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1. Introduction

In this paper we promote a unified approach to a class of decision problems,
based on Convex Programming. Our main building block (which we believe is
important by its own right) is a construction, based on Convex Programming
(and thus computationally efficient) allowing, under appropriate assumptions,
to build a nearly optimal test for deciding between a pair of composite hypothe-
ses on the distribution of observed random variable. Our approach is applicable
in several important situations, primarily, those when observation (a) comes
from Gaussian distribution on R

m parameterized by its expectation, the co-
variance matrix being once for ever fixed, (b) is an m-dimensional vector with
independent Poisson entries, parameterized by the collection of intensities of
the entries, (c) is a randomly selected point from a given m-point set {1, ...,m},
with the straightforward parametrization of the distribution by the vector of
probabilities for the observation to take values 1,..., m, (d) comes from a “direct
product of the outlined observation schemes,” e.g., is a collection of K indepen-
dent realizations of a random variable described by (a)-(c). In contrast to rather
restrictive assumptions on the families of distributions we are able to handle,
we are very flexible as far as the hypotheses are concerned: all we require from
a hypothesis is to correspond to a convex and compact set in the “universe” M
of parameters of the family of distributions we are working with.

As a consequence, the spirit of the results to follow is quite different from
that of a “classical” statistical inquiry, where one assumes that the signals un-
derlying noisy observations belong to some “regularity classes” and the goal
is to characterize analytically the minimax rates of detection for those classes.
With our approach allowing for highly diverse hypotheses, an attempt to de-
scribe analytically the quality of a statistical routine seems to be pointless. For
instance, in the two-hypotheses case, all we know in advance is that the test
yielded by our construction, assuming the latter applicable, is nearly optimal,
with explicit specification of what “nearly” means presented in Theorem 2.1.ii.
By itself, this “near optimality” usually is not all we need — we would like to
know what actually are the performance guarantees (say, probability of wrong
detection, or the number of observations sufficient to make an inference satisfy-
ing given accuracy and/or reliability specifications). The point is that with our
approach, rather detailed information of this sort can be obtained by efficient
situation-oriented computation. In this respect our approach follows the one of
[18, 40, 41, 8, 10, 12, 42] where what we call below “simple tests” were used
to test composite hypotheses represented by convex sets of distributions1; later
this approach was successfully applied to nonparametric estimation of signals
and functionals [11, 21, 22, 13]. On the other hand, what follows can be seen as
a continuation of another line of research focusing on testing [16, 17, 34] and on
a closely related problem of estimating linear functionals [32, 33, 20] in white
noise model. In the present paper we propose a general framework which mir-
rors that of [35]. Here the novelty (to the best of our understanding, essential)

1These results essentially cover what in the sequel is called “Discrete case,” see section 2.3
for more detailed discussion.
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is in applying techniques of the latter paper to hypotheses testing rather than
to estimating linear forms, which allows to naturally encompass and extend the
aforementioned approaches to get provably good tests for observations schemes
mentioned in (a)–(d). We strongly believe that this approach allows to handle
a diverse spectrum of applications, and in this paper our focus is on efficiently
implementable testing routines2 and related elements of the “calculus of tests”.

The contents and organization of the paper are as follows.
Section 2 deals with near-optimal testing of pairs of composite hypotheses

in good observation schemes (o.s.). A good o.s. defined in section 2.1, basic
examples being (a)–(d) above, is comprised of observation space Ω where ob-
servations live and a parametric set P = {Pμ : μ ∈ M} of probability distri-
butions on Ω, where the distributions of observations live. We require Ω to be
a complete separable metric space, and we assume that distributions Pμ has
densities pμ with respect to a Borel σ-finite σ-additive reference measure P on
Ω, supp(P ) = Ω. The parametric set M is assumed to be a convex relatively
open subset in some R

n (n can be arbitrarily large), and the densities pμ(ω) –
to be positive and continuous in (μ, ω). Aside of these regularity restrictions,
goodness imposes the following structural restrictions (forming the essence of
the notion): the log-likelihood ratios ln(pμ(·)/pν(·)), μ, ν ∈ M, should belong to
some finite-dimensional linear subspace F of C(Ω) containing constants (i.e., P
is an exponential family), and (the crucial and rather restrictive requirement)
the function μ �→ ln

(∫
Ω
exp{φ(ω)}pμ(ω)P (dω)

)
, φ ∈ F , should be well defined

and concave. Our principal related results (their positioning w.r.t. the existing
body of statistical knowledge is discussed in detail in section 2.3) can be summa-
rized as follows. Let Q1 and Q2 be subsets of M, and let our goal be to decide,
given a sample ωK = (ω1, ..., ωK) with i.i.d. components ωt ∼ pμ(·), 1 ≤ t ≤ K
on two composite hypotheses H1 : μ ∈ Q1 and H2 : μ ∈ Q2. Given a test T –
a deterministic rule which, depending on ωK , either accepts H1 and rejects H2,
or accepts H2 and rejects H1, its risk is the maximum, over χ = 1, 2 of

πχ := sup
μ∈Qχ

Probωt∼pμ

{
ωK : as applied to ωK , the test rejects Hχ

}
,

the worst-case probability to reject Hχ when the hypothesis is true.
A. [Theorem 2.1 and Proposition 2.1] Let K be a positive integer, (Ω, P, {pμ :

μ ∈ M},F) be a good o.s., and Q1 and Q2 be convex and compact subsets of
M. Let, further, (μ∗, ν∗) be the optimal value and an optimal solution to the
optimization problem

Opt = max
μ∈Q1,ν∈Q2

ln

(∫
Ω

√
pμ(ω)pν(ω)P (dω)

)
(the problem is convex and thus efficiently solvable). Setting

ε∗ = ε∗[Q1, Q2] := exp{Opt},
2For precise definitions and details on efficient implementability, see, e.g., [7]. For the time

being, it is sufficient to assume that the test statistics can be computed by a simple Linear
Algebra routine with parameters which are optimal solutions to an optimization problem
which can be solved using CVX [27].
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the “detector” φ(·) = φQ1,Q2(·) := 1
2 ln(pμ∗(·)/pν∗(·)) satisfies

sup
μ∈Q1

∫
Ω

exp{−φ(ω)}pμ(ω)P (dω) ≤ ε∗ & sup
ν∈Q2

∫
Ω

exp{φ(ω)}pν(ω)P (dω) ≤ ε∗.

(1)
As a result, the risk of the test TK which, given observation ωK , accepts H1

and rejects H2 when φK(ωK) :=
∑K

t=1 φ(ωt) ≥ 0, and accepts H2 and rejects
H1 otherwise, is ≤ εK∗ . Furthermore, TK is near-optimal: if “in the nature”
there exists a (perhaps randomized) test based on K̄-repeated observation ωK̄ ,
deciding on H1, H2 with risk ε ∈ (0, 1

2
), then test TK with K ≥ ϑ(ε)K̄ decides

on H1, H2 with risk ≤ ε for

ϑ(ε) =
2

1− ln(4(1−ε))
ln(1/ε)

→ 2, ε → +0,

Section 3 is devoted to simple “test calculus” – assembling near-optimal pair-
wise tests in good o.s.’s into near-optimal tests for composed hypotheses. The
summary of the related results is as follows:

B. [Propositions 3.1 – 3.4] Let (Ω, P, {pμ : μ ∈ M},F) be a good o.s., and
Qi, i = 1, ...,m, be convex compact subsets of M. Observing a sample ωK of
i.i.d. observations ωt ∼ pμ∗ , 1 ≤ t ≤ K, with unknown μ∗ ∈

⋃m
i=1 Qi, we want

to decide on the hypotheses Hi : μ∗ ∈ Qi “up to closeness;” this closeness is
given by a symmetric binary m×m matrix C with zero diagonal, with Cij = 1
meaning that Hi and Hj are close to each other.

Let φQi,Qj (·)(·), ε∗[Qi, Qj ], i 	= j, be given by A, and let ε
(K)
∗ be the spectral

norm of the symmetric nonnegative matrix E =
[
Cijε

K
∗ [Qi, Qj ]

]
i,j≤m

. Then

detectors φQi,Qj (·) can be efficiently assembled via Convex Programming into a

test T̂ K which, given ωK , accepts some of the hypotheses H1, ..., Hm, with C-risk

of T̂ K not exceeding ≤ ε
(K)
∗ (meaning that for every i∗ such that μ∗ ∈ Qi∗ , the

pμ∗-probability of the event “the true hypothesis Hi∗ is accepted, and all accepted

hypotheses are close to Hi∗” is ≥ 1− ε
(K)
∗ ).

The test T̂ K is near-optimal: given ε ∈ (0, 1/2), assume that in the nature
there exists a test T , perhaps randomized, based on K̄-repeated observations ωK̄ ,
deciding on H1, ..., Hm with C-risk not exceeding ε. Then the risk of the test T̂ K

with

K ≥ 2 ln(m/ε)

1− ln(4(1−ε))
ln(1/ε)

K̄

does not exceed ε as well.
In the concluding section 4 our focus is on applications. Here we illustrate the

implementation of the approach developed in the preceding sections by build-
ing models and carrying out numerical experimentation for several statistical
problems including Positron Emission Tomography (section 4.1), detection and
identification of signals in a convolution model (section 4.2), testing composite
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hypotheses on discrete distributions via indirect observations (section 4.3), and
Markov chain related inferences (section 4.4).

In all experiments optimization was performed using Mosek optimization soft-
ware [1]. The proofs missing in the main body of the paper can be found in the
appendix.

2. Situation and Main result

In the sequel, given a parametric family P = {Pμ, μ ∈ M} of probability dis-
tributions on a space Ω and an observation ω ∼ Pμ with unknown μ ∈ M, we
intend to test some composite hypotheses about the parameter μ. In the situ-
ation to be considered in this paper, near-optimal testing reduces to Convex
Programming, and we start with describing this situation.

2.1. Assumptions and goal

In what follows, we make the following assumptions about our “observation
environment:”

1. M ⊂ R
m is a convex set which coincides with its relative interior;

2. Ω is a Polish (i.e., separable complete metric) space equipped with a Borel
σ-additive σ-finite measure P , supp(P ) = Ω, and distributions Pμ ∈ P
possess densities pμ(ω) w.r.t. P . We assume that

• pμ(ω) is continuous in μ ∈ M, ω ∈ Ω and is positive;

• the densities pμ(·) are “locally uniformly summable:” for every com-
pact set M ⊂ M, there exists a Borel function pM (·) on Ω such that∫
Ω pM (ω)P (dω) < ∞ and pμ(ω) ≤ pM (ω) for all μ ∈ M , ω ∈ Ω;

3. We are given a finite-dimensional linear space F of continuous functions on
Ω containing constants such that ln(pμ(·)/pν(·)) ∈ F whenever μ, ν ∈ M.

Note that the latter assumption is equivalent to saying that distributions
Pμ, μ ∈ M, form an exponential family with continuous minimal sufficient
statistics.

4. For every φ ∈ F , the function Fφ(μ) = ln
(∫

Ω exp{φ(ω)}pμ(ω)P (dω)
)
is

well defined and concave in μ ∈ M.

In the just described situation, where assumptions 1-4 hold, we refer to the
collection Ø = ((Ω, P ), {pμ(·) : μ ∈ M},F) as good observation scheme.

Now suppose that, on the top of a good observation scheme, we are given two
nonempty convex compact sets X ⊂ M, Y ⊂ M. Given an observation ω ∼ Pμ

with some unknown μ ∈ M known to belong either to X (hypothesis HX) or
to Y (hypothesis HY ), our goal is to decide which of the two hypotheses takes
place. Let T (·) be a test, i.e. a Borel function on Ω taking values in {−1, 1},
which receives on input an observation ω (along with the data participating
in the description of HX and HY ). Given observation ω, the test accepts HX

and rejects HY when T (ω) = 1, and accepts HY and rejects HX when T (ω) =
−1. The quality of the test is characterized by its error probabilities – the
probabilities of rejecting erroneously each of the hypotheses:

εX [T ] = sup
x∈X

Px{ω : T (ω) = −1}, εY [T ] = sup
y∈Y

Py{ω : T (ω) = 1},
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and we define the risk of the test as the maximal error probability:
max {εX [T ], εY [T ]} .

In the sequel, we focus on simple tests. By definition, a simple test is specified
by a detector φ(·) ∈ F ; it accepts HX , the observation being ω, if φ(ω) ≥ 0, and
accepts HY otherwise. We define the risk of a detector φ on (HX , HY ) as the
smallest ε such that∫

Ω
exp{−φ(ω)}px(ω)P (dω) ≤ ε ∀x ∈ X,

∫
Ω
exp{φ(ω)}py(ω)P (dω) ≤ ε ∀y ∈ Y.

(2)
For a simple test with detector φ we have

εX(φ) = sup
x∈X

Px{ω : φ(ω) < 0}, εY (φ) = sup
y∈Y

Py{ω : φ(ω) ≥ 0},

and the risk max{εX(φ), εY (φ)} of such test clearly does not exceed the risk ε
of the detector φ.

2.2. Main result

We are about to show that in the situation in question, an efficiently computable
via Convex Programming detector results in a nearly optimal test. The precise
statement is as follows:

Theorem 2.1 In the just described situation and under the above assumptions,

(i) The function

Φ(φ, [x; y]) = ln
(∫

Ω
exp{−φ(ω)}px(ω)P (dω)

)
+ ln

(∫
Ω
exp{φ(ω)}py(ω)P (dω)

)
:

F × (X × Y ) → R.
(3)

is continuous on its domain, is convex in φ(·) ∈ F , concave in [x; y] ∈ X×Y , and
possesses a saddle point (min in φ, max in [x; y]) (φ∗(·), [x∗; y∗]) on F×(X×Y ).
φ∗ w.l.o.g. can be assumed to satisfy the relation3∫

Ω

exp{−φ∗(ω)}px∗(ω)P (dω) =

∫
Ω

exp{φ∗(ω)}py∗(ω)P (dω). (4)

Denoting the common value of the two quantities in (4) by ε�, the saddle point
value

min
φ∈F

max
[x;y]∈X×Y

Φ(φ, [x; y])

is 2 ln(ε�), and the risk of the simple test associated with the detector φ∗ on the
composite hypotheses HX , HY is ≤ ε�. Moreover, for every a ∈ R, for the test
with the detector φa

∗(·) ≡ φ∗(·) − a, the probabilities εX(φa
∗) to reject HX when

3Note that F contains constants, and shifting by a constant the φ-component of a saddle
point of Φ and keeping its [x; y]-component intact, we clearly get another saddle point of Φ.
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the hypothesis is true and εY (φ
a
∗) to reject HY when the hypothesis is true can

be upper-bounded as

εX(φa
∗) ≤ exp{a}ε�, εY (φ

a
∗) ≤ exp{−a}ε�. (5)

(ii) Let ε ≥ 0 be such that there exists a (whatever, perhaps randomized) test for
deciding between two simple hypotheses

(A) : ω ∼ p(·) := px∗(·), (B) : ω ∼ q(·) := py∗(·) (6)

with the sum of error probabilities ≤ 2ε. Then

ε� ≤ 2
√

ε(1− ε).

In other words, if the simple hypotheses (A), (B) can be decided, by a whatever
test, with the sum of error probabilities 2ε, then the risk of the simple test with
detector φ∗ on the composite hypotheses HX , HY does not exceed 2

√
ε(1− ε).

(iii) The detector φ∗ specified in (i) is readily given by the [x; y]-component
[x∗; y∗] of the associated saddle point of Φ, specifically,

φ∗(·) = 1
2
ln (px∗(·)/py∗(·)) . (7)

Remark. At this point let us make a small summary of the properties of
simple tests in the problem setting and under assumptions of section 2.1:

(i) One has

ε∗ = exp(Opt/2) = ρ(x∗, y∗),

where [x∗; y∗] is the [x; y]-component of the saddle point solution of (3),
and

ρ(x, y) =

∫
Ω

√
px(ω)py(ω)P (dω),

is the Hellinger affinity of distributions px and py [39, 42];
(ii) the optimal detector φ∗ as in (7) satisfies (2) with ε = ε∗;
(iii) the simple test with detector φ∗ can be “skewed”, by using instead of

φ∗(·) detector φa
∗(·) = φ∗(·) − a, to attain error probabilities of the test

εX(φa
∗) = eaε∗ and εY (φ

a
∗) = e−aε∗.

As we will see in an instant, the properties (i)–(iii) of simple tests allow to
“propagate” the near-optimality property of the tests in the case of repeated
observations and multiple testing, and underline all further developments.

Of course, the proposed setting and construction of simple test are by no
means unique. For instance, any test T in the problem of deciding between HX

and HY , with the risk bounded by ε̄ ∈ (0, 1/2), gives rise to the detector

φ̄(ω) = 1
2
ln

(
1− ε̄

ε̄

)
T (ω)
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(recall that T (ω) = 1 when T , as applied to observation ω, accepts HX , and
T (ω) = −1 otherwise). One can easily see that the risk of φ̄(·) satisfies the
bounds of (2) with

ε = 2
√

ε̄(1− ε̄).

In other words, in the problem of deciding upon HX and HY , any test T with
the risk ≤ ε̄ brings about a simple test with detector φ̄, albeit with a larger risk
ε.

2.3. Basic examples

We list here some situations where our assumptions are satisfied and thus The-
orem 2.1 is applicable.

2.3.1. Gaussian observation scheme

In the Gaussian observation scheme we are given an observation ω ∈ R
m, ω ∼

N (μ,Σ) with unknown parameter μ ∈ R
m and known covariance matrix Σ.

Here the family P is defined with (Ω, P ) being R
m with the Lebesque measure,

pμ = N (μ,Σ), M = R
m, and F = {φ(ω) = aTω + b : a ∈ R

m, b ∈ R} is the
space of all affine functions on R

m. Taking into account that

ln

(∫
Rm

ea
Tω+bpμ(ω)dω)

)
= b+ aTμ+ 1

2
aTΣa,

we conclude that Gaussian observation scheme is good. The test yielded by The-
orem 2.1 is particularly simple in this case: assuming that the nonempty convex
compact sets X ⊂ R

m, Y ⊂ R
m do not intersect4, and that the covariance

matrix Σ of the distribution of observation is nondegenerate, we get

φ∗(ω) = ξTω − α, ξ = 1
2
Σ−1[x∗ − y∗], α = 1

2
ξT [x∗ + y∗],

ε� = exp
(
− 1

8
(x∗ − y∗)

TΣ−1(x∗ − y∗)
)[

[x∗; y∗] ∈ Argmaxx∈X,y∈Y

[
ψ(x, y) = − 1

4
(x− y)TΣ−1(x− y)

]]
. (8)

One can easily verify that the error probabilities εX(φ∗) and εY (φ∗) of the as-
sociated simple test do not exceed ε∗ = Erf

(
1
2
‖Σ−1/2(x∗ − y∗)‖2

)
, where Erf(s)

is the error function:

Erf(t) = (2π)−1/2

∫ ∞

t

exp{−s2/2}ds.

Moreover, in the case in question the sum of the error probabilities of our test
is exactly the minimal, over all possible tests, sum of error probabilities when
deciding between the simple hypotheses stating that x = x∗ and y = y∗.

4otherwise φ∗ ≡ 0 and ε� = 1, in full accordance with the fact that in the case in question
no nontrivial (i.e., with both error probabilities < 1/2) testing is possible.
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Remarks. Consider the simple situation where the covariance matrix Σ is
proportional to the identity matrix: Σ = σ2I (the case of general Σ reduces to
this “standard case” by simple change of variables). In this case, in order to
construct the optimal test, one should find the closest in the Euclidean distance
points x∗ ∈ X and y∗ ∈ Y , so that the affine form ζ(u) = [x∗ − y∗]

Tu strongly
separates X and Y . On the other hand, testing in the white Gaussian noise
between the closed half-spaces {u : ζ(u) ≤ ζ(y∗)} and {u : ζ(u) ≥ ζ(x∗)}
(which contain Y and X, respectively) is exactly the same as deciding on two
simple hypotheses stating that y = y∗, and x = x∗. Though this result is almost
self-evident, it seems first been noticed in [16] in the problem of testing in white
noise model, and then exploited in [17, 52, 34] in the important to us context
of hypothesis testing.

As far as numerical implementation of the testing routines is concerned, nu-
merical stability of the proposed test is an important issue. For instance, it may
be useful to know the testing performance when the optimization problem (8)
is not solved to exact optimality, or when errors may be present in description
of the sets X and Y . Note that one can easily bound the error of the obtained
test in terms of the magnitude of violation of first-order optimality conditions
for (8), which read:

(y∗ − x∗)
TΣ−1(x− x∗) + (x∗ − y∗)

TΣ−1(y − y∗) ≤ 0, ∀x ∈ X, y ∈ Y.

Now assume that instead of the optimal test φ∗(·) we have at our disposal an
“approximated” simple test associated with

φ̃(ω) = ξ̃Tω − α̃, ξ̃ = 1
2
Σ−1[x̃− ỹ], α̃ = 1

2
ξ̃T [x̃+ ỹ],

where x̃ ∈ X, ỹ ∈ Y , x̃ 	= ỹ satisfy

(ỹ − x̃)TΣ−1(x− x̃) + (x̃− ỹ)TΣ−1(y − ỹ) ≤ δ, ∀x ∈ X, y ∈ Y, (9)

with some δ > 0. This implies the bound for the risk of the test with detector
φ̃(·):

max[εX(φ̃), εY (φ̃)] ≤ ε̃ = Erf

(
1
2
‖Σ−1/2(x̃− ỹ)‖2 −

δ

‖Σ−1/2(x̃− ỹ)‖2

)
. (10)

Indeed, (9) implies that ξ̃T (x− x̃) ≥ − δ
2
, ξ̃T (y− ỹ) ≤ δ

2
, ∀x ∈ X, y ∈ Y. As a result,

ξ̃T x− α̃ = ξ̃T (x− x̃) + ξ̃TΣξ̃ ≥ − δ

2
+ ξ̃TΣξ̃ ∀x ∈ X.

and for all x ∈ X,

Probx{φ̃(ω) < 0} = Probx{ξ̃T (ω − x) < −ξ̃T x+ α̃}

= Probx

{
‖Σ1/2ξ̃‖2η < −‖Σ1/2ξ̃‖22 +

δ

2

}
,

where η ∼ N (0, 1). We conclude that

εX(φ̃) = sup
x∈X

Probx{φ̃(ω) < 0} ≤ Erf

(
‖Σ1/2ξ̃‖2 − δ

2‖Σ1/2ξ̃‖2

)
what implies the bound (10) for εX(φ̃). The corresponding bound for εY (φ̃) =
supy∈Y Proby{φ̃(ω) ≥ 0} is obtained in the same way.
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2.3.2. Discrete observation scheme

Assume that we observe a realization of a random variable ω taking values in
{1, 2, ...,m} with probabilities μi, i = 1, ...,m:

μi = Prob{ω = i}, i = 1, ...,m.

