on the expansion
point ξ, i.e.,

f(z) = log

(
1 +

k∑
i=1

ezi

)

≤ q(z|ξ) = f(ξ)−∇f(ξ)′(z− ξ)− 1

2
(z− ξ)′M(ξ)−1(z− ξ),

(34)

where the matrixM(ξ) has the form given in (28) and has elements equal to (31)
along with q = ∇f(ξ) given in (20). The lower bound of the joint distribution
g(Y,Θ) is given by

g(Y,X,Θ|ξ) = exp

[
n∑

i=1

x′
iΘyi −

n∑
i=1

q(x′
iΘ|ξi)−

p+ 1

2
log(2π)− 1

2
log |Ψ|

− 1

2
μ′Ψ−1μ

]
.

The log of the variational bound can be written

log g(Y,Θ|Ξ) = −1

2
vec (Θ)

′
{

n∑
i=1

[
M(ξi)

−1 ⊗ xix
′
i

]
+Ψ−1

}
vec (Θ)

+

{
n∑

i=1

[
y′
i −∇f(ξi)

′ + ξ′iM(ξi)
−1
]
⊗ x′

i + μΨ−1

}
vec (Θ)− p+ 1

2
log(2π)

−
n∑

i=1

{
f(ξi)−∇f(ξi)

′ξi +
1

2
ξ′iM(ξi)

−1ξi

}
− 1

2
log |Ψ| − 1

2
μ′Ψ−1μ,

(35)

where Ξ = (ξ1, . . . , ξn). This lower bound is proportional to a multivariate
density with respect toΘ. It follows that the posterior variational approximation
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of vec(Θ)|Y,Ξ is multivariate normal with mean vec(η) and variance Ω, where

Ω(t+1) :=

{
n∑

i=1

[
M(ξi)

−1 ⊗ xix
′
i

]
+Ψ−1

}−1

, (36)

vec
(
η(t+1)

)
:= Ω(t+1)

{
n∑

i=1

[
y′
i −∇f(ξi)

′ + ξ′iM(ξi)
−1
]
⊗ x′

i + μΨ−1

}
. (37)

To determine the matrix of the variational parameters Ξ, where each ξi ∈ R
k,

we make the variational approximation as close to the true density as possible.
Because the variational approximation is a lower bound, we only need to focus
on the variational parameter Ξ. We follow [12] and develop a method based
on the expectation-maximization (EM) algorithm [8], where Θ is taken to be a
latent variable. We follow this methodology and take the complete-data to be
(Y,Θ). In the E-step, we obtain the function

Q
(
Ξ(t+1)

∣∣Ξ(t)
)
= EΘ|Y,Ξ(t)

[
log g(Y,Θ|Ξ(t+1))

]
. (38)

Then, to minimize the difference between the true and approximating density,
we minimize (38) with respect to each variational parameter ξi.

Similarly to [12], we obtain an explicit expression for updating each ξ based
on the gradient, and the derivation is given Appendix B. The updates for each
row of ξ are given by

ξ
(t+1)
i = ẑi + (M−1 +H)−1 (w′H+ ωq) , (39)

where

w =
1

2
m′

{
diag

(
M−1(ẑi − ξ)�M−1(ẑi − ξ)

)
+M−1ẐiM

−1 � Ik

}
,

ω =
1

2

{(
1′
kM

−1(ẑi − ξ)
)2

+ 1′
kM

−1ẐiM
−11k

}
qk+1m

′ (qk+1) ,

ẑi = x′
iη = (Ik ⊗ x′

i)η, and Ẑi = (Ik ⊗ x′
i)Ω (Ik ⊗ xi).

We then iterate based on equations (36), (37), and (39).

