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Abstract: We consider the Grenander estimator that is the maximum
likelihood estimator for non-increasing densities. We prove uniform central
limit theorems for certain subclasses of bounded variation functions and for
Hölder balls of smoothness s > 1/2. We do not assume that the density is
differentiable or continuous. The proof can be seen as an adaptation of the
method for the parametric maximum likelihood estimator to the nonpara-
metric setting. Since nonparametric maximum likelihood estimators lie on
the boundary, the derivative of the likelihood cannot be expected to equal
zero as in the parametric case. Nevertheless, our proofs rely on the fact that
the derivative of the likelihood can be shown to be small at the maximum
likelihood estimator.
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1. Introduction

A fundamental approach to statistical estimation is finding the probability mea-
sure which renders the observation most likely. This principle of maximum like-
lihood estimation has proved very successful in parametric estimation but leads
to difficulties in nonparametric problems since the likelihood is typically un-
bounded so that no maximum is attained. However, in nonparametric problems
with shape constraints the maximum likelihood estimator is often well-defined
and thus the maximum likelihood approach can be extended to these situations.
Examples include non-increasing, k-monotone, convex, concave and log-concave
functions.

The classical parametric maximum likelihood theory is based on the estima-
tor θ̂n being in the interior of the parameter space and on the resulting fact
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that the derivative of the likelihood vanishes at θ̂n. The theory of nonparamet-
ric maximum likelihood estimation is quite different from the parametric theory
since the estimator lies on the boundary of the parameter space and thus in
general the derivative of the likelihood will not be zero. But in some nonpara-
metric situations the derivative of the likelihood can be shown to be sufficiently
small, thus enabling a proof strategy paralleling the one in the classical para-
metric theory. Nickl (2007) considered the nonparametric maximum likelihood
estimator for estimating a density in a Sobolev ball and proved uniform central
limit theorems using this approach.

We pursue this method of proof in the problem of estimating a non-increasing
density p0. The maximum likelihood estimator p̂n is called the Grenander esti-
mator in this situation since it was first derived by Grenander (1956). It is well
known to be the left-derivative of the least concave majorant of the empirical
distribution function. The main results will be uniform central limit theorems
for the Grenander estimator that in particular imply for functions f

√
n

∫ ∞

0

(p̂n(x)− p0(x))f(x)dx →d N(0, ‖f − P0f‖2L2(P0)
),

where P0 is the probability measure of the non-increasing density p0 and P0f ≡∫∞
0

f(x)dP0(x). We do not assume the density p0 to be differentiable or contin-
uous. Our results are uniform for f varying in a class of functions and we cover
two different types of classes. The first type is a subclass of the bounded varia-
tion functions and for each point of discontinuity t of p0 the indicator function
1[0,t] is contained in such a class. The second type of classes is given by balls in
Hölder spaces Cs of order s > 1/2.

Under a strict curvature condition and for continuously differentiable p0,
Kiefer and Wolfowitz (1976) proved that the difference between the distribution
function of the Grenander estimator and the empirical distribution function in
supremum norm is with probability one of order n−2/3 log(n). On the one hand
this means that the two distribution functions are close and the distribution
function of the Grenander estimator does essentially not improve on the em-
pirical distribution function. On the other hand it shows that the distribution
function of the Grenander estimator enjoys many optimality properties of the
empirical distribution function. The Kiefer–Wolfowitz theorem can be used to
prove that the distribution function of the Grenander estimator is an asymptot-
ically minimax estimator for concave distribution functions. It further implies
a uniform central limit theorem for the Grenander estimator over the class of
all indicator functions 1[0,t], t ≥ 0. The Kiefer–Wolfowitz theorem was used by
Sen et al. (2010) to study consistency and inconsistency of bootstrap methods
when estimating a non-increasing density.

Results similar to the Kiefer–Wolfowitz theorem hold under other shape con-
straints as well. In addition to giving an updated proof of the Kiefer–Wolfowitz
theorem, Balabdaoui and Wellner (2007) showed such a theorem in the case
where the density is assumed to be convex decreasing and where the maxi-
mum likelihood estimator is replaced by the least squares estimator. Dümbgen
and Rufibach (2009) derived the rate of estimation for log-concave densities in
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supremum norm and showed that the difference between empirical and esti-
mated distribution function is o(n−1/2). Durot and Lopuhaä (2014) showed a
general Kiefer–Wolfowitz type theorem which covers the estimation of monotone
regression curves, monotone densities and monotone failure rates.

Jankowski (2014) studied the local convergence rates of the Grenander es-
timator in situations where it is misspecified and derived the asymptotic dis-
tribution of linear functionals under possible misspecification. She distinguishes
between curved and flat parts regarding the density p0. On the curved parts
our results have the advantage that we do not need to assume that p0 and f
are differentiable, whereas on the flat parts Jankowski (2014) is more general
by treating Lp functions f . We will discuss this in detail in Section 3. Beyond
asymptotic normality for single functionals our work includes a uniformity in the
underlying functional, which is important to apply the results by Nickl (2009)
concerning convolutions of density estimators and to show the “plug-in prop-
erty” introduced by Bickel and Ritov (2003). Estimators with this property are
rate optimal density estimators that simultaneously lead to the efficient estima-
tion of functionals with uniform convergence over a class of functionals. We will
elaborate on these applications in Section 3. Nickl (2007) discusses applications
of uniform central limit theorems in the context of the maximum likelihood es-
timator over a Sobolev ball. Uniform central limit theorems were also shown for
kernel density estimators and for wavelet density estimators by Giné and Nickl
(2008, 2009).

The method of proof presented in this paper is of general nature and its
relevance extends to maximum likelihood estimators in other problems with
shape constraints. For example one could consider the estimation of classes of
convex decreasing densities or, more general, of k-monotone densities or of other
shape constrained densities as long as the classes are convex and closed with
respect to the supremum norm.

This paper is organised as follows. In Section 2 we state the uniform central
limit theorems for a subclass of the bounded variation functions and for Hölder
balls. Section 3 provides a discussion and applications of our results. In Section 4
we explain the general approach. In Section 5 we derive upper and lower bounds
in probability for the Grenander estimator and recall the L2-convergence rate.
Section 6 develops the approach further and contains the proofs of the main
results.

