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Generalized backward stochastic variational inequalities
driven by a fractional Brownian motion

Dariusz Borkowski® and Katarzyna Janczak-Borkowska®
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Abstract. We study the existence and uniqueness of the generalized reflected
backward stochastic differential equations driven by a fractional Brownian
motion with Hurst parameter H greater than 1/2. The stochastic integral used
throughout the paper is the divergence type integral.

1 Introduction

The backward stochastic differential equations (BSDEs) were first studied in
Pardoux and Peng (1990). Since then many papers have been devoted to the study
of BSDEs, mainly due to their applications. The main aim of studying BSDEs
was to give a probabilistic interpretation for solutions of partial differential equa-
tions (PDEs for short). Pardoux and Zhang in Pardoux and Zhang (1998) intro-
duced the generalized BSDE:s, that is, BSDEs with an additional term—an inte-
gral with respect to an increasing process. Pardoux and Rédscanu in Pardoux and
Réscanu (1998) put some constrains on the solution of the BSDE (or more pre-
cisely, they put some additional assumptions on the first component of the solu-
tion) and the problem was called the backward stochastic variational inequality
(BSVI) (or in some special cases the reflected BSDE). In Janiczak (2009) and
Janczak-Borkowska (2011), the existence and uniqueness of the generalized re-
flected BSDE was shown.

BSDEs driven by a fractional Brownian motion (fBm) were first studied in
Biagini et al. (2002) (with Hurst parameter H > 1/2) and in Bender (2005) (with
Hurst parameter H € (0, 1)). Nonlinear BSDEs with respect to a fractional Brow-
nian motion (fBm) with Hurst parameter H > 1/2 were first considered by Hu and
Peng in Hu and Peng (2009), but the existence and uniqueness of the solution of the
BSDE driven by a fBm was obtained with some restrictive assumption. Maticiuc
and Nie, Maticiuc and Nie (2013) improved their result and omitted this assump-
tion. They also developed a theory of backward stochastic variational inequalities,
that is, they proved the existence and uniqueness of the solution of the reflected
BSDEs driven by a fBm. In the paper Jaficzak-Borkowska (2013) the existence
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and uniqueness of the generalized BSDEs driven by a fBm with Hurst parameter
H greater than 1/2 were shown.
In this paper, we study the generalized BSVI driven by a fBm with Hurst param-
eter H greater than 1/2. We prove that that kind of equation has a unique solution.
Let us now recall that a fBm with Hurst parameter H € (0, 1) is a zero mean
Gaussian process B = {BH |t > 0} with the covariance function

1
Ry(s,1)=E(BHBH) = E(zZH + 521 — |t — s*H).

This process is a self-similar, that is, B? has the same law as a B/ for any
a > 0, it has homogeneous increments. For H = 1/2, we obtain a standard Wiener
process, but for H # 1/2, the process B! is not a semimartingale. These properties
make this process a useful tool in models arising in physics, telecommunication
networks, finance, signal processing and other fields.

Since B is not a semimartingale when H % 1/2, we cannot use the classical
theory of stochastic calculus to define the fractional stochastic integral. Essentially,
two different types of integrals with respect to a fBm have been defined and stud-
ied. The first one is the pathwise Riemann—Stieltjes integral (see Young (1936)).
This integral has the properties of Stratonovich integral, which leads to difficul-
ties in the applications. The second one, introduced in Decreusefond and Ustiinel
(1998) is the divergence operator (Skorokhod integral), defined as the adjoint of the
derivative operator in the framework of the Malliavin calculus. Since this stochas-
tic integral satisfies the zero mean property and it can be expressed as the limit
of Riemann sums defined using Wick products, it was later developed by many
authors.

The paper is organized as follows. In Section 2, we give some definitions and
results about a fractional stochastic integral, which will be needed throughout the
paper. Section 3 contains the definition of the generalized BSVI driven by a fBm,
assumptions and the formulation of the main theorem of the paper. In Section 4,
we prove some a priori estimates. Finally, using the penalization method we prove
the main theorem in Section 5.

