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It is my pleasure to congratulate the authors for this insightful and innovative
piece of work. Goldenshluger, Juditsky and Nemirovski (henceforth GJN) have
proposed a unifying view on a broad family of hypothesis testing problems.
They consider a composite hypothesis testing problem where the goal is to
identify which of two convex sets do the parameters of the distribution lie in.
Remarkably, the authors provide a set of conditions under which this composite
testing problem boils down to a simple test between two appropriately chosen
parameters, one from each set. The authors establish near-optimality guarantees
for their procedure under favorable conditions. Furthermore, the underlying
computation for obtaining the test can be cast as a convex optimization problem
of a form for which efficient solvers are often available. This leads to a rather
comprehensive solution, in both statistical and computational terms, of a class
of hypothesis testing problems.

1. Setup

The authors consider the usual setting of parametric hypothesis testing, where
we are given a family of probability distributions Pμ ∈ P over a sample space
Ω, indexed by a parameter μ ∈ M. Under the assumptions, Pμ is further con-
strained to be an exponential family distribution, with μ as the natural pa-
rameter. Recall that this means that the density of the distribution Pμ, de-
noted by pμ can be written in the form pμ(ω) = exp(〈μ, ω〉 − A(μ)). Here
A(μ) is the log-partition function of the exponential family, and is convex in
the parameter μ [1]. Finally, the authors assume that the cumulant generat-
ing function of the distribution Pμ has a favorable structure. Specifically, they
assume that for every linear operator φ on the sample space Ω, the function
Fφ(μ) = ln(

∫
Ω
exp(φ(ω))pμ(ω)P (dω)) is a concave function of the parameter μ.
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To gain some intuition, if pμ is the Normal distribution with mean μ and iden-
tity covariance, then Fφ(μ) is easily seen to be linear (and hence concave) in μ.
When all the assumptions are satisfied, the authors refer to the setup as a good
observation scheme.

While the last assumption might seem restrictive in general beyond the Nor-
mal distribution, the authors further establish it for the case of discrete, multino-
mial distributions when the parameter is the probability vector as well as for the
Poisson distribution with an unknown rate parameter. They also demonstrate
that a product of good observation schemes is good as well. This is important to
extend their setup to multiple independent observations. Using these as build-
ing blocks, the authors further proceed to various multiple hypothesis testing
settings. However, we will focus our attention on the results and consequences
in pairwise hypothesis testing only for this discussion.

2. Saddle-point formulation and statistical guarantees

The authors consider a hypothesis test between the hypotheses HX : μ ∈ X and
HY : μ ∈ Y , where X,Y ⊆ M. They define the function

Φ(φ, [x; y]) = ln

(∫
Ω

exp(−φ(ω))px(ω)P (dω)

)
+ln

(∫
Ω

exp(φ(ω))py(ω)P (dω)

)
.

(1)
Then the prescribed test is given by the solution φ∗ to the saddle-point prob-

lem

2 ln(ε�) = min
φ∈F

max
(x,y)∈X×Y

Φ(φ, [x; y]).

Under the assumptions, it is easily seen that the objective Φ is convex in the
first argument φ and concave in the second argument (x, y). Consequently the
saddle-point exists under mild regularity conditions, and efficient algorithms to
numerically compute it exist. Furthermore, 2ε� yields an upper bound on the
risk (which is defined to be the sum of Type-I and Type-II errors) of the test
that picks HX when φ�(ω) ≥ 0 and HY otherwise.

The authors further argue that there can never be another test with a risk
substantially better than that ε� (specifically, ε� ≤ 2

√
ε(1− ε) if another test

has risk of 2ε). Note that this seems like a potentially substantial loss in efficiency
if an extremely small risk is desired since we cannot rule out the existence of
another test with a risk of ε2�/2. However, the more interesting question is how
many samples are required in order to reduce the risk to a pre-defined level of,
say ε0 = 0.05. Since the risk of the test using n samples falls as εn� , we observe

that n = log(1/ε0)
log(1/ε�)

samples suffice. Consequently, any other test can improve by

only at most a constant factor in the number of samples required to attain a
risk of ε0.

Alternatively, one can also consider an indexed family of sets Xn, Yn which
are increasingly harder to distinguish, and study the smallest separation at
which the procedure still yields a test with a risk of at most ε0. Since ε� itself
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is a function of n now, one obtains n log 1
ε�(n)

= log 1
ε0
. For instance, using the

expression for ε� in the case of Gaussian observation model, one sees that this
yields nδ2n = 8 log 1

ε0
, where δ2n = dist2(Xn, Yn) is the squared distance between

the two convex sets of parameters. This is of course in line with expectation
since the test is indeed optimal in the Gaussian observation model.