5.2. The prevalence of pneumoconiosis among coalminers

To illustrate our variational approximation for Bayesian multinomial regression,
we consider data from [1] concerning the degree of pneumoconiosis in coalface
workers as a function of exposure measured in years. The severity of disease
is measured radiologically and each man is assigned to one of three classes
according to the degree of abnormality revealed in his X-ray. The data are
reproduced in Table 1. [15] analyze this data set in the frequentist framework
using a logit model, whereas [1] use a probit model and obtain comparable
results. We follow them and use the log-years exposed as the covariate because
as shown in Figure 3 this leads to a linear relationship between with the degree
of abnormalities and the covariate log-years.
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Table 1

Period of exposure and prevalence of pneumoconiosis amongst a group of coalminers

Exposure (years) Category I: normal Category II Category III: severe
5.8 98 0 0
15.0 51 2 1
21.5 34 6 3
27.5 35 5 8
33.5 32 10 9
39.5 23 7 8
46.0 12 6 10
51.5 4 2 5

Table 2

Posterior means and 95% credible intervals for the parameters from the Bayesian
multinomial regression model applied to the coalminers data

Parameter Mean lower CI upper CI
αII 10.401 9.429 11.373
αIII 10.254 9.282 11.226
β 2.582 2.281 2.883

Fig 3. The degree of pneumoconiosis versus log-years of exposure amongst a group of coalmin-
ers, where the dashed blue line is Category I (normal), the dashed red line is Category II,
and the solid black line is Category III (severe).

In our analysis, we use a multivariate normal prior for the parameters with
mean equal to 04 and covariance matrix 1000× I4. We use Category I (i.e., nor-
mal) as the reference level. Both [1] and [15] assume a common slope parameter
and different intercepts. We incorporate a common slope parameter into the
Bayesian multinomial regression framework by letting vec(Θ) = P(αII, αIII, β)

′,
where P is given by

P =

⎡
⎢⎢⎣

1 0 0
0 0 1
0 1 0
0 0 1

⎤
⎥⎥⎦ .
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6. An MM algorithm for multinomial regression

To assess the relative computational efficiency of the M bound (31) and the B
bound (27), we compare them in the context of multinomial regression. An MM
algorithm is discussed in Section 6.1 and a simulation study in then performed
in Section 6.2.

6.1. The multinomial regression

In multinomial regression we maximize the likelihood function, i.e., (32), given
the data. Because the estimates cannot be determined in closed form, an itera-
tively reweighted least squares technique is usually employed to find the max-
imum likelihood estimates. An alternative approach is to use the lower bound
technique from [4], which fits within the class of MM algorithms [11, 14]. Herein,
we derive a novel MM algorithm, based on the Σ-strong convexity of the multi-
variate log-exp sum, using the methodology developed in the previous section.
Using (34), we can obtain a surrogate function for the log-likelihood, i.e.,

l(Y|X,Θ,Ξ) =

n∑
i=1

x′
iΘyi −

n∑
i=1

q(x′
iΘ|ξi),

where Ξ = (ξ1, . . . , ξn) is a vector of expansion points. This surrogate function
has an explicit solution for Θ, given by

vec (Θnew) =

[
n∑

i=1

M(ξi)
−1 ⊗ xix

′
i

]−1 n∑
i=1

[
y′
i −∇f(ξi)

′ + ξ′iM(ξi)
−1
]
⊗ x′

i.

Once we obtain a solution to the surrogate function, we construct a new sur-
rogate function by updating the expansion points ξi. Following work in the
previous section, we can obtain updates for the expansion points as follows:

ξnew

i = x′
iΘ+

1

2
(M(ξi)

−1+H)−1
[
m′diag (t� t)Hi + [1′

kt]
2
qk+1m

′ (qk+1)qi

]
,

where ti = M(ξi)
−1 (x′

iΘ− ξ), Hi = diag (qi) − qiq
′
i, qi = ∇f (ξi) and m is

defined in Appendix B.4.2. We then iterate based on Θnew and ξnew

i .

