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The Cramér condition for the Curie–Weiss model of SOC

Matthias Gorny
Université Paris Sud and ENS Paris

Abstract. We pursue the study of the Curie–Weiss model of self-organized
criticality we designed in (Ann. Probab. 44 (2016) 444–478). We extend our
results to more general interaction functions and we prove that, for a class
of symmetric distributions satisfying a Cramér condition (C) and some inte-
grability hypothesis, the sum Sn of the random variables behaves as in the
typical critical generalized Ising Curie–Weiss model. The fluctuations are of
order n3/4 and the limiting law is k exp(−λx4) dx where k and λ are suitable
positive constants. In (Ann. Probab. 44 (2016) 444–478), we obtained these
results only for distributions having an even density.

1 Introduction

In their famous article Per Bak, Chao Tang and Kurt Wiesenfeld (1987) showed
that certain complex systems are naturally attracted by critical points, without any
external intervention. The amplification of small internal fluctuations can lead to
a critical state and cause a chain reaction leading to a radical change of the sys-
tem behavior. These systems exhibit the phenomenon of self-organized criticality
(SOC). In general, SOC can be observed empirically or simulated on a computer
in various models. However, the mathematical analysis of these models turns out
to be extremely difficult, even for the sandpile model (the archetype of SOC, pre-
sented in Bak, Tang and Wiesenfeld (1987)) whose definition is yet simple.

In Cerf and Gorny (2016) and Gorny (2014), we introduced a Curie–Weiss
model of self-organized criticality (SOC): we transformed the distribution as-
sociated to the generalized Ising Curie–Weiss model by implementing an auto-
matic control of the inverse temperature which forces the model to evolve toward
a critical state. This is the model given by (Xk

n)1≤k≤n such that, for all n ≥ 1,
(X1

n, . . . ,X
n
n) has the distribution

1

Zn

exp
(

1

2

(x1 + · · · + xn)
2

x2
1 + · · · + x2

n

)
1{

x2
1+···+x2

n>0
} n∏
i=1

dρ(xi),

where ρ is a non-degenerate distribution on R and Zn is a normalization constant.
We proved that, if ρ has an even density which satisfies some integrability condi-
tions, then the fluctuations of Sn = X1

n +· · ·+Xn
n are of order n3/4 and the limiting
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law is (
4

3

)1/4

�

(
1

4

)−1

exp
(
− s4

12

)
ds.

This fluctuation result shows that the sum Sn behaves asymptotically as in the typ-
ical critical generalized Ising Curie–Weiss model. Moreover, by construction, it
does not depend on any external parameter. In this sense, we can conclude that this
is a Curie–Weiss model of self-organized criticality. Our result presents an unex-
pected universal feature. Indeed, this is in contrast to the situation in the critical
generalized Ising Curie–Weiss model: at the critical point, the fluctuations are of
order n1−1/2k , where k depends on the distribution ρ. Moreover, our integrabil-
ity conditions on ρ are weaker than those required to define the generalized Ising
Curie–Weiss model, studied by Richard S. Ellis and Charles M. Newman (1978).
For instance, our result holds for any centered Gaussian measure on R. The Gaus-
sian case of our model can be handled with the help of an explicit computation
(Gorny (2014)).

In this paper, we extend the main results of Cerf and Gorny (2016) in three
directions:

• We solve a problem about the mass at 0 of ρ that we met in Cerf and Gorny
(2016) by using a conditioning argument. This allows us to extend the law of
large numbers associated to our model.

• The hypothesis that the law ρ has a density is essential in the proof of the fluc-
tuations result in Cerf and Gorny (2016). Here, we use arguments coming from
the work of Anders Martin-Löf (1982) to extend this result to any symmetric
probability measure which satisfies some integrability hypothesis and a Cramér
condition:

∀α > 0 sup
‖(s,t)‖≥α

∣∣∣∣∫
R

eisz+itz2
dρ(z)

∣∣∣∣ < 1. (C)

This includes a much larger class of probability measures. However, the proof
is much more technical.

• We extend our model to more general interaction functions. This extension is
similar in spirit to the work of Richard S. Ellis and Theodor Eisele (1988) in the
context of the generalized Ising Curie–Weiss model.

The model. Let g be a measurable real-valued function defined on R such that
g(u) ∼ u2/2 in the neighbourhood of 0 and

∀u ∈R g(u) ≤ u2

2
.

Let ρ be a probability measure on R, which is not the Dirac mass at 0. We consider
an infinite triangular array of real-valued random variables (Xk

n)1≤k≤n such that,
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for all n ≥ 1, (X1
n, . . . ,X

n
n) has the distribution μ̃n,ρ,g , whose density with respect

to ρ⊗n is

(x1, . . . , xn) 	−→ 1

Zn,g

exp
(
ng

(
x1 + · · · + xn√
n(x2

1 + · · · + x2
n)

))
1{

x2
1+···+x2

n>0
},

where

Zn,g =
∫
Rn

exp
(
ng

(
x1 + · · · + xn√
n(x2

1 + · · · + x2
n)

))
1{

x2
1+···+x2

n>0
} n∏
i=1

dρ(xi).

We define Sn = X1
n + · · · + Xn

n and Tn = (X1
n)

2 + · · · + (Xn
n)2.

We state next our main result, which is a strengthening of Theorems 1 and 2 of
Cerf and Gorny (2016).

Theorem 1. Let ρ be a symmetric probability measure on R with positive variance
σ 2 and such that

∃v0 > 0
∫
R

ev0z
2
dρ(z) < +∞.

Law of large numbers: Under μ̃n,ρ,g , (Sn/n,Tn/n) converges in probability
towards (0, σ 2).

