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Abstract: Over the last twenty-five years, various
√
n-consistent estima-

tors have been devised for the coefficient vector in the popular semiparamet-
ric single-index model. In this paper, we prove under general assumptions
that the kernel estimator of the link function by a univariate regression
on the index variable is oracally efficient, namely, the estimator with the
true single-index coefficient vector is asymptotically indistinguishable from
that with any

√
n-consistent coefficient vector estimator. As a mathemat-

ical byproduct of the oracle efficiency, a simultaneous confidence band is
constructed for the link function based on the oracally efficient kernel es-
timator. Simulation experiments corroborate the theoretical results. The
proposed simultaneous confidence band is applied to analyze and test hy-
pothesis about the Boston housing data.
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1. Introduction

Nonparametric regression methods have for the last three decades become widely
used in place of the classic parametric regression as they are free from the con-
straints of pre-determined form with finitely many unknown parameters. Yet
nonparametric models pay for their flexibility the price of “curse of dimen-
sionality”, i.e., unacceptable inaccuracy of function estimates when the number
of predictors is large. Myriads of semiparametric models have been developed
for over two decades in order to combine the strength of purely nonparamet-
ric models with those of classic parametric models. [10] contains in-depth dis-
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cussion about parametric and nonparametric components of one typical semi-
parametric model, the partially linear model. The generalized additive model
advocated by [16], is another popular semiparametric model, see also, for exam-
ple, [18, 25, 26, 27, 38, 44, 45]. Another attractive semiparametric model is the
single-index model, similar to the first step of projection pursuit regression, see
[4, 6, 14, 19]. The single-index model can be written as

Y = g
(
XT θ0

)
+ ε, (1.1)

whereX = (X1, . . . , Xd)
T is a d×1 predictor vector and the unknown parameter

θ0 = (θ0,1, . . . , θ0,d)
T is the single-index coefficient vector. In addition, the link

function g is an unknown univariate function, and the noise satisfies E(ε|X) = 0,
E(ε2|X) = σ2(X). The linear combination XT θ0 of X1, . . . , Xd is referred to as
the single-index variable or index.

What makes the single-index model appealing is its simplicity. Over the last
twenty-five years, many authors have focused on the estimation of the coefficient
vector θ0 and devised various intelligent

√
n-consistent estimators of θ0, see,

[3, 11, 12, 13, 17, 20, 22, 30, 31, 33, 35, 39, 42].

There has been a folklore that since the true parameter θ0 is estimated by
some θ̂ up to order n−1/2, much smaller than the typical convergence rate n−2/5

for nonparametric function estimation, one can safely ignore the difference be-
tween θ0 and θ̂, and estimate the link function g by univariate regression of
Y on XT θ̂ instead of XT θ0. In contrast, both unknown parameters and non-
parametric functions in partially linear models can be estimated with oracle
efficiency (meaning as efficient as if all other unknowns were given), see for in-
stance, [10, 28]. We believe that most experienced statisticians would agree that
current statistical theory of single-index model is seriously defective due to the
absence of a reliable estimator of the link function g, however tempting it is to
profess faith in the folklore that regressing Y on XT θ̂ is equivalent to regressing
Y on XT θ0.

Under general assumptions, we have rigorously proved the above heuristics,
namely oracle efficiency for a plug-in estimator of the link function g. Oracle
efficiency in the context of smooth function estimation was best explained by
[24], while the concept was later expanded by [25, 26, 28, 38, 37] for models with
additive structures. In terms of the single-index model (1.1), if θ0 were known
by an “oracle”, one could construct standard Nadaraya-Watson or local linear
estimator g̃ of g by regressing Y on XT θ0, hence g̃ is an infeasible benchmark
for estimating g. The Nadaraya-Watson or local linear plug-in estimator ĝ of
g by regressing Y on XT θ̂ is called oracle, as Theorem 1 concludes that the
difference g̃ − ĝ is uniformly of order n−1/2, negligible compared to the error
between g̃ and g.

This ideal property of ĝ makes it asymptotically indistinguishable from g̃ uni-
formly, and automatically inherits all the global asymptotic properties of g̃, in
particular, the simultaneous confidence band of g based on g̃. Nadaraya-Watson
and local linear estimators of regression function come equipped with simulta-
neous confidence band (SCB), see for instance [7, 9, 41]. SCB is an extremely
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powerful tool for making inference on the entirety of an unknown curve with
quantifiable error probability, yet it has been rather underexplored in nonpara-
metric curve estimation literature, due to the tremendous difficulty of obtaining
limiting distribution for global estimation error (also known as maximal devi-
ation). For recent theoretical developments on SCB in various context, see for
instance [15, 23, 29, 36, 47, 48]. It should be pointed out that our proof of
Theorem 1 requires only that the estimator θ̂ of θ0 to be

√
n-consistent, re-

gardless whether it is derived from kernel based ([11]) or spline based ([39])
methods.

The rest of the paper is organized as follows. Section 2 states the main the-
oretical results on “oracle efficiency” and the SCB under some appropriate as-
sumptions of model (1.1). Section 3 decomposes the estimation errors of ĝ and
g̃ into three parts for comparison, to break down the proof of the main theo-
rem into three propositions. Section 4 describes the actual steps to implement
the SCB. Section 5 reports findings of a simulation study. A real data example
appears in Section 6. All technical proofs are in the Appendix.

2. Main results

Let the observations {XT
i , Yi}ni=1 = {Xi,1, . . . , Xi,d, Yi}ni=1 and unobserved er-

rors {εi}ni=1 be i.i.d. copies of (XT , Y, ε) in model (1.1), then one has

Yi = g
(
XT

i θ0
)
+ εi. (2.1)

If θ0 were known by an “oracle”, standard kernel smoothing method offered
by the univariate Nadaraya-Watson (NW) estimator g̃NW of g is given by

g̃NW (xθ) =

∑n
i=1 Kh

(
XT

i θ0 − xθ

)
Yi∑n

i=1 Kh

(
XT

i θ0 − xθ

) . (2.2)

In fact, θ0 is unknown. Therefore we replace θ0 in (2.2) with its
√
n-consistent

estimator θ̂ to obtain the oracle NW estimator ĝNW given by

ĝNW (xθ) =

∑n
i=1 Kh

(
XT

i θ̂ − xθ

)
Yi∑n

i=1 Kh

(
XT

i θ̂ − xθ

) . (2.3)