2. Main results

Let X1, . . . , Xn be i.i.d. on [0,∞) with law P0 and distribution function F0(x) =∫ x

0
dP0, x ∈ [0,∞). In order to state the main results we introduce some notation.

We define the empirical measure Pn = n−1
∑n

i=1 δXi , the empirical cumulative
distribution function Fn(x) =

∫ x

0
dPn, x ∈ [0,∞) and the log-likelihood function

�n(p) =
1

n

n∑
i=1

log p(Xi). (1)
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Under the assumption EP0 | log p(X)| < ∞ for all p ∈ P , we can define the
limiting log-likelihood function

�(p) =

∫ ∞

0

log p(x)dP0(x). (2)

If P is known to have a monotone decreasing density p then the associated
maximum likelihood estimator p̂n maximises the log-likelihood function �n(p)
over

P ≡ Pmon =

{
p : [0,∞) → [0,∞),

∫ ∞

0

p(x)dx = 1, p is non-increasing

}
,

that is,
max

p∈Pmon
�n(p) = �n(p̂n). (3)

The maximum likelihood estimator p̂n is known to be the left-derivative of the
least concave majorant F̂n of the empirical distribution function Fn. Let P̂n

be the probability measure corresponding to the density p̂n. For a set T let
�∞(T ) denote the space of bounded real-valued functions on T with the usual
supremum norm ‖ · ‖∞. Throughout we will denote by →d the convergence
in distribution as in Chapter 1 in van der Vaart and Wellner (1996). The P0-
Brownian bridge GP0 is defined as tight Gaussian random variable arising from
the centred Gaussian process with covariance

E[GP0(f)GP0(g)] = P0(fg)− P0fP0g,

where P0f ≡
∫∞
0

f(x)dP0(x).
The first main result is a uniform central limit theorem for a subclass of the

bounded variation functions. We start with the general result in Theorem 1 and
consider its consequences in Corollary 1 and Theorem 2. Let f, p0 ∈ L1([0,∞))
and assume that the weak derivatives of f |(0,∞) and p0|(0,∞) in the sense of
regular Borel signed measures exist and denote them by Df and Dp0, respec-
tively; cf., e.g., p. 42 in Ziemer (1989). We define BV [0,∞) ≡ {f ∈ L1([0,∞)) :
‖f‖1 + |Df |(0,∞) < ∞}, where |Df | is total variation of the signed measure
Df . In the following theorem it will be important that Df is absolutely contin-
uous with respect to Dp0 since we want to ensure that the perturbations p0±ηf
with |η| small (or slightly modified perturbations) are decreasing functions. To
this end we denote the Radon–Nikodym derivative of Df with respect to Dp0
by Df/Dp0 and assume that its essential supremum with respect to Dp0, de-
noted by ‖Df/Dp0‖∞,Dp0 , is bounded. We will consider decreasing densities p0
with bounded support S0. Then we can write S0 = [0, α1] for some α1 > 0. For
the statement of the theorem the values of f are only important on the open
interval (0, α1) so that we can restrict f to this interval for the assumptions.

Theorem 1. Suppose p0 ∈ P is bounded, has bounded support [0, α1] and that
p0(x) ≥ ζ > 0 for all x ∈ [0, α1]. Then for

B = {f ∈ BV [0,∞) : f |(0,α1) = g, ‖g‖∞ + ‖Dg/Dp0‖∞,Dp0 ≤ B}
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we have

sup
f∈B

|(P̂n − Pn)(f)| = OP N

0
(Bn−2/3)

and consequently
√
n(P̂n − P0) →d GP0 in �∞(B).

The proof of Theorem 1 is deferred to the end of the paper. Let us consider
one particular example as a corollary. We can take for points t > 0 where p0 is
discontinuous the indicator function f = 1[0,t] in Theorem 1. We haveDf = −δt.
Say p0 has a discontinuity of size Δ ≡ lims↗t p0(s) − lims↘t p0(s) > 0 at t.
Then we have Dp0 = −Δδt − μ for a positive measure μ. In this case we obtain
‖Df/Dp0‖∞,Dp0 = 1/Δ leading to the following corollary.

Corollary 1. Suppose p0 ∈ P is bounded, has bounded support S0 and that
p0(x) ≥ ζ > 0 for all x ∈ S0. Then for each t > 0 where p0 is discontinuous we
have

|F̂n(t)− Fn(t)| = OP N

0
(n−2/3)

and consequently
√
n(F̂n(t)− F0(t)) →d N(0, F0(t)− F0(t)

2).

Here for t > 0 such that F0(t) = 1 we understand N(0, 0) to be δ0. To
formulate the next theorem we define for s > 0 the Hölder spaces

Cs([0,∞))

≡
{
f ∈ C([0,∞)) : ‖f‖Cs =

[s]∑
j=0

‖Djf‖∞ + sup
x �=y

|D[s]f(x)−D[s]f(y)|
|x− y|s−[s]

< ∞
}
,

where [s] denotes the integer part of s and C([0,∞)) are the bounded real-valued
continuous functions on [0,∞). We will see that under a strict curvature condi-
tion the set B in Theorem 1 contains C1-Hölder balls. By strict curvature condi-
tion we have in mind that p′0 is bounded away from zero, that is infx∈S0 |p′0(x)| ≥
ξ > 0 or equivalently supx∈S0

1/|p′0(x)| ≤ 1/ξ. We do not want to assume that
p′0 exists classically. To allow for discontinuities of p0 and to stay in the general
setting of weak derivatives we assume that the Lebesgue measure on S0 denoted
by λ is absolutely continuous with respect to Dp0 and replace the assumption
supx∈S0

1/|p′0(x)| ≤ 1/ξ by the weaker assumption ‖λ/Dp0‖∞ ≤ 1/ξ, where
λ/Dp0 is the Radon–Nikodym derivative of λ with respect to Dp0. We remark
that ‖λ/Dp0‖∞,Dp0 = ‖λ/Dp0‖∞. Let F be a C1-Hölder ball and g = f |(0,α1)

with f ∈ F . Then ‖Dg/Dp0‖∞,Dp0 = ‖Dg/λ · λ/Dp0‖∞,Dp0 ≤ (1/ξ)‖g′‖∞ and
we see that the C1-Hölder ball F is contained in B for some B. This special case
of Theorem 1 with F instead of B can be generalized to balls in Hölder spaces
Cs([0,∞)) of order s > 1/2.