6.2. Simulation comparison to the Böhning bound

To compare the computational efficiency of the the M bound (31) and the
B bound (27), we simulate data from the multinomial regression model (32),
using a variety of settings, and run the algorithm given in Section 6.1 us-
ing each bound. In this experiment, we vary the number of observations n ∈
{250, 500, 1000} and the number of distinct categories k ∈ {2, 5}. The number
of covariates is set equal to k. We also set Θ′ = [0k, Ik], which means Θ is a
(k + 1)× k matrix, the interpret terms are all zero, and only one regression co-
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Table 3

A comparison of the average user system times, the number of iterations to convergence,
and the rate, which is the time to complete one iteration, over variety of settings for n

and k, each replicated 100 times

system.time # Iterations Rate
k n B M B M B M
2 250 0.35 0.36 16 10 0.025 0.037

500 0.81 0.72 22 12 0.041 0.065
1000 0.92 1.02 13 9 0.072 0.120

3 250 1.08 0.80 51 24 0.022 0.035
500 1.88 1.31 50 23 0.037 0.059

1000 4.01 2.62 52 24 0.077 0.111
4 250 2.59 1.44 131 49 0.020 0.032

500 5.80 3.51 148 65 0.039 0.057
1000 9.98 5.18 107 42 0.093 0.126

5 250 5.48 2.56 259 87 0.021 0.031
500 9.50 4.87 222 85 0.043 0.059

1000 16.94 8.42 195 73 0.086 0.115

Fig 4. Log-likelihood values versus iteration from the MM algorithm with the Böhning bound B
(dashed red curve) and the M(q) bound (black curve), respectively.

efficient is non-zero, i.e., log πj = xj , for j = 1, . . . , k. We start each algorithm
using the same randomly generated starting values. In addition, we replicate
each setting 100 times. In each case, we note the system times, number of it-
erations to convergence, and the time for one iteration for each bound. The
average and standard deviation of theses quantities are given in Tables 3 and 4
(Appendix C), respectively. Figure 4 shows the results from one simulation.

The overall impression from the results indicate that the M bound requires
more computational time for each iteration (rate) but converges much faster
on average, i.e., the algorithm based on the M bound is slower but requires
fewer iterations with the result that the overall computation time is less than
for the algorithm based on the M bound. Table 4 (Appendix C) shows that
the algorithm based on the M gives more consistent results in most of the
experimental settings considered here.
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7. Discussion

Sharp majorization has been extended to the multivariate case. The notions of
σ-strong convexity, monotonicity, and one-sided Lipschitz continuity have been
extended to Σ-strong convexity, monotonicity, and Lipschitz continuity, respec-
tively. We showed that these notions are interconnected and we illustrated how
they connect a convex function to its Fenchel-Legendre transform. We illustrated
these extensions with sharp majorization in single and multiple dimensions, and
we showed that these extensions yield improvements on the bounds given in the
literature.

We considered our estimation algorithm in the context of multinomial logistic
regression. [4] use the Böhning bound “in the Newton-Raphson iteration instead
of the Hessian matrix, leading to a monodically converging sequence of iterates.”
The convergence rate of the algorithm depends on ||Ik −B∇2L(π̂)|| or simply
how well the Hessian is approximated by the bound. We have shown that the
bound given herein outperforms the bound given by [4] by developing an MM
algorithm and conducting a simulation study to illustrate the computational
efficiency.

From [7], we extend the logistic example to the multinomial example. One
avenue for further research is to extend other examples from [7]. For instance,
general logit and probit problems could be extended to general multinomial and
multivariate probit, thereby extending the hinge loss function in discriminant
analysis to multivariate hinge loss functions.

We develop a variational approximation for the Bayesian multinomial regres-
sion model to demonstrate one statistical application ofΣ-strong convexity. This
approach was illustrated using data on the prevalence of pneumoconiosis among
coalminers. Other variational applications will be focused on as a part of future
work, and include a latent trait model for polytomous data. In the latent trait
model, the manifest or observed data are categorical and the underlying latent
variable is a continuous random variable typically assumed to be Gaussian. Our
work in this direction will extend the work of [20], where Gauss-hermite quadra-
ture is used to preform maximum likelihood estimation, cf. [2], but quadrature
is typically used in low-dimensional setting. The methodology developed herein
will lead to a variational estimation procedure and allow a higher number of
factors to be used.