The just described Discrete observation scheme corresponds to (Ω, P ) being
{1, ...,m} with counting measure, pμ(ω) = μω, μ ∈ M = {μ ∈ R

m : μi > 0,∑m
i=1 μi = 1}, In this case F = R(Ω) = R

m, and for φ ∈ R
m,

ln

(∑
ω∈Ω

eφ(ω)pμ(ω)

)
= ln

(
m∑

ω=1

eφωμω

)

is concave in μ ∈ M. We conclude that Discrete observation scheme is good.
Furthermore, when assuming the convex compact sets X ⊂ M, Y ⊂ M (recall
that in this case M is the relative interior of the standard simplex in R

m) not
intersecting, we get

φ∗(ω) = ln
(√

[x∗]ω/[y∗]ω
)
, ε� = exp{Opt/2} = ρ(x∗, y∗),[

[x∗; y∗] ∈ Argmaxx∈X,y∈Y [ψ(x, y) = 2 ln ρ(x, y), Opt = ψ(x∗, y∗)] ,
] (11)

where ρ(x, y) =
∑m

�=1

√
x�y� is the Hellinger affinity of distributions x and y.

One has ε� = ρ(x∗, y∗) = 1− h2(x∗, y∗), the Hellinger affinity of the sets X and
Y , where

h2(x, y) = 1
2

m∑
�=1

(
√
x� −

√
y�)

2

is the Hellinger distance between distributions x and y. Thus the result of The-
orem 2.1, as applied to Discrete observation model, allows for the following
simple interpretation: to construct the simple test φ∗ one should find the closest
in Hellinger distance points x∗ ∈ X and y∗ ∈ Y ; then the risk of the likelihood
ratio test φ∗ for distinguishing x∗ from y∗, as applied to our testing problem, is
bounded by ρ(x∗, y∗) = 1− h2(x∗, y∗), the Hellinger affinity of sets X and Y .

Remarks. Discrete observation scheme considered in this section is a simple
particular case – that of finite Ω – of the result of [9, 10] on distinguishing convex
sets of distributions. Roughly, the situation considered in those papers is as
follows: let Ω be a Polish space, P be a σ-finite σ-additive Borel measure on Ω,
and p(·) be a density w.r.t. P of probability distribution of observation ω. Note
that the corresponding observation scheme (with M being the set of densities
with respect to P on Ω) does not satisfy the premise of section 2.1 because the
linear space F spanned by constants and functions of the form ln(p(·)/q(·)),
p, q ∈ M is not finite-dimensional. Now assume that we are given two non-
overlapping convex closed subsets X, Y of the set of probability densities with
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respect to P on Ω. Observe that for every positive Borel function ψ(·) : Ω → R,
the detector φ given by φ(ω) = ln(ψ(ω)) for evident reasons satisfies the relation

max
p∈X,q∈Y

[∫
Ω
e−φ(ω)p(ω)P (dω),

∫
Ω
eφ(ω)q(ω)P (dω)

]
≤ ε,

ε = max
[
supp∈X

∫
ψ−1(ω)p(ω)P (dω), supq∈Y

∫
ψ(ω)q(ω)P (dω)

]
Let now

Opt = max
p∈X,q∈Y

{
ρ(p, q) =

∫
Ω

√
p(ω)q(ω)P (dω)

}
, (12)

which is an infinite-dimensional convex program with respect to p ∈ X and
q ∈ Y . Assuming the program solvable with an optimal solution composed of
distribution p∗(·), q∗(·) which are positive, and setting ψ∗(ω) =

√
p∗(ω)/q∗(ω),

under some “regularity assumptions” (see, e.g., Proposition 4.2 of [10] and [14])
the optimality conditions for (12) read:

min
p∈X,q∈Y

[∫
Ω

ψ−1
∗ (ω)[p∗(ω)− p(ω)]P (dω) +

∫
Ω

ψ∗(ω)[q∗(ω)− q(ω)]P (dω)

]
= 0.

In other words,

max
p∈X

∫
Ω

ψ−1
∗ (ω)p(ω)dP (ω) ≤

∫
Ω

ψ−1
∗ (ω)p∗(ω)dP (ω) = Opt,

and similarly,

max
q∈Y

∫
Ω

ψ∗(ω)q(ω)dP (ω) ≤
∫
Ω

ψ∗(ω)q∗(ω)dP (ω) = Opt,

so that for our ψ∗, we have ε = Opt.
Note that, although this approach is not restricted to the Discrete case per

se, when Ω is not finite, the optimization problem in (12) is generally compu-
tationally intractable (the optimal detectors can be constructed explicitly for
some special sets of distribution, see [10, 12, 14]).

The bound ε� for the risk of the simple test can be compared to the testing
affinity π(X,Y ) between X and Y ,

π(X,Y ) = max
x∈X,y∈Y

{
π(x, y) =

m∑
�=1

min[x�, y�]

}
,

which is the least, over tests T , possible sum of error probabilities εX [T ] +
εY [T ] when distinguishing between HX and HY (cf. [43, 37, 36, 5, 40, 42]).
The corresponding minimax test is a simple test with detector φ(·, ·), defined
according to

φ(ω) = ln
(√

[x]ω/[y]ω

)
,[

[x; y] ∈ Argmaxx∈X,y∈Y [
∑m

�=1 min[x�, y�] .
]
.
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Unfortunately, this test cannot be easily extended to the case where repeated
observations (e.g., independent realizations ωk, k = 1, ...,K, of ω) are available.
In [30] such an extension has been proposed in the case where X and Y are
dominated by bi-alternating capacities (see, e.g., [31, 6, 15, 3], and references
therein); explicit constructions of the test were proposed for some special sets of
distributions [29, 48, 47]. On the other hand, as we shall see in section 2.4, the
simple test φ∗(·, ·) allows for a straightforward generalization to the repeated ob-
servations case with the same (near-)optimality guarantees as those of Theorem
2.1.ii.

Finally, same as in the Gaussian observation scheme, the risk of a simple test
with detector φ̃(ω) = 1

2
ln (x̃ω/ỹω) , ω ∈ Ω, defined by a pair of distributions

[x̃; ỹ] ∈ X × Y , can be assessed through the magnitude of violation by x̃ and
ỹ of the first-order optimality conditions for the optimization problem in (11).
Indeed, assume that

m∑
�=1

√
ỹ�
x̃�

(x� − x̃�) +

m∑
�=1

√
x̃�

ỹ�
(y� − ỹ�) ≤ δ ∀x ∈ X, y ∈ Y.

We conclude that

εX(φ̃) ≤ max
x∈X

m∑
�=1

e−φ̃�x� = max
x∈X

m∑
�=1

√
ỹ�
x̃�

x� ≤
m∑
�=1

√
ỹ�x̃� + δ,

εY (φ̃) ≤ max
y∈Y

m∑
�=1

eφ̃�y� = max
y∈Y

m∑
�=1

√
x̃�

ỹ�
y� ≤

m∑
�=1

√
x̃�ỹ� + δ,

so that the risk of the test φ̃ is bounded by ρ(x̃, ỹ) + δ.

2.3.3. Poisson observation scheme

Suppose that we are given m realizations of independent Poisson random vari-
ables

ωi ∼ Poisson(μi)

with parameters μi, i = 1, ...,m. The Poisson observation scheme is given by
(Ω, P ) being Z

m
+ with counting measure, pμ(ω) =

μω

ω! e
−
∑

i μi where μ ∈ M =
int Rm

+ , and, similarly to the Gaussian case, F is comprised of the restrictions
onto Z

m
+ of affine functions: F = {φ(ω) = aTω + b : a ∈ R

m, b ∈ R}. Since

ln

⎛⎝ ∑
ω∈Z

m
+

exp(aTω + b)pμ(ω)

⎞⎠ =

m∑
i=1

(eai − 1)μi + b

is concave in μ, we conclude that Poisson observation scheme is good.
Assume now that, same as above, in the Poisson observation scheme, the

convex compact sets X ⊂ R
m
++, Y ⊂ R

m
++ do not intersect. Then the data
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associated with the simple test yielded by Theorem 2.1 is as follows:

φ∗(ω) = ξTω − α, ξ� =
1
2
ln ([x∗]�/[y∗]�) ,

α = 1
2

∑m
�=1[x∗ − y∗]�, ε� = exp{Opt/2}[

[x∗; y∗] ∈ Argmaxx∈X,y∈Y

[
ψ(x, y) = −2h2(x, y)

]
, Opt = ψ(x∗, y∗),

]
(13)

where h2(x, y) = 1
2

∑m
�=1

[√
x� −

√
y�
]2

is the Hellinger distance between x ∈
R

m
+ and y ∈ R

m
+ .

Remark. Let φ̃(ω) = ξ̃Tω − α̃ be a detector, generated by [x̃; ỹ] ∈ X × Y ,
namely, such that

ξ̃� =
1
2
ln(x̃�/ỹ�), α̃ = 1

2

m∑
�=1

(x̃� − ỹ�).

We assume that [x̃; ỹ] is an approximate solution to (13) in the sense that the
first-order optimality condition of (13) is ‘δ-satisfied”:

m∑
�=1

[(√
ỹ�/x̃� − 1

)
(x� − x̃�) +

(√
x̃�/ỹ� − 1

)
(y� − ỹ�)

]
≤ δ ∀x ∈ X, y ∈ Y.

One can easily verify that the risk of the test, associated with φ̃, is bounded by
exp(−h2(x̃, ỹ)+ δ) (cf. the corresponding bounds for the Gaussian and Discrete
observation schemes).

2.4. Repeated observations

Good observation schemes admit naturally defined direct products. To simplify
presentation, we start with explaining the corresponding construction in the
case of stationary repeated observations described as follows.

2.4.1. K-repeated stationary observation scheme

We are given a good observation scheme ((Ω, P ), {pμ(·) : μ ∈ M},F) and a pos-
itive integer K, along with same as above X,Y . Instead of a single realization
ω ∼ pμ(·), we now observe a sample of K independent realizations ωk ∼ pμ(·),
k = 1, ...,K. Formally, this corresponds to the observation scheme with the ob-
servation space ΩK = {ωK = (ω1, ..., ωK) : ωk ∈ Ω ∀k} equipped with the mea-

sure PK = P × ...×P , the family {pKμ (ωK) =
∏K

k=1 pμ(ωk), μ ∈ M} of densities

of repeated observations w.r.t. PK , and FK = {φK(ωK) =
∑K

k=1 φ(ωk), φ ∈ F}.
The components X,Y of our setup are the same as for the original single-
observation scheme, and the composite hypotheses we intend to decide upon
state now that the K-element observation ωK comes from a distribution pKμ (·)
with μ ∈ X (hypothesis HX) or with μ ∈ Y (hypothesis HY ).
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It is immediately seen that the just described K-repeated observation scheme
is good (i.e., satisfies all our assumptions), provided that the “single observation”
scheme we start with is so. Moreover, the detectors φ∗, φ

K
∗ and risk bounds

ε�, ε
(K)
� given by Theorem 2.1 as applied to the original and the K-repeated

observation schemes are linked by the relations

φK
∗ (ω1, ..., ωK) =

∑K
k=1φ∗(ωk), ε

(K)
� = (ε�)

K . (14)

As a result, the “near-optimality claim” Theorem 2.1.ii can be reformulated as
follows:

Proposition 2.1 Assume that for some integer K̄ ≥ 1 and some ε ∈ (0, 1/2),
the hypotheses HX , HY can be decided, by a whatever, perhaps randomized,
procedure utilising K̄ observations, with error probabilities ≤ ε. Then with

K+ =

⎥⎥⎥⎦ 2K̄

1− ln(4(1−ε))
ln(1/ε)

⎢⎢⎢⎣
observations, �a� being the smallest integer ≥ a, the simple test with the detector

φK+

∗ decides between HX and HY with risk ≤ ε.

Indeed, applying (14) with K = K̄ and utilizing Theorem 2.1.ii, we get ε� ≤
(2
√

ε(1− ε))1/K̄ and therefore, by the same (14), ε
(K)
� = εK� ≤ (2

√
ε(1− ε))K/K̄ for all

K. Thus, ε�(K+) ≤ ε, and therefore the conclusion of Proposition follows from Theorem

2.1.i as applied to observations ωK+
.

We see that the “suboptimality ratio” (i.e., the ratio K+/K̄) of the proposed
test when ε-reliable testing is sought is close to 2 for small ε.

2.4.2. Non-stationary repeated observations

We are about to define the notion of a general-type direct product of good
observation schemes. The situation now is as follows: we are given K good
observation schemes

Øk = ((Ωk, Pk),Mk ⊂ R
mk , {pk,μk

(·) : μk ∈ Mk},Fk) , k = 1, ...,K

and observe a sample ωK = (ω1, ..., ωK) of realizations ωk ∈ Ωk drawn inde-
pendently of each other from the distributions with densities, w.r.t. Pk, being
pk,μk

(·), for a collection μK = (μ1, ..., μK) with μk ∈ Mk, 1 ≤ k ≤ K. Setting

ΩK = Ω1 × ...× ΩK = {ωK = (ω1, ..., ωK) : ωk ∈ Ωk ∀k ≤ K},
PK = P1 × ...× PK

MK = M1 × ...×MK = {μK = (μ1, ..., μK) : μk ∈ Mk ∀k ≤ K},
pμK (ωK) = p1,μ1(ω1)p2,μ2(ω2)...pK,μK

(ωK) [μK ∈ MK , ωK ∈ ΩK ],

FK = {φK(ωK) = φ1(ω1) + φ2(ω2) + ...+ φK(ωK) :

ΩK → R : φk(·) ∈ Fk ∀k ≤ K},
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we get an observation scheme ((ΩK , PK),Mk, {pμK (·) : μk ∈ Mk},FK) which
we call the direct product of Ø1, ...,ØK and denote ØK = Ø1 × ... × ØK . It
is immediately seen that this scheme is good. Note that the already defined
stationary repeated observation scheme deals with a special case of the direct
product construction, the one where all factors in the product are identical to
each other, and where, in addition, we replace MK with its “diagonal part”
{μK = (μ, μ, ..., μ), μ ∈ M}.

Let ØK = Ø1 × ...×ØK , where, for every k ≤ K,

Øk = ((Ωk, Pk),Mk, {pμk
(·) : μk ∈ Mk},Fk)

is a good observation scheme, specifically, either Gaussian, or Discrete, or Pois-
son (see section 2.3). To simplify notation, we assume that all Poisson factors
Øk are “scalar,” that is, ωk is drawn from Poisson distribution with parameter
μk.

5 For

φK(ωK) =

K∑
k=1

φk(ωk) ∈ FK , μK = (μ1, ..., μK) ∈ MK ,

let us set

Ψ(φK(·), μK) = ln

(∫
ΩK

exp{−φK(ωK)}pμK (ωK)PK(dωK)

)
=

K∑
k=1

Ψk(φk(·), μk),

with

Ψk(φk(·), μk) = ln(

(∫
Ωk

exp{−φk(ωk)}pk,μk
(ωk)Pk(dωk)

)
.

The function Φ(φK , [x, y]), defined by (3) as applied to the observation scheme
ØK , clearly is

Φ(φK , [x; y]) =

K∑
k=1

[Ψk(φk, xk) + Ψk(−φk, yk)] ,[
φK(ωK) =

∑
k

φk(ωk), x = [x1; ...;xk] ∈ MK , y = [y1; ...; yK ] ∈ MK

]
so that

min
φK∈FK

Φ(φK , [x; y]) =

K∑
k=1

ψk(xk, yk),

where functions ψk(·, ·) are defined as follows (cf. (8), (11) and (13)):

5This assumption in fact does not restrict generality, since an m-dimensional Poisson ob-
servation scheme from section 2.3.3 is nothing but the direct product of m scalar Poisson
observation schemes. Since the direct product of observation schemes clearly is associative, we
always can reduce the situation with multidimensional Poisson factors to the case where all
these factors are scalar ones.
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• ψk(μk, νk) = − 1
4
(μk − νk)

TΣ−1
k (μk − νk) in the case of Gaussian Øk with

ωk ∈ R
mk , ωk ∼ N (μk,Σk), μk, νk ∈ R

mk ;
• ψk(μk, νk) = −(

√
μk −√

νk)
2 for scalar Poisson Øk, with μk, νk > 0;

• ψk(μk, νk) = 2 ln
(∑mk

i=1

√
[μk]i[νk]i

)
for Discrete Øk with Ωk = {1, ...,mk},

μk, νk ∈ Mk = {μ ∈ R
mk : μ > 0,

∑
i[μ]i = 1}.

Let Xk and Yk be compact convex subsets ofMk, k = 1, ...,K; let X = X1×...×
XK and Y = Y1×...×YK . Assume that [x∗; y∗] = [[x∗]1; ...; [x∗]K ; [y∗]1; ...; [y∗]K ]
is an optimal solution to the convex optimization problem

Opt = max
x∈X,y∈Y

[
K∑

k=1

ψk(xk, yk)

]
, (15)

and let

φk
∗(ωk) =

⎧⎪⎪⎨⎪⎪⎩
ξTk ωk − αk, ξk = 1

2
Σ−1

k [[x∗]k − [y∗]k],
αk = 1

2
ξTk [[x∗]k + [y∗]k]

for Gaussian Øk,

1
2
ωk ln ([x∗]k/[y∗]k)− 1

2
[[x∗]k − [y∗]k] for scalar Poisson Øk,

1
2
ln ([x∗]ωk

/[y∗]ωk
) for Discrete Øk.

(16)

Theorem 2.1 in our current situation implies the following statement:

Proposition 2.2 In the framework described in section 2.1, assume that the
observation scheme ØK is the direct product of some Gaussian, Discrete and
scalar Poisson factors. Let [x∗; y∗] be an optimal solution to the convex opti-
mization problem (15) associated via the above construction with ØK , and let

ε� = exp{Opt/2}.

Then the error probabilities of the simple test with detector φa
∗(ω

K) =∑K
k=1 φ

k
∗(ωk)− a, where φk

∗(·) are as in (16), and a ∈ R, satisfy

εX(φa
∗) ≤ exp{a}ε�, and εY (φ

a
∗) ≤ exp{−a}ε�.

Besides this, no test can distinguish between these hypotheses with the risk of
test less than ε2�/4.

Remarks. Two important remarks are in order.
When ØK is a direct product of Gaussian, Poisson and Discrete factors,

finding the near-optimal simple test reduces to solving explicit well-structured
convex optimization problem with sizes polynomial in K and the maximal di-
mensions mk of the factors, and thus can be done in reasonable time, whenever
K and maxk mk are “reasonable.” This is so in spite of the fact that the “for-
mal sizes” of the saddle point problem associated with Φ could be huge (e.g.,
when all the factors Øk are discrete, the cardinality of ΩK can grow exponen-
tially with K, rapidly making a straightforward computation of Φ based on (3)
impossible).
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We refer to the indexes k and k′, 1 ≤ k, k′ ≤ K, as equivalent in the direct
product setup, augmented by convex compact subsets X,Y ofMK , if Øk = Øk′ ,
xk = xk′ for all x ∈ X, and yk = yk′ for all y ∈ Y . Denoting by K ′ the number
of equivalence classes of indexes, it is clear that problem (15) is equivalent to
a problem of completely similar structure, but with K ′ in the role of K. It
follows that the complexity of solving (15) is not affected by how large is the
number K of factors; what matters is the number K ′ of equivalence classes of
the indexes. Similar phenomenon takes place when X and Y are direct products
of their projections, Xk and Yk, on the factors Mk of MK , and the equivalence
of indexes k, k′ is defined as Øk = Øk′ , Xk = Xk′ , Yk = Yk′ .

3. Multiple hypotheses case

The examples outlined in section 2.3 demonstrate that the efficiently computable
“nearly optimal” simple testing of composite hypotheses suggested by Theorem
2.1 and Proposition 2.2, while imposing strong restrictions on the underlying
observation scheme, covers nevertheless some interesting and important appli-
cations. This testing “as it is,” however, deals only with “dichotomies” (pairs of
hypotheses) of special structure. In this section, we intend to apply our results
to the situation when we should decide on more than two hypotheses, or still on
two hypotheses, but more complicated than those considered in Theorem 2.1.
Our general setup here is as follows. We are given a Polish observation space Ω
along with a collection X1, ..., XM of (nonempty) families of Borel probability
distributions on Ω. Given an observation ω drawn from a distribution p belong-
ing to the union of these families (pay attention to this default assumption!),
we want to make some conclusions on the “location” of p. We will be interested
in questions of two types:

A. [testing multiple hypotheses] We want to identify the family (or families)
in the collection to which p belongs.

B. [testing unions] Assume our families X1, ..., XM are split into two groups
– “red” and “blue” families. The question is, whether p belongs to a red
or a blue family.

When dealing with these questions, we will assume that for some pairs (i, j),
i 	= j, of indexes from 1, ...,M (let the set of these pairs be denoted I) we are
given deterministic “pairwise tests” Tij deciding on the pairs of hypotheses Hi,
Hj (where Hk states that p ∈ Xk). To avoid ambiguities, we assume once for
ever that the only possible outcomes of a test Tij are either to reject Hi (and
accept Hj), or to reject Hj (and accept Hj). For (i, j) ∈ I, we are given the
risks εij (an upper bound on the probability for Tij to reject Hi when p ∈ Xi)
and ε̄ij (an upper bound on the probability for Tij to reject Hj when p ∈ Xj).
We suppose that whenever (i, j) ∈ I, so is (j, i), and the tests Tij and Tji are
the same, meaning that when run on an observation ω, Tij accepts Hi if and
only if Tji accepts Hi. In this case we lose nothing when assuming that εij = ε̄ji.