2 Fractional calculus

Denote ¢ (x) = H2H — DIx|*#-2 x e R. Let & and n be measurable functions
on [0, T']. Define

t t
Gmi=[ [ ow—vswnwdudy
and || ||,2 = (£, &);. Note that, for any ¢ € [0, T'], (€, n), is a Hilbert scalar product.

Let H be the completion of the measurable functions such that ||£]|; < co. The
elements of  may be distributions.
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Let (§,), be a sequence in H such that (§;,&;)7 = §;;. By Pr denote the set
of all polynomials of a fractional Brownian motion, that is, it contains elements of
the form

F<w>=f(/oTsl(t)dBf’,...,/OTsk(ndBf’),

where f is a polynomial function of k variables. The Malliavin derivative operator
DSH of an element F' € Pr is defined as follows:

): 9 H H )¢
DSF_;M(/O awdsf,.... [ &wdp; )s,(s>, 510,71

The divergence operator DH is closable from LZ(Q, F,P) to LZ(Q, F,P;H).
By D » denote the Banach space being a completition of Pr with the following
norm: || F||1 )= =E|F>+E| DfF||2T. Now we introduce another derivative

T
D F = / ¢(t —s)DIF ds.
0
Theorem 2.1. Let F : (2, F, P) — H be a stochastic process such that

T T 2
E(||F||2T+/O fo DX F| dsdt><oo.

Then, the Ito-type stochastic integral denoted by fOT Fid BSH exists in L*(2, F).
Moreover, E(fy FydBf)=0and

T 2 T T
E(/ FsstH> =E<||F||2T+/ / Df’Ft]D)fIFsdsdt)
0 0 JO

Theorem 2.2. Let f € L*([0, T) be a deterministic function, H > 1/2. Suppose
that || f ||; is continuously differentiable as a function of t € [0, T]. Set

t t
X,=X0+/O gsds+/0 fsdBH, 1[0, T,
where X is a constant and g is deterministic with fOT |gs|ds < o0o. Let F be con-

tinuously differentiable with respect to t and twice continuously differentiable with
respect to x. Then

F(,X;)=F(Q, Xo)—i-/ (sX)ds—I—f — (s, X5)d X

+ /t”( X)L (112 ds,  tef0,T]
208x2S’Sds s) @5 T
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Theorem 2.3. Let T € (0, 00) and let f1(s), f2(s), g1(s), g2(s) be in D 2 and
E(f) (1fi ()| + |gi()]) ds) < 00. Assume that D f(s) and DH g5 (s) are contin-
uously differentiable with respect to (s,t) € [0, T] x [0, T] for almost all € Q2.
Suppose that

T T T T
H 2 H 2
E/O /0 D/ fa(s)|"ds dt < oo, E/(; /0 D/ g2(s)|" ds dt < oo.
Denote
t t
FO = [ firyds+ [ fa)dBl, 1e[0.7]
0 0
and
G(t):/o gl(s)ds—f—/o 2 (s)dBH, 1[0, T].
Then
t t
FOG(t) = fo F(s)g1(s)ds + /0 F(s)ga(s)dBY

t t -
+/ G(s) fi(s)ds +/ G(s) f2(s)d B,
0 0

t t
+/ DfF(s)gz(s)der/ DX G(s) f2(s) ds.
0 0

The above theorems can be found in Duncan, Hu and Pasik-Duncan (2000), Hu
(2005), Hu and Peng (2009), Maticiuc and Nie (2013) and for a deeper discussion
we refer the reader to Hu (2005), Nualart (2010).

3 Generalized BSVI with respect to fBm

Assume that

(Hy) o :]0, T] — Ris adeterministic continuous differentiable function such that
o(t)#0,forall t € [0, T]and n, = no + [{ o (s)dB, t € [0, T], where ng
is a given constant.