We suppose in addition that g has a fourth derivative at 0 and that the following
Cramér condition holds:

∀α > 0 sup
‖(s,t)‖≥α

∣∣∣∣∫
R

eisz+itz2
dρ(z)

∣∣∣∣ < 1. (C)

Let μ4 be the fourth moment of ρ. We denote m4 = −g(4)(0)/2 ≥ 0.
Fluctuations result: Under μ̃n,ρ,g ,

(
μ4 + m4σ

4)1/4 Sn

σ 2n3/4
L−→

n→∞

(
4

3

)1/4

�

(
1

4

)−1

exp
(
− s4

12

)
ds.

The condition (C) is called the Cramér condition for the law of (Z,Z2), where
Z is a random variable with distribution ρ. The class of probability measures sat-
isfying (C) is much larger than the class of probability measures having a density.
Indeed, by the Lebesgue decomposition theorem (see Rudin (1987)), there exist
three non-negative real numbers a, b, c such that a + b + c = 1 and

ρ = aρac + bρd + cρs,

where ρac is a probability measure with density f , ρd is a discrete probability
measure and ρs is a singular probability measure having no atoms. If a > 0, we
say that ρ has an absolutely continuous component.
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Proposition 2. If ρ has an absolutely continuous component, then

∀α > 0 sup
‖(s,t)‖≥α

∣∣∣∣∫
R

eisz+itz2
dρ(z)

∣∣∣∣ < 1.

For example, the law

ρ0 = 1

16
δ−1 + 3

4
δ0 + 1

16
δ1 + exp

(
−x2

2

)
dx

8
√

2π

satisfies the hypothesis of Theorem 1.
In Cerf and Gorny (2016), we treated the case where g(u) = u2/2 for any u ∈ R.

We obtained a law of large numbers under μ̃n,ρ,g , for symmetric probability mea-
sures ρ such that ρ({0}) < e−1/2 or such that ρ(]0, c[) = 0 for some c > 0. The
above distribution ρ0 does not satisfy this hypothesis. Moreover, in the fluctuations
theorem of Cerf and Gorny (2016), we only deal with a distribution ρ having an
even density f which satisfies∫

R2
f p(x + y)f p(y)|x|1−p dx dy < +∞,

for some p ∈]1,2]: once again this is not the case for ρ0. Hence, Theorem 1 im-
proves the main results of Cerf and Gorny (2016). Yet its proof is much more
complicated: we have to use an approximation of the identity to obtain an asymp-
totic relation between ν∗n

ρ and its Cramér transform. The final Laplace’s method is
also much more technical than in Cerf and Gorny (2016).

Remark. If we start with the model studied in Eisele and Ellis (1988) and we
follow the same road as in Cerf and Gorny (2016), then we end up with the distri-
bution μ̃


n,ρ,g whose density with respect to ρ⊗n is

(x1, . . . , xn) 	−→ 1

Z

n,g

exp
(
n2 g((x1 + · · · + xn)/n)

x2
1 + · · · + x2

n

)
1{

x2
1+···+x2

n>0
},

where Z

n,g is the renormalization constant. In this case, the result stated in Theo-

rem 1 holds as well, but with (μ4 + m4σ
6)1/4 instead of (μ4 + m4σ

4)1/4.

This paper is organized as follows. In Section 2, we give some preliminaries
containing a list of all the results derived from Cerf and Gorny (2016) which are
essential for the proof of our main theorem. In Section 3, we extend the results of
Cerf and Gorny (2016) around Varadhan’s lemma with a conditioning argument.
Next, in Section 4, we give some generalities on the Cramér condition, we prove
Proposition 2 and a key theorem: an asymptotic relation between the n-fold tensor
product of a probability measure and its Cramér transform (Theorem 8). Finally,
in Section 5, we use Laplace’s method in order to prove Theorem 1, with the help
of the results from Sections 3 and 4. We end the paper by the Appendix presenting
the proof of Theorem 8.
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2 Preliminaries

Here, we give some notation and we list all the results derived from the Sections 3
and 5 of Cerf and Gorny (2016) which are essential for the proof of Theorem 1.

Let F and Fg be the functions defined on R×]0,+∞[ by

∀(x, y) ∈ R×]0,+∞[ F(x, y) = x2

2y
and Fg(x, y) = g

(
x√
y

)
.

We define the sets

� = {
(x, y) ∈ R

2 :x2 ≤ y
}

and �∗ = � \ {
(0,0)

}
.

We denote by νρ the law of (Z,Z2), where Z is a random variable with distribu-
tion ρ, and by ν̃n,ρ the law of (Sn/n,Tn/n) under ρ∗n. Under μ̃n,ρ,g , the law of
(Sn/n,Tn/n) is

exp(nFg(x, y))1�∗(x, y) dν̃n,ρ(x, y)∫
�∗ exp(nFg(s, t)) dν̃n,ρ(s, t)

.

Let ρ be a symmetric probability measure on R with variance σ 2. We define the
Laplace transform � of νρ by

∀(u, v) ∈ R
2 �(u,v) = ln

∫
R

euz+vz2
dρ(z)

and by D� the set of the points (u, v) ∈ R
2 such that �(u,v) < +∞. We define

next the Cramér transform I of νρ by

∀(x, y) ∈R
2 I (x, y) = sup

(u,v)∈R2

(
ux + vy − �(u,v)

)
and by DI the set of the points (x, y) ∈R

2 such that I (x, y) < +∞.
We suppose that (0,0) ∈ ◦

D�. Then I is a good rate function, that is, it is non-
negative and for any α > 0, the set {(x, y) ∈ R

2 : I (x, y) ≤ α} is compact. More-
over Cramér’s theorem states that (̃νn,ρ)n≥1 satisfies a large deviations principle,
with speed n, governed by I . Next,

I (0,0) =
{− lnρ

({0}) if ρ
({0}) > 0,

+∞ if ρ
({0}) = 0,

and the I − F has a unique minimum on �∗ at (0, σ 2), with (I − F)(0, σ 2) = 0.
Moreover, if the support of ρ contains at least three points and if μ4 denotes the
fourth moment of ρ, then when (x, y) goes to (0, σ 2),

I (x, y) − F(x, y) ∼ μ4x
4

12σ 8 + (y − σ 2)2

2(μ4 − σ 4)
.
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Finally, since g has a fourth derivative at 0, the Taylor–Young formula implies that

g(u) = u2

2
+ g(3)(0)

u3

6
− m4

u4

12
+ o

(
u4)

.