Appendix A: Proofs

Theorem 2.1. (1) ⇒ (2). If we let h(y) = f(y)− 1
2y

′Σy, then we need to show
h is convex given (b), i.e., we need to show

h((1− α)y + αx) � αh(x) + (1− α)h(y). (40)

for some α ∈ (0, 1). From (a), f is Σ-strongly convex and so applying the
definition given in (7) we have
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h((1− α)y + αx) = f((1− α)y + αx)

− 1

2
[(1− α)y + αx]

′
Σ [(1− α)y + αx]

� (1− α)f(y) + αf(x)

− 1

2
α(1− α) (y − x)

′
Σ (y − x)

− 1

2
[(1− α)y + αx]

′
Σ [(1− α)y + αx]

= (1− α)f(y) + αf(x)

− 1

2
α(1− α) [yΣy − 2yΣx+ xΣx]

− 1

2

[
(1− α)2yΣy + α(1− α)2yΣx+ α2xΣx

]
= (1− α)f(y) + αf(x)− 1

2
(1− α)yΣy − 1

2
αxΣx

= αh(x) + (1− α)h(y)

(2) ⇒ (3). Any proper function g : R
n → R is convex if and only if the

mapping ∇g : Rn → R
n is monotone. This implies that, for the function h,

∇h(y) = ∇f(y)−y′Σ is monotone and applying the definition of monotonicity
we have

[∇h(x)−∇h(y)]
′
(x− y) � 0

[(∇f(x)− x′Σ)− (∇f(y)− y′Σ)]
′
(x− y) � 0

[∇f(x)−∇f(y)]
′
(x− y) � (x− y)

′
Σ (x− y) ,

which satisfies the definition of Σ-strong mononticity.
(3) ⇒ (4). Set wt = y + t(x − y) and g(t) = f (wt). Then we have g′(t) =

∇f (y + t(x− y))
′
(x− y). Now,

f(x)− f(y) = g(1)− g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

[
∇f (wt)

′
(x− y)

]
dt

= ∇f (y)
′
(x− y) +

∫ 1

0

[∇f (wt)−∇f (y)]
′
(x− y)dt.

(41)

Therefore,

[∇f(wt)−∇f(y)]
′
(x− y) = [∇f(wt)−∇f(y)]

′
(wt − y)

1

t
.

Because ∇f is strongly monotone,

[∇f(wt)−∇f(y)]
′
(wt − y) � (wt − y)′Σ(wt − y) = t2(x− y)′Σ(x− y)

and so

[∇f(wt)−∇f(y)]
′
(x− y) � t(x− y)′Σ(x− y),
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which we minorize to get, from (41),

f(x) � f(y) +∇f(y)′(x− y) +
1

2
(x− y)′Σ(x− y).

(4) ⇒ (1). Set wt = y + t(x− y) for some t ∈ [0, 1]. Using the inequality in
(4), we have

f(x) � f(wt) +∇f(wt)
′ (x− y) (1− t) +

1

2
(1− t)2 (x− y)

′
Σ (x− y) ,

f(y) � f(wt)−∇f(wt)
′ (x− y) t+

1

2
t2 (x− y)

′
Σ (x− y) .

It follows that

(1− t)f(y) + tf(x) � f(wt) +
1

2

[
t(1− t)2 + (1− t)t2

]
(x− y)

′
Σ (x− y) ,

which can be simplified to the definition of Σ-strong convexity.

Theorem 2.2. (1) ⇒ (2). If we set wt = y + t(x− y) then

f(x)− f(y) = ∇f (y)
′
(x− y) +

∫ 1

0

[∇f (wt)−∇f (y)]
′
(x− y)dt. (42)

Because ∇f is one-sided Σ-Lipschitz continuous,

[∇f(wt)−∇f(y)]
′
(x− y) � t(x− y)′Σ(x− y),

which we majorize to get, from (42),

f(x) � f(y) +∇f(y)′(x− y) +
1

2
(x− y)′Σ(x− y).