Our goal in this section is to “assemble” the pairwise tests Tij into a test
for deciding on “complex” hypotheses mentioned in A and in B. For example,
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assuming that Tij ’s are given for all pairs i, j with i 	= j, the simplest test for A
would be as follows: given observation ω, we run on it tests Tij for every pair i, j
with i 	= j, and accept Hi when all tests Tij with j 	= i accept Hi. As a result
of this procedure, at most one of the hypotheses will be accepted. Applying the
union bound, it is immediately seen that if ω is drawn from p belonging to some
Xi, Hi will be rejected with probability at most

∑
j �=i εij , so that the quantity

maxi
∑

j �=i εij can be considered as the risk of our aggregated test.
The point in what follows is that when Tij are tests of the type yielded by

Theorem 2.1, we have wider “assembling options”. Specifically, we will consider
the case where

• Tij are “simple tests induced by detectors φij ,” where φij(ω) : Ω → R are
Borel functions; given ω, Tij accepts Hi when φij(ω) > 0, and accepts Hj

when φij(ω) < 0, with somehow resolved “ties” φij(ω) = 0. To make Tij

and Tji “the same,” we will always assume that

φij(ω) ≡ −φji(ω), ω ∈ Ω, (i, j) ∈ I. (17)

• The risk bounds εij “have a specific origin”, namely, they are such that
for all (i, j) ∈ I,

(a)
∫
Ω
exp{−φij(ω)}p(dω) ≤ εij ∀p ∈ Xi;

(b)
∫
Ω
exp{φij(ω)}p(dω) ≤ ε̄ij , ∀p ∈ Xj .

(18)

In the sequel, we refer to the quantities ε̂ij :=
√
εij ε̄ij as to the risks of the

detectors φij . Note that the simple tests provided by Theorem 2.1 meet the just
outlined assumptions. Another example is the one where Xi are singletons, and
the distribution from Xi has density pi(·) > 0 with respect to a common for all
i measure P on Ω; setting φij(·) = 1

2
ln(pi(·)/pj(·)) (so that Tij are the standard

likelihood ratio tests) and specifying εij = ε̄ij as Hellinger affinities of pi and
pj , we meet our assumptions. Furthermore, every collection of deterministic
pairwise tests T ij , (i, j) ∈ I, deciding, with risks δij = δji ∈ (0, 1/2), on the
hypotheses Hi, Hj , (i, j) ∈ I, gives rise to pairwise detectors φij meeting (17)

and (18) with εij = ε̄ij = 2
√

δij(1− δij) (cf. remark after Theorem 2.1). Indeed,

to this end it suffices to set φij(ω) =
1
2
ln
(

1−δij
δij

)
T ij(ω) where, clearly, T ij(ω) =

−T ji(ω).
The importance of the above assumptions becomes clear from the following

immediate observations:

1. By evident reasons, (18.a) and (18.b) indeed imply that when (i, j) ∈ I
and p ∈ Xi, the probability for Tij to rejectHi is ≤ εij , while when p ∈ Xj ,
the probability for the test to reject Hj is ≤ ε̄ij . Besides this, taking into
account that φij = −φji, we indeed ensure εij = ε̄ji;

2. Relations (18.a) and (18.b) are preserved by a shift of the detector – by
passing from φij(·) to φij(·)−a (accompanied with passing from φji to φji+
a) and simultaneous passing from εij , ε̄ij to exp{a}εij and exp{−a}ε̄ij . In
other words, all what matters is the product εij ε̄ij (i.e., the squared risk
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ε̂2ij of the detector φij), and we can “distribute” this product between the
factors as we wish, for example, making εij = ε̄ij = ε̂ij ;

3. Our assumptions are “ideally suited” for passing from a single observation
ω drawn from a distribution p ∈

⋃M
i=1 Xi to observing a K-tuple ωK =

(ω1, ..., ωK) of observations drawn, independently of each other, from p.

Indeed, setting φK
ij (ω1, ..., ωK) =

∑K
k=1 φij(ωk), relations (18.a) and (18.b)

clearly imply similar relations for φK
ij in the role of φij and [εij ]

K and [ε̄ij ]
K

in the role of εij and ε̄ij . In particular, when max(εij , ε̄ij) < 1, passing from
a single observation to K of them rapidly decreases the risks as K grows.

4. The left hand sides in relations (18.a) and (18.b) are linear in p, so that
(18) remains valid when the families of probability distributions Xi are
extended to their convex hulls.

In the rest of this section, we derive “nontrivial assemblings” of pairwise tests,
meeting the just outlined assumptions, in the context of problems A and B.

3.1. Testing unions

3.1.1. Single observation case

Let us assume that we are given a family P of probability measures on a Polish
space Ω equipped with a σ-additive σ-finite Borel measure P , and all distri-
butions from P have densities w.r.t. P ; we identify the distributions from P
with these densities. Let Xi ⊂ P , i = 1, ...,m and Yj ⊂ P , j = 1, ..., n. Assume
that pairwise detectors – Borel functions φij(·) : Ω → R, with risk bounded by
εij > 0, are available for all pairs (Xi, Yj), i = 1, ...,m, j = 1, ..., n, namely,∫

Ω
exp{−φij(ω)}p(ω)P (dω) ≤ εij , ∀ p ∈ Xi,∫
Ω
exp{φij(ω)}q(ω)P (dω) ≤ εij , ∀q ∈ Yj .

Consider now the problem of deciding between the hypotheses

HX : p ∈ X =

m⋃
i=1

Xi and HY : p ∈ Y =

n⋃
j=1

Yj .

on the distribution p of observation ω.
Let E = [εij ]i,j ∈ R

m×n. Consider the matrix

H =

[
E

ET

]
.

This is a symmetric entrywise nonzero nonnegative matrix. Invoking the Perron-
Frobenius theorem, the leading eigenvalue of this matrix (which is nothing but
the spectral norm ‖E‖2,2 of E) is positive, and the corresponding eigenvector
can be selected to be nonnegative. Let us denote this vector z = [g;h] with
g ∈ R

m
+ and h ∈ R

n
+, so that

Eh = ‖E‖2,2g, ET g = ‖E‖2,2h. (19)
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We see that if one of the vectors g, h, is zero, both are so, which is impossible.
Thus, both g and h are nonzero nonnegative vectors; since E has all entries
positive, (19) says that in fact g and h are positive. Therefore we can set

aij = ln(hj/gi), 1 ≤ i ≤ m, 1 ≤ j ≤ n,
φ(ω) = max

i=1,...,m
min

j=1,...,n
[φij(ω)− aij ] : Ω → R. (20)

Given observation ω, we accept HX when φ(ω) ≥ 0, and accept HY otherwise.

Proposition 3.1 In the described situation, we have

(a)
∫
Ω
exp{−φ(ω)}p(ω)P (dω) ≤ ε := ‖E‖2,2, p ∈ X,

(b)
∫
Ω
exp{φ(ω)}p(ω)P (dω) ≤ ε, p ∈ Y.

(21)

As a result, the risk of the just described test when testing HX versus HY does
not exceed ε = ‖E‖2,2.

3.1.2. Case of repeated observations

The above construction and result admit immediate extension onto the case of
non-stationary repeated observations. Specifically, consider the following situa-
tion. For 1 ≤ t ≤ K, we are given

1. Polish space Ωt equipped with Borel σ-additive σ-finite measure Pt,
2. A family Pt of Borel probability densities, taken w.r.t. Pt, on Ωt,
3. Nonempty sets Xit ⊂ Pt, Yjt ⊂ Pt, i ∈ It = {1, ...,mt}, j ∈ Jt =

{1, ..., nt},
4. Detectors – Borel functions φijt(·) : Ωt → R, i ∈ It, j ∈ Jt, along with

positive reals εijt, i ∈ It, j ∈ Jt, such that

(a)
∫
Ωt

exp{−φijt(ω)}p(ω)Pt(dω) ≤ εijt ∀(i ∈ It, j ∈ Jt, p ∈ Xit),

(b)
∫
Ωt

exp{φijt(ω)}p(ω)Pt(dω) ≤ εijt ∀(i ∈ It, j ∈ Jt, p ∈ Yjt),

(22)

Given time horizon K, consider two hypotheses on observations ωK = (ω1, ...,
ωK), ωt ∈ Ωt, H1 := HX and H2 := HY , as follows. According to hypothesis
Hχ, χ = 1, 2, the observations ωt, t = 1, 2, ...,K, are generated as follows:

“In the nature” there exists a sequence of “latent” random variables ζ1,χ, ζ2,χ,
ζ3,χ, ... such that ωt, t ≤ K, is a deterministic function of ζtχ = (ζ1,χ, ..., ζt,χ),

and the conditional, ζt−1
χ being fixed, distribution of ωt has density pt ∈ Pt w.r.t.

Pt, the density pt being a deterministic function of ζt−1
χ . Moreover, when χ = 1,

pt belongs to Xt :=
⋃

i∈It
Xti, and when χ = 2, it belongs to Yt :=

⋃
j∈Jt

Yjt.

Our goal is to decide from observations ωK = (ω1, ..., ωK) on the hypotheses
HX and HY .
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The test we intend to consider is as follows. We set

Et = [εijt]i,j ∈ R
mt×nt , Ht =

[
Et

ET
t

]
∈ R

(mt+nt)×(mt+nt), εt = ‖Et‖2,2.
(23)

As above, the leading eigenvalue of the symmetric matrix Ht is εt, the corre-
sponding eigenvector [gt;ht], gt ∈ R

mt , ht ∈ R
nt can be selected to be positive,

and we have

Eth
t = εtg

t, ET
t g

t = εth
t. (24)

We set

aijt = ln(ht
j/g

t
i), 1 ≤ i ≤ mt, 1 ≤ j ≤ nt,

φt(ωt) = max
i=1,...,mt

min
j=1,...,nt

[φijt(ωt)− aijt] : Ω → R,

φK(ωK) =
∑K

t=1 φt(ωt).

(25)

Given observation ωK = (ω1, ..., ωK), we accept HX when φK(ωK) ≥ 0, and
accept HY otherwise.

We have the following analogue of Proposition 2.2

Proposition 3.2 In the situation of this section, we have

(a)
∫
Ω
exp{−φt(ω)}p(ω)P (dω) ≤ εt := ‖Et‖2,2, p ∈ Xt, t = 1, 2, ...

(b)
∫
Ω
exp{φt(ω)}p(ω)P (dω) ≤ εt, p ∈ Yt, t = 1, 2, ...

(26)

As a result, the risk of the just described test does not exceed
∏K

t=1 εt.

Some remarks are in order.

Symmeterizing the construction. Inspecting the proof of Proposition 3.2,
we see that the validity of its risk-related conclusion is readily given by the
validity of (26). The latter relation, in turn, is ensured by the described in
(25) scheme of “assembling” the detectors φijt(·) into φt(·), but this is not the
only assembling ensuring (26). For example, swapping Xt and Yt, applying the
assembling (25) to these “swapped” data and “translating” the result back to
the original data, we arrive at the detectors

φt(ω) = min
j=1,...,nt

max
i=1,...,mt

[φijt(ω)− aijt],

with aijt given by (25), and these new detectors, when used in the role of φt,
still ensure (26). Denoting by φ

t
the detector φt given by (25), observe that

φ
t
(·) ≤ φt(·), and this inequality in general is strict. Inspecting the proof of

Proposition 3.2, it is immediately seen that Proposition remains true whenever
φK(ωK) =

∑K
t=1 φt(ωt) with φt(·) satisfying the relations

φ
t
(·) ≤ φt(·) ≤ φt(·),
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for example, with the intrinsically symmetric “saddle point” detectors

φt(·) = max
λ∈Δmt

min
μ∈Δnt

∑
i,j

λiμj [φijt(·)− aijt]

[Δk = {x ∈ R
k : x ≥ 0,

∑k
i=1 xi = 1}]

Needless to say, similar remarks hold true in the context of Proposition 3.1,
which is nothing but the stationary (i.e., with K = 1) case of Proposition 3.2.

Testing convex hulls. As it was already mentioned, the risk-related conclu-
sions in Propositions 3.1, 3.2 depend solely on the validity of relations (21),
(26). Now, density p(·) enters the left hand sides in (21), (26) linearly, implying
that when, say, (26) holds true for some Xt, Yt, the same relation holds true
when the families of probability densities Xt, Yt are extended to their convex
hulls. Thus, in the context of Propositions 3.1, 3.2 we, instead of speaking about
testing unions, could speak about testing convex hulls of these unions.

Simple illustration. Let p be a positive probability density on the real axis
Ω = R such that setting ρi =

∫ √
p(ω)p(ω − i)dω, we have ε := 2

∑∞
i=1 ρi < ∞.

Let pi(ω) = p(ω − i), and let I = {ı1 < ... < ım} and J = {j1 < ... < jn} be
two non-overlapping finite subsets of Z. Consider the case where Xit = {pıi(·)},
1 ≤ i ≤ m = mt, Yjt = {pjj (·)}, 1 ≤ j ≤ n = nt, are singletons, and let us set

φijt(ω) = 1
2 ln(pıi(ω)/pjj (ω)), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

εijt =
∫ √

pıi(ω)/pjj (ω)dω, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

This choice clearly ensures (22), and for the associated matrix Et ≡ E we
have ‖E‖2,2 ≤ ε.6 Thus, when ε is small, we can decide with low risk on the
hypotheses associated with Xt :=

⋃m
i=1 Xit, Yt :=

⋃n
j=1 Yjt; note that ε is

independent of the magnitudes of m,n. Moreover, when ε < 1, and repeated
observations, of the structure considered in Proposition 3.2, are allowed, K =
� ln(1/ε)/ ln(1/ε)� observations are sufficient to get a test with risk ≤ ε, and
K again is not affected by the magnitudes of m,n. Finally, invoking the above
remark, we can replace in these conclusions the finite sets of probability densities
Xt, Yt with their convex hulls.

3.2. Testing multiple hypotheses

Let X1, ..., Xm be nonempty sets in the space of Borel probability distributions
on a Polish space Ω, E = [εij ] be a symmetric m×m matrix with zero diagonal

6We use the following elementary fact: Let E be a matrix with sums of magnitudes of
entries in every row and every column not exceeding r. Then ‖E‖2,2 ≤ r. To be on the safe
side, here is the proof: let

F =

[
E

ET

]
,

so that ‖E‖2,2 = ‖F‖2,2, and ‖F‖2,2 is just the spectral radius of F . We clearly have ‖Fx‖∞ ≤
r‖x‖∞ for all x, whence the spectral radius of F is at most r.
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and positive off-diagonal entries, and let

φij(ω) = −φji(ω) : Ω → R, 1 ≤ i, j ≤ m, i 	= j,

be Borel detectors such that

∀(i, j, 1 ≤ i, j ≤ m, i 	= j) :

∫
Ω

exp{−φij(ω)}p(dω) ≤ εij ∀p ∈ Xi. (27)

Given a skew-symmetric matrix [αij ]1≤i,j≤m and setting φ̄ij(·) = φij(·) − αij ,
we get

∀(i, j, 1 ≤ i, j ≤ m, i 	= j) :

∫
Ω

exp{−φ̄ij(ω)}p(dω) ≤ exp{αij}εij ∀p ∈ Xi.

(28)
Consider the following test aimed to decide, given an observation ω drawn from
a distribution p known to belong toX =

⋃m
i=1 Xi, on i such that p ∈ Xi (we refer

to the validity of the latter inclusion as to hypothesis Hi). The test is as follows:
we compute φ̄ij(ω) for all i 	= j, and accept all Hi’s such that all the quantities
φ̄ij(ω) with j distinct from i are positive. Note that since φ̄ij(·) ≡ −φ̄ji(·), if
some Hi is accepted by our test, no Hi′ with i′ different from i can be accepted;
thus, our test, for every ω, accepts at most one of the hypotheses Hi. Let us
denote by εi the maximal, over p ∈ Xi, probability for the test to reject Hi when
our observation ω is drawn from p(·). Note that since our test accepts at most
one of Hi’s, for every i the probability to accept Hi when the observation ω is
drawn from a distribution p(·) ∈ X\Xi (i.e., when Hi is false) does not exceed
maxj:j �=i εj .

Now recall that the risks εi depend on the shifts αij , and consider the problem
as follows. Given “importance weights” pi > 0, 1 ≤ i ≤ m, we now aim to find
the shifts αij resulting in the smallest possible quantity

ε := max
1≤i≤m

piεi,

or, more precisely, the smallest possible natural upper bound ε on this quantity.
We define this bound as follows.

Let, for some i, an observation ω be drawn from a distribution p ∈ Xi. Given
this observation, Hi will be rejected if for some j 	= i the quantity φ̄ij(ω) is
nonpositive. By (27), for a given j 	= i, p-probability of the event in question
is at most exp{αij}εij , which implies the upper bound on εi, specifically, the
bound

εi =
∑
j �=i

exp{αij}εij =
m∑
j=1

exp{αij}εij

(recall that εii = 0 for all i). Thus, we arrive at the upper bound

ε := max
i

piεi = max
i

m∑
j=1

piεij exp{αij} (29)

on ε. What we want is to select αij = −αji minimizing this bound.
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Our goal is relatively easy to achieve: all we need is to solve the convex
optimization problem

ε∗ = min
α=[αij ]

⎧⎨⎩f(α) := max
1≤i≤m

∑
j

piεij exp{αij} : α = −αT

⎫⎬⎭ . (30)

The problem (30) allows for a “closed form” solution.

Proposition 3.3 Let ρ be the Perron-Frobenius eigenvalue of the entry-wise
nonnegative matrix Ē = [piεij ]1≤i,j≤m. The corresponding eigenvector g ∈ R

m

can be selected to be positive, and for the choice [ᾱij := ln(gj)− ln(gi)]i,j , 1 ≤
i, j ≤ m, one has ε∗ = f(ᾱ) = ρ.

Remark. The proof of Proposition 3.3 demonstrates that with the optimal
assembling given by αij = ᾱij all the quantities piεi in (29) become equal to
ε∗ = ρ. In particular, when pi = 1 for all i, for every i the probabilities to reject
Hi when the hypothesis is true, and to accept Hi when the hypothesis is false,
are upper bounded by ρ.

3.2.1. A modification

In this section we focus on multiple hypothesis testing in the case when all
importance factors pi are equal to 1. Note that in this case the result we have
just established can be void when the optimal value ε∗ in (30) is ≥ 1, as this is
the case, e.g., when some Xi and Xj with i 	= j intersect. In the latter case, for
every pair i, j with i 	= j and Xi ∩Xj 	= ∅, the best – resulting in the smallest
possible value of εij – selection of φij is φij ≡ 0, resulting in εij = 1. It follows
that even with K-repeated observations (for which εij should be replaced with
εKij ) the optimal value in (30) is ≥ 1, so that our aggregated test allows for

only trivial bound ε ≤ 1 on ε, see (29).7 Coming back to the general situation
where pi ≡ 1 and ε∗ is large, what can we do? A solution, applicable when
εij < 1 for all i, j, is to pass to K-repeated observations; as we have already
mentioned, this is equivalent to passing from the original matrix E = [εij ] to
its entrywise power E(K) = [εKij ]; when K is large, the leading eigenvalue ρK
of E(K) becomes small. The question is what to do if some of εij indeed are
equal to 1, and a somewhat partial solution in this case may be obtained by
substituting our original goal of highly reliable recovery of the true hypothesis
with a less ambitious one. A natural course of action could be as follows. Let I
be the set of all ordered pairs (i, j) with 1 ≤ i, j ≤ m, and let C be a closeness
– a given subset of this set containing all “diagonal” pairs (i, i). We interpret
the inclusion (i, j) ∈ C as the claim that Hj is “close” to Hi.

8 Imagine that

7Of course, the case in question is intrinsically difficult – here no test whatsoever can make
all the risks εi less than 1/2.

8Here the set of ordered pairs C is not assumed to be invariant w.r.t. swapping the com-
ponents of a pair, so that in general “Hj is close to Hi” is not the same as “Hi is close to
Hj .”
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what we care about when deciding on the collection of hypotheses H1, ..., Hm is
not to miss a correct hypothesis and, at the same time, to reject all hypotheses
which are “far” from the true one(s). This can be done by test as follows. Let us
shift somehow the original detectors, that is, pass from φij(·) to the detectors
φ′
ij(·) = φij(·)− αij with αij = −αij , thus ensuring that

φ′
ij(·) := −φ′

ji(·) &
∫
Ω

exp{−φ′
ij(ω)}p(dω) ≤ ε′ij := exp{αij}εij ∀p ∈ Xi. (31)

Consider the test as follows:

Test T : Given observation ω, we compute the matrix [φ′
ij(ω)]ij . Looking one by

one at the rows i = 1, 2, ...m of this matrix, we accept Hi if all the entries φ′
ij(ω)

with (i, j) �∈ C are positive, otherwise we reject Hi.
The outcome of the test is the collection of all accepted hypotheses (which now
is not necessary either empty or a singleton).

What we can say about this test is the following. Let

ε = max
i

∑
j:(i,j) �∈C

ε′ij , (32)

and let the observation ω the test is applied to be drawn from distribution
p ∈ Xi∗ , for some i∗. Then

• if, for some i 	= j, T accepts both Hi and Hj , then either Hj is close to
Hi, or Hi is close to Hj , or both.
Indeed, if neither Hi is close to Hj , nor Hj is close to Hi, both Hi, Hj

can be accepted only when φ′
ij(ω) > 0 and φ′

ji(ω) > 0, which is impossible
due to φ′

ij(·) = −φ′
ji(·).

• p-probability for the true hypothesis Hi∗ not to be accepted is at most ε.
Indeed, by (31), the p-probability for φ′

i∗j to be nonpositive does not ex-
ceed ε′i∗j . With this in mind, taking into account the description of our
test and applying the union bound, p-probability to reject Hi∗ does not
exceed

∑
j:(i∗,j) �∈C ε

′
i∗j ≤ ε.