We have g(u) ≤ u2/2 for any u ∈ R. Therefore, g(3)(0) = 0, m4 ≥ 0 and thus,
when (x, y) goes to (0, σ 2),

F(x, y) − Fg(x, y) = m4x
4

12y2

(
1 + o(1)

) = m4x
4

12σ 4 + o
(∥∥(x, y)

∥∥4)
.

As a consequence,

I (x, y) − Fg(x, y) ∼ (μ4 + m4σ
4)x4

12σ 8 + (y − σ 2)2

2(μ4 − σ 4)
.

Remark. In the case of the model given by the distribution μ̃

n,ρ,g , defined in the

Remark at the end of the Introduction, we replace Fg by the function (x, y) ∈
R×]0,+∞[ 	−→ g(x)/y in the Sections 2–5. The only difference is that when
(x, y) goes to (0, σ 2),

I (x, y) − Fg(x, y) ∼ (μ4 + m4σ
6)x4

12σ 8 + (y − σ 2)2

2(μ4 − σ 4)
.

3 Around Varadhan’s lemma

In Section 6 of Cerf and Gorny (2016), we proved the following result.

Lemma 3. Let ρ be a symmetric probability measure on R such that (0,0) belongs
to

◦
D� and ρ({0}) = 0. Let σ 2 denote the variance of ρ. If A is a closed subset of

R
2 which does not contain (0, σ 2), then

lim sup
n→+∞

1

n
ln

∫
�∗∩A

exp
(

nx2

2y

)
dν̃n,ρ(x, y) < 0.

Actually we obtained in Cerf and Gorny (2016) this same conclusion for sym-
metric measures ρ such that ρ({0}) < e−1/2 or such that ρ(]0, c[) = 0 for some
c > 0. This restriction is due to the behaviour of I −F near the point (0,0), which
is a singularity of F .

In this section, we will extend this result to any non-degenerate symmetric prob-
ability measure on R such that (0,0) ∈ ◦

D�. To this end, we will rely on a condi-
tioning argument in order to reduce the problem to the case of measures which
have no point mass at 0, and to apply Lemma 3. We focus first on what happens in
the neighbourhood of (0,0).
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Proposition 4. Suppose that ρ is a symmetric probability measure on R with pos-
itive variance σ 2 and such that (0,0) ∈ ◦

D�. There exists γ > 0 such that, for
δ ∈]0, σ 2[ small enough and for n large enough,∫

�∗
enx2/(2y)10<y≤δ dν̃n,ρ(x, y) ≤ e−nγ .

We notice that the constant γ only depends on ρ (and not δ).

Proof of Proposition 4. If ρ({0}) = 0 then Lemma 3 implies that the constant

γ = −1

2
lim sup
n→+∞

1

n
ln

∫
�∗

enx2/(2y)10<y≤σ 2/2 dν̃n,ρ(x, y)

is positive since {(x, y) ∈ R
2 : 0 ≤ y ≤ σ 2/2} is a closed set which does not contain

(0, σ 2). For δ ∈]0, σ 2/2[, we have then

lim sup
n→+∞

1

n
ln

∫
�∗

enx2/(2y)10<y≤δ dν̃n,ρ(x, y) ≤ −2γ < −γ.

Hence, the result holds for probability measures which have no point mass at 0.
We suppose now that ρ({0}) > 0. Let n ≥ 1 and X1, . . . ,Xn be independent

random variables with common distribution ρ. We put

Sn =
n∑

i=1

Xi and Tn =
n∑

i=1

X2
i .

For δ > 0 small enough, we denote

En,δ =
∫
�∗

enx2/(2y)10<y≤δ dν̃n,ρ(x, y).

Since ν̃n,ρ(�) = 1, we have

En,δ = E
(
eS2

n/(2Tn)10<Tn≤nδ

)
.

For any c > 0, we have

En,δ ≤ E
(
eS2

n/(2Tn)1Tn>01Tn/n≤c|Sn/n|
) +E

(
eS2

n/(2Tn)1c|Sn/n|<Tn/n≤δ

)
and we write this sum In,1 + In,2.

In Figure 1, In,1 is an integral on the vertically hatched area and In,2 is an
integral on the horizontally hatched area.

We notice that, if c|Sn/n| < Tn/n ≤ δ, then

S2
n

2Tn

≤ T 2
n

2c2Tn

≤ Tn

2c2 ≤ nδ

2c2 .

We have thus

In,2 ≤ exp
(

nδ

2c2

)
P

(
c

∣∣∣∣Sn

n

∣∣∣∣ <
Tn

n
≤ δ

)
.
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Figure 1 The set {(x, y) ∈ � : 0 < y ≤ c|x|} is vertically hatched. The set {(x, y) ∈ R
2 : c|x| <

y ≤ δ} is horizontally hatched.

We denote α = − lnρ({0})/2 > 0. The function I is lower semi-continuous, thus
there exists a neighbourhood U of (0,0) such that

∀(x, y) ∈ U I (x, y) ≥ I (0,0) − α

2
= −

(
lnρ

({0}) + α

2

)
.

We can take δ small enough so that {(x, y) ∈ R
2 : c|x| < y ≤ δ} ⊂ U . We choose

c = σ/
√

α (which only depends on ρ). Cramér’s theorem (see Dembo and Zeitouni
(2010)) implies that

lim sup
n→+∞

1

n
ln In,2 ≤ δ

2c2 − inf
U

I

≤ δ

2c2 + lnρ
({0}) + α

2
= lnρ

({0}) + α

2

(
1 + δ

σ 2

)
.