Note that, since ||o||? = HQH — 1) 5 f§ lu — v[*' =20 (u)o (v) du dv, we have
d t
E(Ha”?) =2HQ2H — 1)] It —ul* 20 (w)o (t) du =20 ()6 (1) > 0,
0
where 6 (t) = [ ¢ (t — u)o (u) du.
We will consider the following generalized backward stochastic variational in-
equality driven by a fBm:
dY+ f(t,ne, Y, Zy)de + g(t,ne, Ye) d Ay — thB,H
€ dp(Yy)dt + oy (Yy)dA,, 3.1
Yr =§,
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where A is an adapted increasing process, Ag = 0.
We suppose that there exist positive constants L and v > 2L + 2 and

(Hy) & = h(nr) for some function 4 with bounded derivative and such that
E@ |52 + fi e ny|?dt) < oo.

(H3) f:[0,T] xRxRxR—Rand g:[0,7T] x R x R — R are continuous
functions such that for allz € [0, T], x, x", v, ¥, z, 7 € R,

lf@.x,y,2)— f(t,x,y, ) <L(x =X |+ |y—y]+]z—7
lg(t,x,y) — g(t,x,y)| < Ly — '

T 2 d 2
E(f e"M|£(t,0,0,0)| dt—i—/ e’ |g(t, nr,0) dA,) < 00.
0 0

).

9

(Hy) functions ¢, ¥ : R — (—o0, oo] satisfy

e o, Y are proper, convex and lower semi-continuous;
e ¢(y)=¢0)=0,¥(y) =¥ (0)=0.

We will denote

e ={IeR; - (v—y)+ () <p),YveR},
Domg = {y e R;¢(y) <oc},  Dom(dgp) = {y € R; dp(y) # @},
(y, ) € 99 & y € Dom(d¢), y € 09(y)
(analogously for ).

Remark 3.1. d¢ and 0y are maximal in this sense that

Y —)(y—u)=0, (. 9), (u, i) € 3,
@ —=0)(y—v)=>0, (v,9), (v,0) € Y.

Now consider the set

0
Vio.r1 = {Y =¢(,n):¢¢€ CFI,(’)IZ([O, T] x R) and a—(f is bounded}.

By 17[%111 denote the completion of the set of processes from Vo 7] with the fol-
lowing norm

T T
1Y) = Ef AV AR E/ P2H=1 00\ (1, | di
0 0
and by 17{5”?]—the completion of the set of processes from Vo 7] with a norm

T T
_ — 2
||Y||%1,A:E/O ?H le”A’|Y,|2dAt:E/O VMg (1, )| d A,
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Definition 3.2. A solution of a generalized backward stochastic variational in-
equality (GBSVI) driven by a fBm (3.1) associated with data (&, f, g, A) is a
quadruple (Y, Z, U, V) = (Y, Z;, Us, Vi)iepo,1) Of processes satisfying

T T T
Yt=$+/ f(ssnSsYS’ZS)ds+/ g(S,ns,Ys)dAs_‘/- stB‘{I
t ' t (3.2)

T T
—/ Usds—/ VedAg, te[0,T]
t t
and such that

(Y, Up) € d¢, (Y, Vi) € 99, 1€[0,T]

~1/2 ~1/2,A ~ H vy H Vo H, A
and Y € V[O,T] N V[O,T] ,Z€ V[O,T]’ U,V e V[O,T] N V[O,T]'

Theorem 3.3. Assume (H{)—(Hy). There exists a unique solution of (3.2).

The proof of the above theorem is deferred to the Section 5.

4 A priori estimates

Theorem 4.1. Assume (H{)—(Hy4) andlet (Y, Z, U, V) be a solution of (3.2). Then
forallt €[0,T],

T T
E<e"A’|Yt|2—|—f e”AsSZH—1|zs|2ds+/ e”A5|Ys|2dAS>
t t

2 T 2
§CE(e"AT|§I +/ "™ | f(5,0,0,0)|" ds
t

T T
+/ eVAS|g(S, T,s’o)}szs_’_/ eVA3|nS|2ds):C®(t, T)-
¢ t

Proof. By C we will denote a constant which may vary from line to line. From
the It6 formula,

T T
My, P = AT ig 2 — / "M d1y, |2 — f "M 1Y, [PudA,
t t
T T
="M g2 —2/ "M Y, dY, —2/ e"MDHY 7, ds
t t
T
_V/ eUAS|Ys|2dAs
1