Similarly, we construct the univariate oracle local linear (LL) estimator ĝLL
of g based on {XT

i θ̂, Yi}ni=1 that mimics the would-be local linear estimator g̃LL
based on {XT

i θ0, Yi}ni=1,

ĝLL (xθ) = (1, 0)
(
ẐTŴẐ

)−1

ẐTŴY, g̃LL (xθ) = (1, 0)
(
ZTWZ

)−1
ZTWY

(2.4)
where the response vector Y = (Y1, . . . , Yd)

T , the weight and design matrices
are
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Ŵ = diag
{
Kh

(
XT

i θ̂ − xθ

)}n

i=1
, ẐT =

(
1 , . . . , 1

XT
1 θ̂ − xθ , . . . , XT

n θ̂ − xθ

)
,

W = diag
{
Kh

(
XT

i θ0 − xθ

)}n

i=1
,ZT =

(
1 , . . . , 1

XT
1 θ0 − xθ , . . . , XT

nθ0 − xθ

)
.

Throughout this paper, for any vector υ = (υ1, . . . , υd)
T ∈ R

d, we denote the
norm ‖υ‖2 =

√
υ2
1 + · · ·+ υ2

d. Without loss of generality, we take ‖θ0‖2 = 1.
The technical assumptions we need are as follows:

(A1) θ̂ − θ0 = Op(n
−1/2).

(A2) The predictor vector X takes values in a d-dimensional bounded closed
region Ωd. The density function fθ0(xθ) of XT θ0 is continuous and pos-
itive on (a, b). This entails that for any compact subinterval [a0, b0] ⊂
(a, b), there exist constants c1, c2, such that 0 < c1 ≤ fθ0(xθ) ≤ c2 < +∞,
xθ ∈ [a0, b0].

(A3) The second order derivative of the link function g is continuous on (a, b).
(A4) For 1 ≤ l �= l′ ≤ d, the joint density functions fl(xθ, xl) of (XT θ0, Xl)

and fll′(xθ, xl, xl′) of (XT θ0, Xl, Xl′) are continuous and have continuous
partial derivatives of order one with respect to xθ, on (a, b)×R and (a, b)×
R

2 respectively.
(A5) The kernel function K is a symmetric probability density function sup-

ported on [−1, 1], whose second order derivative K ′′ is Lipschitz continu-
ous on R.

(A6) For some η > 1/2, Mη ≡ supx∈Ωd E(|ε|2+η|X = x) < ∞. The standard
deviation function σ(x) is continuous on Ωd and there exist constants
cσ, Cσ, such that 0 < cσ ≤ σ(x) ≤ Cσ < +∞, x ∈ Ωd.

(A7) The bandwidth h = hn satisfies nh4 → ∞, nh5 logn → 0 as n → ∞.

One reviewer has pointed out that Assumption (A1) is critical to our main
results, hence we provide below additional assumptions that ensure existence of√
n-consistent estimator θ̂ of coefficient vector θ0:

(S) If the density f(x) of X ∈ C4(Ωd) where Ωd = {x ∈Rd|‖x‖ ≤ ρ} and
f(x) is bounded away from 0 on Ωd; the link function g ∈ C4(a, b); the
risk function R∗(θ−d) = E{Y − g(XT θ)}2 has positive definite Hessian
matrix at θ0,−d, where θ−d = (θ1, . . . , θd−1)

T , θ0,−d = (θ0,1, . . . , θ0,d−1)
T ,

and the η in (A6) is at least 1, then the spline estimator θ̂ of coefficient
vector θ0 in [39] satisfies (A1);

(K) If the density f(x) of X ∈ C2(Ωd) and f(x) is bounded away from 0 on
Ωd; the density fθ0(xθ) of XT θ0 and the link function g(xθ) both have two
bounded, continuous derivatives on (a, b), and the η in (A6) is sufficiently
large, then the kernel estimator θ̂ of coefficient vector θ0 in [11] satisfies
(A1).

The above conditions (K) and (S) provide only two sets of elementary assump-
tions that support the high level Assumption (A1). In general, our Assumptions
(A1)-(A7) allow for rather wide selection of any

√
n-consistent estimator θ̂ in

order to establish the main Theorem 1 below.
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Theorem 1. Under Assumptions (A1)-(A7), as n → ∞, the estimators ĝNW(xθ)
in (2.3) and ĝLL(xθ) in (2.4) satisfy

supxθ∈[a0,b0] |ĝNW (xθ)− g̃NW (xθ)| = ‖ĝNW − g̃NW‖∞ = Op

(
n−1/2

)
,

supxθ∈[a0,b0] |ĝLL (xθ)− g̃LL (xθ)| = ‖ĝLL − g̃LL‖∞ = Op

(
n−1/2

)
.

According to classical theory on nonparametric confidence band in [7] and
[9], Assumptions (A2)-(A3), (A5)-(A7) ensure that for any z ∈ R

lim
n→∞

P

[
an

(
sup

xθ∈[a0,b0]

√
nh

v (xθ)
|g̃NW (xθ)− g (xθ)| − dn

)
≤ z

]

= exp {−2 exp (−z)} ,
in which

v2 (xθ) =

{∫ 1

−1

K2 (u) du

}
σ2
θ (xθ) f

−1
θ0

(xθ) , σ
2
θ (xθ) = E

{
σ2 (X)

∣∣XT θ0 = xθ

}
,

an =

{
−2 log

(
h

b0 − a0

)}1/2

, dn = an + a−1
n log

(√
C (K)

2π

)
,

where C(K) = {
∫ 1

−1
K ′(u)2du}{

∫ 1

−1
K2(u)du}−1 and K ′ denotes the first order

derivative of kernel function K. Combining the above with Theorem 1, one
obtains

Corollary 1. Under Assumptions (A1)-(A7), for any z ∈ R,

lim
n→∞

P

[
an

(
sup

xθ∈[a0,b0]

√
nh

v (xθ)
|ĝNW (xθ)− g (xθ)| − dn

)
≤ z

]

= exp {−2 exp (−z)} .
Hence for any α ∈ (0, 1), an asymptotic 100(1 − α)% simultaneous confidence
band for g(xθ), xθ ∈ [a0, b0] is

ĝNW (xθ)± v (xθ) (nh)
−1/2

[
dn − a−1

n log

{
−1

2
log (1− α)

}]
.