If δ < σ 2, then this last expression is smaller than

lnρ
({0}) + α = −2α + α = −α.

Hence, for n large enough,

In,2 ≤ exp
(
−nα

2

)
.

Let us focus now on In,1. We define the random variable Nn by

Nn = {
k ∈ {0, . . . , n} :Xk = 0

}
.

We have

In,1 = E
(
eS2

n/(2Tn)1Tn>01Tn/n≤c|Sn/n|
) = E

(
eS2

n/(2Tn)1Tn>01Tn≤c|Sn|
)

=
n−1∑
k=0

E
(
eS2

n/(2Tn)1Tn≤c|Sn|1Nn=k

)
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and, for any k ∈ {0, . . . , n − 1},
E

(
eS2

n/(2Tn)1Tn≤c|Sn|1Nn=k

)
= E

(
eS2

n/(2Tn)1Tn≤c|Sn|
∑

1≤i1<i2<···<ik≤n

1Xi1=0 · · ·1Xik
=01∀j /∈{i1,...,ik}Xj �=0

)

= ∑
1≤i1<i2<···<ik≤n

E
(
eS2

n/(2Tn)1Tn≤c|Sn|1Xi1=0 · · ·1Xik
=01∀j /∈{i1,...,ik}Xj �=0

)
.

The random variables X1, . . . ,Xn are exchangeable, hence the expectations in the
above sum are equal:

E
(
eS2

n/(2Tn)1Tn≤c|Sn|1Nn=k

)
=

(
n

k

)
E

(
eS2

n/(2Tn)1Tn≤c|Sn|1X1 �=0 · · ·1Xn−k �=01Xn−k+1=0 · · ·1Xn=0
)

=
(

n

k

)
E

(
eS2

n−k/(2Tn−k)1Tn−k≤c|Sn−k |

× 1X1 �=0 · · ·1Xn−k �=01Xn−k+1=0 · · ·1Xn=0
)
.

By the independence of X1, . . . ,Xn, we have

E
(
eS2

n/(2Tn)1Tn≤c|Sn|1Nn=k

)
=

(
n

k

) n∏
j=n−k+1

P(Xj = 0)E
(
eS2

n−k/(2Tn−k)1Tn−k≤c|Sn−k |1X1 �=0 · · ·1Xn−k �=0
)

=
(

n

k

)
ρ

({0})k(1 − ρ
({0}))n−k

×E

(
eS2

n−k/(2Tn−k)1Tn−k≤c|Sn−k |
n−k∏
j=1

1Xj �=0

P(Xj �= 0)

)
.

For any k ∈ {1, . . . , n}, we set

uk = E

(
eS2

k /(2Tk)1Tk≤c|Sk |
k∏

j=1

1Xj �=0

P(Xj �= 0)

)

so that we have

In,1 =
n−1∑
k=0

un−k

(
n

k

)
ρ

({0})k(1 − ρ
({0}))n−k

=
n∑

k=1

uk

(
n

k

)
ρ

({0})n−k(1 − ρ
({0}))k.
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We denote by ρ the probability measure ρ conditioned to R \ {0}, that is,

ρ = ρ
(·|R \ {0}) = ρ(· ∩R \ {0})

1 − ρ({0}) ,

so that

∀k ∈ {1, . . . , n} uk =
∫
�∗

ekx2/(2y)1y≤c|x| dν̃k,ρ(x, y).

The measure ρ is symmetric, ρ({0}) = 0 and

∀(u, v) ∈ R
2 �(u,v) = ln

∫
R

euz+vz2
dρ(z) ≤ �(u,v) − ln

(
1 − ρ

({0})),
thus (0,0) ∈ ◦

D�. Moreover, the variance of ρ is σ 2 = σ 2(1 − ρ({0}))−1 and the
closed set {(x, y) ∈ R

2 :y ≤ c|x|} does not contain (0, σ 2). Applying Lemma 3,
we get

lim sup
k→+∞

1

k
ln

∫
�∗

ekx2/(2y)1y≤c|x| dν̃k,ρ(x, y) < 0.

Thus, there exist ε0 > 0 and n0 ≥ 1 such that

∀k ≥ n0 uk ≤ exp(−kε0).

For n > n0, we write In,1 = An + Bn with

An =
n0∑

k=1

uk

(
n

k

)
ρ

({0})n−k(1 − ρ
({0}))k

and

Bn =
n∑

k=n0+1

uk

(
n

k

)
ρ

({0})n−k(1 − ρ
({0}))k.

For all k ≥ 1, we have ν̃k,ρ(�) = 1, thus uk ≤ exp(k/2) and then

An ≤ ρ
({0})n n0∑

k=1

ek/2nk(ρ({0})−1 − 1
)k

≤ ρ
({0})nn0e

n0/2nn0 max
(
1,

(
ρ

({0})−1 − 1
)n0

)
.

Moreover,

Bn ≤
n∑

k=n0+1

e−kε0

(
n

k

)
ρ

({0})n−k(1 − ρ
({0}))k

≤ (
ρ

({0}) + e−ε0
(
1 − ρ

({0})))n.
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Therefore, setting

β = − ln
[
ρ

({0}) + e−ε0
(
1 − ρ

({0}))] > 0,

we have that, for n large enough,

In,1 = An + Bn ≤ exp(−nα) + exp(−nβ).

We notice that ε0, α and β only depend on ρ.
Finally, we set γ = min(α/4, β/2) (which only depends on ρ). For n large

enough and δ ∈]0, σ 2[ small enough, we have

En,δ ≤ In,1 + In,2 ≤ exp(−nγ ).

This proves the proposition. �

Now we can state the main result of this section, which is the announced refine-
ment of Lemma 3 and which is essential to the proof of Theorem 1.