T
="M g + 2/ ™Y f (5,05, Y5, Zs)ds
t
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T T
#2 " et vigsne voda =2 [ ehy,z,aB!
t t
T T
-2 / MY Usds —2 / MY Vi d A
t t

T T
—2/ e"ASID)fIYsZSa’s—v/ "MV 12 d Ay
t t

It is known (see, e.g., Hu and Peng (2009), Maticiuc and Nie (2013)) that

T A
Dy, :f ¢(s —r)DHY dr = @zs.
0 o(s)
Moreover by Remark 6 in Maticiuc and Nie (2013), there exists M > 0 such that
forallr € [0, T], 12H=1 /M <6@t)/o (1) < Mt?H 1,
By Lipschitz continuity of f and g, we have

2yf (s, n,y,2) <2LIyl(Inl + |yl + |zl) + 2|yl| f (5, 0,0,0)|
2 ML2 2 2
<(L*+2L+ =+ 1)yl +n]
S

1
+ Msz’“ 1212+ | £(5.0,0,0)",

2yg(s,m, ) < 2LIy 1> +21yl|g (s, 0) = QL+ DIy + |g(s, 0, O,
By the above and by Remark 3.1,

T 2 T
E<e”Af|Y,|2+v/ e“As|YS|2dAS+—/ e”A552H1|ZS|2ds)
t M J;
A 2 T A 2 T A 2
<E(eM gl + [ e £6.0.0.0 s+ [ e Mlgtsn. 0P da,)
t t
T T ML2
+E/ e”As|ns|2ds+E/ (L2+2L+m+1>e”s|ys|2ds
t t N

1 T T
+MEf e”A-‘SZH_1|Zs|2ds+(2L+l)E/ "M Y|P d Ay
t t
Since v > (2L + 2) we can write

T 1 T
E(e”A’|Y,|2+/t e”As|Ys|2dAs+M/t e”AsszH_l|Zs|2ds>
. e (4.1)
<@, T)+ E/t <L2 +2L+ ST T 1)e“As|n|2ds.

By the Gronwall inequality,

T2-2H _ 2-2H }
2—-2H

Ee"M|Y,* <O, T)exp{(L2 +2L+1)(T —1)+ ML?
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and by (4.1) also

T T
E(/ e”ASSZH_1|ZS|2ds+/ e”As|Ys|2dAs) <CoO@,T). 0
t t

Proposition 4.2. Let (Y, Z,U, V) and (17 . Z,U, \7) be two solutions of (3.2) with
data (&, f,g,N) and (&, f, g, N), respectively. Then

- T - T -
E(e”A’|Yt—Yt|2+/ e”As|Ys—YS|2dAs+f sZH—le”As|zs—zs|2ds)
t t
A =12 T A ~ 2
sCE(e” e =P+ [ e n, Yoo 20— Flsne Yo Z0)[ ds
t

T
) ~ 2
+/ €VA5|g(S, ns, Ys) — g(s, ns, Yv)| dAv)
t
Proof. By the It6 formula, computing similarly as in the previous theorem
. T 3 2 T .
MY, — Y2+ v/ MY — Y|P dAg + M/ Mgz 7P ds
t 1t
<e"Mig — &
T A - - ~ -
+ 2/ MYy — B (£ (5.5, Yoo Zo) — F(5. s Vo Z5)) ds
t
o - ~ -
+ 2] "N (¥, — 7) (85, ms Yy) — §(s. 151 F)) d A
t
T . 3
— 2/ eV (Yy — Y5)(Zs — Zs) dBH
t

T - -
2 f "M (Y, — V) (Us — Uy)ds
t

T s s
— 2/ "M (Y — Y (Vs — Vi) dAy.
t

From assumptions, we get

2()}_&)(]6(5" ﬂ,y,Z)—f(S,ﬁ,f,Z))
52(y—5)(f(5, U,y,Z)—f(S, 777)’,Z))

L2M . SZH—I -
and
2(y _y)(g(ss n, )’) _g(S,U,y))

<2(y — ) (g(s,m,y) — &(s.m,¥)) +2L|y — 3I*.
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Since U; € 9¢(Y;) and U, € d¢(Y,),
U — O, = Y) =U (Y, = Y) + U, (Y, — V)
> (V) —o(Y)) + o(¥,) — p(¥;) =0.