Theorem 2. Suppose p0 ∈ P is bounded, has bounded support S0 and that
p0(x) ≥ ζ > 0 for all x ∈ S0. Denote by λ the Lebesgue measure on S0 and let λ
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be absolutely continuous with respect to Dp0 and ‖λ/Dp0‖∞ < ∞. Let F be a
ball in the s-Hölder space Cs([0,∞)) of order s > 1/2. Then

sup
F

|(P̂n − Pn)(f)| = oP N

0
(1/

√
n)

as n → ∞ and thus

√
n(P̂n − P0) →d GP0 in �∞(F).

In particular, for any f ∈ Cs([0,∞)) with s > 1/2 we have

√
n

∫ ∞

0

(p̂n(x)− p0(x))f(x)dx →d N(0, ‖f − P0f‖2L2(P0)
).

The proof of Theorem 2 will be given at the end of the paper.

3. Discussion and applications

The n2/3-rate appearing in Theorem 1 and Corollary 1 is the pointwise rate
at which the least concave majorant F̂n converges to the empirical distribution
function Fn. Wang (1994) derived the pointwise limit theorem with a n2/3-
rate for F̂n(t0) at a point t0 > 0 where p0 has a negative derivative. Although
our statement is of uniform nature we obtain the same rate in Theorem 1 and
no additional logarithmic factor needs to be paid for the uniformity. A possi-
ble explanation is that the class of functions is adapted to the density p0. We
also note that Theorem 1 yields uniformity only over finitely many indicator
functions even if p0 has infinitely many discontinuities. The rate in the Kiefer–
Wolfowitz theorem is (n/ log n)2/3, which differs from our rate by a logarithmic
factor. Indeed for bounding ‖F̂n − Fn‖∞ this additional factor seems neces-
sary at least it was shown by Durot and Tocquet (2003) that it is necessary in
the monotone regression framework. Our results further differ from the Kiefer–
Wolfowitz theorem in the sense that the convergence is in probability, whereas
the Kiefer–Wolfowitz theorem yields almost sure convergence. Our assumptions
are weaker than in the Kiefer–Wolfowitz theorem since p0 is neither assumed to
be differentiable nor continuous. We require a strict curvature condition only in
Theorem 2, but not in Theorem 1 or Corollary 1.

Linear functionals of the Grenander estimator have also been studied by
Jankowski (2014) so let us discuss the differences in scope and in the assump-
tions between the results. A distinct feature of Theorems 1 and 2 is that they
are not for a fixed function f but they are uniform in f over classes of functions.
Jankowski (2014) takes a different perspective and emphasises the problem of
possible misspecification, meaning that the true density p0 does not necessar-
ily need to be non-increasing. She distinguishes between curved and flat parts
of p0 (or in case of misspecification of its Kullback–Leibler projection) and as-
sumes on the portion of support where p0 is curved that p0 is continuously
differentiable and that |p′0| is bounded, which is used for the application of the
Kiefer–Wolfowitz theorem in the proof. The assumption that p0 is continuously
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differentiable is widely used in the literature on the Grenander estimator so it
is worthwhile to remark that Theorems 1 and 2 do not require p0 to be differen-
tiable nor to be continuous. The function f defining the functional is assumed by
Jankowski (2014) to be differentiable on the curved parts, whereas Theorem 1
allows for discontinuities of f at points where p0 is discontinuous and Theo-
rem 2 only requires Hölder smoothness of order s > 1/2 on the curved parts.
Jankowski (2014) assumes the function f to be in Lp, p > 2, on the flat parts,
while Theorem 1 assumes f to be constant on the flat parts which in view of the
results by Jankowski (2014) is the natural condition to ensure a Gaussian limit.
Theorem 2 excludes flat parts by a strict curvature condition. To summarise
the comparison with Jankowski’s results we can say that our approach has the
advantage of providing uniform results under low regularity assumptions on p0
and requires stronger assumptions on f on the flat parts while needing weaker
assumptions on the curved parts.

As an application we present the estimation of sums of independent random
variables X and Y with densities by p0 and q0, respectively. Let X+Y = Z and
the aim is the estimation of the density of Z. We observe either independent
i.i.d. samples X1, . . . , Xn and Y1, . . . , Yn of X and Y , respectively, or in the
special case, where X and Y have the same distribution, we only need one
sample and can set Xj = Yj for j = 1, . . . , n. The random variable Z has the
density p0 ∗ q0 and the canonical estimator is p̂n ∗ q̂n, where p̂n and q̂n are
estimators of p0 and q0, respectively. For kernel estimators the convergence of
p̂n ∗ q̂n − p0 ∗ q0 in distribution in L1(R) was shown by Schick and Wefelmeyer
(2004, 2007) as well as Giné and Mason (2007). Nickl (2009) derives general
conditions for the convergence of convolutions of density estimators which we
verify by our uniform central limit theorems for the Grenander estimator. To
this end let p0 : R → [0,∞) and q0 : R → [0,∞) be densities of random variables
such that p0|[0,∞) and q0|[0,∞) satisfy the assumptions of Theorem 2. We denote
by p̂n and q̂n the respective Grenander estimators. We decompose

√
n(p̂n ∗ q̂n − p0 ∗ q0) =

√
n(p̂n − p0) ∗ q0 +

√
n(q̂n − q0) ∗ p0

+
√
n(p̂n − p0) ∗ (q̂n − q0).

(4)

By Theorem 2 we have uniform central limit theorems for P̂n and Q̂n in �∞(F)
for balls F in the Hölder space Cs, s > 1/2. By Lemma 8(b) in Giné and
Nickl (2008) we infer from p0, q0 being of bounded variation and in L1(R) that
p0, q0 ∈ B1

1∞(R) ↪→ Bs
11(R) for s < 1, where Bs

pq(R) are Besov spaces. Together
these two statements yield the convergence of

√
n(p̂n − p0) ∗ q0 in distribution

in L1(R) by Theorem 2 in Nickl (2009) and likewise for the term
√
n(q̂n−q0)∗p0.