Proposition 5. Let ρ be a symmetric probability measure on R with a positive
variance σ 2 and such that (0,0) ∈ ◦

D�. If A is a closed subset of R2 which does
not contain (0, σ 2) then

lim sup
n→+∞

1

n
ln

∫
�∗∩A

exp
(

nx2

2y

)
dν̃n,ρ(x, y) < 0.

Proof. By Proposition 4, there exist γ > 0 and δ > 0 such that

lim sup
n→+∞

1

n
ln

∫
�∗

enx2/(2y)10<y≤δ dν̃n,ρ(x, y) ≤ −γ.

We set Aδ = {(x, y) ∈ � ∩ A :y ≥ δ}. We have

�∗ ∩ A ⊂ {
(x, y) ∈ �∗ : 0 < y ≤ δ

} ∪ Aδ.

The set Aδ is closed, it does not contain (0, σ 2) and F is continuous on it. The
usual Varadhan’s lemma (see Dembo and Zeitouni (2010)) implies that

lim sup
n→+∞

1

n
ln

∫
Aδ

enx2/(2y) dν̃n,ρ(x, y) < − inf
Aδ

(I − F).

As a consequence,

lim sup
n→+∞

1

n
ln

∫
�∗∩A

exp
(

nx2

2y

)
dν̃n,ρ(x, y) ≤ max

(
−γ,− inf

Aδ

(I − F)
)
.

Since (0,0) ∈ ◦
D�, I is a good rate function and I − F attains its minimum on the

closed set Aδ . Since Aδ does not contain (0, σ 2), we have

max
(
−γ,− inf

Aδ

(I − F)
)

< 0

and the proposition is proved. �
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4 The Cramér condition

Let d ≥ 1. For any z = (a1 + ib1, . . . , ad + ibd) ∈ C
d and x = (x1, . . . , xd) ∈ R

d ,
we denote

〈z, x〉 =
d∑

k=1

akxk + i

d∑
k=1

bkxk.

If z ∈ R
d then 〈z, x〉 is the Euclidean inner product of z and x.

Let ν be a non-degenerate probability measure on R
d . We denote by L its Log-

Laplace and by J its Cramér transform. Let DL and DJ be the domains of R
d

where the functions L and J are respectively finite. We put

DM = {
z = a + ib ∈ C

d :a ∈ DL

}
and we define the function M by

∀z ∈ DM M(z) =
∫
Rd

e〈z,x〉 dν(x).

We notice that the function s ∈ R
d 	−→ lnM(s) is the Log-Laplace L of ν and that

s ∈ R
d 	−→ M(is) is the Fourier transform of ν.

One of the key ingredients for proving the main theorem of Cerf and Gorny
(2016) is the Theorem 11 of Cerf and Gorny (2016) (which is extracted from
Andriani and Baldi (1997)). This theorem allows us to express the density of ν∗n

as a function of J and, under the condition

∀α > 0 sup
‖s‖≥α

∣∣M(is)
∣∣ < 1, (C)

we can then obtain an asymptotic expansion. The condition (C) is called the
Cramér condition. Anders Martin-Löf (1982) uses an approximation of the iden-
tity to obtain a similar expression for more general measures on R satisfying the
condition (C), without requiring the existence of a density.

In this section, we will prove d-dimensional analogs of the results of Martin-Löf
(1982).

4.1 Around the Cramér condition

We give here a sufficient condition for a measure ν on R
d to satisfy the Cramér

condition (C).

Lemma 6. If there exists s0 �= 0 such that |M(is0)| = 1 then ν is an arithmetic
measure, that is, there exists (a, b) ∈ R

2 such that

ν
({

x ∈ R
d : 〈s0, x〉 ∈ a + bZ

}) = 1.
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Proof. Suppose that |M(is0)| = 1 for some s0 �= 0. Thus,

1 =
∣∣∣∣∫

Rd
ei〈s0,x〉 dν(x)

∣∣∣∣ ≤
∫
Rd

dν(x) = 1.

We are in the equality case of this classical inequality, that is, there exists b0 ∈ R

such that

ei〈s0,x〉 = eib0 ν a.s.,

whence

ν
({

x ∈ R
d : 〈s0, x〉 ∈ b0 + 2πZ

}) = 1

and the lemma is proved. �

Suppose that ν has a density with respect to the Lebesgue measure. By the
Riemann–Lebesgue lemma,∣∣M(is)

∣∣ =
∣∣∣∣∫

Rd
ei〈s,x〉 dν(x)

∣∣∣∣ −→‖s‖→+∞ 0.

As a consequence, if ν does not satisfy (C), then there exists s0 �= 0, such that
|M(is0)| = 1. By the previous lemma, ν is arithmetic. This is absurd. Therefore,
any probability measure having a density with respect to the Lebesgue measure sat-
isfies (C). Moreover, by the Lebesgue decomposition theorem (see Rudin (1987)),
a probability measure ν can be represented as the sum of three components:

ν = aνac + bνd + cνs,

where νac is an absolutely continuous probability measure, νd is a discrete proba-
bility measure, νs is a singular probability measure with no atoms and a, b, c are
three non-negative real numbers such that a + b + c = 1. If a > 0, we say that
ν has an absolutely continuous component. An absolutely continuous probability
measure admits a density, thus we have the following proposition.

Proposition 7. If ν has an absolutely continuous component, then it satisfies the
Cramér condition (C).

We end this section by giving the proof of Proposition 2: we suppose that ρ =
aρac + bρd + cρs , where a > 0 and ρac is a probability measure on R having a
density f . We cannot use Proposition 7 directly because νρ does not have a density.
However, we saw in Lemma 16 of Cerf and Gorny (2016) that, if νρac denotes the
law of (Z,Z2) where Z is a random variable with distribution ρac, then ν∗2

ρac
has

the density

f2 : (x, y) 	−→ 1√
2y − x2

f

(x +
√

2y − x2

2

)
f

(x −
√

2y − x2

2

)
1x2<2y.
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We can write ρ∗2 = a2ρ∗2
ac + (1 − a2)η, where η is the probability measure on R

2

defined by

η = 1

1 − a2

(
b2ρ∗2

d + c2ρ∗2
s + 2abρac ∗ ρd + 2acρac ∗ ρs + 2bcρd ∗ ρs

)
.