Alternatively, an asymptotic 100(1 − α)% simultaneous confidence band for
g(xθ), xθ ∈ [a0, b0] is

ĝLL (xθ)± v (xθ) (nh)
−1/2

[
dn − a−1

n log

{
−1

2
log (1− α)

}]
.

Remark 1. It is reasonable to expect the oracle efficiency of Theorem 1 to hold
as well under the settings of regression spline, P spline, etc., and one reviewer
has pointed out that there are four combinations: spline and kernel for the
coefficient vector θ and the link function g and it will be quite interesting to
see which combination is better and under what assumptions. We have chosen
kernel smoothing for the link function g simply because its SCB has been best
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investigated and understood. The estimation of coefficient vector θ0 is only a
preliminary step for estimating g, so any

√
n-consistent estimator θ̂ will do. We

have used the B spline estimator θ̂ in numerical works of Sections 5 and 6 due to
its fast computing (see comparison in [39]). Further research may lead to faster
procedures to estimate θ0 or more accurate SCBs for g than ours.

3. Decomposition

In this section, in order to prove that the oracle NW estimator ĝNW(xθ) is
asymptotically as efficient as the infeasible NW estimator g̃NW(xθ) in Theo-
rem 1, we make the following decomposition of the estimation error ĝNW(xθ)−
g(xθ) due to the definition of ĝNW(xθ) given in (2.3).

ĝNW (xθ)− g (xθ) =

∑n
i=1 Kh

(
XT

i θ̂ − xθ

)
{Yi − g (xθ)}∑n

i=1 Kh

(
XT

i θ̂ − xθ

) =
B̂ (xθ) + V̂ (xθ)

f̂θ̂ (xθ)
,

(3.1)
where

B̂ (xθ) = n−1
∑n

i=1
Kh

(
XT

i θ̂ − xθ

) {
g

(
XT

i θ0
)
− g (xθ)

}
, (3.2)

V̂ (xθ) = n−1
∑n

i=1
Kh

(
XT

i θ̂ − xθ

)
εi, (3.3)

f̂θ̂ (xθ) = n−1
∑n

i=1
Kh

(
XT

i θ̂ − xθ

)
. (3.4)

Similarly, the infeasible estimation error g̃NW(xθ) − g(xθ) can be decomposed
as

g̃NW (xθ)− g (xθ) =

∑n
i=1 Kh

(
XT

i θ0 − xθ

)
{Yi − g (xθ)}∑n

i=1 Kh

(
XT

i θ0 − xθ

) =
B (xθ) + V (xθ)

f̂θ0 (xθ)
,

(3.5)

where B(xθ), V (xθ), f̂θ0(xθ) are defined similarly as B̂(xθ), V̂ (xθ), f̂θ̂(xθ), but

replace θ̂ with θ0. Propositions 1, 2 and 3 below establish the uniformly asymp-
totical results on B̂(xθ), V̂ (xθ), f̂θ̂(xθ), respectively.

Proposition 1. Under Assumptions (A1)-(A7), as n → ∞,

supxθ∈[a0,b0]

∣∣∣B̂ (xθ)−B (xθ)
∣∣∣ = Op

(
n−1/2

)
.

Proposition 2. Under Assumptions (A1)-(A7), as n → ∞,

supxθ∈[a0,b0]

∣∣∣V̂ (xθ)− V (xθ)
∣∣∣ = op

(
n−1/2

)
.

Proposition 3. Under Assumptions (A1)-(A7), as n → ∞,

supxθ∈[a0,b0]

∣∣∣f̂θ̂ (xθ)− f̂θ0 (xθ)
∣∣∣ = Op

(
n−1/2

)
.
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Remark 2. It is easy to see that Theorem 1 follows from Assumption (A2) and
Propositions 1, 2 and 3. Hence, the Appendix is devoted to the proofs of these
propositions, rather than Theorem 1. If one were to prove the corresponding
results for the LL estimator, one would extend Proposition 1 to include the
term n−1h−1

∑n
i=1 Kh(X

T
i θ̂ − xθ)(X

T
i θ̂ − xθ){g(XT

i θ0)− g(xθ)}, Proposition 2

to include the term n−1h−1
∑n

i=1 Kh(X
T
i θ̂−xθ)(X

T
i θ̂−xθ)εi and Proposition 3

to include the term n−1h−1
∑n

i=1 Kh(X
T
i θ̂ − xθ)(X

T
i θ̂ − xθ). These do not add

a great deal of difficulty.

4. Implementation

In the following, we outline the procedures to construct the SCB given in Corol-
lary 1. The triweight kernel function, K(u) = 35(1 − u2)3/32 for −1 ≤ u ≤ 1

satisfies Assumption (A5). One takes (â, b̂) = (
n

min
i=1

XT
i θ̂,

n
max
i=1

XT
i θ̂) as the index

range, and the compact interval [â0, b̂0] = [0.9â + 0.1b̂, 0.9b̂ + 0.1â] over which
the SCB is constructed. The bandwidth is taken to be a MISE-relevant under-
smoothing bandwidth fulfilling Assumption (A7) h = hopt(logn)

−0.25−1/ logn,
where hopt is the MISE optimal bandwidth with order n−1/5, see [5].

The estimated index coefficient vector θ̂ is the polynomial spline estimator
proposed by [39]. The pilot estimator of fθ0(xθ) is the kernel density estimator

f̂θ̂ (xθ) = n−1
∑n

i=1
Khf

(
XT

i θ̂ − xθ

)
,

with bandwidth hf = the Silverman’s rule-of-thumb (ROT) bandwidth ([34],
page 48, eqn (3.31)), which is the default bandwidth for kernel density estimator
in R. Meanwhile, the estimator of σ2

θ(xθ) results from the Nadaraya-Watson
estimator with bandwidth h∗ = n−1/5,

σ̂2
θ (xθ) =

∑n
i=1 Kh∗

(
XT

i θ̂ − xθ

)
ε̂2i∑n

i=1 Kh∗

(
XT

i θ̂ − xθ

)
where ε̂i = Yi − ĝ(XT

i θ̂). The consistency of f̂θ̂(xθ) and σ̂2
θ(xθ) follows from

standard theory of kernel smoothing and Slutsky’s Theorem entails that Corol-
lary 1 still holds when v(xθ) is plugged into any consistent estimators f̂θ̂(xθ) and
σ̂2
θ(xθ) satisfying that supxθ∈[a0,b0] |v̂(xθ)− v(xθ)| = Op(n