• p-probability of the event E which reads “at least one of the accepted Hi’s
is such that both (i, i∗) 	∈ C and (i∗, i) 	∈ C” (that is, neither i∗ is close to
i, nor i is close to i∗) does not exceed ε.
Indeed, let I be the set of all those i for which (i, i∗) 	∈ C and (i∗, i) 	∈ C. For
a given i ∈ I, Hi can be accepted by our test only when φ′

ii∗(ω) > 0 (since
(i, i∗) 	∈ C), implying that φ′

i∗i(ω) < 0. By (31), the latter can happen with
p-probability at most ε′i∗i. Applying the union bound, the p-probability of
the event E is at most ∑

i∈I

ε′i∗i ≤
∑

i:(i∗,i) �∈C
ε′i∗i ≤ ε

(we have taken into account that whenever i ∈ I, we have (i∗, i) 	∈ C, that
is, I ⊂ {i : (i∗, i) 	∈ C}).
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Remark 3.1 As an immediate byproduct of the above reasoning, we arrive at
the following conclusion. Let the closeness in question be symmetric: (i, i′) ∈ C
if and only if (i′, i) ∈ C. Then the C-risk of T does not exceed ε, meaning that
whenever the observation ω is drawn from a distribution p ∈ Xi∗ , for some
i∗, the p-probability of the event “the list of accepted by T hypotheses does not
contain the true hypothesis Hi∗ or contains a hypothesis Hj which is not close
to Hi∗” is at most ε.

Indeed, in the case of symmetric closeness, the event in question takes place if
and only if not all of the quantities φ′

i∗j(ω) with (i∗, j) 	∈ C are positive, and the
p-probability of the latter event is at most

∑
j:(i∗,j) �∈C ε

′
i∗j ≤ ε.

When ε is small (which, depending on how closeness is specified, can happen
even when some of ε′ij are not small), the simple result we have just established
is “better than nothing:” it says that up to an event of probability 2ε, the true
hypotheses Hi∗ is accepted, and all accepted hypotheses Hj are such that either
j is close to i∗, or i∗ is close to j, or both.

Clearly, given C, we would like to select αij to make ε as small as possible.
The punch line is that this task is relatively easy: all we need is to solve the
convex optimization problem

min
[αij ]i,j

⎧⎨⎩ max
1≤i≤m

∑
j:(i,j) �∈C

εij exp{αij} : αij ≡ −αji

⎫⎬⎭ . (33)

Near-optimality. Let the observation scheme underlying the just considered
“testing m hypotheses up to closeness” situation be the stationary K-repeated
version ØK of a good observation scheme Ø = ((Ω, P ), {pμ(·) : μ ∈ M},F), so
that our observation is ωK := (ω1, ..., ωK) with ωt drawn, independently of each
other, from a distribution p; and let the i-th of our m hypotheses, Hi, states
that p belongs to the set Xi = {pμ : μ ∈ Qi}, where Qi are convex compact
subsets of M. Let φ̄ij be the pairwise detector for Hi and Hj , i < j, yielded
by Theorem 2.1 as applied to X = Qi and Y = Qj , the observation scheme
being Ø rather than ØK , and let ε̄ij be the corresponding value of ε∗. Setting
φ̄ji = −φ̄ij , ε̄ji = ε̄ij , j > i, and invoking the results of section 2.4.1, detectors
and risks given by

φij(ω
K) =

K∑
t=1

φ̄ij(ωt), εij = [ε̄ij ]
K (34)

satisfy the relations

∀i 	= j : φij ≡ −φji &
∫
ΩK exp{−φij(ω

K)}pKμ (ωK)PK(dωK) ≤ εij[
pKμ (ωK) =

∏K
t=1 pμ(ωt), P

K = P × ...× P︸ ︷︷ ︸
K

]
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(cf. (27)). Given a closeness C, let us augment φij , εij by shifts αij = −αij

satisfying

ε(K) := max
1≤i≤m

∑
j:(i,j) �∈C

εij exp{αij} ≤ ε(K) := max
1≤i≤m

∑
j:(i,j) �∈C

εij (35)

(cf. (33)), and let us use these shifts to assemble, as explained in the beginning

of this section, detectors φij into a test T̂ K deciding on the hypotheses Hi via
K-repeated observations ωK . Assuming the closeness C symmetric and invoking
Remark 3.1, we conclude that the C-risk of the test is at most ε(K). It turns out
that when the closeness C is symmetric, the test T̂ K is near-optimal. Specifically,
we have the following result (cf. Proposition 2.1):

Proposition 3.4 In the just described situation, let closeness C be symmetric
and nontrivial (i.e., not all pairs (i, j) belong to C). Given ε ∈ (0, 1

2
), assume

that in the nature there exists a test T , perhaps randomized, based on K̄-repeated
observations ωK̄ , deciding on H1, ..., Hm with C-risk, as defined in Remark 3.1,
not exceeding ε. Then the C-risk of the test T̂ K with

K ≥ 2 ln(m/ε)

1− ln(4(1−ε))
ln(1/ε)

K̄

does not exceed ε as well.

Special case: testing multiple unions. Consider the case when “closeness
of hypotheses” is defined as follows: the set {1, ...,M} of hypotheses’ indexes is
split into L ≥ 2 nonempty non-overlapping subsets I1, ..., IL, and Hj is close to
Hi if and only if both i, j belong to the same element of this partition. Setting
E = [εij ]i,j , let D = [δij ] be the matrix obtained from E by zeroing out all
entries ij with i, j belonging to I� for some 1 ≤ � ≤ L. Problem (33) now reads

min
[αij ]

⎧⎨⎩ max
1≤i≤M

∑
1≤j≤M

δij exp{αij} : α = −αT

⎫⎬⎭ .

This problem, similarly to problem (30), admits a closed form solution: the
Perron-Frobenius eigenvector g of the entrywise nonnegative symmetric ma-
trix D can be selected to be positive, an optimal solution is given by αij =
ln(gj) − ln(gi), and the optimal value is ε∗ := ‖D‖2,2. Test T associated with

the optimal solution can be converted into a test T̂ deciding on L hypotheses
H� =

⋃
i∈I�

Hi, 1 ≤ � ≤ k; specifically, when T accepts some hypothesis Hi, T̂
accepts hypothesis H� with � uniquely defined by the requirement i ∈ I�. The
above results on T translate in the following facts about T̂ :

• T̂ never accepts more than one hypothesis;
• let the observation ω on which T̂ is run be drawn from a distribution p

obeying, for some 1 ≤ i ≤ M , the hypothesis Hi, and let � be such that
i ∈ I�. Then the p-probability for T̂ to reject the hypothesis H� is at most
ε∗.
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When L = 2 we come back to the situation considered in section 3.1.1, and what
has just been said about T̂ recovers the risk-related result of Proposition 3.1;
moreover, when L = 2, the test T̂ is, essentially, the test based on the detector
φ given by (20).9 Note that when L > 2, one could use the detector-based tests,
yielded by the construction in section 3.1.1, to build “good” detectors for the
pairs of hypotheses H�, H�′ and then assemble these detectors, as explained in
section 3.2, into a test deciding on multiple hypotheses H1, ...,HL, thus getting
an “alternative” to T̂ test T̃ . Though both tests are obtained by aggregating
detectors φij , 1 ≤ i, j ≤ M , in the test T̂ we aggregate them “directly”, while

the aggregation in test T̃ is done in two stages where we first assemble φij into

pairwise detectors φ̃��′ for H�, H�′ , and then assemble these new detectors into
a test for multiple hypotheses H1, ...,HL. However, the performance guarantees
for the test T̃ can be only worse than those for the test T̂ – informally, when
assembling φij into φ̃�,�′ , we take into account solely the “atomic contents” of
the aggregated hypotheses H� and H�′ , that is, look only at the “atoms” Hi

with i ∈ I� ∪ I�′ , while when assembling φij into T̂ , we look at all m atoms
simultaneously.10

4. Case Studies

4.1. Hypothesis testing in PET model

To illustrate applications of the simple test developed in section 2.3.3 we discuss
here a toy testing problem in the Positron Emission Tomography (PET) model.

A model of PET which is accurate enough for medical purposes is as follows.
The patient is injected a radioactive tracer and is placed inside a cylinder with
the inner surface split into detector cells. Every tracer disintegration act gives
rise to two γ-quants flying in opposite directions along a randomly oriented
line (Line of Response, LOR) passing through the disintegration point. Unless
the LOR makes too small angle with the cylinder’s axis, the γ-quants activate
(nearly) simultaneously a pair of detector cells; this event (“coincidence”) is
registered, and the data acquired in a PET study is the list of the detector pairs
in which the coincidences occurred. The goal of the study is to infer about the
density of the tracer on the basis of these observations.

After appropriate discretization of the field of view into small cells, disintegra-
tion acts in a particular cell form a Poisson processes with intensity proportional
to the density of the tracer in the cell. The entries of the observations vector ω
are indexed by bins i – pairs of detectors, ωi being the number of coincidences

9The only subtle difference, completely unimportant in our context, is that the latter test
accepts H1 whenever φ(ω) ≥ 0 and accepts H2 otherwise, while T̂ accepts H1 when φ(ω) > 0,
accepts H2 when φ(ω) < 0 and accepts nothing when φ(ω) = 0.

10The formal reasoning is as follows. On a close inspection, to get risk bound ε̃ for T̃ ,

we start with the M × M matrix D partitioned into L × L blocks D��′ (this partitioning is
induced by splitting the indexes of rows and columns into the groups I1,...,IL), and form the

L× L matrix G with entries γ��′ = ‖D��′‖2,2; ε̃ is nothing but ‖G‖2,2, while the risk bound

ε∗ for T̂ is ‖D‖2,2. Thus, ε∗ ≤ ε̃ by the construction of matrix G from D.
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registered during the study by bin i. Mathematically, ωi, i = 1, ...,m, are the
realizations of independent across i’s Poisson random variables with parameters
μi = (tPλ)i, where t is the observation time, λ is the vector of intensities of
disintegration in the cells of the field of view, and the entries Pij in the matrix
P are the probabilities for a LOR originating in cell j to be registered by bin i;
this matrix is readily given by the geometry of PET’s device. We observe that
PET model meets the specifications of what we call Poisson observation scheme.

Let M be the image, under the linear mapping λ �→ tPλ, of the set Λ =
ΛL,R of non-vanishing on R

n densities λ satisfying some regularity restrictions,
specifically, such that the uniform norm of discrete Laplacian of λ is upper-
bounded by L, and the average of λ, over all pixels, is upper-bounded by R,
i.e.

ΛL,R

=

{
λ ∈ R

n : λ ≥ 0, n−1
∑n

j=1 λj ≤ R,
1
4
|4λj(k,�) − λj(k−1,�) − λj(k,�−1) − λj(k+1,�) − λj(k,�+1)| ≤ L, 1 ≤ j ≤ n

}
,

(k, �) being the coordinates of the cell j in the field of view (by convention,
λj(k,�) = 0 when the cell (k, �) is not in the field of view). Our goal is to
distinguish two hypotheses, H1 and H2, about λ:

H1 : λ ∈ Λ1 = {λ ∈ Λ : g(λ) ≤ α}, H1 : λ ∈ Λ2 = {λ ∈ Λ : g(λ) ≥ α+ ρ},
(Pg,α[ρ])

g(λ) = gTλ being a given linear functional of λ. From now on we assume that
g /∈ Ker(P ) and ρ > 0, thus the described setting corresponds to the Poisson case
of the hypotheses testing problem of section 2.3.3, X = tPΛ1 and Y = tPΛ2

being two nonintersecting convex sets of observation intensities. Let us fix the
value ε ∈ (0, 1), and consider the optimization problem

t∗ = min
t

max
λ,λ′

{
t : − t

2

∑m
i=1

[√
[Pλ]i −

√
[Pλ′]i

]2
≥ ln ε,

λ, λ′ ∈ Λ, g(λ) ≤ α, g(λ′) ≥ α+ ρ.

}
(36)

Suppose that the problem parameters are such that both hypotheses in (Pg,α[ρ])
are not empty. It can be easily seen that in this case problem (36) is solvable
and its optimal value t∗ is positive 0. Let [λ∗;λ

′
∗] be the [λ;λ

′]-component of an
optimal solution to (36), consider the test T∗ associated with the detector

φ∗(ω) =
1
2

m∑
i=1

ln

[
[Pλ∗]i
[Pλ′

∗]i

]
ωi − 1

2

m∑
i=1

[Pλ∗ − Pλ′
∗]i. (37)

By applying Theorem 2.1 in the Poisson case (cf. (13)) we conclude that the risk
of the test T∗ associated with detector φ∗, when applied to the problem testing
problem (Pg,α[ρ]) is bounded by ε, as soon as the observation time t ≥ t∗.

In the numerical experiment we are about to describe we simulate a 2D PET
device with square field of view split into 40 × 40 pixels (i.e., dimension of λ
was n = 1600). The detector cells are represented by k = 64 equal arcs of the
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Fig 1. Toy PET experiment. Left: 40× 40 field of view with 3× 3 “suspicious spot” (in red)
and the ring of 64 detector cells. Right: the hardest to distinguish tracer densities λ∗ (top)
and λ′

∗ (middle), and the difference of these densities (bottom).

circle circumscribing the field of view, resulting in the observation space (pairs
of detectors which may be activated during the experiment) of dimension m =
1536. We choose g(·) to be the density average over a specific 3× 3 “suspicious
spot” (see the left plot on figure 1), and values of α = 1.0 and ρ = 0.1, so that
under H1 the average of the density λ of the tracer on the spot is upper-bounded
by 1, while under H2 this average is at least 1.1. The regularity parameters of
the density class ΛL,R were set to L = 0.05 and R = 1, the observation time
t∗ and parameters of the detector φ∗ were selected according to (36) and (37)
with ε = 0.01.

On the right plot on figure 1 we present the result of computation of the
hardest to distinguish densities λ∗ ∈ Λ1 and λ′

∗ ∈ Λ2. We have also measured
the actual performance of our test by simulating 2000 PET studies with varying
from study to study density of the tracer. In the first 1000 of our simulations
the true density was selected to obey H1, and in the remaining 1000 simulations
– to obey H2, and we did our best to select the densities which make decision
difficult. In the reported experiment the empirical probabilities to reject the
true hypothesis were 0.005 when the true hypothesis was H1, and 0.008 when
the true hypothesis was H2.

4.2. Event detection in sensor networks

4.2.1. Problem description

Suppose that m sensors are deployed on the domain G ⊆ R
d. The signals are

real-valued functions x : Γ → R
n on a grid Γ = (γi)i=1,...,n ⊂ G, and the

observation ωj delivered by jth sensor, j = 1, ...,m, is a linear form of the signal,
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contaminated with random noise. So we have at our disposal an observation
ω ∼ Pμ – a random vector in R

m with the distribution parameterized by μ ∈ R
m,

where μ = Ax and A ∈ R
m×n is a known matrix of sensor responses (jth row of

A is the response of the jth sensor). Further, we assume that the signal x can
be decomposed into x = s + v, where v ∈ V is a background (nuisance) signal,
V is a known convex and compact set in R

n. We assume that at most one event
can take place during the observation period, and an event occurring at a node
γi of the grid produces the signal s = re[i] ∈ R

n on the grid of known signature
e[i] with unknown real factor r.

We want to decide whether an event occurred during the observation period,
i.e. to test the null hypothesis that no event happened against the alternative
that exactly one event took place. To make a consistent decision possible we
need the alternative to be separated from the null hypothesis, so we require,
first, that Ae[i] 	= 0 for all i, and, second, that under the alternative, when an
event occurs at a node γi ∈ Γ, we have s = re[i] with |r| ≥ ρi with some given
ρi > 0. Thus we come to the testing problem as follows:

(Dρ)
Given ρ = [ρ1; ...; ρn] > 0, test the hypothesis H0 : s = 0 against
the alternative H1(ρ) : s = re[i] for some i ∈ {1, ..., n} and r with
|r| ≥ ρi.

(38)

Our goal is, given an ε ∈ (0, 1), to construct a test with risk ≤ ε for as wide as
possible (i.e., with as small ρ as possible) alternative H1(ρ).

The problem of multi-sensor detection have recently received much attention
in the signal processing and statistical literature (see e.g., [49, 50] and refer-
ences therein). Furthermore, a number of classical detection problems, exten-
sively studied in statistical literature, such as detecting jumps in derivatives of a
function and cusp detection [2, 25, 26, 38, 45, 46, 51, 53], detecting a nontrivial
signal on input of a dynamical system [28], or parameter change detection [4]
can be posed as (Dρ).

Our current objective is to apply the general approach described in section
3.1.1 to the problem (Dρ). Note that, in terms of the parameter μ underlying the
distribution of the observation ω, the hypothesis H0 corresponds to μ ∈ X :=
AV , a convex compact set, while the alternative H1 is represented by the union
Y =

⋃n
i=1 Yi of the sets Yi = {Are[i] + ν, ν ∈ V , |r| ≥ ρi}. To comply with

assumptions of section 2 we bound the sets Yi by imposing an upper bound on
the amplitude r of the useful signal: from now on we assume that ρi ≤ |r| ≤ R
in the definition of (Dρ).

11

Given a test φ(·) and ε > 0, we call a collection ρ = [ρ1; ...; ρn] of positive reals
an ε-rate profile of the test φ if whenever the signal s underlying our observation
is re[i] for some i and r with ρi ≤ |r| ≤ R, the hypothesis H0 will be rejected by
the test with probability ≥ 1−ε, whatever be the nuisance v ∈ V , and whenever

11Imposing a finite upper bound R on |r| is a minor (and non-restrictive, as far as ap-
plications are concerned) modification of the problem stated in the introduction; the purely
technical reason for this modification is our desire to work with compact sets of parameters.
It should be stressed that R does not affect the performance bounds to follow.
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s = 0, the probability for the test to reject H0 is ≤ ε, whatever be the nuisance
v ∈ V . Our goal is to design a test with ε-rate profile “nearly best possible” in
the sense of the following definition:

Let κ ≥ 1. A test T with risk ε in the problem (Dρ) is said to be κ–rate optimal, if there
is no test with the risk ε in the problem (Dρ) with ρ < κ−1ρ (inequalities between vectors

are understood componentwise).

4.2.2. Poisson case

Let the sensing matrix A be nonnegative and without zero rows, let the signal
x be nonnegative, and let the entries ωi in our observation be independent and
obeying Poisson distribution with the intensities μ := [μ1; ...;μm] = Ax. In this
case the null hypothesis is that the signal is a pure nuisance:

H0 : μ ∈ X = {μ = Av, v ∈ V},

where V is the nuisance set assumed to be a nonempty compact convex set
belonging to the interior of the nonnegative orthant. The alternative H1(ρ) is
the union over i = 1, ..., n of the hypotheses

Hi(ρi) : μ ∈ Y (ρi) = {rAe[i] +Av, v ∈ V , ρi ≤ r ≤ R},

where e[i] ≥ 0, 1 ≤ i ≤ n, satisfy Ae[i] 	= 0. For 1 ≤ i ≤ n, let us set (cf. section
2.3.3)

ρPi (ε) = max
ρ,r,u,v

{
ρ :

1
2

∑m
�=1

[√
[Au]� −

√
[A(re[i] + v)]�

]2
≤ ln(

√
n/ε)

u ∈ V , v ∈ V , r ≥ ρ

}
,

(P i
ε )

φi(ω) =
∑m

�=1
ln(
√

[Aui]�/[A(rie[i] + vi)]�)ω� −
1

2

∑m

�=1
[A(ui − rie[i]− vi)]�,

(39)
where ri, ui, vi are the r, u, v-components of an optimal solution to (P i

ε ) (of
course, in fact ri = ρPi (ε)). Finally, let

ρP [ε] = [ρP1 (ε); ...; ρ
P
n (ε)], φ̂P (ω) = min

i=1,...,n
φi(ω) +

1
2
ln(n).

Detector φ̂P (·) specifies a test which accepts H0, the observation being ω, when

φ̂P (ω) ≥ 0 (i.e., with observation ω, all pairwise tests with detectors φi, 1 ≤ i ≤
n, when deciding on H0 vs. Hi, accept H0), and accepts H1(ρ) otherwise.

Proposition 4.1 Whenever ρ ≥ ρP [ε] and maxi ρi ≤ R, the risk of the detector

φ̂P in the Poisson case of problem (Dρ) is ≤ ε. When ρ = ρP [ε] and ε < 1/4, the

test associated with φ̂P is κn-rate optimal with κn = κn(ε) := ln(n/ε2)
ln(1/(4ε)) . Note

that κn(ε) → 2 as ε → +0.
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4.2.3. Gaussian case

Now let the distribution Pμ of ω be normal with the mean μ and known vari-
ance σ2 > 0, i.e. ω ∼ N (μ, σ2I). For the sake of simplicity, assume also that the
(convex and compact) nuisance set V is symmetric w.r.t. the origin. In such a
case, the null hypothesis is

H0 : μ ∈ X := {μ = Av, v ∈ V}, (40)

while the alternative H1(ρ) can be represented as the union, over i = 1, ..., n
and χ ∈ {−1, 1}, of 2n hypotheses

Hχ,i(ρi) : μ ∈ χYi(ρi) = χ {rAe[i] +Av : v ∈ V , ρi ≤ r ≤ R} (41)

(note that {x = re[i] + v : v ∈ V ,−R ≤ r ≤ −ρi} = −{x = re[i] + v : v ∈
V , R ≥ r ≥ ρi} due to V = −V). The general construction (applied to the case
of Poisson o.s. in the previous section) can be refined in the Gaussian case (cf.
discussion in section 2.3.1). Let

κ(ε) = ErfInv
( ε

2n

)
+ ErfInv (ε) , (42)

where ErfInv(·) is the inverse error function: Erf(ErfInv(s)) = s, 0 < s < 1. For
1 ≤ i ≤ n and χ ∈ {−1, 1}, let us set

ρGi (ε) = max
ρ,r,u,v

{
ρ :

‖A(u− re[i]− v)‖2 ≤ σ κ(ε)
χr ≥ ρ, u, v ∈ V ,

}
(Gi,χ

ε,κ)

(the right hand side quantity clearly is independent of χ due to V = −V), and
let

φi,χ(ω) =
1
2
[A(ui,χ − ri,χe[i]− vi,χ)]Tω − αi,

αi =
1
2
[A(ui,χ − ri,χe[i]− vi,χ)]T [A(λui,χ + (1− λ)(ri,χe[i] + vi,χ))], (43)

λ =
ErfInv (ε)

ErfInv
(

ε
2n

)
+ ErfInv (ε)

,

where ui,χ, vi,χ, ri,χ are the u, v, r-components of an optimal solution to (Gi,χ
ε,κ)

(of course, in fact ri,1 = −ri,−1 = ρGi (ε), and, besides, we can assume w.l.o.g.
that ui,−1 = −ui,1, vi,−1 = −vi,1). Finally, let

ρG[ε] = [ρG1 (ε); ...; ρ
G
n (ε)], φ̂G(ω) = min

1≤i≤n,χ=±1
φi,χ(ω). (44)

Detector φ̂G(·) specifies a test which accepts H0, the observation being ω, when

φ̂G(ω) ≥ 0 (i.e., with observation ω, 2n pairwise tests with detectors φi,χ, 1 ≤
i ≤ n, χ = ±1, when deciding on H0 vs. Hi, accept H0), and accepts H1(ρ)
otherwise.
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Properties of the test associated with detector φ̂G can be described as follows:

Proposition 4.2 Whenever ρ ≥ ρG[ε] and maxi ρi ≤ R, the risk of the test φ̂G

in the Gaussian case of problem (Dρ) is ≤ ε. When ρ = ρG[ε], the test is κn-rate
optimal with

κn = κn(ε) :=
ErfInv( ε

2n )

2ErfInv(ε)
+ 1

2
.