We have then∣∣∣∣∫
R

eisz+itz2
dρ(z)

∣∣∣∣2
=

∣∣∣∣∫
R2

eis(x+y)+it (x2+y2) dρ(x) dρ(y)

∣∣∣∣
≤ a2

∣∣∣∣∫
R2

eis(x+y)+it (x2+y2) dρ∗2
ac (x, y)

∣∣∣∣ + (
1 − a2)∣∣∣∣∫

R2
dη(x, y)

∣∣∣∣
≤ a2

∣∣∣∣∫
R2

eisu+itv dν∗2
ρac

(u, v)

∣∣∣∣ + 1 − a2.

Hence,

sup
‖(s,t)‖≥α

∣∣∣∣∫
R

eisz+itz2
dρ(z)

∣∣∣∣2 ≤ a2 sup
‖(s,t)‖≥α

∣∣∣∣∫
R2

eisu+itvf2(u, v) dudv

∣∣∣∣ + 1 − a2.

Proposition 7 implies that the supremum in the right-hand side of the previous
inequality is strictly smaller that 1. This completes the proof of Proposition 2.

4.2 An asymptotic relation with the Cramér transform

We define the function k by

∀x = (x1, . . . , xd) ∈ R
d k(x) =

d∏
j=1

max
(
1 − |xj |,0

)
and, for c > 0, the function kc by

∀x ∈R
d kc(c) = 1

cd
k

(
x

c

)
.

It is an approximation of the identity on R
d since the integral of k is equal to 1.

Finally, for any n ≥ 1 and c > 0, we introduce

ϕn,c :x ∈ R
d 	−→

∫
Rd

kc(s − nx)dν∗n(s).

We notice that ϕn,c(x) = (kc ∗ ν∗n)(nx) for any x ∈ R
d . A standard result on the

approximations of the identity says that, if ν∗n has a density fn, then

lim
c→0

∫
Rd

∣∣ϕn,c(x) − fn(nx)
∣∣dx = 0.
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This suggests that the asymptotic behaviour of ϕn,c and ν∗n are related, even in the
general case when ν∗n does not have a density. The following theorem is the key
result for the proof of Theorem 1.

Theorem 8. Let ν be a non-degenerate probability measure on R
d such that the

interior of DL is not empty. Let KJ be a compact subset of AJ , the admissible
domain of J . If ν satisfies the Cramér condition

∀α > 0 sup
‖s‖≥α

∣∣M(is)
∣∣ < 1, (C)

then there exists γ > 0 such that, when n goes to +∞ and c goes to 0, uniformly
over x ∈ KJ ,

ϕn,c(x) = (2πn)−d/2(
det D2

xJ
)1/2

e−nJ (x)(1 + o(1) + O
(
nd/2e−γ nc−d))

.

We postpone the proof of this theorem in the Appendix.

5 Proof of Theorem 1

In this section, we use first Proposition 5 to prove the law of large numbers under
μ̃n,ρ,g . Next, in order to prove the fluctuations theorem, we use Laplace’s method:
to this end, we introduce an integral with the approximation of the identity of
Section 4. Then Proposition 5 gives the expansion of this integral. The technical
part of the proof is to show that the remaining terms are negligible.

Suppose that ρ is a symmetric probability measure on R with positive variance
σ 2 and such that

∃v0 > 0
∫
R

ev0z
2
dρ(z) < +∞.

5.1 Proof of the law of large numbers

The fact that g(u) ∼ u2/2 in the neighbourhood of 0 implies that Fg is positive on
some open neighbourhood V of (0, σ 2), which is included in �∗. We have then

Zn,g =
∫
�∗

exp
(
nFg(x, y)

)
dν̃n,ρ(x, y) ≥ ν̃n,ρ(V).

The large deviations principle satisfied by (̃νn,ρ)n≥1 implies that

lim inf
n→+∞

1

n
lnZn,g ≥ lim inf

n→+∞
1

n
ln ν̃n,ρ(V) ≥ − inf

(x,y)∈V I (x, y) = 0.

We denote by θn,ρ,g the distribution of (Sn/n,Tn/n) under μ̃n,ρ,g . Let U be an
open neighbourhood of (0, σ 2) in R

2. Since Fg ≤ F , the results of Section 2 and
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Proposition 5 imply that

lim sup
n→+∞

1

n
ln θn,ρ,g

(
Uc)

≤ lim sup
n→+∞

1

n
ln

∫
�∗∩Uc

exp
(
nFg(x, y)

)
dν̃n,ρ(x, y) − lim inf

n→+∞
1

n
lnZn,g < 0.

Hence, there exist ε > 0 and n0 ∈N such that

∀n > n0 θn,ρ

(
Uc) ≤ exp(−nε).

Thus, for each open neighbourhood U of (0, σ 2),

lim
n→+∞ μ̃n,ρ,g

((
Sn

n
,
Tn

n

)
∈ Uc

)
= 0.

This means that, under μ̃n,ρ,g , (Sn/n,Tn/n) converges in probability to (0, σ 2).

5.2 Proof of the fluctuations result

We suppose in addition that g has a fourth derivative at 0 and that ρ satisfies

∀α > 0 sup
‖(s,t)‖≥α

∣∣∣∣∫
R

eisz+itz2
dρ(z)

∣∣∣∣ < 1. (C)

This is the Cramér condition for νρ . Let us prove that, under μ̃n,ρ,g ,

Sn

n3/4
L−→

n→∞

(
4(μ4 + m4σ

4)

3σ 4

)1/4

�

(
1

4

)−1

exp
(
−μ4 + m4σ

4

12σ 8 s4
)

ds.