To bound the last term in (4) we use Young’s inequality, the bounded support
of p0 and q0 as well as Proposition 2 below

‖(p̂n − p0) ∗ (q̂n − q0)‖1 ≤ ‖p̂n − p0‖1‖q̂n − q0‖1 ≤ C‖p̂n − p0‖2‖q̂n − q0‖2
= OP N

0
(n−2/3) = oP N

0
(n−1/2),

where C > 0 is some constant. We conclude that
√
n(p̂n ∗ q̂n − p0 ∗ q0)
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converges in distribution in L1(R). By Remark 2 in Nickl (2009) the limiting
random variable can be determined by calculating for every h ∈ L∞ = (L1)∗

the limits of

√
n

∫
h(x)d

(
(P̂n − P0) ∗Q0 + (Q̂n −Q0) ∗ P0

)
(x).

Moreover, it follows from our Theorem 2 and from the continuous linear mapping
established in the proof of Theorem 2 in Nickl (2009) that the limiting random
variable may likewise be determined by calculating for all h ∈ L∞ = (L1)∗ the
limits of

√
n

∫
h(x)d

(
(Pn − P0) ∗Q0 + (Qn −Q0) ∗ P0

)
(x)

=
√
n

⎛
⎝ 1

n

n∑
j=1

g(Xj)− EP0g

⎞
⎠+

√
n

⎛
⎝ 1

n

n∑
j=1

f(Yj)− EQ0f

⎞
⎠

with g = q0(−·) ∗ h and f = p0(−·) ∗ h. So the limit is a mean zero Gaussian
random variable with an explicitly given covariance structure.

The uniform results can be interpreted in the context of Bickel and Ritov
(2003). They coin the expression “plug-in estimator” for a rate optimal esti-
mator of a density which simultaneously leads to the efficient estimation of
functionals with uniform convergence over a class of functionals. The Grenan-
der estimator attains the optimal n1/3-rate for non-increasing densities. Since P
is a nonparametric model, the empirical distribution function is an asymptot-
ically efficient estimator of P0 considered as an element f �→ P0f of the space
�∞(F) for a Donsker class F , see van der Vaart and Wellner (1996, p. 420). By
our results P̂n and Pn are closer than Pn and P0 so that P̂n is an asymptotically
efficient estimator as well. In summary our results show that the Grenander es-
timator is a plug-in estimator for a subclass of the bounded variation functions
and for Hölder balls of smoothness s > 1/2.

4. The derivative of the likelihood function

Many classical properties of maximum likelihood estimators θ̂n of regular pa-
rameters θ ∈ Θ ⊂ R

p, such as asymptotic normality, are derived from the fact
that the derivative of the log-likelihood function vanishes at θ̂n,

∂

∂θ
�n(θ)|θ̂n = 0. (5)

This typically relies on the assumption that the true parameter θ0 is interior
to Θ so that by consistency θ̂n will then eventually also be. In the infinite-
dimensional setting, even if one can define an appropriate notion of derivative,
this approach is usually not viable since p̂n is never an interior point in the
parameter space even when p0 is.

We now investigate these matters in more detail in the setting where P
consists of bounded probability densities. In this case we can compute the
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Fréchet derivatives of the log-likelihood function on the space L∞ = L∞([0,∞))
equipped with the ‖ · ‖∞-norm. Recall that a real-valued function L : U → R

defined on an open subset U of a Banach space B is Fréchet differentiable at
f ∈ U if

lim
‖h‖B→0

|L(f + h)− L(f)−DL(f)[h]|
‖h‖B

= 0 (6)

for some linear continuous map DL(f) : B → R. If g ∈ U is such that the line
segment (1 − t)f + tg, t ∈ (0, 1), joining f and g lies in U (for instance if U
is convex) then the directional derivative of L at f in the direction g equals
precisely

lim
t→0+

L(f + t(g − f))− L(f)

t
= DL(f)[g − f ].

The second order Fréchet derivatives are defined by taking the Fréchet derivative
of DL(f)[h] for a fixed direction h and likewise higher order Fréchet derivatives
are defined. The following proposition shows that the log-likelihood function �n
is Fréchet differentiable on the open convex subset of L∞ consisting of functions
that are positive at the sample points. A similar result holds for � if one restricts
to functions that are bounded away from zero on the support S0 of p0. We recall
here these results of Proposition 3 in Nickl (2007).

Proposition 1. For any finite set of points x1, . . . , xn ∈ [0,∞) define

U(x1, . . . , xn) =

{
f ∈ L∞([0,∞)) : min

1≤i≤n
f(xi) > 0

}

and

U =

{
f ∈ L∞([0,∞)) : inf

x∈S0

f(x) > 0

}
.

Then U(x1, . . . , xn) and U are open subsets of L∞([0,∞)).
Let �n be the log-likelihood function from (1) based on X1, . . . , Xn ∼i.i.d. P0,

and denote by Pn the empirical measure associated with the sample. Let � be as
in (2). For α ∈ N and f1, . . . , fα ∈ L∞([0,∞)) the α-th Fréchet derivatives of
�n : U(X1, . . . , Xn) → R, � : U → R at a point f ∈ U(X1, . . . , Xn), f ∈ U ,
respectively, are given by

Dα�n(f)[f1, . . . , fα] ≡ (−1)α−1(α− 1)!Pn(f
−αf1 · · · fα), (7)

Dα�(f)[f1, . . . , fα] ≡ (−1)α−1(α− 1)!P0(f
−αf1 · · · fα). (8)

We deduce from the above proposition the intuitive fact that the limiting
log-likelihood function has a derivative at the true point p0 > 0 that is zero in
all ‘tangent space’ directions h in

H ≡
{
h :

∫
S0

h = 0

}
(9)

since

D�(p0)[h] =

∫
S0

p−1
0 hdP0 =

∫
S0

h = 0. (10)
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However, in the infinite-dimensional setting the empirical counterpart of (10),

D�n(p̂n)[h] = 0 (11)

for h ∈ H and p̂n the nonparametric maximum likelihood estimator is not true
in general. Even if the set P the likelihood was maximised over is contained in
U(X1, . . . , Xn) it will itself in typical nonparametric situations have empty inte-
rior in L∞, and the maximiser p̂n will lie at the boundary of P . As a consequence
we cannot expect that p̂n is a zero of D�n.

Following ideas in Nickl (2007) we can circumvent this problem in some sit-
uations: if the true value p0 lies in the ‘interior’ of P in the sense that local
L∞-perturbations of p0 are contained in P ∩U(X1, . . . , Xn), then we can bound
D�n at p̂n.