Note that κn(ε) → 1 as ε → +0.12

Remarks. The results of Propositions 4.1, 4.2 imply that testing procedures
φ̂G and φ̂P are κn–rate optimal in the sense of the above definition with κn �√
lnn in the Gaussian case and κn � lnn in the Poisson case. In particular,

this implies that the detection rates of these tests are within a
√
lnn (resp.,

lnn)–factor of the rate profile ρ∗ of the “oracle detector” – (the best) detection
procedure which “knows” the node γ ∈ Γ at which an event may occur. This
property of the proposed tests allows also for the following interpretation: con-
sider the Gaussian problem setting in which the standard deviation σ of noise
is inflated by the factor κn. Then for every i ∈ {1, ..., 2n} there is no test of
hypothesis H0 vs. Hi(ρi) with risk ≤ ε, provided that ρi < ρGi (ε).

Note that it can be proved that the price – the
√
lnn–factor – for testing

multiple hypotheses cannot be eliminated at least in some specific settings [25].
An important property of the proposed procedures is that they can be ef-

ficiently implemented – when the nuisance set V is computationally tractable
(e.g., is a polyhedral convex set, an ellipsoid, etc.), the optimization problems
(Gi,χ

ε,κ), (P
i
ε ) are well structured and convex and thus can be efficiently solved

using modern optimization tools even in relatively large dimensions.

4.2.4. Numerical illustration: signal detection in the convolution model

We consider here the “convolution model” with observation ω = A(s + v) + ξ,
where s, v ∈ R

n, and ξ ∼ N (0, σ2Im) with known σ > 0, and A is as follows.
Imagine that we observe at m consecutive moments the output of a discrete
time linear dynamical system with a given impulse response (“kernel”) {gk}
supported on a finite time horizon k = 1, ..., T . In this case, our observation
y ∈ R

m is the linear image of n-dimensional “signal” x which is system’s input
on the observation horizon, augmented by the input at T − 1 time instants
preceding this horizon (that is, n = m+ T − 1). A is exactly the m× n matrix
(readily given by m and the kernel) of the just described linear mapping x �→ y.

We want to detect the presence of the signal s = re[i], where e[i], i =
1, ..., n, are some given vectors in R

n. In other words, we are to decide between

12It is worth to mention that the “sub-optimality” κ̄n(ε) of the test associated with detector
φ̄G built using the “general construction rules” satisfies

κ̄n(ε) =
2
√

ln(2n/ε2)

2ErfInv(ε)
,

and is strictly larger than the sub-optimality κn(ε) of the test associated with φ̂G.
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the hypotheses H0 : μ ∈ AV and H1(ρ) = ∪1≤i≤n,χ=±1H
χ,i(ρi), with the

hypotheses Hχ,i(ρi) defined in (41). The setup for our experiment is as follow:
we use gk = (k + 1)2(T − k)/T 3, k = 0, ..., T − 1, with T = 60, and m = 100,
which results in n = 159. The signatures e[i], 1 ≤ i ≤ n are the standard basic
orths in R

n or unit step functions: ek[i] = 1{k≤i}, k = 1, ..., n, and the nuisance
set V is defined as VL = {u ∈ R

n : , |ui − 2ui−1 − ui−2| ≤ L, i = 3, ..., n}, where
L is experiment’s parameter.

The goal of the experiment was to illustrate how large in the outlined prob-
lem is the (theoretically, logarithmic in n) “nonoptimality factor” κn(ε) of the

detector φ̂G, specifically, how it scales with the risk ε. To this end, we have com-
puted, for different values of ε, first, the “baseline profile” — the vector with
the entries

ρ∗i (ε) = max
ρ,r,u,v

{ρ : ‖A(u− re[i]− v)‖2 ≤ 2σErfInv(ε), r ≥ ρ, u, v ∈ V} (45)

(cf. (Gi,1
ε,κ)); ρ

∗
i (ε) is just the smallest ρ for which the hypotheses H0 and H1,i(ρ)

can be distinguished with error probabilities ≤ ε (recall that we are in the
Gaussian case). Second, we computed the profile ρG[ε] of the test with detector

φ̂G underlying Proposition 4.2. The results are presented on figure 2. Note that
for ε ≤ 0.01 we have ρG(ε)/ρ∗(ε) ≤ 1.3 in the reported experiments.

Quantifying conservatism. While the baseline profile ρ∗ establishes an ob-
vious lower bound for the ρ-profile of any test in our detection problem, better
lower bounds can be computed by simulations. Indeed, let

xi,χ
0 = χui, xi,χ

1 = χρie[i] + vi, i = 1, ..., n, χ ∈ {−1, 1},

where vi and ui are some vectors in V . It is clear that the optimal risk in the
problem of distinguishing H0 and H1(ρ) =

⋃n
i=1 H

χ,i(ρi) (cf. (40) and (41)) is
lower bounded by the risk of distinguishing

H̄0 : μ ∈ {Axi,χ
0 , i = 1, ..., n, χ ∈ {−1, 1}}, and

H̄1(ρ) : μ ∈ {Axi,χ
1 , i = 1, ..., n, χ ∈ {−1, 1}},

which, in its turn, is lower bounded by the risk of distinguishing of the hypothesis
H̃0 : μ = 0 from the alternative

H̃1(ρ) : μ ∈ {Azi,χ, zi,χ = xi,χ
1 − xi,χ

0 = χ(ρie[i] + vi − ui),

i = 1, ..., n, χ ∈ {−1, 1}}.

On the other hand, the latter risk is clearly bounded from below by the risk of
the Bayesian test problem as follows:

(Dν
ρ)

Given ρ = [ρ1; ...; ρn] > 0, test the hypothesis H0 : μ = 0 against
the alternative Hν

1 (ρ) : μ = χA(ρie[i] + vi − ui) with probability
νχi where vi, ui ∈ V , and ν is a probability on {χi}, i = 1, ..., n,
χ ∈ {−1, 1}.
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Fig 2. The left pane (plots (a) and (c)) represents the experiment with “step” signals,
the right pane (plots (c) and (d)) corresponds to the experiment with the signals which
are proportional to basis orths. Nuisance parameter is set to L = 0.1 and σ = 1 in both
experiments. Plots (a) and (b): the value of ρG[ε]/ρ∗[ε] for different values of ε; plots
(c) and (d): corresponding rate profiles (logarithmic scale).

We conclude that the risk of deciding between H0 and H1(ρ) may be lower
bounded by the risk of the optimal (Bayesian) test in the Bayesian testing
problem (Dν

ρ). Note that we are completely free to choose the distribution ν

and the points ui, vi ∈ V , i = 1, ..., n. One can choose, for instance, v·,χ and v·,χ

as components of an optimal solution to (45) and a uniform on {±1, ...,±n}
prior probability ν. Let us consider the situation where the matrix A is an
n × n Toeplitz matrix of periodic convolution on {1, ..., n} with kernel g, gk =
( k
T
)2(1− k

T
), k = 1, .., T , signatures e[i] = e·−i are the shifts of the same signal

ek = k/n, k = 1, ..., n, and the nuisance set

VL = {u ∈ R
n : , |ui − 2ui−1modn − ui−2modn| ≤ L, i = 1, ..., n}

is symmetric and shift-invariant. Let us fix ε > 0 and choose vi = −ui as compo-
nents of an optimal solution to the corresponding optimization problem (Gi,χ

ε,κ).
Because of the shift-invariance of the problem setup the optimal values ρ∗i (ε)
and ρGi (ε) do not depend on i and are equal to the same ρ∗(ε) and, respectively,
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Fig 3. “Hard to detect” signal ρGi (ε)e[i] + vi,1 − ui,1, where ρGi (ε), v
i,1 and ui,1 are

components of an optimal solution to (Gi,χ
ε,κ) with ε = 0.05 and i = 100 (left plot),

and its image Ax with a noisy observation (right plot). Experiment with “step” useful
signals, nuisance parameter L = 0.1 and σ = 1.

Fig 4. Estimated risk of the Bayes test as a function of test rate ρG(ε), compared to the
risk of the baseline test and that of the simple test with data (42) and (43) (L = 0.01
and σ = 1). Simulation for n = 100 (left plot) and n = 1000 (right plot).

ρG(ε), and all vi are the shifts of the same v ∈ R
n. In this case the risk of the

Bayesian test corresponding to the uniform on {±1, ...,±n} prior distribution
ν is a lower bound of the optimal risk for the corresponding detection problem
(Dρ).

On figure 4 we present the results of two simulation for n = 100 and n = 1000,
the value L = 0.01 of the parameter of the nuisance class, and σ = 1. For
different values of ε we have first computed corresponding rates ρ∗(ε) and ρG(ε),
as well as components vi = −ui of the optimal solution (recall that due to the
shift-invariance of the problem, vik = v1k−i+1modn). Then an estimation of the
risk of the Bayesian test with the uniform prior is computed over N = 107

random draws. Note that already for ε = 0.01 rate ρG(ε) of the simple test is
only 7% higher than the corresponding Bayesian lower bound for n = 1000 (15%
for n = 100).
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4.2.5. Numerical illustration: signal identification in the convolution model

The purpose of the experiment we report on in this section is to illustrate an
application of the approach to multiple hypotheses testing presented in section
3.2.1. The experiment in question is a modification of that described in section
4.2.4, the setup is as follows. On time horizon t = 1, ...,m, we observe the output,
contaminated by noise, of a discrete-time linear dynamic system with “memory”
T (that is, the impulse response g is zero before time 0 and after time T − 1).
The input x to the system is an impulse of amplitude ≥ ρ > 0 (ρ is known) at
unknown time τ known to satisfy −T +2 ≤ τ ≤ m. Setting n = m+ T − 1, our
observation is

ω = [ω1; ...;ωm] = Ax+ ξ, ξ ∼ N (0, Im),

with m × n matrix A readily given by the impulse response g. We have n
hypotheses about x, the i-th of them stating that x ∈ Xi = {x = rei, r ≥ ρ},
where ei, i = 1, ..., n, are the standard basic orths in R

n. Given an observation,
we want to decide to which of the sets X1, ..., Xn the actual input belongs, that
is, we need to distinguish between n hypotheses H1, ..., Hn on the distribution
of ω, with Hi stating that this distribution is N (Ax, Im) for some x ∈ Xi.

The problem can be processed as follows. Let us choose two nonnegative
integers μ (“margin”) and ν (“resolution”), and imagine that we do not care
much about distinguishing between the “boundary hypotheses” Hi (those with
i ≤ μ and with i ≥ n − μ + 1) and all other hypotheses, same as we do not
care much about distinguishing between “close to each other” hypotheses Hi

and Hj , those with |i− j| ≤ ν. What we do care about is not to miss the true
hypothesis and to reject any non-boundary hypothesis which is not close to the
true one. Note that when μ = ν = 0, we “care about everything;” this, however,
could require large amplitude ρ in order to get a reliable test, since the impulses
at times t close to the endpoints of the time segment −T + 2 ≤ t ≤ m could
be poorly observed, and impulses at close to each other time instants could be
difficult to distinguish. Operating with positive margins and/or resolutions, we,
roughly speaking, sacrifice the “level of details” in our conclusions in order to
make these conclusions reliable for smaller values of the amplitude ρ.

With the approach developed in section 3.2.1, our informally described inten-
tions can be formalized as follows. In the terminology and notation of section
3.2.1, let us define the set C of pairs (i, j), 1 ≤ i, j ≤ n, i 	= j, i.e., the pairs with
“Hj close to Hi,” as follows:

• for a “boundary hypothesis” Hi (one with 1 ≤ i ≤ μ or n−μ+1 ≤ i ≤ n),
every other hypothesis Hj is close to Hi;

• for a “non-boundary hypothesis” Hi (one with 1 + μ ≤ i ≤ n − μ), close
to Hi hypotheses Hj are those with 1 ≤ |i− j| ≤ ν.

Detectors φij(ω) we intend to use are the Gaussian log-likelihood detectors

φij(ω) =
1
2 [ξij − ηij ]

Tω + 1
4 [η

T
ijηij − ξTijξij ],

ξij = Axij , ηij = Ayij , [xij = yij ] = argmin r,s{‖rAei − sAej‖2 : r ≥ ρ, s ≥ ρ},
(46)
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which allows to specify the quantities εij in (28) as

εij = exp{−(ξij − ηij)
T (ξij − ηij)/8}, (47)

see section 2.3.1.

Applying the construction from section 3.2.1, we arrive at a risk bound ε
and a test which, given an observation ω, accepts some of the hypotheses Hi,
ensuring the following. Let the true hypothesis be Hi∗ . Then (all probabilities
are taken according to the distribution specified by Hi∗)

A. The probability for Hi∗ to be rejected by the test is at most ε;
B. The probability of the event that the list of accepted hypotheses contains

a hypothesis Hj such that both Hj is not close to Hi∗ and Hi∗ is not close
to Hj is at most ε.
Note that with our definition of closeness, the latter claim implies that
when Hi∗ is not a boundary hypotheses, the probability for the list of
accepted hypotheses to contain a non-boundary hypothesis Hj with |i −
j| > ν is at most ε.

The outlined model demonstrates the potential of asymmetric closeness: when
a boundary hypothesis is difficult to distinguish from other hypotheses, it is
natural to declare all these hypotheses to be close to the boundary one. On the
other hand, there are no reasons to declare a boundary hypothesis to be close
to a well identifiable “inner” hypothesis.

As we have seen in section 3.2.1, given ρ, the risk ε can be efficiently computed
via convex optimization, and we can use this efficient computation to find the
smallest amplitude ρ for which ε takes a given target value ε. This is what was
done in the numerical experiment we are about to report. In this experiment,
we used T = m = 16 (i.e., the number of hypotheses n was 31), and the impulse
response was similar to the one reported earlier in this section, namely the
nonzero entries in g were

gt = α(t+ 1)2(T − t), 0 ≤ t ≤ T − 1,

while α was selected to ensure maxt gt = 1. For various values of margins μ
and resolutions ν, we computed the minimal amplitude ρ = ρ(μ, ν) which still
allowed for our test to guarantee risk ε ≤ 0.01. The results are presented in table
1. A simple lower bound ρ(μ, ν) on the smallest ρ such that there exists “in the
nature” a test capable to ensure A and B with ε = 0.01, amplitudes of impulses
being ρ, may be constructed by lower bounding the probability of a union of
events by the largest among the probabilities of these events. In the table we
present, along with the values of ρ(·, ·), the “excess value” ρ(μ, ν)/ρ(μ, ν) − 1.
Observe that while ρ(μ, ν) itself strongly depends on the margin μ, the excess
is nearly independent of μ and ν. Of course, 40% excess is unpleasantly large;
note, however, that the lower bound ρ definitely is optimistic. In addition, this
“overly pessimistic” excess decreases as the target value of ε decreases; what
was 40% for ε = 0.01, becomes 26% for ε = 0.001 and 19% for ε = 1.e-4.
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Table 1

Identifying signals in the convolution model. In a cell, top: ρ(μ, ν) and excess
ρ(μ, ν)/ρ(μ, ν)− 1 (in brackets, percents); bottom: ρ̃(μ, ν)/ρ(μ, ν)

ν = 0 ν = 1 ν = 2 ν = 3

μ = 0
276.0(+40.1%)

1.00
71.0(+40.0%)

1.00
31.5(+40.4%)

1.00
18.1(+44.4%)

1.03

μ = 1
133.2(+40.5%)

1.88
48.0(+40.5%)

1.48
23.6(+40.3%)

1.33
14.1(+40.5%)

1.25

μ = 2
102.0(+40.2%)

1.44
36.8(+40.0%)

1.93
19.4(+40.3%)

1.64
11.9(+40.1%)

1.48

μ = 3
77.5(+40.1%)

1.33
29.8(+40.0%)

1.61
16.3(+40.3%)

1.94
10.4(+40.1%)

1.70

In the reported experiment, along with identifying ρ(·, ·), we were interested
also in the effect of optimal shifts φij(·) �→ φij(·) − ᾱij , see section 3.2.1. To
this end we compute the smallest ρ = ρ̃(μ, ν) such that the version of our
test utilizing αij ≡ 0 is capable to attain the risk ε = 0.01. Table 1 presents,
along with other data, the ratios ρ̃(μ, ν)/ρ(μ, ν) which could be considered as
quantifying the effect of shifting the tests. We see that the effect of the shift is
significant when the margin μ is positive.

4.3. Testing from indirect observations

4.3.1. Problem description

Let F be a class of cumulative distributions on R. Suppose that for � = 1, ..., L,
we are given K� independent realizations of random variable ζ�. We assume that
the c.d.f. Fζ� of ζ� is a linear transformation of unknown c.d.f. Fξ of “latent”
random variable ξ, Fξ ∈ F . In this section we consider two cases of the sort;
in both of them, η� is an independent of ξ random variable (“nuisance”) with
known c.d.f. Fη� . In the first case (“deconvolution model”), ζ� = ξ + η�, so
that the distribution of ζ� is Fζ�(t) =

∫
R
Fξ(t − s)dFη�(s). In the second case

(“trimmed observations”), observations are trimmed: ζ� = max{ξ, η�}, so that
Fζ�(t) = Fξ(t)Fη�(t).

We consider here the testing problem where our objective is to test, for given
t ∈ R, α ∈ (0, 1) and ρ > 0, the hypotheses13

H1 : Fξ(t) < α− ρ and H2 : Fξ(t) > α+ ρ (Cα,t[ρ])

given observations ζ�k, k = 1, ...,K�, � = 1, ..., L.
Under minor regularity conditions on Fη� and Fξ, (Cα,t[ρ]) may be approxi-

mated by the discrete decision problem as follows. Let ξ be a discrete random

13A related problem of estimation of the c.d.f. Fξ in the deconvolution model, a special
case of linear functional estimation [21, 22, 35], have received much attention in the statistical
literature (see, e.g., [24, 54, 23, 19] and [44, Section 2.7.2] for a recent review of corresponding
contributions).
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variable with unknown distribution x known to belong to a given closed con-
vex subset X of n-dimensional probabilistic simplex. We want to infer about
x given indirect observations of ξ obtained by L different “observers”: the ob-
servations ω�

i , i = 1, ...,K� of �-th observer are independent realizations of ran-
dom variable ω� taking values 1, ...,m� with distribution μ� = A�x, where A�

is a known stochastic matrix. For instance, when ξ takes values 1, ..., n and
ω� = ξ + η� with nuisance η� taking values 1, ..., n� and distribution u�, A� is
(n� + n − 1) × n matrix, and the nonzero entries of the matrix are given by
A�

ij = u�
i−j+1, 1 ≤ j ≤ i ≤ j + n� − n. We assume in the sequel that A�x > 0

whenever x ∈ X , 1 ≤ � ≤ L.
Let g(x) = gTx, g ∈ R

n, be a given linear functional of the distribution x.
Given α and ρ > 0, our goal is to decide on the hypotheses about the distribution
x of ξ

H1[ρ] : x ∈ X , g(x) ≤ α− ρ, H2[ρ] : x ∈ X , g(x) ≥ α+ ρ. (Dg,α[ρ])

given observations ω1, ..., ω�. We denote by ρmax the largest ρ for which both
these hypotheses are nonempty, and assume from now on that ρmax > 0 (as
far as our goal is concerned, this is the only nontrivial case). Now let us fix
0 < ε < 1 and, given a decision rule T (·), let us denote ρT [ε] the smallest ρ ≥ 0
such that the risk of the rule T (·) in the problem (Dg,α[ρ]) does not exceed ε.
We refer to ρT [ε] as the ε-resolution of T (·) and denote by ρ∗[ε] = infT (·) ρT [ε]
(“ε-rate”) the best ε-resolution achievable in our problem. Our goal is given ε,
to design a test with ε-resolution close to ρ∗[ε].

The resulting observation scheme fits the definition of the direct product of
Discrete observation schemes of section 2.4.2 – we have K =

∑L
�=1 K� “simple”

(or L K�-repeated) Discrete observation schemes, the k-th scheme yielding the
observation ωk, k = 1, ...,K, of one of L types.

Given an ε ∈ (0, 1), we put

ρ[ε] = max
x,y,r

{
r :

∑L
�=1 K� ln

(∑m�

i=1

√
[A�x]i[A�y]i

)
≥ ln ε,

x, y ∈ X , g(x) ≤ α− r, g(y) ≥ α+ r.

}
(48)

Clearly, 0 ≤ ρ[ε] ≤ ρmax due to ρmax > 0. We assume from now on that ρ[ε] <
ρmax. Let now ρ ∈ [ρ[ε], ρmax]. Consider the optimization problem

Opt[ρ] = max
x,y

{
Ψ(x, y) :

Ψ(x, y) =
∑L

�=1 K� ln
(∑m�

i=1

√
[A�x]i[A�y]i

)
,

x, y ∈ X , g(x) ≤ α− ρ, g(y) ≥ α+ ρ.

}
.