This is equivalent to the convergence announced in Theorem 1. For u ∈ R, we
define

En(u) =
∫
Rn

exp
(
iu

x1 + · · · + xn

n3/4 + ng

(
x1 + · · · + xn√
n(x2

1 + · · · + x2
n)

))

× 1{
x2

1+···+x2
n>0

} n∏
j=1

dρ(xj ).

Let us notice that Zn,g = En(0) and that

Eμ̃n,ρ

[
exp

(
iu

Sn

n3/4

)]
= En(u)

En(0)
.

By Paul Levy’s theorem, in order to obtain the convergence in law stated in The-
orem 1, it is necessary and sufficient to prove that, for any u ∈ R, the sequence
(En(u)/En(0))n≥1 converges toward∫

R
exp(iux − ((μ4 + m4σ

4)x4)/(12σ 8)) dx∫
R

exp(−((μ4 + m4σ 4)x4)/(12σ 8)) dx
.
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To this end, we will compute the expansion of En(u), n ≥ 1, u ∈ R. We denote by
ν̃n,ρ the law of (Sn/n,Tn/n) under ρ⊗n. We have

∀u ∈ R En(u) =
∫
�∗

exp
(
iuxn1/4 + nFg(x, y)

)
dν̃n,ρ(x, y).

Let u ∈R and δ > 0. We denote by Bδ the open ball in R
2 of radius δ centered at

(0, σ 2). We choose δ small enough so that Bδ is included in KI , a compact subset
of AI ⊂ �∗. We define

fn : (x, y) ∈ R
2 	−→ exp

(
iuxn1/4)

.

For all n ≥ 1, we write En(u) = An + Bn with

An =
∫

Bδ

fne
nFg dν̃n,ρ and Bn =

∫
(Bδ)c∩�∗

fne
nFg dν̃n,ρ.

First, since Fg ≤ F , Proposition 5 implies that there exists ε0 > 0 such that, for n

large enough,

|Bn| ≤ exp(−nε0).

We next compute the expansion of An, using the results of the last section. We
define the function k by

∀(x, y) ∈R
2 k(x, y) = max

(
1 − |x|,0

) × max
(
1 − |y|,0

)
and, for c > 0, we define kc by

∀(x, y) ∈R
2 kc(x, y) = 1

c2 k

(
x

c
,
y

c

)
.

We put

An,c,1 =
∫
R2

kc/n ∗ (
fne

nFg1Bδ

)
(s, t) dν̃n,ρ(s, t)

and An,c,2 = An − An,c,1. Fubini’s theorem implies that

An,c,1 =
∫
R2

kc/n ∗ (
fne

nFg1Bδ

)( s

n
,

t

n

)
dν∗n

ρ (s, t)

=
∫
R2

(∫
R2

kc/n

(
s

n
− x,

t

n
− y

)
× fn(x, y)enFg(x,y)1Bδ (x, y) dx dy

)
dν∗n

ρ (s, t)

=
∫
R2

fn(x, y)enFg(x,y)1Bδ (x, y)

×
(∫

R2
n2kc(s − nx, t − ny)dν∗n

ρ (s, t)

)
dx dy

= n2
∫

Bδ

fn(x, y)enFg(x,y)ϕn,c(x, y) dx dy,
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where

∀(x, y) ∈ R
2 ϕn,c(x, y) =

∫
R2

kc(s − nx, t − ny)dν∗n
ρ (s, t).

We denote

Hn,c : (x, y) ∈ R
2 	−→ nenI (x,y)ϕn,c(x, y).

Hence,

An,c,1 = n

∫
Bδ

fn(x, y)e−n(I−Fg)(x,y)Hn,c(x, y) dx dy.

The measure νρ satisfies the Cramér condition, thus by Theorem 8, there exists
γ > 0 such that, when n goes to +∞ and c goes to 0, uniformly over (x, y) ∈ KI ,

Hn,c(x, y) = 1

2π

(
det D2

(x,y)I
)1/2(

1 + o(1) + O
(
ne−γ nc−2))

.

We suppose that

εn,c = ne−γ nc−2 −→
n→∞
c→0

0.

Then, uniformly over (x, y) ∈ KI ,

Hn,c(x, y) −→
n→∞
c→0

1

2π

(
det D2

(x,y)I
)1/2

.

We denote

Bδ,n = {
(x, y) ∈ R

2 :
∥∥(

xn−1/4, yn−1/2)∥∥ ≤ δ
}
,

where ‖ · ‖ is the Euclidean norm on R
2. Let us make the change of variable given

by (x, y) 	−→ (xn−1/4, yn−1/2 + σ 2) with Jacobian n−3/4:

An,c,1 = n1/4
∫

Bδ,n

exp
(
iux − n(I − Fg)

(
xn−1/4, yn−1/2 + σ 2))

× Hn,c

(
xn−1/4, yn−1/2 + σ 2)

dx dy.

We check now that we can apply the dominated convergence theorem to this inte-
gral. The uniform expansion of Hn,c means that for any α > 0, there exist n0 ≥ 1
and c0 > 0 such that

(x, y) ∈ KI ,n ≥ n0, c ≤ c0 �⇒ ∣∣Hn,c(x, y)2π
(
det D2

(x,y)I
)−1/2 − 1

∣∣ ≤ α.

If (x, y) ∈ Bδ,n, then (xn, yn) = (xn−1/4, yn−1/2 + σ 2) ∈ Bδ ⊂ KI , thus for all
n ≥ n0, c ≤ c0 and (x, y) ∈ Bδ,n,∣∣∣∣Hn,c

(
x

n1/4 ,
y√
n

+ σ 2
)

2π
(
det D2

(xn,yn)I
)−1/2 − 1

∣∣∣∣ ≤ α.