Lemma 1. Let p̂n be as in (3) and suppose that for some h ∈ L∞([0,∞)), η > 0,
the line segment joining p̂n and p0±ηh is contained in P∩U(X1, . . . , Xn). Then

|D�n(p̂n)[h]| ≤ (1/η)|D�n(p̂n)[p̂n − p0]|. (12)

Proof. Since p̂n is a maximiser over P we deduce from differentiability of �n
on U(X1, . . . , Xn) that the derivative at p̂n in the direction p0 + ηh ∈ P ∩
U(X1, . . . , Xn) necessarily has to be nonpositive, that is

D�n(p̂n)[p0 + ηh− p̂n] = lim
t→0+

�n(p̂n + t(p0 + ηh− p̂n))− �n(p̂n)

t
≤ 0 (13)

or, by linearity of D�n(p̂n)[·],

D�n(p̂n)[ηh] ≤ D�n(p̂n)[p̂n − p0]. (14)

Applying the same reasoning with −η we see

|D�n(p̂n)[ηh]| ≤ D�n(p̂n)[p̂n − p0] = |D�n(p̂n)[p̂n − p0]|. (15)

Divide by η to obtain the result.

The above lemma is interesting if we are able to show that

D�n(p̂n)[p̂n − p0] = oP N

0
(1/

√
n),

as then the same rate bound carries over to D�n(p̂n)[h]. This can in turn be
used to mimic the finite-dimensional asymptotic normality proof of maximum
likelihood estimators, which does not require (5) but only that the score is of
smaller stochastic order of magnitude than 1/

√
n. As a consequence we will be

able to obtain the asymptotic distribution of linear integral functionals of p̂n,
and more generally, for P̂n the probability measure associated with p̂n, central
limit theorems for

√
n(P̂n − P ) in ‘empirical process - type’ spaces �∞(F).

To understand this better we notice that Proposition 1 implies the following
relationships: If we define the following projection of f ∈ L∞ onto H,

π0(f) ≡ (f − P0f)p0 ∈ H, P0(f) =

∫ ∞

0

fdP0, (16)

and if we assume p0 > 0 on S0 then
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0

(p̂n−p0)fdx =

∫
S0

p−2
0 (p̂n−p0)(f −P0f)p0dP0 = −D2�(p0)[p̂n−p0, π0(f)]

and
D�n(p0)[π0(f)] = (Pn − P0)f

so that:

Lemma 2. Suppose p0 > 0 on S0. Let p̂n be as in (3) and let P̂n be the random
probability measure induced by p̂n. For any f ∈ L∞([0,∞)) and Pn the empirical
measure we have

|(P̂n − Pn)(f)| =
∣∣∣∣
∫ ∞

0

fd(P̂n − Pn)

∣∣∣∣
= |D�n(p0)[π0(f)] +D2�(p0)[p̂n − p0, π0(f)]|.

(17)

Heuristically the right hand side equals, up to second order

D�n(p̂n)[π0(f)]−D2�n(p0)[p̂n − p0, π0(f)] +D2�(p0)[p̂n − p0, π0(f)]. (18)

Control of (12) at a rate oP N

0
(1/

√
n) combined with stochastic bounds on the

second centred log-likelihood derivatives and convergence rates for p̂n − p0 → 0
thus give some hope that one may be able to prove

(P̂n − P0 − Pn + P0)(f) = (P̂n − Pn)(f) = oP N

0
(1/

√
n)

and that thus, by the central limit theorem for (Pn − P0)f ,

√
n

∫ ∞

0

(p̂n − p0)fdx →d N(0, P0(f − P0f)
2)

as n → ∞.

5. Bounding the estimator and L2-convergence rate

We establish some first probabilistic properties of p̂n that will be useful below:
If p0 is bounded away from zero on S0 then so is p̂n on the interval [0, X(n)],
where X(n) is the last order statistic. Similarly if p0 is bounded above then so
is p̂n with high probability.

Lemma 3. a) Suppose the true density p0 has compact support S0 and that
infx∈S0 p0(x) ≥ ζ > 0. Then, for every ε > 0, there exists ξ > 0 and a finite
index N(ε) such that, for all n ≥ N(ε),

PN

0

(
inf

x∈[0,X(n)]
p̂n(x) < ξ

)
= Pr

(
p̂n(X(n)) < ξ

)
< ε.

b) Suppose the true density p0 satisfies p0(x) ≤ K < ∞ for all x ≥ 0. Then, for
every ε > 0, there exists 0 < k < ∞ such that for all n ∈ N

PN

0

(
sup
x≥0

p̂n(x) > k

)
= Pr (p̂n(0) > k) < ε.

Proof. a) The first equality is obvious, since p̂n is monotone decreasing. Let
X(1), . . . , X(n) denote the order statistic of X1, . . . , Xn. On each of the intervals
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(X(j−1), X(j)], fn is the slope of the least concave majorant of Fn. The least con-
cave majorant connects (X(n), 1) and at least one other order statistic (possibly
(X(0), 0) ≡ (0, 0)), so that

{p̂n(X(n)) < ξ} ⊆
{
X(n) −X(n−j) > j/(ξn) for some j = 1, . . . , n

}
.

Note next that since F0 is strictly monotone on S0 we have Xi = F0|−1
S0

F0(Xi)
and

F0|−1
S0

F0(X(n))− F0|−1
S0

F0(X(n−j)) ≤ ( inf
x∈S0

p0(x))
−1
(
F0(X(n))− F0(X(n−j))

)
≤ ζ−1

(
U(n) − U(n−j)

)
,

where the U(i)’s are distributed as the order statistics of a sample of size n of a
uniform random variable on [0, 1], and where U(0) = 0 by convention. Hence it
suffices to bound

Pr

(
U(n) − U(n−j) >

ζj

ξn
for some j = 1, . . . , n

)
. (19)

By a standard computation involving order statistics, the joint distribution of
U(i), i = 1, . . . , n, is the same as the one of Zi/Zn+1 where Zn =

∑n
l=1 Wl

and where Wl are independent standard exponential random variables. Conse-
quently, for δ > 0, the probability in (19) is bounded by

Pr

(
Wn−j+1 + · · ·+Wn

Zn+1
>

ζj

ξn
for some j

)

= Pr

(
n

Zn+1

Wn−j+1 + · · ·+Wn

n
>

ζj

ξn
for some j

)

≤ Pr(n/Zn+1 > 1 + δ) + Pr

(
Wn−j+1 + · · ·+Wn

n
>

ζj

ξn(1 + δ)
for some j

)
= A+B.