(Fg,α[ρ])
This problem is feasible (since ρ ≤ ρmax) and thus solvable, and from ρ ≥ ρ[ε]
and ρ[ε] < ρmax it easily follows (see item 10 in the proof of Proposition 4.3)

that Opt[ρ] ≤ ε. Let (xρ, yρ) be an optimal solution. Consider a simple test T̂ρ

given by the detector φ̂(·),

φ̂(ω) = φ̂ρ(ω) :=

K∑
k=1

φk(ωk), φk(ωk) =
1
2
ln
(
[A�(k)xρ]ωk

/[A�(k)yρ]ωk

)
, (49)
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with �(k) uniquely defined by the relations∑
�<�(k)

K� < k ≤
∑

�≤�(k)

K�.

We have the following simple corollary of Proposition 2.2:

Proposition 4.3 Assume that ρmax > 0 and ρ[ε] < ρmax, and let ε ∈ (0, 1/2).
Then

ρ[ε] ≤ ϑ(ε)ρ∗[ε], ϑ(ε) =
2

1− ln(4(1−ε))
ln(1/ε)

. (50)

In other words, there is no decision rule in the problem (Dg,α[ρ]) with the risk
≤ ε if ρ < ρ[ε]/ϑ(ε).

On the other hand, when ρ ∈ [ρ[ε], ρmax], the risk of the simple test φ̂ρ in the
problem (Dg,α[ρ]) is ≤ exp (Opt[ρ]) ≤ ε.

Note that ϑ(ε) → 2 as ε → 0. Under the premise of Proposition 4.3, the test

associated with detector φ̂ρ[ε](·) is well defined and distinguishes between the
hypotheses H1[ρ[ε]], H2[ρ[ε]] with risk ≤ ε. We refer to the quantity ρ[ε] as to
resolution of this test.

4.3.2. Numerical illustration

We present here some results on numerical experimentation with the testing
problem (Cα,t[ρ]). For the sake of simplicity, we suppose that the distributions
with c.d.f.’s from F are supported on [−1, 1]. We start with an appropriate
discretization of the continuous problem.

Discretizing continuous model.

1. Let n ∈ Z+, and let −1 = a0 < a1 < a2 < ... < an = 1 be a partition
of (−1, 1] into n intervals Ii = (ai−1, ai], i = 1, ..., n. We associate with
a c.d.f. F ∈ F the n-dimensional probabilistic vector x = x[F ] with the
entries xk = Probξ∼F {ξ ∈ Ik} and āk = (ak−1 + ak)/2, the central point
of Ik, k = 1, ..., n, and denote by Fn the image of F under the mapping
F �→ x[F ].

2. We build somehow a convex compact subset X ⊃ Fn of the n-dimensional
probabilistic simplex.

3. Depending on the observation scenario, we act as follows.

(a) Deconvolution problem: ζ� satisfy ζ� = ξ + η�. Let 0 < δ < 1 (e.g.,
δ = K−1

� ), m� ∈ Z+, and let

b�1 = a0 + qη�(δ), b�m�−1 = an + qη�(1− δ),

where qη�(p) is the p-quantile of η�. Note that Prob{ζ� /∈ [b�1, b
�
m�−1]}≤

2δ. Let now −∞ = b�0 < b�1 < b�2 < ... < b�m�−1 < b�m = ∞ be
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a partition of R into m� intervals J�
i = (b�i−1, b

�
i ], i = 1, ...,m� − 1,

Jm�
= (b�m�−1,∞). We put μ�

i = Prob{ζ ∈ Ji}, i = 1, ...,m� and

define the m�×n matrix stochastic matrix A� = (A�
jk) with elements

A�
ij = Prob

{
āj + η� ∈ Ji

}
,

the approximations of conditional probabilities Prob{ζ� ∈ Ji|ξ ∈ Ij}.
(b) Trimmed observations: ζ� = max{ξ, η�}. We partition R into m� =

n+ 1 intervals, Ii, i = 1, ..., n as above and an “infinite bin” In+1 =
(an, an+1 = ∞). We put μ�

i = Prob{ζ ∈ Ji}, i = 1, ...,m� and define
the m� × n matrix A� with elements

A�
ij = δijProb{η� ≤ aj}+ 1{i>j}Prob{η� ∈ Ii},

where δij = 1 if i = j and zero otherwise, which are the estimates of
the probability of ζ� to belong to Ii, given that ξ ∈ Ij .

4. We denote g = g(t) ∈ R
n, with entries gi = 1{āi≤t}, i = 1, . . . , n, so that

gTx is an approximation of F (t).
5. Finally, we consider discrete observations ω�

k ∈ {1, ...,m�},

ω�
k = i 1{ζ�

k∈J�
i } k = 1, ...,K�, � = 1, ..., L.

We have specified the data of a testing problem of the form (Dg,α[ρ]). Note
that the discrete observations we end up with are deterministic functions of the
“true” observations ζ�, so that a test for the latter problem induces a test for the
problem of interest (Cα,t[ρ]). When distributions from F , same as distributions
of the nuisances η�, possess some regularity, and the partitions (Ii) and (Ji) are
“fine enough”, the problem (Dg,α[ρ]) can be considered as a good proxy of the
problem of actual interest.

Simulation study. We present results for three distributions of the nuisance:

(i) Laplace distribution L(μ, a) (i.e., the density (2a)−1e−|x−μ|/a) with pa-
rameter a = 1

2
and μ = 0;

(ii) distribution Γ(0, 2, 1/(2
√
2)) with the location 0, shape parameter 2 and

the scale 1
2
√
2
(the standard deviation of the error is equal to 0.5).14

(iii) mixture of Laplace distributions 1
2
L(−1, 1

2
) + 1

2
L(1, 1

2
).

The interval [−1, 1] was split into n = 100 bins of equal lengths. The discretized
distributions x = x[F ], F ∈ F , are assumed to have bounded second differences,
specifically, when denoting h the length of the bin,

|xi+1 − 2xi + xi−1| ≤ h2L, i = 2, ..., n− 1;

in the presented experiments, X is comprised of all probabilistic vectors satis-
fying the latter relation with L = 0.4.

14Recall that Γ-distribution with parameters μ, α, θ has the density [Γ(α)θα]−1(x −
μ)α−1 exp{−(x− μ)/θ}1{x≥μ}.
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Fig 5. Deconvolution experiment, K� = 1000, k = 1, 2, ε = 0.05. In the upper row: (a)
resolution of the simple test as a function of t ∈ [−1, 1]; (b) c.d.f. of the “difficult to test”
distributions x∗ and y∗, corresponding optimal solutions to (Fg,α[ρ]) for g = g(0) (testing
hypotheses about F (0)). Bottom row: convolution images of optimal solutions to (Fg,α[ρ]),
α = .85 and g = g(0), and corresponding detector φ: (c) convolution with mixed Laplace
distribution, (d) convolution with Γ(·) distribution.

On figures 5 and 6 we present details of the test in the deconvolution model
with L = 2 observers. Each observer acquires K� noisy observations ζ�k, k =
1, ...,K�. The distribution of the nuisance is mixed Laplace for the first ob-
server and Γ(0, 2, 1/2/

√
(2)) for the second observer. The discretized model has

the following parameters: the observation spaces Ω� = R, � = 1, 2 of each of
2 K�–repeated observation schemes were split into m� = 102 “bins”: we put
b�1 = −1 + qη�([K�]−1) and b�100 = 1 + qη�(1 − [K�]−1), and split the inter-
val (b�1, b

�
100] into 100 equal length bins; then we add two bins (−∞, b�1] and

(b�100,∞).

On figure 7 we present simulation results for the experiments with trimmed
observations. Here L = 1, the observations are ωk = max[ξk, ηk], 1 ≤ k ≤ K,
with the L(0, 1

2
) nuisances ηk. The partition of the support [−1, 1] of ξ is the

same as in the deconvolution experiments, and the observation domain was split
into m = 101 bins – 100 equal length bins over the segment [−1, 1] and the bin
(1,∞).
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Fig 6. Deconvolution experiment, ε = 0.05, α = 0.5; K� = [100, 200, 500, 1000, ..., 100 000],
� = 1, 2. On the left: resolution of the simple test as a function of t ∈ [−1, 1] for different
K�, mixed Laplace and Γ(·) distributions of the observation noise; on the right: resolution at
t = 0 as a function of K�; the test resolution clearly exhibits C K−1/3 behavior.

Fig 7. Trimmed observation experiment, resolution of the simple test for different K, ε = 0.05,
α = 0.5; K = [100, 200, 500, 1000, ..., 100 000]. Plot (a): resolution of the test as a function of

t ∈ [−1, 1], L(0, 1
2
) nuisance; plot (b) same for mixed Laplace nuisance; plot (c): resolution

of the test with Γ(·) nuisance distribution. On plot (d): resolution at t = 0 as a function of
sample size K. While the test resolution exhibits C K−1/3 behavior in the case of Laplace an
mixed Laplace nuisance, convergence is slow (if any) in the case of Γ(·) nuisance distribution.
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Table 2

Quantifying conservatism of T̂ρ in Deconvolution experiment; in a cell: top – ε̂[K],

bottom – the ratio
ln ε̂[K]
ln ε[K]

����ε
K

200 500 1000 2000 5000 10000 20000

1.0e-1
1.5e-2 1.5e-2 1.7e-2 1.6e-2 1.6e-2 1.6e-2 1.5e-2
1.82 1.82 1.78 1.80 1.80 1.80 1.82

1.0e-2
1.3e-3 1.2e-3 1.2e-3 1.2e-3 1.2e-3 1.2e-3 1.2e-3
1.45 1.46 1.46 1.46 1.46 1.45 1.46

1.0e-3
1.0e-4 0.9e-4 1.1e-4 1.1e-4 1.1e-4 0.9e-4 1.1e-4
1.33 1.35 1.32 1.32 1.32 1.34 1.32

1.0e-4
1.1e-5 0.9e-5 1.0e-5 0.9e-5 1.1e-5 0.7e-5 0.9e-5
1.24 1.26 1.25 1.26 1.24 1.29 1.26

Quantifying conservatism. When building the test T̂ρ deciding on the hy-
potheses Hı[ρ], ı = 1, 2 (see (Dg,α[ρ])) via K observations ωK = (ω1, ..., ωK),
we get, as a byproduct, two probability distributions xρ ∈ F , yρ ∈ F , of the
latent random variable ξ, see (49). These distributions give rise to two simple
hypotheses, H1, H2, on the distribution of observation ωK , stating that these
observations come from the distribution xρ, resp., yρ, of the latent variable. The
risk of any test deciding on the two simple hypotheses H1, H2, the observation
being ωK , is lower-bounded by the quantity ε̂[K] =

∑
ωK min[pK1 (ωK), pK2 (ωK)],

where pKi (ωK) is the probability to get an observation ωK under hypothesis Hi,
i = 1, 2. The quantity ε̂[K], which can be estimated by Monte-Carlo simulation,
by its origin is a lower bound on the risk of a whatever test deciding, via ωK ,
on the composite “hypotheses of interest” Hı[ρ], ı = 1, 2. We can compare this
lower risk bound with the upper bound ε[K] = exp{Opt[ρ]} on the risk of the

test T̂ρ, see (Fg,α[ρ]), and thus quantify the conservatism of the latter test. The
setup of the related experiments was completely similar to the one in the just re-
ported experiments, with the Laplace distribution L(0, 1/2) of the nuisance and
with n = 500 and m = 1002 bins in the supports of ξ and of ω, respectively. We
used t = 0, α = 0.5, and 2 × 106 Monte-Carlo simulations to estimate ε̂[K]. In
our experiments, given a number of observations K and a prescribed risk level
ε ∈ {0.1, 0.01, 0.001, 0.0001}, the parameter ρ of the test T̂ρ was adjusted to
ensure ε[K] = ε; specifically, we set ρ = ρ[ε], see (48). The results are presented
in table 2.

Recall that by Proposition 2.2 we have ε[K ′] ≤ (ε[K])K
′/K when K ′ ≥ K, so

that the ratios r[k] = ln(ε̂[K])/ ln(ε[K]) presented in the table upper-bound the

nonoptimality of T̂ρ in terms of the number of observations required to achieve
the risk ε̂[K]: for the “ideal” test, at least K observations are required to attain

this risk, and for the test T̂ρ – at most �r[k]K� observations are enough. The
data in table 2 show that the ratios r[K] in our experiments newer exceeds 1.82
and steadily decrease when ε[K] decreases.



Hypothesis testing by convex optimization 1691

4.4. Testing hypotheses on Markov chains

In this section, we present some applications of our approach to Markov chain
related hypotheses testing. For a positive integer n, let Δn = {x ∈ R

n
+ :
∑

i xi =
1}, and Sn be the set of all n× n stochastic matrices..

4.4.1. Deciding on two simple hypotheses

Situation. The simplest setting of the Markov chain related hypotheses test-
ing is as follows. We are given two n × n stochastic matrices S1 and S2 with
positive entries, specifying two hypotheses on an n-state Markov chain. Both
hypotheses state that the probability distribution of the initial (at time 0) state
ι0 of the chain is a vector from some convex compact set X ⊂ rintΔn; in addi-
tion hypothesis H1 (H2) states that the transition matrix of the chain is S1(S2).
We observe on a given time horizon K a realization ι0, ι1, ..., ιK of the trajectory
of the chain and want to decide on the hypotheses.

Construction and result. With transition matrix fixed, the distribution of
chain’s trajectory on a fixed time horizon depends linearly on the distribution
of the initial state. Consequently, our decision problem is to distinguish between
two convex sets of probability distributions on the finite set of all possible chain
trajectories from time 0 to time K inclusively. According to the Discrete case
version of our results, a nearly optimal test is as follows: we solve the optimiza-
tion problem

ε� = max
p,q∈X

∑
1≤ι0,ι1,...,ιK≤n

√[
pι0S

1
ι1ι0S

1
ι2ι1 ...S

1
ιKιK−1

] [
qι0S

2
ι1ι0S

2
ι2ι1 ...S

2
ιKιK−1

]
;

(51)
denoting the optimal solution (p∗, q∗) and setting

φ(ι0, ..., ιK) =
1

2
ln

(
pι0S

1
ι1ι0S

1
ι2ι1 ...S

1
ιKιK−1

qι0S
2
ι1ι0S

2
ι2ι1 ...S

2
ιKιK−1

)
,

the near-optimal test, the observed trajectory being ιK = (ι0, ..., ιK), accepts
H1 when φ(ιK) ≥ 0, and accepts H2 otherwise. The risk of this test is upper-
bounded by ε� given by (51).

Optimization problem (51) clearly is convex and solvable, and whenever (p, q)
is feasible for the problem, so is (q, p), the values of the objective at these two so-
lutions being the same. As a result, there exists an optimal solution (p∗, q∗) with
p∗ = q∗. The test φ associated with such a solution is completely independent
of p∗ and is just the plain likelihood ratio test:

φ(ιK = (ι0, ..., ιK)) =
1

2

K∑
τ=1

ln

(
S1
ιτ ιτ−1

S2
ιτ ιτ−1

)
.
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Table 3

Deciding with risk ε∗ = 0.01 on two simple hypotheses on the parameter μ of a queuing
system with s = 100, b = 20

λ = 50 λ = 100 λ = 200
μ1 μ2 K μ1 μ2 K μ1 μ2 K μ1 μ2 K μ1 μ2 K μ1 μ2 K

1.00 0.90 144 1.00 1.11 146 1.00 0.90 91 1.00 1.11 74 1.00 0.90 1929 1.00 1.11 1404
1.00 0.75 21 1.00 1.33 21 1.00 0.75 19 1.00 1.33 11 1.00 0.75 326 1.00 1.33 133
1.00 0.50 6 1.00 2.00 5 1.00 0.50 8 1.00 2.00 3 1.00 0.50 86 1.00 2.00 7

The (upper bound on the) risk of this test is immediately given by (51):

ε� = max
p∈X

m∑
j=1

(
m∑
i=1

(S1
ijS

2
ij)

t/2

)
pj .

Numerical illustration. Consider a queuing system (M/M/s/s + b) with
s identical servers, with services times following exponential distribution E(μ)
with parameter μ, and a common buffer of capacity b. The input stream of
customers is Poisson process with rate λ. Upon arrival, a customer either starts
to be served, if there is a free server, or joins the buffer, if all servers are busy
and there are less than b customers in the buffer, or leaves the system, if all
servers are busy and there are b waiting customers in the buffer. The system is
observed at time instances 0, 1, ...,K, and we want to distinguish between two
systems differing only in the value of μ, which is μ1 for the first, and μ2 for the
second system. The observations form a Markov chain with n = s+ b+1 states,
a state j ∈ {1, ..., n} at time t = 1, 2, ... meaning that at this time there are
s(j) := min[j−1, s] busy servers and j−s(j)−1 customers in the buffer. Under
hypothesis Hχ, χ = 1, 2, the transition matrix of the chain is Sχ = exp{Lχ},
where Lχ = L(λ, μχ) is a 3-diagonal transition rate matrix with zero column
sums and [Lχ]j−1,j = s(j)μχ, [L

χ]j+1,j = λ. In table 3, we present a sample of
(the smallest) observation times K ensuring that the upper bound ε� on the risk
of the simple test developed in this section is ≤ 0.01. We restrict ourselves to
the case when distribution of the initial state is not subject to any restrictions,
that is, X = Δs+b+1.

4.4.2. Deciding on two composite hypotheses

In the previous example, we dealt with two simple hypotheses on a Markov
chain with fully observable trajectory. Now consider the case of two composite
hypotheses and indirect observations of state transitions.15 More specifically, we
intend to consider the case when a “composite hypothesis” specifies a set in Sn

containing the transition matrix of the chain we are observing, and “indirectness
of observations” means that instead of observing consecutive states of the chain

15One problem of testing specific composite hypotheses about Markov chains has been
studied in [12] using a closely related approach. The techniques we discuss here are different
and clearly aimed at numerical treatment of the problem.
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trajectory, we are observing some encodings of these states (e.g., in the simplest
case, the state space of the chain is split into non-overlapping subsets – bins,
and our observations are the bins to which the consecutive states of the chain
belong).

Preliminaries. Probability distribution Pt of the trajectories, on time horizon
t, of a Markov chain depends nonlinearly on the transition matrix of the chain.
As a result, to utilize our convexity-based approach, we need to work with
composite hypotheses of “favorable structure,” meaning that the family Pt of
distributions Pt associated with transition matrices allowed by the hypothesis
admits a reasonable convex approximation. We start with specifying the main
ingredient of such “favorable structure.”

Let K1, ...,Kn be closed cones, all different from {0}, contained in R
n
+. The

collection Kn = {K1, ...,Kn} gives rise to the following two entities:

• The set of stochastic matrices

S = {S = [Sij ]
n
i,j=1 ∈ R

n×n : Colj [S] ∈ Kj ,
∑
i

Sij = 1, j = 1, ..., n}

(from now on, Colj [S] is the j-th column of S);
• The convex set

P = {P = [Pij ]
n
i,j=1 ∈ R

n×n : Colj [P ] ∈ Kj , 1 ≤ j ≤ n,
∑
i,j

Pij = 1}.

One has16

P = {P = [Pij ]
n
i,j=1 : ∃(S ∈ S, x ∈ Δn) : Colj [P ] = xjColj [S], j = 1, ..., n}.

(52)
As a result, in a pair (S, x) associated with P ∈ P according to (52), x is
uniquely defined by P :

xj =
∑
i

Pij , 1 ≤ j ≤ n;

besides this, for every j such that
∑

i Pij > 0, Colj [S] is the probabilistic nor-
malization of Colj [P ].

Remark. The role played by the just defined entities in our context stems from
the following immediate observation: consider a Markov chain with transition
matrix S from S, and let x ∈ Δn be the distribution of the state ιτ−1 of
this chain at time τ − 1. Denoting by ιτ the state of the chain at time τ , the
distribution of the state transition (ιτ−1, ιτ ) clearly is

pij = Sijxj , 1 ≤ i, j ≤ n.

According to (52), P is nothing but the convex hull of all distributions of this
type stemming from different x ∈ Δn and S ∈ S.

16Indeed, for S ∈ S, x ∈ Δn the matrix P given by Colj [P ] = xjColj [S], 1 ≤ j ≤ n,
clearly belongs to P. Vice versa, if P ∈ P, then, setting xj =

∑
i Pij and specifying the j-th

column of S as Colj [P ]/xj when xj �= 0 and as a whatever vector from Kj ∩Δn when xj = 0,
we get S ∈ S, x ∈ Δn and Colj [P ] = xjColj [S] for all j.
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Situation. Assume that for χ = 1, 2 we are given

• collection of cones K
nχ
χ = {Kχ

1 , ...,K
χ
nχ

} of the type described in the pre-
liminaries. This collection, as explained above, specifies a set Sχ of stochas-
tic nχ × nχ matrices and a set Pχ of nχ × nχ matrices with nonnegative
entries summing up to 1.

• m × n2
χ “observation matrix” Aχ with positive entries and unit column

sums. We think of the n2
χ columns of Aχ as being indexed by the pairs

(i, j), 1 ≤ i, j ≤ nχ.

The outlined data specify, for χ = 1, 2,

• the family Mχ of Markov chains. Chains from Mχ have nχ states, and
their transition matrices belong to Sχ;

• observation scheme for transitions of a chain from Mχ. Specifically, obser-
vation ωτ of the transition ιτ−1 → ιτ takes values in {1, 2, ...,m}, and its
conditional, the past of chain’s state trajectory being given, distribution
is the column Col(ιτ−1,ιτ )[Aχ] of Aχ.

Now assume that “in the nature” there exist two Markov chains, indexed by
χ = 1, 2, with nχ states and transition matrices Sχ, such that chain χ belongs
to Mχ, and we observe one of these two chains as explained above, so that,
independently of χ, our observation ωt at time t takes values in {1, ...,m}.
Given observation ωK = (ω1, ..., ωK), we want to decide on the hypotheses Hχ,
χ = 1, 2, where Hχ states that the chain we are observing is chain χ.

Construction and result. We can approach our goal as follows. Every P ∈
Pχ is a nonnegative nχ × nχ matrix with unit sum of entries and as such can
be thought of as a probability distribution on Iχ = {(i, j) : 1 ≤ i, j ≤ nχ}. Ma-
trix Aχ naturally associates with such a distribution a probability distribution
Aχ(P ) on {1, ...,m}:

Aχ(P ) =

nχ∑
i,j=1

PijCol(i,j)(Aχ).