3. Extensions to sub-Gaussian distributions

Clearly, the GJN framework yields a very comprehensive theory in the case
where all the assumptions are satisfied. It is worth asking if there are ways to
extend the machinery and obtain potentially weaker results when the assump-
tions are not fully met. With that viewpoint, we now consider the case of ex-
ponential families, which might not satisfy the concavity assumption on Fφ(μ).
We begin by closely inspecting the form of Φ(φ, [x; y]) for general exponential
families. Let φ(ω) = 〈φ, ω〉+ a. It is easily seen that

ln

(∫
Ω

exp(φ(ω))pμ(ω)P (dω)

)
= ln

(∫
Ω

exp(〈φ, ω〉+ a+ 〈μ, ω〉 −A(μ))P (dω)

)

= ln

(∫
Ω

exp(〈φ+ μ, ω〉 −A(μ))P (dω)

)
+ a

= ln (exp(A(φ+ μ)−A(μ))) + a

= A(φ+ μ)−A(μ) + a.

This immediately enables us to rewrite

Φ(φ, [x; y]) = A(−φ+ x)−A(x) +A(φ+ y)−A(y). (2)

Crucially, the value of Φ does not depend on a like noted by GJN, which is a
flexibility we will need in the sequel. Since A is a convex function of its argument,
we now see that Φ is always convex in φ, but not necessarily concave in x, y.
However, it is possible to derive upper and lower bounds on Φ with the desired
properties, when the functionA satisfies additional structural conditions. For the
remainder, let us assume that A has L-Lipschitz continuous gradients meaning
there is a norm ‖ · ‖ such that

‖∇A(μ)−∇A(μ′)‖∗ ≤ L ‖μ− μ′‖ ∀μ, μ′ ∈ M, (3)

where ‖ · ‖∗ is the dual norm to ‖ · ‖. For some of the arguments, we will also
assume that A is also λ-strongly convex with respect to the norm ‖ · ‖, meaning
that

A(μ′) ≥ A(μ) + 〈∇A(μ), μ′ − μ〉+ λ

2
‖μ− μ′‖2 ∀μ, μ′ ∈ M. (4)

When concerning ourselves with testing a particular pair HX versus HY , we will
need these assumptions to hold only over X ∪ Y ⊆ M, which can be important
if the subsets are bounded but the entire parameter space is not. For bounded
parameter sets, the smoothness condition (3) is nearly equivalent to A being
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differentiable, while strong convexity of the log-partition function is typically
required to avoid degeneracies in estimation and testing.

Given these conditions, we can define two auxilliary functions:

Φ(φ, [x; y]) = 〈∇A(y)−∇A(x), φ〉+ L ‖φ‖2 and,

Φ(φ, [x; y]) = 〈∇A(y)−∇A(x), φ〉+ λ ‖φ‖2 . (5)

The function Φ is obtained from Φ by applying Equation 3 to the defini-
tion (2) twice, once with μ′ = x − φ, μ = x and once with μ′ = φ + y, μ = y.
Consequently, Φ provides an upper bound on Φ for all tuples (φ, [x; y]). Simi-
larly, it is seen that Φ provides a lower bound on Φ via an invocation of the
strong convexity property (4).

Furthermore, both Φ and Φ are linear in the mean parameters ∇A(x) and
∇A(y), while the overall function is still convex in φ. Let us further assume that
the convex sets X and Y also induce convex sets of mean parameters under
the gradient mapping. Indeed, ∇A being a maximal monotone operator maps
convex sets into convex sets under suitable regularity conditions (see e.g. [2]).
Alternatively, one can directly consider hypotheses defined on convex sets of
mean parameters, which of course uniquely identify the parameter x under the
Lipschitz continuity assumption (3). Either way, we now obtain functions Φ
and Φ which satisfy the conditions posited by GJN, and sandwich the actual Φ
function. We now discuss some properties of these functions.

Proposition 1. The functions Φ,Φ defined in Equation 5 satisfy the following
properties:

1. Both the functions Φ and Φ posses saddle-points, so long as the domains
X,Y are convex and compact. We will denote the saddle point values as
2 ln(ε) and 2 ln(ε) respectively.

2. Let (φ∗, [x∗; y∗]) be the saddle-point of Φ. Then the risk of the detector φ∗
in testing the composite hypotheses HX and HY is bounded by 2ε.

