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I congratulate Professor McMurry and Professor Politis for their important con-
tribution to the time series prediction problem. If the covariance functions were
known, the classical celebratedWiener-Kolmogorov theory lays a beautiful foun-
dation of the prediction problem. In particular, one can derive various close-form
expressions for the best linear predictors. In practice, however, the covariance
functions are not known, and they need to be estimated from data. Wu and
Pourahmadi (2009) showed that the associated estimated covariance matrix is
not operator norm consistent if one simply replaces covariance functions by the
estimated ones. In the current paper the authors considered the tapered esti-
mates using partial or full samples. Their main results Theorem 3 and Corol-
lary 2 assert that the linear predictor based on tapered covariance estimates is
consistent.

My primary concern is the rate of convergence of the estimated linear pre-
dictors. Theorem 3 and Corollary 2 provide the consistency result

X̂n+1 − X̃n+1 → 0 in probability, (0.1)

where X̃n+1 = φ(n)T (Xn, . . . , X1)
T is the population version optimal linear pre-

dictor (cf. the authors’ Equation (1)), φ(n) = Γ−1
n γ(n), and X̂n+1 =

φ̂(n)T (Xn, . . . , X1)
T is the estimated predictor. I believe that, under suitable

conditions, one can derive a rate of convergence. The following is a heuris-
tic argument. Given data X1, . . . , Xn, we predict Xn+1 by the linear form
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X∗
n+1 = a1Xn + · · ·+ anX1 := X∗

n+1(a). In comparison with the optimal linear

predictor X̃n+1, we have the mean square error

E|X∗
n+1(a) − X̃n+1|2 = E|

n∑

i=1

(ai − φi(n))Xn+1−i|2

=
∑

1≤i,j≤n

(ai − φi(n))(aj − φj(n))γi−j . (0.2)

Assume that the spectral density f(θ) = (2π)−1
∑∞

j=−∞ γj exp(
√
−1jθ) satisfies

0 < c1 ≤ 2πf(θ) ≤ c2 < ∞ holds for all θ. (0.3)

Then

c1|a− φ|22 ≤ E|X∗
n+1(a) − X̃n+1|2 ≤ c2|a− φ|22 (0.4)

By Theorem 2 in the paper, under proper conditions, one has

|φ̂n − φn| = Op(rn) (0.5)

Using the argument in the paper and the technique for inverse moment bounds
for sample autocovariance matrices in Cheng, Ing and Yu (2015), I believe that
the following

|X∗
n+1(φ̂n)− X̃n+1|2 = Op(r

2
n). (0.6)

or even the stronger statement can be valid

E|X∗
n+1(φ̂n)− X̃n+1|2 = O(r2n). (0.7)

The above bounds provide a refined version of their Theorem 3 and Corollary 2
in that it provides the rate of convergence.

The above consideration also motivates the problem of choosing optimal lag
parameter l. Ideally, one should choose l such that it can minimize E|X∗

n+1(a)−
X̃n+1|2, or as an easier version in view of (0.4), one should minimize |φ̂n − φn|2.
Can the authors show that the data-driven choice of l in Section 2.3 enjoys
certain consistency property; for example l̂/l → 1 in probability? In the non-
parametric estimation literature such problems are well studied: one can show
that, under proper conditions, the selected smoothing parameter is rate-consist-
ent.
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