Note that the mapping P �→ Aχ(P ) is linear.
Let us define the convex compact subsets Xχ of the probabilistic simplex Δm

by the relation

Xχ = {p ∈ Δm : ∃P ∈ Pχ : p = Aχ(P )}, χ = 1, 2.

By the above remark,

(!) For a chain from Mχ and every time instant τ ≥ 1, the conditional, given
chain’s trajectory prior to instant τ − 1, distribution of the state transition
(ιτ−1, ιτ ) belongs to Pχ, and, consequently, the conditional, by the same condi-
tion, distribution of the observation ωτ belongs to Xχ.

Note that Xχ ⊂ rintΔm due to entrywise positivity of Aχ.
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For t = 1, 2, ..., let jt,1, jt,2 be the states of chain 1 and chain 2 at time
t, let ζt,χ = (jt,χ, jt−1,χ), χ = 1, 2, and let Xt = X1, Yt = X2. With this
setup, we arrive at the situation considered in Proposition 3.2: for χ = 1, 2,
under hypothesis Hχ ωt is a deterministic function of ζtχ = (ζ1,χ, ..., ζt,χ), the
conditional, given ζt−1

χ , distribution of ωt depends deterministically on ζt−1
χ and,

by (!), belongs to Xχ. Hence, Proposition 3.2 implies

Proposition 4.4 In the situation and under assumptions of this section, let
the sets X1, X2 do not intersect. Let p∗1, p

∗
2, form the optimal solution to the

problem

ε� = max
p1,p2

{
m∑

ω=1

√
[p1]ω[p2]ω : p1 ∈ X1, p2 ∈ X2,

}
, (53)

and let

φ(ω) =
1

2
ln

(
[p∗1]ω
[p∗2]ω

)
.

Then the risk of the test which, given observations ω1, ..., ωK , accepts H2 when∑K
τ=1 φ(ωτ ) ≥ 0 and accepts H2 otherwise, is at most εK� .

Remark. By inspecting the proof, Proposition 4.4 remains valid in the situ-
ation where Mχ are families of non-stationary Markov chains with nχ states
1, ..., nχ. In such a chain, for every τ > 0, the conditional, given the trajectory
ι0, ..., ιτ−1 of the chain from time 0 to time τ−1, distribution of state ιτ at time
τ is selected, in a non-anticipative fashion, from the set Kχ

ιτ−1
∩Δn.

Numerical illustration: random walk. Consider a toy example where the
Markov chains Mχ, χ = 1, 2, represent a random walk along n = 16-element
grid on the unit circle; thus, each chain has 16 states. The “nominal” transition
matrices Sn

χ correspond to the walk where one stays in the current position with
probability 1− 2pχ and jumps to a neighbouring position with probability 2pχ,
with equal probabilities to move clock- and counter-clockwise; in our experiment,
p1 = 0.2 and p2 = 0.4. The actual transition matrix Sχ of chain Mχ is allowed
to belong to the “uncertainty set”

Uχ = {Sχ ∈ Sn : (1− ρ)Sn
χ ≤ Sχ ≤ (1 + ρ)Sn

χ},

where the inequalities are entrywise. In other words, the conesKχ
j , j = 1, 2, ..., n,

are the conic hulls of the sets

{q ∈ Δn : (1− ρ)Colj [S
n
χ ] ≤ q ≤ (1 + ρ)Colj [S

n
χ ]}.

In our experiments, we used ρ = 0.1.
We have considered two observation schemes: “direct observations”, where we

observe the positions of the walker at times 0,1,..., and “indirect observations,”
where the 16 potential positions are split into 8 “bins,” two states per bin, and
what we see at time instant t is the bin to which t-th position of the walker
belongs. In the latter case we used a random partition of the states into the
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Table 4

Random walk. (a) - direct observations; (b) - indirect observations. In the table:
t: observation time; εt� and Risk(T): theoretical upper bound on the risk of the test from
Proposition 4.4, and empirical risk of the test; Risk(ML): empirical risk of the likelihood
ratio test adjusted for uncertainty in transition probabilities. ε1/ε2 in “risk” columns:
empirical, over 5000 simulations, probabilities to reject hypothesis H1 (ε1) and H2 (ε2)
when the hypothesis is true. Partition of 16 states of the walk into 8 bins in the reported

experiment is {1, 8}, {4, 6}, {5, 7}, {9, 11}, {3, 19}, {2, 15}, {12, 16}, {13, 14}

t εt� Risk(T) Risk(ML)

71 0.0097 0.0004/0.0008 0.0094/0.0551
48 0.0436 0.0038/0.0018 0.0192/0.0798
32 0.1239 0.0226/0.0118 0.0390/0.1426
21 0.2540 0.0230/0.0610 0.0620/0.1903
14 0.4011 0.0870/0.0508 0.1008/0.2470
10 0.5207 0.0780/0.1412 0.1268/0.2649
7 0.6333 0.1184/0.1688 0.1824/0.3368
5 0.7216 0.1040/0.2682 0.2190/0.2792
3 0.8222 0.3780/0.1166 0.3000/0.4027
2 0.8777 0.1814/0.3780 0.1814/0.3780
1 0.9368 0.4230/0.2064 0.4230/0.2064

ε� = 0.9368

t εt� Risk(T)

381 0.0099 0.0000/0.0000
254 0.0462 0.0000/0.0000
170 0.1277 0.0000/0.0002
113 0.2546 0.0002/0.0008
76 0.3982 0.0002/0.0054
51 0.5393 0.0022/0.0168
34 0.6626 0.0086/0.0412
23 0.7569 0.0210/0.0758
15 0.8339 0.0540/0.1018
10 0.8860 0.0872/0.1530
7 0.9187 0.1420/0.1790
5 0.9413 0.1386/0.2878
3 0.9643 0.2812/0.2638
2 0.9761 0.2078/0.3824
1 0.9880 0.3816/0.2546

ε� = 0.9880

bins which was common for the chains M1 and M2 (i.e., in our experiments
the “observation matrices” A1 and A2 always coincided with each other).

The results of a typical experiment are presented in table 4. For each of our
two observation schemes, we start with observation time which, according to
Proposition 4.4, guarantees the risk ε = 0.01, and then decrease the observation
time to see how the performance of the test deteriorates. In different simulations,
we used different transition matrices allowed by the corresponding hypotheses,
including the “critical” ones – those associated with the optimal solution to
(53). Evaluating the results of the experiment is not easy – in the first place, it
is unclear what could be a natural “benchmark” to be compared to, especially
when the observations are indirect. In the case of direct observations we have
considered as a contender the likelihood ratio test (see section 4.4.1) straightfor-
wardly adjusted to the uncertainty in the transition matrix.17 Such test turns
out to be essentially less precise than the test presented in Proposition 4.4; e.g.,
in the experiment reported in column A of table 4, with observation time 71 the
risks of the adjusted likelihood test were as large as 0.01/0.06.

17Specifically, given the chain trajectory ι0, ..., ιt, we can easily compute the max-
imal and the minimal values, ψmax and ψmin, of the logarithm of likelihood ra-
tio as allowed by our uncertainties in the transition matrices. Namely, ψmax =
max{Sτ,1,Sτ,2}tτ=1

∑t
τ=1 ln([Sτ,1]jτ ,jτ−1/[Sτ,2]jτ ,jτ−1 ), where Sτ,χ run through the uncer-

tainty sets associated with hypotheses Hχ, χ = 1, 2; ψmin is defined similarly, with
max{Sτ,1,Sτ,2}tτ=1

replaced with min{Sτ,1,Sτ,2}tτ=1
. We accept H1 when a randomly selected

point in [ψmin, ψmax] turns out to be nonnegative, and accept H2 otherwise.
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4.4.3. Two composite hypotheses revisited

In the situation of section 4.4.2 (perhaps, indirect) observations of transitions of
a Markov chain were available. We are about to consider the model in which we
are only allowed to observe how frequently the chain visited different (groups
of) states on a given time horizon, but do not use information in which order
these states were visited.

Preliminaries. For Q ∈ Sn and ρ ≥ 0, let

Sn(Q, ρ) = {S ∈ Sn : ‖S −Q‖1,1 ≤ ρ},

where for a p× q matrix C

‖C‖1,1 = max
1≤j≤q

‖Colj [C]‖1

is the norm of the mapping u �→ Cu : Rq × R
p induced by the norms ‖ · ‖1 on

the argument and the image spaces.

Situation we consider here is as follows. “In the nature” there exist two
Markov chains, indexed by χ = 1, 2. Chain χ has nχ states and transition
matrix Sχ. Same as in section 4.4.2, we do not observe the states exactly, and
our observation scheme is as follows. For χ = 1, 2, we are given m×nχ matrices
Aχ with positive entries and all column sums equal to 1. When observing chain
χ, our observation ητ at time τ takes values 1, ...,m, and the conditional, given
the trajectory of the chain since time 0 to time τ inclusively, distribution of ητ
is the ιτ -th column Colιτ [Aχ] of Aχ.

Now assume that all we know about Sχ, χ = 1, 2, is that Sχ ∈ Snχ(Qχ, ρχ)
with known Qχ and ρχ. We observe the sequence ηt = (η1, ..., ηt) coming from
one of two chains, and want to decide on the hypotheses Hχ, χ = 1, 2, stating
that Sχ ∈ Snχ(Qχ, ρχ).

Construction and result. Our approach is as follows. Given a positive in-
teger κ, for χ = 1, 2 let

Zχ = Conv{Aχv : v ∈ Δnχ , and ∃j : ‖v − Colj [Q
κ
χ]‖1 ≤ κρχ} ⊂ Δm.

Note that Zχ ⊂ rintΔm (since the column sums in Aχ are equal to one, and all
entries of Aχ are positive).

It is immediately seen that

• Under hypothesisHχ, χ = 1, 2, for every positive integer t, the conditional,
given the state jκ(t−1),χ of the Markov chain χ at time κ(t−1), distribution
of observation ηκt belongs to Zχ.

Indeed, Sχ and Qχ are stochastic matrices with ‖Sχ − Qχ‖1,1 ≤ ρχ (we are
under hypothesis Hχ), and for stochastic matrices A,B, Ā and B̄ one has

‖ĀB̄ −AB‖1,1 ≤ ‖Ā−A‖1,1 + ‖B̄ −B‖1,1
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due to

‖ĀB̄ −AB‖1,1 ≤ ‖Ā(B̄ −B)‖1,1 + ‖(Ā−A)B‖1,1
≤ ‖Ā‖1,1‖B̄ −B‖1,1 + ‖Ā−A‖1,1‖B‖1,1 = ‖B̄ −B‖1,1 + ‖Ā−A‖1,1.

Whence ‖Sκ
χ −Qκ

χ‖1,1 ≤ κρχ, so that the probabilistic vector v = Coljκ(t−1),χ
[Sκ

χ]

satisfy ‖v−Coljκ(t−1),χ
[Qκ

χ]‖1 ≤ κρχ. We conclude that the distribution of Aχv of
ηκt belongs to Zχ.

• Zχ is a polyhedral convex set with an explicit representation:

Zχ =

⎧⎪⎪⎨⎪⎪⎩z : ∃α, v1, ..., vnχ ∈ R
nχ :

z = Aχ

∑nχ

j=1 v
j , vj ≥ 0,∑nχ

i=1 v
j
i = αj , α ∈ Δnχ ,

‖vj − αjColj [Q
κ
χ]‖1 ≤ αjκρχ,

1 ≤ j ≤ nχ.

⎫⎪⎪⎬⎪⎪⎭
Setting ωt = ηκt, ζt,χ = jtκ,χ, χ = 1, 2, and Xt = Z1, Yt = Z2, t = 1, 2, ...,
we arrive at the situation considered in Proposition 3.2: under hypothesis Hχ,
χ = 1, 2, ωt is a deterministic function of ζtχ = (ζ0,χ, ..., ζt,χ), and the conditional,
given ζt−1

χ , distribution of ωt is μt = AχColj(t−1)κ,χ
[Sκ

χ], which is a deterministic

function of ζt−1
χ . Besides this, μt ∈ Xt ≡ Z1 under hypothesis H1, and μt ∈

Yt ≡ Z2 under hypothesis H2. For these reasons, Proposition 3.2 implies

Proposition 4.5 Let κ be such that Z1 does not intersect Z2. Let, further,
(x∗, y∗) be an optimal solution to the convex optimization problem

ε� = max
x∈Z1,y∈Z2

m∑
i=1

√
xiyi,

and let

φ∗(i) =
1

2
ln([x∗]i/[y∗]i), 1 ≤ i ≤ m.

Then for every positive integer K, the risk of the test φK
∗ which, given observa-

tion ωK , accepts H1 whenever

K∑
t=1

φ∗(ωt) =

m∑
i=1

φ∗(i)Card{t ≤ K : ωt = i} (54)

is nonnegative and accepts H2 otherwise, does not exceed εK� .

Remarks. Note that κ meeting the premise of Proposition 4.5 does exist,
provided that ρχ are small enough and that A1e 	= A2f for every pair of steady-
state distributions e = Q1e, f = Q2f of the chains with transition matrices Q1

and Q2.
Note that in order to compute the test statistics (54) we do not need

to observe the trajectory ω1, ω2, ..., ωK ; all what matters is the “histogram”
{pi = Card{t ≤ K : ωt = i}}mi=1 of ω1, ..., ωK . Furthermore, we lose nothing
if instead of observing a single and long ω-trajectory, we observe a population
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of independent “short” trajectories. Indeed, assume that N independent tra-
jectories are observed on time horizon Lκ ≤ Kκ; all the trajectories start at
time τ = 0 in a once for ever fixed state and then move from state to state
independently of each other and utilizing the same transition matrix S. Our
observations now are the total, over N trajectories, numbers pi, i = 1, ...,m, of
time instants of the form κt, t ≥ 1, spent by the trajectories in state i. If our
goal is to decide which of the chains χ = 1, 2 we are observing, it is immediately
seen that Proposition 3.2 implies that under the premise and in the notation
of Proposition 4.5, the test which accepts H1 when

∑m
i=1 φ∗(i)pi ≥ 0 and ac-

cepts H2 otherwise (cf. (54)) obeys the upper risk bound εLN
� . In other words,

the risk of the test would be exactly the same as if instead of (aggregated par-
tial) information on N trajectories of length Lκ each we were collecting similar
information on a single trajectory of length K = LNκ.

Numerical illustration. Consider a queuing system (M/M/s/s + b) with
several identical servers and a single buffer of capacity b. The service times of
each server and inter-arrival times are exponentially distributed, with distribu-
tions E(μ) and E(λ) respectively. Upon arrival, a customer either starts being
served, when there are free servers, or joins the buffer queue, if all servers are
busy and there are < b customers in the buffer queue, or leaves the system
immediately when all servers are busy and there are b customers in the buffer.
We assume that the parameters λ, μ are not known exactly; all we know is that

|λ− λ̄| ≤ δλ and |μ− μ̄| ≤ δμ,

with given λ̄ > 0, μ̄ > 0 and δλ < λ̄, δμ < μ̄.
We observe the number of customers in the buffer at times t = 1, 2, ..., and

want to decide on the hypotheses H1 stating that the number of servers in the
system is s1, and H2, stating that this number is s2.

In terms of the hidden Markov chain framework presented above, the situ-
ation is as follows. Under hypothesis Hχ the queuing system can be modeled
by Markov chain with nχ = sχ + b+ 1 states with the transition matrix of the
chain Sχ = exp{Lχ}, where the transition rate matrix Lχ = Lχ(λ, μ) satisfies

[Lχ]j−1,j = s(j)μ, [Lχ]j,j = −(s(j)μ+ λ), [Lχ]j+1,j = λ,

s(j) := min[j − 1, sχ], 1 ≤ j ≤ nχ.

It is immediately seen that if Qχ = exp{Lχ(λ̄, μ̄)}, it holds18

‖Sχ −Qχ‖1,1 ≤ ρχ := 2δλ + 2sχδμ.

We can now apply the outlined scheme to decide between the hypotheses H1

and H2. A numerical illustration is presented in table 5; in this illustration, we

18Indeed, we have Sχ = limk→∞(I + 1
k
Lχ(λ, μ))k; for large k, the matrix Nk(λ, χ) =

I + 1
k
Lχ(λ, μ) is stochastic, and we clearly have ‖Nk(λ, μ)−Nk(λ̄, μ̄)‖1,1 ≤ k−1ρχ. Whence,

as we have already seen,
‖Nk

k (λ, μ)−Nk
k (λ̄, μ̄)‖1,1 ≤ ρχ.

When passing to the limit as k → ∞, we get the desired bound on ‖Sχ −Qχ‖1,1.
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Table 5

Experiments with toy queuing systems. λ̄ = 40, μ̄ = 5, ρ1 = ρ2 = 0. εχ: empirical, over
sample of 104 experiments with observation time K each, probability to reject Hχ when the

hypothesis is true. ε� is defined in Proposition 4.5, K∗ =� ln(1/0.01)/ ln(1/ε�)� is the
observation time, as defined by Proposition 4.5, resulting in risk ≤ 0.01

K = K∗ K =�K∗/2� K =�K∗/3�
s1, s2, b ε� K∗ ε1 ε2 ε1 ε2 ε1 ε2

s1 = 10, s2 = 9, b = 5 0.993240 679 0.0000 0.0000 0.0035 0.0015 0.0119 0.0104
s1 = 10, s2 = 7, b = 5 0.894036 42 0.0002 0.0002 0.0093 0.0100 0.0260 0.0273

use κ = 1, that is, observations used in the test are the numbers of customers
in the buffer at times t = 1, 2, ...,K.

Appendix A: Proofs

A.1. Proof of Theorem 2.1

10. The fact that the function (3) is continuous on its domain, convex in
φ(·) ∈ F and concave in [x; y] ∈ X×Y is readily given by our basic assumptions.
Let us set

Ψ([x; y]) = inf
φ∈F

Φ(φ, [x; y]). (55)

We claim that the function

φx,y(ω) =
1

2
ln(px(ω)/py(ω))

(which, by our assumptions, belongs to F) is an optimal solution to the right
hand side minimization problem in (55), so that

∀(x ∈ X, y ∈ Y ) : Ψ([x; y]) := inf
φ∈F

Φ(φ, [x; y]) = 2 ln

(∫
Ω

√
px(ω)py(ω)P (dω)

)
.

(56)
Note that Ψ, being the infimum of a family of concave functions of [x; y] ∈
M×M, is concave on M×M. Indeed, we have

exp{−φx,y(ω)}px(ω) = exp{φx,y(ω)}py(ω) = g(ω) :=
√
px(ω)py(ω),

whence Φ(φx,y, [x; y]) = 2 ln
(∫

Ω
g(ω)P (dω)

)
. On the other hand, for φ(·) =

φx,y(·) + δ(·) ∈ F we have∫
Ω
g(ω)P (dω) =

∫
Ω

[√
g(ω) exp{−δ(ω)/2}

] [√
g(ω) exp{δ(ω)/2}

]
P (dω)

(a) ≤
(∫

Ω
g(ω) exp{−δ(ω)}P (dω)

)1/2 (∫
Ω
g(ω) exp{δ(ω)}P (dω)

)1/2
=
(∫

Ω
exp{−φ(ω)}px(ω)P (dω)

)1/2 (∫
Ω
exp{φ(ω)}py(ω)P (dω)

)1/2
(b) ⇒ 2 ln

(∫
Ω
g(ω)P (dω)

)
≤ Φ(φ, [x; y]),

and thus Φ(φx,y, [x, y]) ≤ Φ(φ, [x; y]) for every φ ∈ F .



Hypothesis testing by convex optimization 1701

Remark A.1 Note that the inequality in (b) can be equality only when the
inequality in (a) is so. In other words, if φ̄ is a minimizer of Φ(φ, [x; y]) over
φ ∈ F , setting δ(·) = φ̄(·) − φx,y(·), the functions

√
g(ω) exp{−δ(ω)/2} and√

g(ω) exp{δ(ω)/2}, considered as elements of L2[Ω, P ], are proportional to each
other. Since g is positive and g, δ are continuous, while the support of P is the
entire Ω, this “L2-proportionality” means that the functions in question differ
by a constant factor, or, which is the same, that δ(·) is constant. Thus, the
minimizers of Φ(φ, [x; y]) over φ ∈ F are exactly the functions of the form
φ(ω) = φx,y(ω) + const.

20. We are about to verify that Φ(φ, [x; y]) has a saddle point (min in φ ∈ F ,
max in [x; y]) on F × (X × Y ). Indeed, observe, first, that on the domain of Φ
it holds

Φ(φ(·) + a, [x; y]) = Φ(φ(·), [x; y]) ∀(a ∈ R, φ ∈ F). (57)

Thus, it suffices to verify that Φ(φ, [x; y]) has a saddle point on the set F0 ×
(X × Y ), with F0 = {φ ∈ F :

∫
Ω
φ(ω)P (dω) = 0}. Since X × Y is a convex

compact set, Φ is continuous on F0 × (X × Y ) and convex-concave, all we
need in order to verify the existence of a saddle point is to show that Φ is
coercive in the first argument, that is, for every fixed [x; y] ∈ X × Y one has
Φ(φ, [x; y]) → +∞ as ‖φ‖ → ∞ (whatever be the norm ‖ · ‖ on F0; recall
that F0 is a finite-dimensional linear space). Setting Θ(φ) = Φ(φ, [x; y]) and
taking into account that Θ is convex and finite on F0, in order to prove that
Θ is coercive, it suffices to verify that Θ(tφ) → ∞, t → ∞, for every nonzero
φ ∈ F0, which is evident: since

∫
Ω
φ(ω)P (dω) = 0 and φ is nonzero, we have∫

Ω
max[φ(ω), 0]P (dω) =

∫
Ω
max[−φ(ω), 0]P (dω) > 0, whence Θ(tφ) → ∞ as

t → ∞ due to the fact that both px(·) and py(·) are positive everywhere.