(2) ⇒ (3). By letting wt = y + t(x − y) = tx + (1 − t)y, which means
x−wt = (1− t)(x− y), we obtain

f(x) � f(wt) +∇f(wt)
′ (x−wt) +

1

2
(x−wt)

′
Σ (x−wt)

f(x) � f(wt) + (1− t)∇f(wt)
′ (x− y) +

1

2
(1− t)2 (x− y)

′
Σ (x− y)

f(y) � f(wt) + t∇f(wt)
′ (y − x) +

1

2
t2 (x− y)

′
Σ (x− y)

From the latter two inequalities, it follows that

tf(x) + (1− t)f(y) � f(wt) +
1

2

[
t(1− t)2 + (1− t)t2

]
(x− y)

′
Σ (x− y) ,

tf(y) + (1− t)f(y) � f(wt) +
1

2
t(1− t) (x− y)

′
Σ (x− y) ,

and so

tf(y) + (1− t)f(y)− 1

2
t(1− t) (x− y)

′
Σ (x− y) � f(wt).
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(3) ⇒ (1). We can rearrange the inequality in (3) to obtain

f(x)− f(y) � f(wt)− f(y)

t
+

1

2
(1− t) (x− y)

′
Σ (x− y) .

If we let t → 0, we have

f(x)− f(y) � ∇f(y)′ (x− y) +
1

2
(x− y)

′
Σ (x− y) .

Interchanging y and x, we get

f(y)− f(x) � ∇f(x)′ (y − x) +
1

2
(x− y)

′
Σ (x− y)

and adding these last two equations gives

[∇f(y)−∇f(x)]
′
(x− y) � (x− y)

′
Σ (x− y) .

Theorem 2.3. (1) ⇒ (2). Fenchel’s inequality [cf. 17] yields

f(y) + f∗(q) = q′y

and so f(y) = q′y − f∗(q), for q ∈ ∇f(y). If we have that q ∈ ∇f(y) and
p ∈ ∇f(x), then

p′x− f∗(p) � q′y − f∗(q) + q′ (x− y) +
1

2
(x− y)

′
Σ (x− y) ,

and so

(p− q)
′
x− 1

2
(x− y)

′
Σ (x− y) + f∗(q) � f∗(p).

Now,

sup
x

{
(p− q)

′
x− 1

2
(x− y)

′
Σ (x− y)

}
+ f∗(q) � f∗(p).

The supremum is nothing but the value of conjugate of the quadratic term
evaluated at p− q, i.e.,

(p− q)
′
y +

1

2
(p− q)

′
Σ−1 (p− q) + f∗(q) � f∗(p),

which implies f∗ is Σ−1 strong convex.
(2) ⇒ (1). The proof is the same as above with the inequalities in opposite

directions.

Appendix B: Variational update

If we let z′i = x′
iΘ, we can simplify equation (35) to

log g(Y,X,Θ|Ξ) =

−
n∑

i=1

[
f(ξi) +∇f(ξi)

′(zi − ξi) +
1

2
(zi − ξi)

′M(ξi)
−1(zi − ξi)

]
+ C,
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where C does not depend on ξi. Then we can write (38) as

Q(ξ
(t+1)
i |ξi) =

n∑
i=1

k(ẑi, Ẑi, ξi) + C,

where the function

k(ẑi, Ẑi, ξi) = −f(ξi)−∇f(ξi)
′(ẑi − ξi)

− 1

2
tr
[
M(ξi)

−1(Ẑi + ẑiẑ
′
i − ξiz

′
i − ziξ

′
i + ξiξ

′
i)
]
,

with

ẑi := E[zi
∣∣Y] = x′

iE[Θ
∣∣Y],

Ẑi := Var[zi
∣∣Y] = (Ik ⊗ x′

i)Var[Θ
∣∣Y] (Ik ⊗ xi) .