−γ) for some γ > 0 as
n → ∞. Therefore, as n → ∞, l = 1, . . . , d, the SCB

ĝNW (xθ)± v̂ (xθ) (nh)
−1/2

[
dn − a−1

n log

{
−1

2
log (1− α)

}]
. (4.1)

or

ĝLL (xθ)± v̂ (xθ) (nh)
−1/2

[
dn − a−1

n log

{
−1

2
log (1− α)

}]
. (4.2)

has asymptotic confidence level 1− α.
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5. Simulation

In this section, we present the simulation results to illustrate the finite-sample
performance of our oracle efficient estimator. Consider the following modified
model in [39, 43],

Y = X1 +X2 + 4 exp
{
− (X1 +X2)

2
}
+ δ

{
1 + c

(
X2

1 +X2
2

)}−1/2
ε

=
√
2XT θ0 + 4 exp

{
−2

(
XT θ0

)2}
+ σ (X) ε

= g
(
XT θ0

)
+ σ (X) ε,

where X = (X1, X2)
T i.i.d.∼ N(0, I2), truncated by X2

1 + X2
2 ≤ 22 and ε

i.i.d.∼
N(0, 1). The tuning parameters in σ(X) are chosen to create four scenarios
by combinations of noise level (δ = 1.0, 1.5) and degree of heteroscedasticity
(c = 0, 0.2 with c = 0 for homoscedasticity, c = 0.2 for heteroscedasticity). The
number of subjects n is taken to be 200, 500, 1000. Obviously, the true index
coefficient vector θT0 = (1, 1)/

√
2.

We use the LL estimator as an example, and examine the global discrepancy
of g̃LL and ĝLL measured by the Integrated Squared Error (ISE):

ISE (ĝLL) =

∫
{ĝLL (xθ)− g (xθ)}2 dxθ,

ISE (g̃LL) =

∫
{g̃LL (xθ)− g (xθ)}2 dxθ,

where integration
∫
is computed as sum over 401 points {â0+(b̂0−â0)k/400, k =

0, . . . , 400}. One then computes the Mean Integrated Squared Error (MISE)
MISE(ĝLL) as the average of ISE(ĝLL) over 500 replications, and MISE(g̃LL) de-
fined likewise. Figures 1, 2, 3 show the boxplots of the random value ISE(ĝLL),
the random ratio ISE(ĝLL)/ ISE(g̃LL) and

√
n‖ĝLL − g̃LL‖∞ at (δ, c) = (1.0, 0),

(1.5, 0.2). One sees in these plots that ISE(ĝLL) →p 0, ISE(ĝLL)/ ISE(g̃LL) →p 1
and the distribution of

√
n‖ĝLL − g̃LL‖∞ is bounded in probability. Table 1

contains MISE(ĝLL) and the ratio MISE(ĝLL)/MISE(g̃LL). It shows that as n
increases, MISE(ĝLL) goes to zero and MISE(ĝLL)/MISE(g̃LL) to 1. All these
are consistent with the asymptotical properties of our oracle efficient estimator.

Next, we compare the SCBs constructed by g̃LL, ĝLL with the confidence
levels 1− α = 0.95 and 0.99. Table 2 reports the coverage percentages over 500
replications that the true curve was covered by SCBs based on θ̂ and θ0 at the
401 points {â0 + (b̂0 − â0)k/400, k = 0, . . . , 400}.

For visualization of actual function estimates, Figure 4 depicts various uni-
variate functions at (δ, c) = (1.0, 0), (1.5, 0.2), including the scatterplot of data,
the curve of the true univariate function g, the estimated function of g using
the true index coefficient vector θ0, the estimated function of g using the esti-
mated index coefficient vector θ̂ and asymptotic 95% SCBs with n = 500. Other
settings yielded similar results, but are not included to save space.
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Fig 1. Boxplot of ISE(ĝLL) at (δ, c) = (1, 0), (1.5, 0.2).

Fig 2. Boxplot of ISE(ĝLL)/ ISE(g̃LL) at (δ, c) = (1, 0), (1.5, 0.2).

Fig 3. Boxplot of
√
n‖ĝLL − g̃LL‖∞ at (δ, c) = (1, 0), (1.5, 0.2).
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Fig 4. Plots of {XT
i θ̂,Yi}, 1 ≤ n ≤ 500 (dots), the true function g (thick solid), the estimated

function g̃LL (dashed), the estimated function ĝLL together with its 95% SCB (4.2) (solid).

Table 1

Comparing MISE(ĝLL) and MISE(g̃LL) based on 500 replications

(δ, c)
MISE(ĝ) MISE(ĝ)/MISE(g̃)

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000
(1.0, 0) 0.0733 0.0329 0.0181 1.0099 0.9957 1.0014
(1.5, 0) 0.1429 0.0630 0.0350 1.0266 1.0039 1.0070
(1.0, 0.2) 0.0578 0.0261 0.0142 1.0072 0.9993 1.0021
(1.5, 0.2) 0.1113 0.0492 0.0274 1.0120 0.9931 1.0035

Table 2

Coverage percentages of the SCB for function g using θ̂ (left) and θ0 (right) based on 500
replications

(δ, c) 1− α n = 200 n = 500 n = 1000
(1.0, 0) 0.950 0.872, 0.884 0.936, 0.938 0.954, 0.956

0.990 0.944, 0.956 0.988, 0.990 0.992, 0.992
(1.5, 0) 0.950 0.872, 0.872 0.942, 0.940 0.958, 0.954

0.990 0.952, 0.960 0.984, 0.992 0.990, 0.990
(1, 0.2) 0.950 0.892, 0.898 0.954, 0.956 0.960, 0.964

0.990 0.968, 0.974 0.994, 0.990 0.994, 0.994
(1.5, 0.2) 0.950 0.880, 0.872 0.958, 0.952 0.958, 0.960

0.990 0.962, 0.960 0.996, 0.992 0.994, 0.994

From Table 2, one can see the SCBs based on θ̂ and θ0 have similar perfor-
mances. There is no significant differences between their coverage percentages
and both are close to the nominal level for large sample size. Meanwhile, Figure 4
shows that the three curves of g, g̃LL, ĝLL are very close. All these results reveal
that the oracle estimator ĝLL(xθ) is asymptotically as efficient as the infeasible
estimator g̃LL(xθ) regardless of noise level and/or heteroscedasticity, which is
consistent with our asymptotic theory.
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6. Real data analysis

As an illustration, we apply our method to the Boston Housing Data, consisting
of the median value of homes in 506 census tracts in Boston Standard Metropoli-
tan Statistical Area in 1970 and 13 accompanying sociodemographic statistics
values. [8] estimated a housing price index model based on this data, while [2]
did further analysis with their ACE algorithm to select four covariates. The
response and explanatory variables of interest are:

MEDV: Median value of owner-occupied homes in $1000’s;
RM: average number of rooms per dwelling;
TAX: full-value property-tax rate per $10,000;
PTRATIO: pupil-teacher ratio by town school district;
LSTAT: proportion of population that is of “lower status” (%).