Similarly, (V; — V,)(Y; — Y;) > 0.
Since v > 2L + 2, we obtain

~ T - 1 T ~
E(e”A’|Y, — Yt|2+f eV 1Y —YS|2dAS+M/ Vsl 7 —Zs|2ds>
t t
< B(erig - &7
T A ~ ~
+2/ e’ S(Ys — Ys)(f(sv Ns, Y5, Zs) — f(s,ny, Yy, Zs))ds
t
T 3 i
+2/ e’ (Y — Ys)(g(S, s, Ys) — &(s, ns, Yv)) dAc)
t

r VA LZM v 12
—|—E/; e’ 2L+.§‘2H—_1 |Ys — Y|~ ds.

Using the Gronwall lemma, we get the required inequality. U

5 Penalization scheme

We will approximate the function ¢ by a sequence of convex, C! class functions
@s, € > 0, defined by

1 1
0 (y) = inf{gw Pt e)ive R} = 5|y = L + 04 ). 6D

where Je(y) =y — Ve (y).
Here are some properties of ¢, (see Barbu (1976) or Brézis (1973)):

—Je
Voe(y) = yf(y) € dp(J:(y)); (5.2)
|Je(y) = Je(v)| < |y —v| and ;I{I(l) Je(¥) = Tpomy (Vs (5.3)
0=<¢:(y) <yVe:(y), (5.4)

where by m555(y) we denote the projection of y on the closure of the set Dom ¢.

Moreover, consider analogous approximation v, for the function vy (with Je(y) =
y —eVe(y)).
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We introduce some compatibility assumptions: for all ¢ > and all ¢ € [0, T],
n,y.z€R

(i) V() -gt,1,y) < (V) -gt,n, )"

(i) V) £t 05,2 < (Vo) - 0,5, 2)".

Note that if y - g(t,n,y) <0and y- f(t,n,y,z) <0 for all n,y,z € R and
t € [0, T'] then the compatibility assumptions are satisfied (it follows from (5.4)).
Moreover, if for some a < 0 < b we define convex indicator functions

5.5

0, y<b,

()_{0, y=a,
eL)= 00, y > b,

00, y<a,

v =
then Vg, (y) = —1(y —a)™ and Vs (y) = 1 (y — b)T, where x~ = max(—x, 0),
x* =max(x, 0), and the compatibility assumptions become g(z, 1, y) > 0 for y <
aand f(t,n,y,z) <0 for y > b (compare Remark 2 from Maticiuc and Rascanu
(2010)).

Consider a sequence of generalized BSDEs

T
vi=g+ [ rlon vz ds
t
T T
+f g(s,ns,Yf)dAs—/ z¢dBH (5.6)
t t

T T
—/ Ve (Ys) ds —/ Ve (YS)dAs,  t€[0,T]
t t

Since Vg, and Vi, are Lipschitz continuous functions, then by Janczak-
Borkowska (2013), (5.6) has a unique solution (Y?, Z?).

Proposition 5.1. Let assumptions (H1)—(Ha4) hold. Then
A 2 T A 2 T Ay 2H—1 2
E(e” P [ ey Pan, + [ etz ds)
t t
T 2
<CE( iR+ [ e (1£5.0.0.00P + no ) ds
t

T
+/ e”A5|g(s,ns,O)|2dAs> =CO¢,T).
t

Proof. Similarly as in the proof of Theorem 4.1, we have

Aye2 o [ vAsye|2 LT oA, 2H-1) e 2
E<e P+ [ e prePan, + o [ etz ds)
t t

T T
<E(eMrisP 4 [ e Nr6.0.0.0Pds+ [ gt 0 dA,)
t t
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T T ML?
HE [ e Pas+E [ <L2 +2L+ o+ 1>e”As|Y;“|2ds
t t Nl
T T
—2E([ "M YEVQ(YE)ds +/t eV vax/fg(Yf)dAs)
By (5.4) and analogous inequality for v, we obtain
VA; | yve|2 T VAy |ve|2 1 T VAy 2H—1| €2
E(e |Yz|+t e |YS|dAS+M, e"ss |Z5 | ds
T
+2 / "M YE (Vo (Y) ds + Vi (VF) dAS))

ML
< 0(t, T)+E/ (L2+2L+ S l+1> ”AS|Y§|2ds.