To bound A, note that it is equal to

Pr

(
1

n+ 1

n+1∑
l=1

(Wl − EWl) <
−δ − (1 + δ)/n

1 + δ

n

n+ 1

)
,

which, since δ > 0, is less than ε/2 > 0 arbitrary, from some n onwards, by
the law of large numbers. For the term B we have, for ξ small enough and by
Markov’s inequality

Pr

(
Wn−j+1 + · · ·+Wn >

ζj

ξ(1 + δ)
for some j

)

≤
n∑

j=1

Pr

(
Wn−j+1 + · · ·+Wn >

ζj

ξ(1 + δ)

)
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=

n∑
j=1

Pr

(
j∑

l=1

(Wn−l+1 − EWn−l+1) >
ζj

ξ(1 + δ)
− j

)

≤
n∑

j=1

ξ4E(
∑j

l=1(Wn−l+1 − EWn−l+1))
4

j4C(δ, ζ)

≤ ξ4C ′(δ, ζ)
n∑

j=1

j−2 ≤ ξ4C ′′(δ, ζ) < ε/2,

since, for Yl = Wn−l+1 − EWn−l+1, by Hoffmann-Jørgensen’s inequality (de la
Peña and Giné, 1999, Corollary 1.2.7)∥∥∥∥∥

j∑
l=1

Yl

∥∥∥∥∥
4,P

≤ K

⎡
⎣
∥∥∥∥∥

j∑
l=1

Yl

∥∥∥∥∥
2,P

+

∥∥∥∥max
l

Yl

∥∥∥∥
4,P

⎤
⎦ ≤ K ′

(√
j + j1/4

)
,

using the fact that EW p
1 = p! and V ar(Y1) = 1.

b) Since p̂n is the left derivative of the least concave majorant of the empirical
distribution Fn,

‖p̂n‖∞ = p̂n(0) > M ⇐⇒ Fn(t) > Mt for some t.

Since F0 is concave and continuous it maps [0,∞) onto [0, 1] and satisfies F0(t) ≤
p0(0)t ≤ t‖p0‖∞ so that we obtain

PN

0 (‖p̂n‖∞ > M) ≤ PN

0

(
sup
t>0

Fn(t)

F0(t)
> M/‖p0‖∞

)

= PN

0

(
sup
t>0

FU
n (t)

t
> M/‖p0‖∞

)
,

(20)

where FU
n is the empirical distribution function based on a sample of size n

from the uniform distribution. The density of the order statistic of n uniform
U(0, 1) random variables is n! on the set of all 0 ≤ x1 < · · · < xn ≤ 1. Let
M ≥ ‖p0‖∞ and set C ≡ M/‖p0‖∞ then the complement of the event in (20)
has the probability

PN

0

(
FU
n (t)

t
≤ C ∀t ∈ [0, 1]

)

= n!

∫ 1

1/C

∫ xn

(n−1)/(nC)

. . .

∫ x2

1/(nC)

dx1 . . . dxn−1dxn

= n!

∫ 1

1/C

. . .

∫ xj+1

j/(nC)

1

(j − 1)!
xj−1
j − 1

nC

1

(j − 2)!
x
(j−2)
j dxj . . . dxn

= 1− 1

C
,

where j = 2, . . . , n − 1. In particular, the probability in (20) equals ‖p0‖∞/M
and can be made small by choosing M large.
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We can now derive the rate of convergence of the maximum likelihood esti-
mator of a monotone density. The rate corresponds to functions that are once
differentiable in an L1-sense, which is intuitively correct since a monotone de-
creasing function has a weak derivative that is a finite signed measure. The
following convergence rate in Hellinger distance is given in Example 7.4.2 by
van de Geer (2000). It is used here to derive the L2-convergence rate. Kulikov
and Lopuhaä (2005) prove a much finer result by deriving the asymptotic distri-
bution of the Lp-errors under stronger smoothness assumptions. Gao and Well-
ner (2009) consider the maximum likelihood estimator of a k-monotone density
on a bounded interval and extend Lemma 3b) and the Hellinger convergence
rate in the following proposition to this setting. We recall that the Hellinger
distance between two Lebesgue densities p and q is defined by

h2(p, q) =
1

2

∫ (
p1/2(x)− q1/2(x)

)2
dx.

Proposition 2. Suppose p0 ∈ Pmon and that p0 is bounded and has bounded
support. Let p̂n satisfy (3). Then

h(p̂n, p0) = OP N

0
(n−1/3) (21)

and also

‖p̂n − p0‖2 = OP N

0
(n−1/3). (22)

Proof. Since p0 is bounded and has bounded support the statement for the
Hellinger distance is contained in Example 7.4.2 by van de Geer (2000). The den-
sity p0 is bounded by assumption and we have ‖p̂n‖∞ = OP N

0
(1) by Lemma 3b).

Then the result in L2-distance follows by the bound

‖p̂n − p0‖22 ≤
∫ (

p̂1/2n (x)− p
1/2
0 (x)

)2 (
p̂1/2n (x) + p

1/2
0 (x)

)2
dx

≤ 2(‖p̂n‖1/2∞ + ‖p0‖1/2∞ )2h2(p̂n, p0)

≤ 4(‖p̂n‖∞ + ‖p0‖∞)h2(p̂n, p0).

6. Putting things together

The maximiser p̂n is in some sense an object that lives on the boundary of P
– it is piecewise constant with step-discontinuities at the observation points,
exhausting the possible ‘roughness’ of a monotone function.