Some regression studies had been used to reveal the potential relationship be-
tween MEDV and four covariates, for instance, [21, 32, 37, 40, 46].

We follow the previous works to use the same four explanatory variables and
take logarithmic transformations on TAX and LSTAT for our analysis. The
following single-index model is proposed to fit the data:

MEDV = g (θ1RM+ θ2 log (TAX) + θ3PTRATIO + θ4 log (LSTAT)) + ε

and the four covariates are further standardized to facilitate the application of
[39] for estimating θ = (θ1, θ2, θ3, θ4).

By the spline method of [39], the estimated index coefficient vector is θ̂ =

(θ̂1, θ̂2, θ̂3, θ̂4) = (0.4924,−0.1022,−0.2949,−0.8125). It implies that RM has a
positive effect whereas log(LSTAT) has the most negative effect on the hous-
ing price. In Figure 5(a), the univariate LL estimator of the link function
and corresponding asymptotic 95% SCB are displayed together with the scat-
ter points about MEDV and the index θ̂1RM + θ̂2 log(TAX) + θ̂3PTRATIO +

θ̂4 log(LSTAT). The straight solid line represents the least squares regression
line. Obviously the null hypothesis H0 : g(xθ) ≡ β0 + β1xθ, for some β0, β1 ∈ R

will be rejected since the 95% SCB couldn’t totally cover the straight regression
line. In fact, the asymptotic p-value is 0.00849761 that is calculated as

α = 1− exp

[
−2 exp

(
−ân

{
400
max
k=0

√
nh

v̂ (tk)

∣∣∣ĝLL (tk)− (
β̂0 + β̂1tk

)∣∣∣ − d̂n

})]
,

in which

ân =

{
−2 log

(
h

b̂0 − â0

)}1/2

, d̂n = ân + â−1
n log

(√
C (K)

2π

)
,

and tk, k = 0, . . . , 400 are equally spaced grid points over the interval [â0, b̂0]

where we construct the SCB, while β̂0 + β̂1xθ is a least squares linear approxi-
mation to ĝLL(xθ). In other words, the asymptotic p-value α is a solution of

400
max
k=0

√
nh

v̂ (tk)

∣∣∣ĝLL (tk)− (
β̂0 + β̂1tk

)∣∣∣ = d̂n − â−1
n log

{
−1

2
log(1− α̂)

}
.
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Fig 5. Plots of 95% SCB (upper and lower solid), the LL estimator ĝLL (middle dashed) and

the regression line (straight solid) based on the scatter points (MEDV, θ̂1RM+ θ̂2 log(TAX)+

θ̂3PTRATIO+ θ̂4 log(LSTAT)).

The scatter plot in Figure 5 (a) shows a group of data points with the similar
medium value around $50, 000, and wonder how much influence they might have.
We have removed these 16 data points from the data and redone the analysis, as
seen in Figure 5 (b), and obtained a revised asymptotic p-value of 0.00976571.
Our conclusion based on comparing the plots in Figure 5 and the corresponding
p-values is that the influence of these 16 data points is negligible.

Through the shape of the SCB, we can see the curve of the estimated link
function has a roughly increasing trend. These findings are consistent with the
observations in [21, 40, 46], but are put on rigorous standing due to the quan-
tification of type I error by computing asymptotic p-value relative to the SCB.

Appendix

Throughout this section, ϕn ∼ ψn means limn→∞ ϕn/ψn = c, where c is
some nonzero constant. For functions ϕn(x), ψn(x), ϕn(x) = u{ψn(x)} means
ϕn(x)/ψn(x) → 0 as n → ∞ uniformly for x ∈ [a0, b0], and ϕn(x) = U{ψn(x)}
means ϕn(x)/ψn(x) = O(1) as n → ∞ uniformly for x ∈ [a0, b0]. We use up(·)
and Up(·) if the convergence is in the sense of uniform convergence in probability.

We first state the classic Bernstein inequality used in the proofs of Proposi-
tions 1–3.

Lemma 1 (Theorem 1.2 of [1]). Suppose that {ξi}ni=1 are iid with E(ξ1) =
0, σ2 = Eξ21 , and there exists c > 0 such that for r = 3, 4, . . ., E|ξ1|r ≤
cr−2r!Eξ21 < +∞. Then for n > 1, Sn =

∑n
i=1 ξi, t > 0, P (|Sn| ≥

√
nσt) ≤

2 exp(−t2(4 + 2ct/
√
nσ)−1).
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A.1. Proof of Proposition 1

According to the definitions of B(xθ), B̂(xθ) given in (3.2) and the Taylor ex-
pansion of the kernel function K at (XT

i θ0−xθ)/h under Assumption (A5), one
has

B̂ (xθ) = n−1
n∑

i=1

Kh

(
XT

i θ̂ − xθ

) {
g

(
XT

i θ0
)
− g (xθ)

}
(A.1)

= B (xθ) + n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

){
g

(
XT

i θ0
)
− g (xθ)

}
XT

i

(
θ̂ − θ0

)

+n−1
n∑

i=1

h−1Ri,θ0

{
g

(
XT

i θ0
)
− g (xθ)

}
≡ B (xθ) +B1 (xθ) +B2 (xθ) ,

where Ri,θ0 is the remainder term of the first order Taylor expansion,

Ri,θ0 = Ri,θ0 (xθ) =

∫ (XT
i θ̂−xθ)/h

(XT
i θ0−xθ)/h

K ′′ (t)

(
XT

i θ̂ − xθ

h
− t

)
dt, 1 ≤ i ≤ n.