Now using similar arguments as in the proof of Theorem 4.1, we finish the
proof. (|

Proposition 5.2. Under assumptions (H1)—(Hzs) and (5.5) there exists a positive
constant C such that for any t € [0, T']

T
@ E [ eV (1) ds + [V (¥)) dA) < CO . T),
t

T ~
(b) E/t "M s N (J(YE)) + ¥ (e (YE))) d Ay < COL 1, T),

(©) Ee"™PH=Y(|ye — J,(Y®)|* + |Y2 — J.(Y?)|}) <& - COL, T),
() Ee"MTH p(Je(YF)) + ¥ (Je(Y)))) = CO1, T),

T ~
@ E [ ey = g (v ds + ¥ - L(r)PdAy)
t

<e’COt, T),

where

©2(1,T) = E(T”’—le”“(go(@ +Y©)
T vAg 2H—1 2 g2 g2 2
+ [ e P+ 1P 4125 +1£65,0,0,0F ) ds
T A 2H-1 2 2
—I—/ eV s (|Yf| —i—{g(s,ns,O)| )dAS).
t

Proof. In the proof below, we will use similar arguments as in the proof of Propo-
sition 2.2 in Pardoux and Réscanu (1998) and in the proof of Proposition 11 in
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Maticiuc and Rascanu (2010). Since Vo, (Y/}) € dp(J(Y?)),
Ve (Y7) - (Y5 = Y7) < 0e(Y5) — e (7).

Now
"N e (Y7) = "M e (V7) + e Mge (1)) — e (V)
> "NV, (V) - (V5 — )
and
e, (YE) = €y (YE) + (7 — ") g (¥2) 4 €D Vg (¥) - (YE — Y7).

Take s > r > 0. Multiplying the above inequality by s2/~!
"M (YE) > 0 we get
s2HflevA.S @e(YSE) > r2HflevA,(p8 (Yrs) + S2H71 (evAs _ eVAr)(pg (Yss)
2N g (1) - (12— ).

Takes =ti AT, r=t; AT,where0=ty<t; <---<tATandtjy1—t; =1/n.
Summing up over i and passing to the limit as n — oo, we deduce

, using the fact that

T
T2 AT o (YE) = 21 0Ai g (v) +‘/t vs 210 g (V) d A,

T
+ f s 1MV (YF) dYE.
t

We have similar inequalities for function ¥.. Summing these two inequalities we
get,

PN (1) 4 (V) v [ 52N (1) 4 (1))
< TH1e"M (e (&) + Ye (8))
— /tT s2H1 eV (Ve (YE) + Ve (YE)) dYE
< TH1e"M (e (&) + Yo (8))

T

+ /t s2H=1gvAs (VQS(YSE) + V\//g(Ysg))f(S, Ns, Yss’ Zf“) ds
T

+ /; g2H—1 vA; (V(Pg(YSS) + V%(Xf))g(s, Ns» Yse)dAs

T
[ () + V70 )Z: B

t

[ (T (70) 4 V() (Ve (1) s + V() A

t
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Therefore,

T
t2H_1€VA’((pg(Y,8) + ‘/fe(ng)) + v/ g2H—1,vAs ((PS(YSS) + IZ’S(YSS)) dAg

1

T
b [N (Vg (1) ds + [T
t

T
b [ SN (1)) ds + dA
< T2H_1€VAT(§08(§) + 1//8(5))

T

+[t s2H Vs (Vo (YE) + Ve (YE)) £ (s, s, YE, ZE) ds
T

+/t SPH=L VA (Voo (YE) + Vipre (YE)) g (5. 15, YE) d A

T
_[ SZH_le”AS(Vwe(Yf) + Ve (YE)) ZE a’BSH.