3. Suppose there is another test which has a risk at most 2ε for testing HX

versus HY . Then ε ≤ 2
√

ε(1− ε).

The proof of the proposition largely follows from easy modifications of the
arguments in the proof of Theorem 2.1 in the paper.

Proof.

1. The first claim is immediate from definitions and the arguments for the
saddle-points of Φ under the assumptions of GJN.

2. The proof largely follows that of Theorem 2.1.(i), along with the fact that
Φ is an upper bound on Φ. We first note that Φ, as well as Φ are both
invariant to the linear term a in the detector φ∗. Consequently, we can
assume that it a is such that

〈∇A(x),−φ〉 − a = 〈∇A(y), φ〉+ a.
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This also means that we have

ln(ε) = 〈∇A(x),−φ〉 − a+
L

2
‖φ‖2 = 〈∇A(y), φ〉+ a+

L

2
‖φ‖2 .

Based on this observation, it is easy to establish an analog of Lemma A.1
in our setting. Indeed, for any parameter x ∈ X, we have

2 ln(ε) = Φ(φ∗, [x∗; y∗]) ≥ Φ(φ∗, [x; y∗])

= 〈−∇A(x) +∇A(y∗), φ∗〉+ L ‖φ∗‖2

= 〈−∇A(x), φ∗〉 − a+
L

2
‖φ∗‖2 + ln(ε)

≥ A(x− φ∗)−A(x)− a+ ln(ε)

= ln

(∫
Ω

exp(−φ∗(ω))px(ω)P (dω)

)
+ ln(ε).

This immediately yields that the risk of φ∗ of detecting HY when the
parameter is drawn from the set X is at most ε. The claim for misdetection
of HX has an analogous proof.

3. For the third claim, we can prove an analog of Lemma A.2 from the
paper. Let (φ, [x; y]) be a saddle-point of Φ. Note that if we have a test for
distinguishing HX from HY with a risk at most 2ε, then it is also a test
for the simple hypotheses A : ω ∼ px versus B : ω ∼ py. Let p = px and
q = py. Then the existence of such a test implies that the affinity between
p and q is at most 2ε. On the other hand, we have

2 ln(ε) = Φ(φ, [x; y]) = min
φ

Φ(φ, [x; y]) ≤ min
φ

Φ(φ, [x; y]).

As before, the best test under Φ for testing x versus y is the likelihood
ratio test, so that

2 ln(ε) ≤ min
φ

Φ(φ, [x; y]) = 2 ln

(∫
Ω

√
p(ω)q(ω)P (dω)

)
.

Simplifying as before now yields the desired conclusion.

Overall, the proposition shows that it is still possible to use the saddle-point
machinery of GJN in order to obtain a test with an upper bound on its risk, and
a lower bound on the risk of the best possible test for the composite hypotheses.
Specifically, the above discussion yields a detector φ∗ with a risk at most 2ε,
and no detector with a risk smaller than ε2/2 exists. If the values ε and ε are
not too far from each other, this is not too far from the situation guaranteed by
the results of GJN.

It is worth examining some more properties of the detector φ∗ that is obtained
as a saddle-point of Φ. Note that φ∗ is no longer a simple test between px∗ and
py∗ . If the norm ‖ · ‖ used in upper and lower bounding Φ is a Euclidian norm,
then φ∗ corresponds to a simple test between Gaussians with means ∇A(x∗)
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and ∇A(y∗), with the covariance of the Gaussian depending on the norm. It
would be tempting to consider using the optimal detector for testing px∗ and
py∗ instead of φ∗. The risk of that test might be significantly larger on other
parameters however. It would also be natural to successively refine the upper
and lower bounds and obtain a sequence of better tests and tighter estimates
of their risks. It is, however, not immediate how the argument above can be
iterated in natural ways.

In summary, the work of GJN provides a general framework, within which
one can study several common hypothesis testing problems. This work should
open avenues for future research in relaxing the assumptions and extending sim-
ilar ideas to broader hypothesis testing problems. A common situation which
would be important to study in future research would be to consider nested al-
ternatives. Concretely, it seems natural to consider tests for HX : x ∈ X versus
H0 : dist(x,X) ≥ ε. This situation is not easily handled in the current frame-
work as the hypothesis H0 is not testing for membership in a convex subset of
the parameter space. Extending the framework to these cases, particularly when
the set X corresponds to a subset of variables being zero would enable variable
selection, for instance. Overall, we should be thankful to Goldenshluger, Judit-
sky and Nemirovski for their innovative work and the exciting line of questions
and possibilities that it has raised for future research.
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