We can construct line segments in the parameter space through p0, following
the philosophy of Lemma 1. Let p0 be a non-increasing density with compact
support S0, infx∈S0 p0(x) ≥ ζ > 0 and weak derivative Dp0. In order to ensure
that the perturbed function lies again in P we will perturb p0 by ηh where
h ∈ L∞, supp(h) ⊆ S0,

∫
h = 0 and Dh is absolutely continuous with respect

to Dp0 such that the Radon–Nikodym density satisfies ‖Dh/Dp0‖∞,Dp0 < ∞.
Then we have indeed for η of absolute value small enough
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inf
x∈S0

(p0 + ηh)(x) ≥ ζ − η‖h‖∞ > 0,

∫ 1

0

(p0 + ηh) = 1, (23)

and that D(p0+ηh) = Dp0+ηDh is a negative measure. We change p0+ηh on
a nullset so that it is equal to the integral of Dp0 + ηDh everywhere and thus
is a non-increasing function. Similar statements hold if we replace h by π0(f)
defined in (16) when ‖f‖∞ + ‖Df/Dp0‖∞,Dp0 is finite. We possibly modify
p0 + ηπ0(f) on a nullset so that it equals the integral of its weak derivative.

Lemma 4. Let p0 be non-increasing and have bounded support S0 with K ≥
p0(x) ≥ ζ > 0 for all x ∈ S0. Let f be such that ‖f‖∞ + ‖Df/Dp0‖∞,Dp0 is
finite. Then we have p0+ηπ0(f) ∈ P∩U for |η| ≤ c(‖f‖∞+‖Df/Dp0‖∞,Dp0)

−1,
where c > 0 depends on K and ζ only.

Proof. π0(f) = (f − P0f)p0 is bounded by 2K‖f‖∞. The assumption p0(x) ≥
ζ > 0 for all x ∈ S0 yields p0 + ηπ0(f) ∈ U for |η| < ζ/(2K‖f‖∞). In addition
to |η| < ζ/(2K‖f‖∞) we will choose η small enough such that

D(p0 + ηπ0(f)) = (1− ηP0f + ηf)Dp0 + ηp0Df

is a negative measure. This is the case if

K|η|‖Df/Dp0‖∞,Dp0

1− 2|η|‖f‖∞
≤ 1 ⇔ (K‖Df/Dp0‖∞,Dp0 + 2‖f‖∞)|η| ≤ 1,

which holds for |η| ≤ (max(2,K)(‖f‖∞ + ‖Df/Dp0‖∞,Dp0))
−1.

For p0 and f as above we can apply Lemma 1 with h = π0(f), where the line
segment between p̂n and p0 ± ηπ0(f) being in P ∩U(X1, . . . , Xn) is guaranteed
by Lemma 3a) provided p0 ± ηπ0(f) ∈ P ∩U(X1, . . . , Xn). We thus obtain that
on events of probability as close to one as desired and for n large enough,

|D�n(p̂n)[π0(f)]| ≤ C(‖f‖∞ + ‖Df/Dp0‖∞,Dp0)|D�n(p̂n)[p̂n − p0]| (24)

for some constant C that depends on K and ζ only.
We next need to derive stochastic bounds of the likelihood derivative at p̂n

in the direction of p0.

Lemma 5. Suppose p0 is bounded, has bounded support [0, α1] and satisfies
infx∈[0,α1] p0(x) > 0. For p̂n satisfying (3) we have

|D�n(p̂n)[p̂n − p0]| = OP N

0
(n−2/3)

Proof. By Lemma 3 we can restrict to an event where

0 < ξ ≤ inf
x∈[0,X(n)]

p̂n(x) ≤ sup
x∈[0,∞)

p̂n(x) ≤ k < ∞

and by (22) further to an event where

‖p̂n − p0‖2,P0 ≤ ‖p0‖1/2∞ ‖p̂n − p0‖2 ≤ ‖p0‖1/2∞ Mn−1/3
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for some finite constant M . For any δn → 0 with nδn → ∞ and some c > 0

Pr((α1 −X(n)) > δn) = Pr((α1 − δn) > X(n))

= (F0(α1 − δn))
n ≤ (1− cδn)

n → 0,

in particular we obtain for δn = logn/n that

α1 −X(n) = OP N

0

(
logn

n

)
. (25)

Let us define the random function p̃−1
n ≡ p̂−1

n on [0, X(n)] and zero on (X(n),∞).
By D�n(p̃n) and D�(p̃n) we denote the corresponding right hand sides in (7)
and (8). We observe that D�n(p̂n) = D�n(p̃n). The function h ≡ p̃−1

n (p̂n − p0)
on [0, X(n)] and h ≡ 0 elsewhere is of bounded variation with norm ‖h‖BV ≡
‖h‖1+ |Dh|(R) bounded by a fixed constant C that depends only on k, ξ, ‖p0‖∞
and α1. We observe that D�(p0)[p̂n − p0] = 0 by (8) and obtain

|D�n(p̂n)[p̂n − p0]|
= |D�n(p̃n)[p̂n − p0]−D�(p̃n)[p̂n − p0] + (D�(p̃n)−D�(p0))[p̂n − p0]|

� sup
h:‖h‖BV ≤C,‖h‖2,P0

≤M̄n−1/3

|(Pn − P0)(h)|+ ‖p̂n − p0‖22 +
∫ α1

X(n)

|p̂n − p0|

= OP N

0

(
n−1/2n−1/6 + n−2/3 +

logn

n

)
, (26)

where we have used Theorem 3.1 in Giné and Koltchinskii (2006) with

H = id, σ = M̄n−1/3, F = const

combined with the bracketing entropy bound for monotone functions (van der
Vaart and Wellner, 1996, Theorem 2.7.5) and its straight forward generalisation
to bounded variation functions to control the supremum of the empirical process,
(22) to control the second term, and (25) for the last integral.

Proposition 3. Suppose p0 ∈ P is bounded, has bounded support S0 and satis-
fies p0(x) ≥ ζ > 0 for all x ∈ S0. Let f ∈ L∞ be such that ‖Df/Dp0‖∞,Dp0 is
finite. Then

|D�n(p̂n)[π0(f)]| = OP N

0

(
(‖f‖∞ + ‖Df/Dp0‖∞,Dp0)n

−2/3
)
.

Proof. By Lemma 4 we have that p0 + ηπ0(f) ∈ P ∩U for η a small multiple of
‖f‖∞ + ‖Df/Dp0‖∞,Dp0 . The claim of the proposition then follows from (24)
and Lemma 5.