Note, the expectation and variance of Θ
∣∣Y are given in (37) and (36), respec-

tively. To ease the notational burden when taking the derivative of the func-
tion k, we drop subscript i from ẑi, Ẑi, and ξi. In addition, we let

k(z,Z, ξ) =

3∑
j=1

wi (ξ) ,

with

w1 (ξ) = −f(ξ)−∇f(ξ)′(ẑ− ξ), (43)

w2 (ξ) = −1

2
tr
[
M−1(ẑ− ξ)(ẑ− ξ)′

]
, (44)

w3 (ξ) = −1

2
tr
{
ẐM−1

}
. (45)

The derivatives of w1, w2, and w3 are given in Appendices B.1, B.2, and B.3,
respectively. Combining and simplifying the gradient, we obtain the expression

∂k

∂ξ
= (ẑ− ξ)′H+ v +

1

2
m′ [diag (v � v) +V � Ik]H

+
1

2

[
(1′

kv)
2
+ 1′

kV1k

]
qk+1m

′ (qk+1)q,

where v = M−1(ẑ− ξ) and V = M−1ẐM−1. Setting this to zero, we obtain a
fixed-point algorithm for updating ξ:

ξnew = ẑ+ (M−1 +H)−1

{
1

2
m′ [diag (v � v) +V � Ik]H

+
1

2

[
(1′

kv)
2
+ 1′

kV1k

]
qk+1m

′ (qk+1)q

}
= ẑ+ (M−1 +H)−1 (w′H+ ωq) ,
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where

w =
1

2
m′ [diag (v � v) +V � Ik]

and

ω =
1

2

[
(1′

kv)
2
+ 1′

kV1k

]
qk+1m

′ (qk+1) .

B.1. Gradient of w1

w1 (ξ) = tr [−f(ξ)−∇f(ξ)(ẑ− ξ)′] ,

dw1(x) = tr [−df(ξ)− d∇f(ξ)(ẑ− ξ)′ −∇f(ξ)d(ẑ− ξ)′] ,

∂w1

∂ξ
= −∇f(ξ) + (ẑ− ξ)′Hf(ξ) +∇f(ξ) = (ẑ− ξ)′H.

B.2. Gradient of w2

w2 (ξ) = −1

2
tr
[
M−1(ẑ− ξ)(ẑ− ξ)′

]
,

dw2(x) = −1

2
tr
[
dM−1(ẑ− ξ)′(ẑ− ξ) +M−1d(ẑ− ξ)(ẑ− ξ)′

+M−1(ẑ− ξ)d(ẑ− ξ)′
]

=
1

2

[(
M−1(ẑ− ξ)⊗M−1(ẑ− ξ)

)
dvecM+ 2(ẑ− ξ)′M−1dvecξ

]
,

∂w2

∂ξ
=

1

2

(
M−1(ẑ− ξ)⊗M−1(ẑ− ξ)

)
[D∗(m) + a′ (qk+1)Jk2×k]H

+ (ẑ− ξ)′M−1

=
1

2

[
(ẑ− ξ)′M−1 � (ẑ− ξ)′M−1 �m

]
H

+
1

2
a′ (qk+1)

[
1′
kM

−1(ẑ− ξ)
]2

qk+1q+ (ẑ− ξ)′M−1,

which is obtained using the properties of D and the fact that 1kH = qk+1q.

B.3. Gradient of w3

w3 (ξ) = −1

2
tr
{
ẐM−1

}
,

dw3 (ξ) =
1

2
tr
{
ẐM−1dMM−1

}
=

1

2
vec

[
M−1ẐM−1

]′
dvecM

=
1

2
vec

[
Λ′
(
Ŷ + ŷŷ′

)
Λ
]′ (

M−1 ⊗M−1
)
dvecM

=
1

2
vec

[
M−1ẐM−1

]′
dvecM,

∂w3

∂ξ
=

1

2
vec

[
M−1ẐM−1

]′
[D∗(m) + a′ (qk+1)Jk2×k]H

=
1

2

{
m′

[
M−1ẐM−1 � Ik

]
H+ qk+1a

′ (qk+1)1
′
k

[
M−1ẐM−1

]
1kq

}
.
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B.4. The partial derivatives of the matrix M

The matrix M is defined as a function of q in (31), and q is a function ξ because
from (20) we have q = ∇f(ξ). To find the partial derivative of the matrix M
with respect to ξ we use the chain rule and obtain

dvecM =
dvecM

dq

dq

dξ
dξ and/or

dvecM

dξ
=

dvecM

dq

dq

dξ

For ease of notation, we define

H :=
dq

dξ
= ∇2f(ξ) = diag(∇f(ξ))−∇f(ξ)∇f(ξ) = diag(q)− qq′. (46)

Note that this Hessian matrix has the property

1′
kH = 1′

k diag(q)− 1kqq
′ = (1− 1′

kq)q
′ = qk+1q

′,

where qk+1 = (1− 1′
kq).