It is easy to see from Assumptions (A1), (A5) that

max
1≤i≤n

|Ri,θ0 | ≤ ‖K ′′‖∞ max
1≤i≤n

h−2
∣∣∣XT

i

(
θ̂ − θ0

)∣∣∣2 ≤ Ch−2
∥∥∥θ̂ − θ0

∥∥∥2

2

= Op

(
n−1h−2

)
.

Clearly, with the addition of Assumptions (A3),

supxθ∈[a0,b0] |B2 (xθ)| ≤ h−1

{
max
1≤i≤n

|Ri,θ0 |
}
‖g′‖∞ h = Op

(
n−1h−2

)
. (A.2)

In the following, we focus on analyzing supxθ∈[a0,b0] |B1(xθ)|. Define

ξin,l = ξin,l (xθ) = n−1h−2K ′ {h−1
(
XT

i θ0 − xθ

)} {
g

(
XT

i θ0
)
− g (xθ)

}
Xil,

l = 1, . . . , d, then Assumptions (A3), (A4) provide that

Eξin,l = n−1h−2

∫
K ′

(
u− xθ

h

)
{g (u)− g (xθ)}xlfl (u, xl) dudxl

= n−1h−1

∫
K ′ (v) {g (xθ + hv)− g (xθ)}xlfl (xθ + hv, xl) dvdxl

= n−1h−1

∫
K ′ (v)xl

{
g′ (xθ)hv + U

(
h2

)}
×{

fl (xθ, xl) +
∂fl (xθ, xl)

∂xθ
hv + u (h)

}
dvdxl

= n−1g′ (xθ)

∫
K ′ (v)xl

{
fl (xθ, xl) v +

∂fl (xθ, xl)

∂xθ
hv2 + U (h)

}
dvdxl
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= n−1g′ (xθ)

∫
vK ′ (v) dv

∫
xlfl (xθ, xl) dxl + u

(
n−1

)
= n−1g′ (xθ) fθ0 (xθ)μl,1 (xθ)

∫
vK ′ (v) dv + u

(
n−1

)
,

where
∫
v2K ′(v)dv = 0, μl,k(xθ) = E(Xk

l |XT θ0 = xθ), k = 1, 2, . . ..

E
(
ξ2in,l

)
= n−2h−4

∫ {
K ′

(
u− xθ

h

)}2

{g (u)− g (xθ)}2 x2
l fl (u, xl) dudxl

= n−2h−3

∫
{K ′ (v)}2 {g (xθ + hv)− g (xθ)}2 x2

l fl (xθ + hv, xl) dvdxl

= n−2h−3

∫
{K ′ (v)}2 x2

l {g′ (xθ)hv+u (h)}2 {fl (xθ, xl)+U (h)} dvdxl

= n−2h−3

∫
{K ′ (v)}2 x2

l

[
{g′ (xθ)}2 fl (xθ, xl)h

2v2 + u
(
h2

)]
dvdxl

= n−2h−1 {g′ (xθ)}2
∫

v2 {K ′ (v)}2 dv
∫

x2
l fl (xθ, xl) dxl + u

(
n−2h−1

)
= n−2h−1 {g′ (xθ)}2 fθ0 (xθ)μl,2 (xθ)

∫
v2 {K ′ (v)}2 dv + u

(
n−2h−1

)
,

For large n, Eξin,l ∼ n−1, E(ξ2in,l) ∼ n−2h−1. Define ξ∗in,l(xθ) = ξ∗in,l = ξin,l −
Eξin,l, then Eξ∗in,l = 0, for r > 2 and large n, E(ξ∗in,l)

2 = E(ξ2in,l)− (Eξin,l)
2
∼

n−2h−1. Notice that∣∣ξ∗in,l∣∣ ≤ |ξin,l|+ |Eξin,l| ≤ cn−1h−2 ‖K ′‖∞ ‖g′‖∞ h+ U(n−1) ≤ c (nh)
−1

,

therefore E|ξ∗in,l|r = E{|ξ∗in,l|r−2|ξ∗in,l|2} ≤ r!(cn−1h−1)r−2E|ξ∗in,l|2, which im-
plies that {ξ∗in,l}ni=1 satisfies Cramér’s condition. Applying Lemma 1 to∑n

i=1 ξ
∗
in,l, for any xθ ∈ [a0, b0] and any large enough δ > 0,

P

{∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ)

∣∣∣∣∣ ≥ δ (nh)
−1/2

(logn)
1/2

}

≤ 2 exp

{
−δ2 logn

4 + 2cn−1h−1δ (log n)
1/2

n1/2h1/2

}
≤ 2n−8, for large n.

To bound
∑n

i=1 ξ
∗
in,l(xθ) uniformly for all xθ ∈ [a0, b0], we discretize by

equally spaced a0 = xθ,0 < xθ,1 < · · · < xθ,Mn = b0, Mn = n4 − 1, hence

P

{
Mn
max
J=0

∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ,J )

∣∣∣∣∣ ≥ δ (nh)
−1/2

(log n)
1/2

}

≤
Mn∑
J=0

P

{∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ,J )

∣∣∣∣∣ ≥ δ (nh)
−1/2

(logn)
1/2

}
≤ 2n−4, for large n.
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Then,

∞∑
n=1

P

{
Mn
max
J=0

∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ,J )

∣∣∣∣∣ ≥ δ (nh)
−1/2

(log n)
1/2

}
< ∞.

Thus, maxMn

J=0 |
∑n

i=1 ξ
∗
in,l(xθ,J )| = Oa.s.{(nh)−1/2(log n)1/2} as n → ∞ by the

Borel-Cantelli Lemma.
For any xθ ∈ [xθ,J , xθ,J+1], J = 0, 1, . . . ,Mn − 1, under Assumptions (A2)-

(A3), (A5),

|ξin,l (xθ)− ξin,l (xθ,J)|

= n−1h−2 |Xil|
∣∣∣∣K ′

(
XT

i θ0 − xθ

h

) {
g

(
XT

i θ0
)
− g (xθ)

}
−K

′
(
XT

i θ0 − xθ,J

h

) {
g

(
XT

i θ0
)
− g (xθ,J)

}∣∣∣∣
≤ cn−1h−2

{∣∣∣∣K ′
(
XT

i θ0 − xθ

h

)∣∣∣∣ |g (xθ,J )− g (xθ)|

+
∣∣g (

XT
i θ0

)
− g (xθ,J )

∣∣ ∣∣∣∣K ′
(
XT

i θ0 − xθ

h

)
−K

′
(
XT

i θ0 − xθ,J

h

)∣∣∣∣
}

≤ cn−1h−2
{
‖K ′‖∞ ‖g′‖∞ |xθ,J − xθ|+ 2 ‖g‖∞ ‖K ′′‖∞ |xθ,J − xθ|h−1

}
≤ cn−1h−2 (b0 − a0)h

−1M−1
n ≤ cn−5h−3,

which implies∣∣ξ∗in,l (xθ)− ξ∗in,l (xθ,J )
∣∣

≤ |ξin,l (xθ)− ξin,l (xθ,J )|+ E |ξin,l (xθ)− ξin,l (xθ,J)| ≤ 2cn−5h−3.