We are now ready to prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Without loss of generality we can set f equal to zero out-
side of (0, α1). We use Lemma 2, Proposition 1, p̂n, p0 ∈ U(X1, . . . , Xn) by
Lemma 3 and a Taylor expansion up to second order to see

|(P̂n − Pn)(f)| = |D�n(p0)[π0(f)] +D2�(p0)[p̂n − p0, π0(f)]|
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≤ |D�n(p̂n)[π0(f)]|+ |(D2�n(p0)−D2�(p0))[p̂n − p0, π0(f)]|
+ 1

2 |(D
3�n(p̄n)−D3�(p̄n))[p̂n − p0, p̂n − p0, π0(f)]|

+ 1
2 |D

3�(p̄n)[p̂n − p0, p̂n − p0, π0(f)]|,

where p̄n equals, on [0, X(n)], some mean values between p̂n and p0, and p̄−1
n

is zero otherwise by convention. Here again D3�n(p̄n) and D3�(p̄n) stand for
the corresponding right hand sides in (7) and (8). The first term is bounded
using Proposition 3, giving the bound Bn−2/3 in probability. We define h ≡
p−1
0 (p̂n − p0)(f − P0f) on [0, α1] and h ≡ 0 elsewhere so that the second term

equals |(Pn −P0)h|. With probability arbitrarily close to one we have ‖h‖BV �
‖f‖∞ + ‖f‖BV � ‖f‖∞ + ‖Df/Dp0‖∞,Dp0 and ‖h‖2,P0 � ‖f‖∞n−1/3. The
second term is bounded similarly as in (26) above by

sup
h:‖h‖BV ≤C̃B,‖h‖2,P0

≤M̃Bn−1/3

|(Pn − P0)(h)| = OP N

0
(Bn−2/3).

The third term is bounded the same way, using ‖p̂n − p0‖BV = OP N

0
(1), and

noting that p̄n as a convex combination of p̂n, p0 has variation bounded by a
fixed constant on [0, X(n)], so that we can estimate the term by the supremum
of the empirical process over a fixed BV -ball, and using again Lemma 3 to
bound p̄n from below on [0, X(n)]. Using the last fact the fourth term is also
seen to be of order

‖f‖∞‖p̂n − p0‖22 = OP N

0
(Bn−2/3)

in view of (22) completing the proof the first claim. The second claim follows
from the fact that B is a bounded set in the space of bounded variation functions
and thus a Donsker class, which follows from Theorem 2.7.5 in van der Vaart
and Wellner (1996).

Proof of Theorem 2. It is sufficient to prove the result for 1/2 < s < 1 since
the Hölder spaces are nested. Let [a, b] be a compact interval. In order to define
Besov spaces Bs

pq([a, b]), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 0 < s < S, we consider
a boundary corrected Daubechies wavelet basis of regularity S and such that
φ, ψ ∈ CS([a, b]), see Cohen et al. (1993). We define Besov spaces as in (Giné
and Nickl, 2015) by the wavelet characterisation

Bs
pq([a, b]) ≡

{ {f ∈ Lp([a, b]) : ‖f‖Bs
p,q

< ∞}, 1 ≤ p < ∞,

{f ∈ C([a, b]) : ‖f‖Bs
p,q

< ∞}, p = ∞,

with norms given by

‖f‖Bs
pq([a,b])

≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
2J−1∑
k=0

|〈f, φJk〉|p
) 1

p

+

⎛
⎝ ∞∑

l=J

2ql(s+
1
2− 1

p )

(
2l−1∑
m=0

|〈f, ψlm〉|p
) q

p

⎞
⎠

1
q

, p < ∞,

max
k

|〈f, φJk〉|+
( ∞∑

l=J

2ql(s+
1
2 )
(
max
m

|〈f, ψlm〉|
)q) 1

q

, p = ∞,
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where in the case q = ∞ the �q-sequence norm has to be replaced by the
supremum norm ‖ · ‖∞.

Without loss of generality we consider a ball F in the Hölder space Cs(S0).
We decompose the functions f in a ball F of Cs(S0) by using the projection
πVj (f) onto the span of the wavelets up to resolution level j,

sup
f∈F

|(P̂n − Pn)(f)| ≤ sup
f∈F

∣∣∣∣
∫
S0

(p̂n − p0)(f − πVj (f))

∣∣∣∣
+ sup

f∈F
|(P̂n − Pn)(πVj (f))|

+ sup
f∈F

|(Pn − P0)(f − πVj (f))|.

(27)

Since Cs(S0) = Bs
∞∞(S0) for s /∈ N and since the C1-norm is bounded by the

B1
∞1-norm, we have for the wavelet partial sum πVj (f) of f ∈ Cs(S0) using the

unified notation ψ−1,k = φl0,k

‖πVj (f)‖C1 �
∑
l≤j

23l/2 max
k

|〈f, ψlk〉| � 2j(1−s) max
l≤j

2l(s+1/2) max
l≤j,k

|〈f, ψlk〉|

≤ 2j(1−s)‖f‖Bs
∞∞ .

Thus taking 2j ∼ n1/3 we have by Proposition 3

sup
f∈F

|(P̂n − Pn)(πVj (f))| = OP N

0
(n−2/3n(1−s)/3) = oP N

0
(1/

√
n)

since s > 1/2. Moreover, by Parseval’s identity

sup
f∈F

‖πVj (f)− f‖2 = O(2−js).

Also, using the L2-convergence rate in (22) and the Cauchy–Schwarz inequality

sup
f∈F

∣∣∣∣
∫ 1

0

(p̂n − p0)(f − πVj (f))

∣∣∣∣ = OP N

0
(n−1/3n−s/3) = oP N

0
(1/

√
n)

and since the class {f − πVj (f)} is contained in the fixed s-Hölder ball F ,
which is a P0-Donsker class for s > 1/2 in view of Corollary 5 in Nickl and
Pötscher (2007), and has envelopes that converge to zero we see that the third
term in (27) is also oP N

0
(1/

√
n) (since the empirical process is tight and has a

degenerate Gaussian limit). The remaining claims follow from the fact that F
is a P0-Donsker class.
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Giné, E. and Nickl, R. (2015). Mathematical Foundations of Infinite-
Dimensional Statistical Models. Cambridge University Press, to appear.

Grenander, U. (1956). On the theory of mortality measurement. II. Skand.
Aktuarietidskr. 39, 125–153. MR0093415

Jankowski, H. (2014). Convergence of linear functionals of the Grenander
estimator under misspecification. Ann. Statist. 42 (2), 625–653. MR3210981

Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of
concave and convex distribution functions. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 34 (1), 73–85. MR0397974
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