t

Note that,
sV (0) f (5,1, v, 2) < s V. ) |(L(Inl + 1]+ 1z]) + | £ (5,0, 0,0)))

1 _ 2 -
<-s Pely § n Y ¢
= 3521 V) 4122 (P 4 1y + 12P%)

4452971 £(5,0,0,0)
SZHflvwg(y)f(s, n,y, 7)< SZHil(V(ps(y) ' f(ss Y, Z))+’
sV Ye (g0, ) <5 VY(LIyI+ g (5.0, 0)])

2
)

1
< ZSZH_I |V1ﬁs()7) |2

+ 252712y 2 + [ g (s, 1. 0) 7).
271N (n)g (s, m, y) < sHHH VY0 - g6, )

Moreover using the fact that Vg (y) - Ve (y) = 0, 9:(§) = ¢(§) and ¥, (§) <
¥ (§) we get,

Er?H=1e"™ (oo (Y]) + v (Y7))

T
+ vE/ sPHLV s (0 (YE) + e (YE)) d A
t

1 T
+ EE/t SZH_leVA"(|V(pg(Kf)|2dS + |V‘ﬁ£(Ys8)|2dAS)
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T
+ E/ sV o (YE)V e (YE) (ds + d Ay)
t
< ET*1e" T (p(§) + ¥(5))

T
+8L2Ef M (1 P+ |YE P + |22 ) ds
t
T 2H-1 va 2
+8E/ s2H=1v0| £(5,0,0,0)|* ds
t

T
+4Ef SN (L21YE P 4 g (s, ms, O)P) d Ay = COL(1, T).
t

From the above inequality, (a) is clear. Conditions (b) and (d) follow additionally

from inequalities ¢ (J:(y)) < @:(y) and ¥ (Jo(¥)) < ¥ (y). From [y — Jo(y)|* <
2epc(y) and |y — J; (y)|2 < 2ey:(y) follows (c). Finally, (e) we get from y —

Je(y) =eVee(y) and y — Je(y) = eV (y). 0

Proposition 5.3. Let assumptions (Hi)—(Hy) be satisfied. Then (Y€, Z?%) is a
Cauchy sequence, that is, for €, > 0

T
E(euA,tzH—1|Ytg _yp +ft "M 2H2|yE _y3 P(ds 4 dA,)

n /TevASSZ(ZH—l){Zs . 25}2 ds)
S S
t
<C-(e+968)-Oy(,T).
Proof. Put Y =Y¢ — Y% and Z = Z¢ — Z%. We have

v T v T v
R / QH — Ds* 72" Y2 ds 4 v f sl MY d A,
t t

= TZH_le”ATY% — 2/ s2H=lpvAsy gy, — 2/ s2H=1gvAs —OES; Zfds.
' ! o(s

Therefore,

. T v 2 T v
E(2H-1pvhiy2 QH — 1)s2H2v0sy2 gg 4 = s2QH=DvAs 72 4 ¢
t p S M p S
T v
—i—vf s2H=1gvAs YSZdAS)
t
T v
5215[ SPHV VAT (F (s, sy Y2, ZE) — f(s, mss Y2, Z0)) ds
t

T v
F2E [ 21T, (gl ¥) = (s, V) dA
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T v
— ZE/ s2HL Vs Y (Ve (YE) — Vs (YD) ds
t

T v
—2E [ PN (T (1) — Vs (V) dAs.