Thereby, for any l = 1, . . . , d, we have

sup
xθ∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ξin,l (xθ)− nEξin,l (xθ)

∣∣∣∣∣ = sup
xθ∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ)

∣∣∣∣∣
≤ Mn

max
J=0

∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ,J )

∣∣∣∣∣ + Mn−1
max
J=0

sup
xθ∈[xθ,J ,xθ,J+1]

∣∣∣∣∣
n∑

i=1

ξ∗in,l (xθ)−
n∑

i=1

ξ∗in,l (xθ,J )

∣∣∣∣∣
≤ Oa.s.

{
(nh)

−1/2
(log n)

1/2
}
+cn−4h−3 = Oa.s.

{
(nh)

−1/2
(logn)

1/2
}
.

Above all, we obtain, together with Assumption (A1), that

sup
xθ∈[a0,b0]

|B1 (xθ)| = sup
xθ∈[a0,b0]

∣∣∣∣∣
(

n∑
i=1

ξin,1, . . . ,

n∑
i=1

ξin,d

) (
θ̂ − θ0

)∣∣∣∣∣ (A.3)

≤ sup
xθ∈[a0,b0],1≤l≤d

∣∣∣∣∣
n∑

i=1

ξin,l (xθ)

∣∣∣∣∣
√
d

∥∥∥θ̂ − θ0

∥∥∥
2
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≤
[

sup
xθ∈[a0,b0],1≤l≤d

|nEξin,l (xθ)|+Oa.s.

{
(nh)

−1/2
(log n)

1/2
}]

Op

(
n−1/2

)

= Op

(
n−1/2

)
.

Finally, by (A.1), (A.2), (A.3),

sup
xθ∈[a0,b0]

∣∣∣B̂ (xθ)−B (xθ)
∣∣∣ ≤ sup

xθ∈[a0,b0]

|B1 (xθ)|+ sup
xθ∈[a0,b0]

|B2 (xθ)|

= Op

(
n−1/2

)
+Op

(
n−1h−2

)
= Op

(
n−1/2

)
. �

A.2. Proof of Proposition 2

Firstly, similar to (A.1), we make use of the second order Taylor expansion of
the kernel function K at (XT

i θ0 − xθ)/h, the expression of V̂ (xθ) given in (3.3)
can be written as

V̂ (xθ) = V (xθ) + n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

)
εiX

T
i

(
θ̂ − θ0

)
(A.4)

+
(
θ̂ − θ0

)T

(2n)
−1

n∑
i=1

h−3K ′′
(
XT

i θ0 − xθ

h

)
εiXiX

T
i

(
θ̂ − θ0

)

+n−1
n∑

i=1

h−1R̃i,θ0εi ≡ V (xθ) + V1 (xθ) + V2 (xθ) + V3 (xθ) ,

where

R̃i,θ0 =

∫ (XT
i θ̂−xθ)/h

(XT
i θ0−xθ)/h

{
K ′′ (t)−K ′′

(
XT

i θ0 − xθ

h

)} (
XT

i θ̂ − xθ

h
− t

)
dt.

Assumption (A5) on Lipschitz continuity of K ′′ and Assumption (A1) ensure
that

max
1≤i≤n

∣∣∣R̃i,θ0

∣∣∣ ≤ C max
1≤i≤n

h−3
∣∣∣XT

i

(
θ̂ − θ0

)∣∣∣3 (A.5)

≤ Ch−3
∥∥∥θ̂ − θ0

∥∥∥3

2
= Op

(
n−3/2h−3

)
.

Obviously, Assumption (A6) implies that

supxθ∈[a0,b0] |V3 (xθ)| ≤ h−1 max1≤i≤n

∣∣∣R̃i,θ0

∣∣∣ ∣∣∣n−1
∑n

i=1
εi

∣∣∣ (A.6)

= Op

(
n−3/2h−4

)
= op

(
n−1/2

)
.

Secondly, we define a sequence Dn = nα, α > 0, that satisfies α(2 + η) >

1,
√
lognDnn

−1/2h−1/2 → 0, n1/2h3/2D
−(1+η)
n → 0, which requires η > 1/2
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provided by Assumption (A6). The noise εi is decomposed as tail, mean and
truncated parts, i.e.,

εi = εDn

i,1 + εDn

i,2 + εDn

i,3

in which εDn
i,1 = εiI{|εi| > Dn}, εDn

i,2 = E[εiI{|εi| ≤ Dn}|Xi], and εDn
i,3 =

εiI{|εi| ≤ Dn} − εDn
i,2 . Correspondingly we define the three parts of V1(xθ)

as

V1,α (xθ) = n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

)
εDn
i,αX

T
i

(
θ̂ − θ0

)
, α = 1, 2, 3

then V1(xθ) = V1,1(xθ) + V1,2(xθ) + V1,3(xθ).
According to Assumption (A6),

∞∑
n=1

P {|εn| > Dn} ≤
∞∑

n=1

E |εn|2+η

D2+η
n

≤ Mη

∞∑
n=1

D−(2+η)
n < ∞,

The Borel-Cantelli Lemma implies that

P {ω |∃N (ω) , |εn (ω)| ≤ Dn for n > N (ω)} = 1,

P {ω |∃N (ω) , |εi (ω)| ≤ Dn, i = 1, . . . , n for n > N (ω)} = 1,

P {ω |∃N (ω) , I {|εi (ω)| > Dn} = 0, i = 1, . . . , n for n > N (ω)} = 1,

Furthermore, one has

V1,1 (xθ) = n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

)
εDn
i,1 X

T
i

(
θ̂ − θ0

)
= 0, a.s.

which implies supxθ∈[a0,b0] |V1,1(xθ)| = Oa.s.(n
−k), k = 1, 2, 3, . . ..