30. Now let (φ∗(·); [x∗; y∗]) be a saddle point of Φ on F × (X × Y ). Shifting,
if necessary, φ∗(·) by a constant (by (57), this does not affect the fact that
(φ∗, [x∗; y∗]) is a saddle point of Φ), we can assume that

ε� :=

∫
Ω

exp{−φ∗(ω)}px∗(ω)P (dω) =

∫
Ω

exp{φ∗(ω)}py∗(ω)P (dω), (58)

so that the saddle point value of Φ is

Φ∗ := max
[x;y]∈X×Y

min
φ∈F

Φ(φ, [x; y]) = Φ(φ∗, [x∗; y∗]) = 2 ln(ε�). (59)

The following lemma completes the proof of Theorem 2.1.i:

Lemma A.1 Under the premise of Theorem 2.1, let (φ∗, [x∗; y∗]) be a saddle
point of Φ satisfying (58), and let φa

∗(·) = φ∗(·)− a, a ∈ R. Then

(a)
∫
Ω
exp{−φa

∗(ω)}px(ω)P (dω) ≤ exp{a}ε� ∀x ∈ X,
(b)

∫
Ω
exp{φa

∗(ω)}py(ω)P (dω) ≤ exp{−a}ε� ∀y ∈ Y.
(60)

As a result, for the simple test associated with the detector φa
∗, the probabilities

εX(φa
∗) to reject HX when the hypothesis is true and εY (φ

a
∗) to reject HY when

the hypothesis is true can be upper-bounded according to (5).
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Proof. For x ∈ X, we have

2 ln(ε�) = Φ∗ ≥ Φ(φ∗, [x; y∗])

= ln

(∫
Ω

exp{−φ∗(ω)}px(ω)P (dω)

)
+ ln

(∫
Ω

exp{φ∗(ω)}py∗(ω)P (dω)

)
= ln

(∫
Ω

exp{−φ∗(ω)}px(ω)P (dω)

)
+ ln(ε�),

whence ln
(∫

Ω
exp{−φa

∗(ω)}px(ω)P (dω)
)
= ln

(∫
Ω
exp{−φ∗(ω)}px(ω)P (dω)

)
+

a ≤ ln(ε�) + a, and (60.a) follows. Similarly, when y ∈ Y , we have

2 ln(ε�) = Φ∗ ≥ Φ(φ∗, [x∗; y])

= ln

(∫
Ω

exp{−φ∗(ω)}px∗(ω)P (dω)

)
+ ln

(∫
Ω

exp{φ∗(ω)}py(ω)P (dω)

)
= ln(ε�) + ln

(∫
Ω

exp{φ∗(ω)}py(ω)P (dω)

)
,

so that ln
(∫

Ω
exp{φa

∗(ω)}py(ω)P (dω)
)
= ln

(∫
Ω
exp{φ∗(ω)}py(ω)P (dω)

)
− a ≤

ln(ε�)− a, and (60.b) follows.
Now let x ∈ X, and let ε(x) be the probability for the test, the detector being

φa
∗, to rejectHX ; this is at most the probability for φa

∗(ω) to be nonpositive when
ω ∼ px(·), and therefore

ε(x) ≤
∫
Ω

exp{−φa
∗(ω)}px(ω)P (dω),

so that ε(x) ≤ exp{a}ε� by (60.a). Thus, the probability for our test to reject
the hypothesis HX when it is true is ≤ exp{a}ε�. Relation (60.b) implies in the
same fashion that the probability for our test to reject HY when this hypothesis
is true is ≤ exp{−a}ε�.

40. Theorem 2.1.ii is readily given by the following

Lemma A.2 Under the premise of Theorem 2.1, let (φ∗, [x∗; y∗]) be a saddle
point of Φ, and let ε ≥ 0 be such that there exists a (whatever, perhaps random-
ized) test for deciding between two simple hypotheses

(A) : ω ∼ p(·) := px∗(·), (B) : ω ∼ q(·) := py∗(·) (61)

with the sum of error probabilities ≤ 2ε. Then

ε� ≤ 2
√
(1− ε)ε. (62)

Proof. Under the premise of the lemma, (A) and (B) can be decided with the
sum of error probabilities ≤ 2ε, and therefore the test affinity of (A) and (B) is
bounded by 2ε: ∫

Ω

min[p(ω), q(ω)]P (dω) ≤ 2ε.
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On the other hand, we have seen that the saddle point value of Φ is 2 ln(ε�);
since [x∗; y∗] is a component of a saddle point of Φ, it follows that

min
φ∈F

Φ(φ, [x∗; y∗]) = 2 ln(ε�).

The left hand side in this equality, as we know from item 10, is Φ(φx∗,y∗ , [x∗; y∗]),
and we arrive at

2 ln(ε�) = Φ

(
1

2
ln(px∗(·)/py∗(·)), [x∗; y∗]

)
= 2 ln

(∫
Ω

√
px∗(ω)py∗(ω)P (dω)

)
,

so that ε� =
∫
Ω

√
px∗(ω)py∗(ω)P (dω) =

∫
Ω

√
p(ω)q(ω)P (dω). We now have (cf.

[42, chapter 4])

ε� =

∫
Ω

√
p(ω)q(ω)P (dω)

=

∫
Ω

√
min[p(ω), q(ω)]

√
max[p(ω), q(ω)]P (dω)

≤
(∫

Ω

min[p(ω), q(ω)]P (dω)

)1/2(∫
Ω

max[p(ω), q(ω)]P (dω)

)1/2

≤
√
2(2− 2ε)ε = 2

√
(1− ε)ε.

50. We have proved items (i) and (ii) of Theorem 2.1. To complete the proof
of the theorem, it remains to justify (7). Thus, let (φ∗, [x∗; y∗]) be a saddle point
of Φ satisfying (58). All we need to prove is that φ∗ is nothing but

φ̄(·) = 1

2
ln (px∗(·)/py∗(·)) .

Indeed, the function Φ(·, [x∗; y∗]) attains its minimum on F at the point φ∗; by
Remark A.1, it follows that φ∗(·) − φ̄(·) is constant on Ω; since both φ̄ and φ∗
satisfy (58), this constant is zero. �

A.2. Proofs of Propositions 3.1 and 3.2

Proposition 3.1 is a simple particular case of Proposition 3.2 which we prove
here.

Observe that when t ≤ K and p ∈ Xt, so that p ∈ Xit for some i ∈ It, we
have by definition of φt, see (25),∫

Ωt

exp{−φt(ωt)}p(ωt)Pt(dωt)

=

∫
Ωt

exp{min
r∈It

max
s∈Jt

[arst − φrst(ωt)]}p(ωt)Pt(dωt)

≤
∫
Ωt

exp{max
s∈Jt

[aist − φist(ωt)]}p(ωt)Pt(dωt)
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≤
∑
s∈Jt

∫
Ωt

exp{aist − φist(ωt)}p(ωt)Pt(dωt)

≤
∑
s∈Jt

exp{aist}εist =
∑
s∈Jt

ht
sεist/g

t
i [see (22.a), (25)]

= [Eth
t]i/g

t
i = εt [see (24)]. (63)

Similarly, when t ≤ K and p ∈ Yt, so that p ∈ Yjt for some j ∈ Jt, we have∫
Ωt

exp{φt(ωt)}p(ωt)Pt(dωt)

=

∫
Ωt

exp{max
r∈It

min
s∈Jt

[φrst(ωt)− arst]}p(ωt)Pt(dωt)

≤
∫
Ωt

exp{max
r∈It

[φrjt(ωt)− arjt]}p(ωt)Pt(dωt)

≤
∑
r∈It

∫
Ωt

exp{φrjt(ωt)− arjt}p(ωt)Pt(dωt)

≤
∑
r∈It

exp{−arjt}εrjt =
∑
r∈It

gtrεrjt/h
t
j [see (22.b), (25)]

= [ET
t g

t]j/h
t
j = εt [see (24)]. (64)

Now let H1 = HX be true, let E|ζt−1
1

{·} stand for the conditional expectation,

ζt−1
1 being fixed, and let pζt−1

1
(·) be conditional, ζt−1

1 being fixed, probability

density of ωt w.r.t. Pt, so that pζt−1
1

(·) ∈ Xt for all ζ
t−1
1 and all t ≤ K. We have

E {exp{−φ1(ω1)− ...− φt(ωt)}}

= E
{
exp{−φ1(ω1)− ...− φt−1(ωt−1)}E|ζt−1

1
{exp{−φt(ωt)}}

}
= E

{
exp{−φ1(ω1)− ...− φt−1(ωt−1)}

∫
Ωt

exp{−φt(ωt)}pζt−1
1

(ωt)Pt(dωt)}
}

≤ εtE {exp{−φ1(ω1)− ...− φt−1(ωt−1)}} ,

where the concluding inequality is due to (63). From the resulting recurrence,

E{exp{−φK(ωK)}} ≤
∏K

t=1
εt.

This inequality combines with the description of our test to imply that the
probability to reject HX when it is true is at most

∏K
t=1 εt.

Now assume that H2 = HY holds true, so that the conditional, ζt−1
2 being

fixed, distribution pζt−1
2

(·) of ωt belongs to Yt for all ζ
t−1
2 and all t ≤ K. Applying

the previous reasoning to −φK in the role of φK , ζt2 in the role of ζt1, and (64)
in the role of (63), we conclude that the probability to reject HY when it is true

is at most
∏K

t=1 εt. �
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A.3. Proof of Proposition 3.3

10. The matrix Ē = [piεij ]1≤i,j≤m has zero diagonal and positive off-diagonal
entries. By the Perron-Frobenius theorem, the largest in magnitude eigenvalue
of Ē is some positive real ρ, and the corresponding eigenvector g can be selected
to be nonnegative. In addition, g ≥ 0 is in fact positive, since the relation

ρgi = [Ēg]i

along with the fact the all pi and all off-diagonal entries in E are positive, allows
for gi = 0 only if all the entries gj with j 	= i are zeros, that is, only when g = 0,
which is impossible. Since g > 0, we can set

αij = ᾱij := ln(gj)− ln(gi),

thus ensuring αij = −αji and

piεi =

m∑
j=1

piεij exp{αij} =

m∑
j=1

piεijgj/gi = g−1
i

m∑
j=1

piεijgj = g−1
i [Ēg]i = ρ.

Thus, with our selection of αij we get

ε = ρ.

20. We claim that in fact ε∗ = ρ, that is, the feasible solution [ᾱij ] is optimal
for (30). Indeed, otherwise there exists a feasible solution [αij = ᾱij + δij ]i,j
with δij = −δji such that

ρ̄ = max
i

⎡⎣pi∑
j

εij exp{αij}

⎤⎦ < ρ.

As we have shown, for every i we have ρ =
∑

j piεij exp{ᾱij}. It follows that
the convex functions

fi(t) =
∑
j

piεij exp{ᾱij + tδij}

all are equal to ρ when t = 0 and are ≤ ρ̄ < ρ when t = 1, whence, due to
convexity of fi, for every i one has

0 >
d

dt

∣∣
t=0

fi(t) =
∑
j

piεij exp{ᾱij}δij = pi
∑
j

gjg
−1
i εijδij .

Multiplying the resulting inequalities by g2i /pi > 0 and summing up the results
over i, we get

0 >
∑
i,j

gigjεijδij .

This is impossible, since εij = εji and δij = −δji, and the right hand side in the
latter inequality is zero. �
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A.4. Proof of Proposition 3.4

In the notation and under the premise of Proposition 3.4, let δ be the maximum
of the risks ε̄ij taken over all “far from each other” pairs of indexes (i, j), that
is, such that (i, j) 	∈ C, and let ī, j̄ be two “far from each other” indexes such
that δ = ε̄īj̄ . Test T clearly induces a test TK , deciding on the hypotheses

H1 = Hī, H
2 := Hj̄ via observation ωK̄ , which always accepts exactly one of

the hypotheses, and has risk at most ε. Indeed, let us define TK as applied to
ωK̄ as follows: TK accepts H1 if and only if T as applied to ωK̄ accepts Hī.
When H1 is true, the latter event takes place with probability at least 1 − ε
(since otherwise the C-risk of T would be > ε), while when H2 = Hj̄ is true,

T can accept Hī with probability at most ε, since C-risk of T is ≤ ε and Hī is
not close to Hj̄ . Same as in the proof of Proposition 2.1, invoking the origin of

δ = ε̄īj̄ , the fact that H1 and H2 can be decided upon, via ωK̄ , with risk ≤ ε

implies that δK̄ = [ε̄īj̄ ]
K̄ ≤ 2

√
ε(1− ε). Further, by Remark 3.1 the C-risk of

T̂ K does not exceed ε(K) and thus does not exceed

ε(K) = max
i

∑
j:(i,j) �∈C

ε̄Kij ,

see (35) and (34). Invoking the origin of δ, we get ε(K) ≤ mδK . Thus, the risk of

T̂ K does not exceed m[2
√
ε(1− ε)]K/K̄ , and the conclusion of Proposition 3.4

follows. �

A.5. Proofs of Propositions 4.1 and 4.2

We start with the proof of Proposition 4.1.

10. Let us fix i. It is immediately seen that problem (P i
ε ) is solvable (recall

that Ae[i] 	= 0); let ρi = ρPi (ε), r
i, ui, vi be an optimal solution to this problem.

We clearly have ri = ρi. We claim that the optimal value in the optimization
problem

min
r,u,v

{
1

2

∑
�

[√
[Au]� −

√
[A(re[i] + vi)]�

]2
: u ∈ V , v ∈ V , ρi ≤ r ≤ R

}
(P )

is ln(
√
n/ε), while (ri, ui, vi) is an optimal solution to the problem. Indeed,

taking into account the origin of ui, vi, ρi = ri and the relation R ≥ ρPi (ε),
(ri, ui, vi) is a feasible solution to this problem with the value of the objective
≤ ln(

√
n/ε); thus, all we need in order to support our claim is to verify that

the optimal value in (P ) is ≥ ln(
√
n/ε). To this end assume for a moment that

(P ) has a feasible solution (r̄, ū, v̄) with the value of the objective < ln(
√
n/ε).

Then, setting ρ+ = ρi+ δ, r+ = r̄+ δ, u+ = ū, v+ = v̄ and choosing δ > 0 small
enough, we clearly get a feasible solution to (P i

ε ) with the value of the objective
> ρi = ρPi (ε), which is impossible. Our claim is justified.
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20. Recalling the “Poisson case” discussion in section 2, item 10 implies that
the simple test associated with the detector φi(·) given by (39) decides between
the hypotheses H0 and Hi(ρPi (ε)) with probabilities of errors ≤ ε/

√
n. Since

Hi(r) “shrinks” as r grows, we conclude that whenever ρi ∈ [ρPi (ε), R], the same
test decides between the hypotheses H0 and Hi(ρi) with probabilities of errors
not exceeding ε/

√
n. Now let ρ = [ρ1; ...; ρn] satisfy the premise of Proposition

4.1, so that ρi ≥ ρPi (ε) for all i. Note that the problem of testing H0 : μ ∈ X
against H1(ρ) : μ ∈

⋃n
i=1 Y (ρi), along with the tests φ1i(·) = φi(·), i = 1, ..., n

satisfy the premise of Proposition 3.1 with ε1i = ε/
√
n, ε =

√∑n
i=1 ε

2
1i(= ε),

and a1i = − 1
2
lnn, i = 1, ..., n. As a result, by Proposition 3.1, the risk of the

test φP (·) does not exceed ε.

30. To justify the bound on rate optimality, let us set

Opti(ρ) = min
r,u,v

{
1

2

∑
�

[√
[Au]� −

√
[A(re[i] + vi)]�

]2
: u ∈ V , v ∈ V , ρ ≤ r ≤ R

}
[ρ ≥ 0]

The function Opt(ρ) by its origin is a nondecreasing convex function on the
segment 0 ≤ ρ ≤ R, Opti(ρ) = +∞ when ρ > R, and Opt(0) = 0. It follows
that

∀(ρ ∈ [0, R], θ ≥ 1) : Opti(θρ) ≥ θOpti(ρ) (65)

Now assume that for some ρ = [ρ1; ...; ρn] and ε ∈ (0, 1/4) there exists a
test which decides between H0 and H1(ρ) with probability of error ≤ ε. Taking
into account the union structure of H1(ρ), for every fixed i this test decides
with the same probabilities of errors between the hypotheses H0 and Hi(ρi).

All we need in order to prove the bound on the rate of optimality of φ̂P is
to extract from the latter observation that ρPi (ε)/ρi ≤ κn := κn(ε) for every
i. Let us fix i and verify that ρPi (ε)/ρi ≤ κn. There is nothing to do when
ρi ≥ ρPi (ε) (due to κn ≥ 1); thus, assume that ρi < ρPi (ε). Note that ρi > 0
(since otherwise the hypotheses H0 and Hi(ρi) have a nonempty intersection
and thus cannot be decided with probabilities of errors < 1/2, while we are
in the case of ε < 1/4). Applying Theorem 2.1 to the pair of hypotheses H0,
Hi(ρi), it is straightforward to see that in this case item (ii) of Theorem states
exactly that exp{−Opti(ρi)} ≤ 2

√
ε, or, which is the same, Opt(ρi) ≥ δ :=

1
2
ln(1/ε) − ln(2); δ is positive due to ε ∈ (0, 1/4). Now let θ > ln(

√
n/ε)/δ,

so that θ ≥ 1. By (65), we either have θρi > R, whence θρi ≥ ρPi (ε) due to
ρPi (ε) ≤ R, or θρi ≤ R and Opti(θρi) > ln(

√
n/ε). In the latter case, as we

have seen in item 10 of the proof, it holds Opti(ρ
P
i (ε)) = ln(

√
n/ε), and thus

ρPi (ε) < θρi since Opti is nondecreasing in [0, R]. Thus, in all cases θρi > ρPi (ε)
whenever θ > ln(

√
n/ε)/δ. But the latter ratio is exactly κn, and we conclude

that κnρi ≥ ρPi (ε), as required. �

40. The proof of Proposition 4.2 follows exactly same lines. Indeed, let us fix
i ∈ {1, ..., n} and χ ∈ ±1. Same as in item 10 above we observe first that problem
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(Gi
ε,κ) is solvable for each i, and if ri = ρGi (ε), u

i, vi is an optimal solution, the
optimal value of the optimization problem

min
r,u,v

{
σ−1‖A(u− re[i]− v)‖2 : u ∈ V , v ∈ V , ρGi (ε) ≤ r ≤ R

}
(G)

is exactly κ(ε), with an optimal solution (ri, ui, vi). The latter implies that
(cf. also section 2.3.1) that the error probabilities of the simple test associated
with detector φi,χ, defined in (43), when deciding between H0 : μ ∈ X and
Hχ,i(ρi) : μ ∈ χYi(ρi), ρ

G
i (ε) ≤ ρi ≤ R, satisfy

εX(φi,χ) ≤
ε

2n
, εχYi(ρi)(φi,χ) ≤ ε.

Using the union bound we conclude that the corresponding error probabilities
of the aggregated test φ̂G do not exceed ε. Finally, we justify the bound on
“sub-optimality” κn(ε) exactly as it is done in the Poisson case in item 3o, when
taking into account that in the Gaussian case the risk of the optimal decision
between two convex sets at the distance 2ErfInv(ε) is exactly ε.

A.6. Proof of Proposition 4.3

10. Let the premise in Proposition 4.3 hold true, and let us set � = ρ[ε].
Observe, first, that Opt[�] = ln ε. Indeed, problem (48) clearly is solvable, and
x̄, ȳ, r = � is an optimal solution to this problem. (x̄, ȳ) is a feasible solution to
(Fg,α[�]), whence the optimal value in the latter problem is at least ln ε. Now
let us lead to a contradiction the assumption that Opt[�] > ln ε. Under this
assumption, let x0 ∈ H0[ρmax], y0 ∈ H1[ρmax], and let (x̂, ŷ) be an optimal
solution to (Fg,α[�]), so that

L∑
�=1

K� ln

(
n�∑
i=1

√
[A�x]i[A�y]i

)
> ln ε (66)

when x = x̂, y = ŷ. Now let xt = x̂+ t(x0 − x̂), yt = ŷ + t(y0 − ŷ). Since (66)
hods true for x = x̂, y = ŷ, for small enough positive t we have

gTxt ≤ α− �− t(ρmax − �), gT yt ≥ α+ �+ t(ρmax − �),

L∑
�=1

K� ln

(
n�∑
i=1

√
[A�xt]i[A�yt]i

)
≥ lnε.

which, due to ρmax > �, contradicts the fact that � is the optimal value in (48).

20. Let us prove (50). This relation is trivially true when � = 0, thus assume
that � > 0. Since ρmax ≥ 0, and gTx takes on X both values ≤ α and values
≥ α, this implies, by convexity of X , that gTx takes value α somewhere on
X. Therefore, the hypotheses H0[0] and H1[0] intersect, whence Opt[0] = 0. In
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addition to this, due to its origin, Opt[ρ] is a concave function of ρ ∈ [0, �].
Thus, Opt[θ�] ≥ θOpt[�] = θ ln ε when 0 ≤ θ ≤ 1. Now, to prove (50) is exactly
the same as to prove that when 0 ≤ ρ < ϑ−1(ε)�, no test for problem (Dg,α[ρ])
with risk ≤ ε is possible. Assuming, on the contrary, that 0 ≤ ρ < ϑ(ε)� and
(Dg,α[ρ]) admits a test with risk ≤ ε; same as in the proof of Theorem 2.1.ii,
this implies that for every x ∈ H0[ρ] and y ∈ H1[ρ], the Hellinger affinity
of the distributions of observations associated with x and y does not exceed
2
√
ε(1− ε), whence Opt[ρ] ≤ ln(2

√
ε(1− ε)). On the other hand, as we have

seen, Opt[ρ] ≥ ρ
� ln ε, and we arrive at ρ

� ln ε ≤ ln(2
√
ε(1− ε)), whence ϑ−1(ε) >

ρ/� ≥ ln(2
√

ε(1−ε))

ln ε = ϑ−1(ε), which is impossible.

30. Let now ρ ∈ [�, ρmax], so that problem (Fg,α[ρ]) is solvable with optimal
value Opt[ρ]; clearly, Opt[ρ] is a nonincreasing function of ρ, whence Opt[ρ] ≤
Opt[�] = ε, Applying Proposition 2.2 (with no Gaussian and Poisson factors
and a = 0) and recalling the origin of Opt[ρ], we conclude that the risk of the

simple test with the detector φ̂ρ does not exceed exp{Opt[ρ]} ≤ ε. �
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