The matrix M is formed by the sum of two matrices. The first matrix is a
diagonal matrix given by D = diag(m(q1), . . . ,m(qk)), where the function m(q)
is given in (31). The second matrix is a rank one matrix, denoted by R, with

the form m(qk+1)Jk×k or m(qk+1)1k1
′
k, where qk+1 = 1 −

∑k
j=1 qj . Therefore,

we have

dvecM = dvecD+ dvecR,

dvecM

dvecx
=

(
dvecD

dq
+

dvec R

dq

)
dq

dx
=

(
dvecD

dq
+

dvec R

dq

)
H,

dvecM = dvecD+ dvec a(qk+1)1k1
′
k = dvecD+ 1k ⊗ 1ka(qk+1).

We derive the partial derivatives of these two matrices R & D in the Sec-
tions B.4.1 and B.4.2, respectively. Then plugging in the derivatives and simpli-
fying we obtain

dvecM

dvecx
= D∗(a)H− a′ (qk+1)Jk2×kH = D∗ [m (Ik �H)]− qk+1a

′ (qk+1)1k2q.

B.4.1. The partial derivative of the rank-1 matrix R

The differential of the rank-1 matrix with respect to q is

∂vec R

∂q
= (1k ⊗ 1k)

∂a(qk+1)

∂q
= −(1k ⊗ 1k)a

′(qk+1)1
′
k

= −a′ (qk+1)1k21′
k = −a′ (qk+1)Jk2×k.

Note that, for some matrix G,

vec(G)′Jk2×k = (1′
kG1k)1

′
k.
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B.4.2. The derivative of the diagonal matrix D

The matrix D = diag(m(q1), . . . ,m(qk)) has a Jacobian equal to a matrix
D∗(m), which has dimension k2 × k with elements equal to di at positions
(i+ k(i− 1), i), for i = 1, . . . , k, and zero otherwise. The vector m has elements
equal to the derivatives m(p) for each pi, i = 1, . . . , k. The derivatives are given
by

m′(q) = − 2(q + 1)

(1− q)2q
− 4

log(q)

(1− q)3
,

if q ∈ (0, 0.3161973762), and zero otherwise.
The matrix D∗ [m] has the following properties

(v′ ⊗ a′)D∗(m) = v′diag(v �m) = v � a�m,

vec (G)D∗(m) = m′ (G� Ik) ,

where v and a are k dimensional column vectors and G is a k × k matrix.

Appendix C: Table of standard deviations

Table 4

A comparison of the standard deviation of user system times, the number of iterations to
convergence, and the rate, which is the time to complete one iteration, over variety of

settings for n and k, each replicated 100 times

system.time # Iterations Rate
k n B M B M B M
2 250 0.51 0.33 25 11 0.0119 0.0140

500 1.90 0.97 53 20 0.0141 0.0168
1000 1.31 0.77 18 8 0.0049 0.0178

3 250 1.15 0.51 54 18 0.0045 0.0076
500 3.71 1.36 99 27 0.0026 0.0066

1000 6.93 2.60 91 26 0.0036 0.0109
4 250 3.55 1.60 181 62 0.0015 0.0039

500 7.66 6.85 190 133 0.0008 0.0047
1000 11.11 3.93 119 32 0.0053 0.0093

5 250 5.41 3.13 257 114 0.0006 0.0022
500 11.62 7.82 267 141 0.0015 0.0036

1000 20.59 13.82 236 113 0.0046 0.0067
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