Due to E(εi|Xi) = 0,∣∣∣εDn

i,2

∣∣∣ ≤ E [|εi| I {|εi| > Dn} |Xi ] ≤ E
(
|εi|2+η |Xi

)
D−(1+η)

n ≤ MηD
−(1+η)
n ,

thus, applying the similar proof process of bounding supxθ∈[a0,b0] |B1(xθ)|, define

ηin,l = ηin,l (xθ) = n−1h−2K ′ {h−1
(
XT

i θ0 − xθ

)}
Xil, l = 1, . . . , d, (A.7)

we can prove that for large n, Eηin,l ∼ n−1, E(η2in,l) ∼ n−2h−3,

sup
xθ∈[a0,b0]

|V1,2 (xθ)|

≤ sup
xθ

∣∣∣∣∣n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

)
XT

i

(
θ̂ − θ0

)∣∣∣∣∣MηD
−(1+η)
n

≤ sup
xθ∈[a0,b0],1≤l≤d

∣∣∣∣∣
n∑

i=1

ηin,l (xθ)

∣∣∣∣∣
√
d

∥∥∥θ̂ − θ0

∥∥∥
2
MηD

−(1+η)
n
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≤
[
sup
xθ,l

|nEηin,l (xθ)|+Oa.s.

{
n−1/2h−3/2 (log n)

1/2
}]

Op

(
n−1/2D−(1+η)

n

)

= Op

(
n−1/2D−(1+η)

n

)
= op

(
n−1h−3/2

)
.

Notice that εDn
i,3 , i = 1, . . . , n are bounded random variables with E(εDn

i,3 |Xi)

= 0, Var(εDn
i,3 |Xi) = σ2(Xi) + Up(D

−η
n +D

−2(1+η)
n ). Define

ζin,l = ζin,l (xθ) = n−1h−2K ′ {h−1
(
XT

i θ0 − xθ

)}
Xilε

Dn
i,3 , l = 1, . . . , d,

then Eζin,l = 0, and for large n, E(ζ2in,l) ∼ n−2h−3,

sup
xθ∈[a0,b0]

|V1,3 (xθ)| = sup
xθ

∣∣∣∣∣n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

)
XT

i ε
Dn

i,3

(
θ̂ − θ0

)∣∣∣∣∣
≤ sup

xθ∈[a0,b0],1≤l≤d

∣∣∣∣∣
n∑

i=1

ζin,l (xθ)

∣∣∣∣∣
√
d

∥∥∥θ̂ − θ0

∥∥∥
2

= Oa.s.

(
n−1/2h−3/2 (logn)

1/2
)
Op

(
n−1/2

)
= Op

(
n−1h−3/2 (logn)

1/2
)
.

Hence

sup
xθ∈[a0,b0]

|V1 (xθ)| ≤ sup
xθ

|V1,1 (xθ)|+ sup
xθ

|V1,2 (xθ)|+ sup
xθ

|V1,3 (xθ)| (A.8)

= Oa.s.

(
n−k

)
+ op

(
n−1h−3/2

)
+Op

(
n−1h−3/2 (logn)

1/2
)

= Op

(
n−1h−3/2 (logn)

1/2
)
= op

(
n−1/2

)
.

With respect to V2(xθ), it can also be decomposed into three parts using a
truncation method. Then we still continue to apply Bernstein’s inequality, the
Borel-Cantelli Lemma and a discretization technique, similar to the proof of
(A.3), (A.8), to obtain

supxθ∈[a0,b0] |V2 (xθ)| = Op

(
n−3/2h−5/2 (logn)

1/2
)
= op

(
n−1/2

)
. (A.9)

Finally, by (A.4), (A.6), (A.8), (A.9), one has supxθ∈[a0,b0] |V̂ (xθ) − V (xθ)| =
op(n

−1/2).

A.3. Proof of Proposition 3

Similar to the proofs of Propositions 1, 2, we firstly obtain the Taylor expansion
of f̂θ̂(xθ) given in (3.4) at (XT

i θ0 − xθ)/h,
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f̂θ̂ (xθ) = f̂θ0 (xθ) + n−1
n∑

i=1

h−2K ′
(
XT

i θ0 − xθ

h

)
XT

i

(
θ̂ − θ0

)
(A.10)

+
(
θ̂ − θ0

)T

(2n)
−1

n∑
i=1

h−3K ′′
(
XT

i θ0 − xθ

h

)
XiX

T
i

(
θ̂ − θ0

)

+n−1
n∑

i=1

h−1R̃i,θ0 ≡ f̂θ0 (xθ) + I (xθ) + II (xθ) + III (xθ) .

Clearly, (A.5) implies supxθ∈[a0,b0] |III(xθ)| = Op(n
−3/2h−4) = op(n

−1/2). Ac-
cording to the definition of ηin,l(xθ), given in (A.7),

sup
xθ∈[a0,b0]

|I (xθ)| ≤ sup
xθ∈[a0,b0],1≤l≤d

∣∣∣∣∣
n∑

i=1

ηin,l (xθ)

∣∣∣∣∣
√
d

∥∥∥θ̂ − θ0

∥∥∥
2

≤
[
O (1) +Oa.s.

{
n−1/2h−3/2 (logn)

1/2
}]

Op

(
n−1/2

)
= Op

(
n−1/2

)
.

Additionally define

ωin,ll′ = ωin,ll′ (xθ) = (2n)
−1

h−3K ′′
(
XT

i θ0 − xθ

h

)
XilXil′ , l, l

′ = 1, . . . , d,

under Assumptions (A3)-(A5), for large n, Eωin,ll′ ∼ n−1h−2, E(ω2
in,ll′) ∼

n−2h−5, similar to the derivations for ξin,l, one has

sup
xθ∈[a0,b0]

|II (xθ)| ≤
[
Op

(
h−2

)
+Oa.s.

{
n−1/2h−5/2 (logn)

1/2
}]

Op

(
n−1

)
= Op

(
n−1h−2

)
= op

(
n−1/2

)
.

Finally, supxθ∈[a0,b0] |f̂θ̂(xθ)− f̂θ0(xθ)| = Op(n
−1/2) is obtained obviously.
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[10] Härdle, W., Liang, H. and Gao, J. (2000). Partially Linear Models.
Physica-Verlag, Heidelberg. MR1787637
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