Note that

v e _¢& § 6 L2M v2 1 2H—1x2
2y-(f(s,n,y,z)—f(s,n,y,z))§<2L+s2H—_l>y + o,

25 - (g(s.m, ¥°) — g(s, n,y°)) < 2LF*.
Moreover, by the definition of ¢, we get
0 < (Vo (¥7) = Vs (Y))) - (e (¥7) — J5(17))
= (Ve (Y9) = Vs (Y7)) - (Y§ = ¥ — eV (YE) + 8Vis(17))
= (V¢€(Ys8) - V¢5(Ys5)) : (Ys8 - Yss) - 8|V¢€(YSS)|2 - S}sz(ysaﬂz
+ (e + 8) Ve (YE) - Vs (YP)
and then
(Voe(Ys) = Vos(Y)) - (Y = ¥7) = —( +8)Veu (¥y) - Vs (7).
Similarly,
(Ve (YE) = Vs (Y))) - (YE = ¥7) = —(e + ) Ve (YF) - Vs (Y).
Therefore, since v > 2L + 2,

v T v
E(z2H—1e”AfY,2+ / QH — 1)s*H=2e"Asy2 ds
t

| /T 5 T 5
+M,/, s2(2H—l)evAXZ§ds+/t SZH—levASYSZdAS)

T LM v
<FE 2L + >s2H_1eVAXY2ds
— /Z: ( S2H—1 s

T
#2e+8)E [ 521NV (1) Vs (VD) ds

T
+2e+D)E [ NNV (1) Vs (YY) A
t
By the Gronwall lemma,

. T
ErH-1e" My < Ce + 8)E/ s 1MV e (YE) Vs (YY) dis
t

T
FCEHDE [ 1N Ty (1) (V) dAs.
t
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By the simple inequality ab < a?/2 4 b/2 and by Proposition 5.2(a) we get the
result. .

Now we can give a proof of Theorem 3.3.

Proof of Theorem 3.3. First, we show the uniqueness. From the proof of Propo-
sition 4.2, it follows that for (Y, Z, U, V) and (Y’, Z’, U’, V') being two solutions
of (3.2), we have

A 712 T As 2H—1 712 T A 712
E(e” 1Y, =Y/ +/ e’ |Zs — Z}| ds—i—/ e’ MYy — Y]] dAS):O
t t
and
T VA / / T VA / /
E(ft e s(ys—ys)(Us—Us)dHft e S(YS—YS)(VS—VS)dAS>§0,

which means that the solution is unique.
Now we will show that the limit of (Y?, Z¢, Vo, (Y?), V. (Y?)) converges to
a solution of (3.2).

Since by Proposition 5.3 (Y*, Z?) is a Cauchy sequence, there exists its limit,
that is, there exists a pair of processes (Y, Z) € V[]({ ZT] N V&{ ZT]A X V{&T] such that

T
g{%E(/t "M PN yE — v P (ds + dAy)

T
+/ e”Assz(ZH_1)|Zf — ZS|2ds) =0.
t
From Proposition 5.2(c),

11\‘1,% Eel)AttzH—l(|YtS _ Jg(Yt€)|2 + |Yl€ _ jg(Ytg)|2) = O,
&

) . . ol/2 . 7 ye spl/2ZA
and we have limg\ 0 Jo(Y?) =Y in Vi 7y and lime\0 Jo (Y®) =Y in Vg 77

Denoting U? = Vg, (Y?) and V¢ = Vi), (Y?) from Proposition 5.2(a) we obtain
T vAs 2H—1 g2 g2
E | """ U ds +|VE"dAs) < C.
0
Hence, there exist a subsequence &, ~\, 0 and processes U, V such that
~1/2,A

Ut — U weakly in f)[lo/’ ZT] and Vo >V weakly in Vj 7y

and from the Fatou lemma
T
Ef M2 (\Ug P ds + |V P dAg) < C.
0

Passing now with ¢ to 0 in (5.6), we obtain (3.2).
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Moreover since Uf € d¢(J:(Y{)) and V{ € alﬁ(jg(Yf)), forall u ])[10/2” and
~1/2,A ’
vE V[O,T] we have
Uf - (ur — Je(Y)) + o(Je(Yf)) < p(ur)
and
V(o — ja(Yze)) + w(jg(yf)) < ¥ (vy).
Therefore, we can deduce (passing to limes infimum) that
Ur-(u = Y)+oYy) <p;) and V;-(v,—Y) +v(Y;) <y (vy),

which mean that (Y;, Uy) € dp and (Y;, V;) € 0y, t € [0, T]. That completes the
proof. 0
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