The Cramér condition for the Curie–Weiss model of SOC 419

Moreover, (xn, yn) → (0, σ 2) thus, by continuity,(
D2

(xn,yn)I
)−1/2 −→

n→+∞
(
D2

(0,σ 2)
I
)−1/2 = (

D2
(0,0)�

)1/2
,

whose determinant is equal to
√

σ 2(μ4 − σ 4). Therefore,

1Bδ,n(x, y)Hn,c

(
x

n1/4 ,
y√
n

+ σ 2
)

−→
n→∞
c→0

(
4π2σ 2(

μ4 − σ 4))−1/2
.

We proved in Section 2 that, when (x, y) goes to (0, σ 2),

I (x, y) − Fg(x, y) ∼ (μ4 + m4σ
4)x4

12σ 8 + (y − σ 2)2

2(μ4 − σ 4)
.

It follows that

n(I − Fg)

(
x

n1/4 ,
y√
n

+ σ 2
)

−→
n→+∞

(μ4 + m4σ
4)x4

12σ 8 + y2

2(μ4 − σ 4)
.

Let us check that the integrand is dominated by an integrable function, which is
independent of n. The function

(x, y) 	−→ (
D2

(x,y)I
)−1/2

is bounded on Bδ by some Mδ > 0. The uniform expansion of Hn,c implies that
for all (x, y) ∈ Bδ , Hn,c(x, y) ≤ Cδ for some constant Cδ > 0. Finally, it follows
from the above expansion of the proposition that, for δ > 0 small enough,

∀(x, y) ∈ Bδ G(x, y) = I (x, y) − Fg(x, y) ≥ (μ4 + m4σ
4)x4

24σ 8 + (y − σ 2)2

4(μ4 − σ 4)

and thus, for δ small enough, for any (x, y) ∈ R
2, n ≥ n0 and c ≤ c0,

1Bδ,n(x, y) exp
(
−n(I − Fg)

(
x

n1/4 ,
y√
n

+ σ 2
))

Hn,c

(
x

n1/4 ,
y√
n

+ σ 2
)

≤ Cδ exp
(
−(μ4 + m4σ

4)x4

24σ 8 − y2

4(μ4 − σ 4)

)
and the right term is an integrable function on R

2. It follows from the dominated
convergence theorem that, when n goes to +∞ and c goes to 0, then n−1/4An,c,1
converges to∫

R2

exp(iux)√
2πσ 2

√
2π(μ4 − σ 4)

exp
(
−(μ4 + m4σ

4)x4

12σ 8 − y2

2(μ4 − σ 4)

)
dx dy.

By Fubini’s theorem, we get

An,c,1 ∼
n→∞
c→0

n1/4
√

2πσ 2

∫
R

exp
(
iux − (μ4 + m4σ

4)x4

12σ 8

)
dx.
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Now we deal with An,c,2. We will introduce an indicator function in order to sim-
plify the expression of An,c,2. We put α = δ/(2

√
2) and

An,c,3 =
∫

Bα

[
fn(s, t)e

nFg(s,t)1Bδ (s, t) − kc/n ∗ (
fne

nFg1Bδ

)
(s, t)

]
dν̃n,ρ(s, t),

An,c,4 =
∫
(Bα)c

fn(s, t)e
nFg(s,t)1Bδ (s, t) dν̃n,ρ(s, t),

An,c,5 =
∫
(Bα)c

kc/n ∗ (
fne

nFg1Bδ

)
(s, t) dν̃n,ρ(s, t),

so that An,c,2 = An,c,3 + An,c,4 − An,c,5. Since Bδ ⊂ �∗ and Fg ≤ F , we have

|An,c,4| ≤
∫
(Bα)c∩�∗

enF dν̃n,ρ

and Proposition 5 ensures that there exists ε1 > 0 such that, for n large enough,

An,c,4 =
n→∞
c→0

O
(
exp(−nε1)

)
.

Until now we used the standard techniques of Laplace’s method (cf. the proof
of the main result of Cerf and Gorny (2016)) together with an approximation of
the identity. The computation of the expansion of An,c,3 and An,c,5 is the technical
part of this proof.

Lemma 9. If δ, c/n and cn1/4 are small enough, then

An,c,3 =
n→∞
c→0

o
(
En(0)

)
,

An,c,5 =
n→∞
c→0

O

(∫
(Bα)c

enF(s,t) dν̃n,ρ(s, t)

)
.

Suppose that Lemma 9 has been proved. Then Proposition 5 ensures that there
exists ε2 > 0 such that, for n large enough,

An,c,5 =
n→∞
c→0

O
(
exp(−nε2)

)
.

We put now together the previous estimates in order to conclude. We take c = 1/n

so that c, ne−γ nc−2 and cn1/4 go to 0 when n → +∞. For δ small enough, when
n goes to +∞, we have

An = n1/4
√

2πσ 2

∫
R

exp
(
iux − (μ4 + m4σ

4)x4

12σ 8

)
dx

(
1 + o(1)

)
+ o

(
En(0)

) + O
(
e−nε1 + e−nε2

)
.
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Finally,

e−nε0 + e−nε1 + e−nε2 =
n→∞o

(
n1/4

√
2πσ 2

∫
R

exp
(
iux − (μ4 + m4σ

4)x4

12σ 8

)
dx

)
thus En(u) = An + Bn is equal to

n1/4
√

2πσ 2

∫
R

exp
(
iux − (μ4 + m4σ

4)x4

12σ 8

)
dx

(
1 + o(1)

) + o
(
En(0)

)
.

Hence,

En(0) ∼ n1/4
√

2πσ 2

∫
R

exp
(
iux − (μ4 + m4σ

4)x4

12σ 8

)
dx.

Therefore,

En(0)

En(0)
−→

n→+∞

∫
R

exp(iux − ((μ4 + m4σ
4)x4)/(12σ 8)) dx∫

R
exp(−((μ4 + m4σ 4)x4)/(12σ 8)) dx

.

This completes the proof of Theorem 1.
We still have to prove the expansions of An,c,3 and An,c,5 which are stated in

Lemma 9.

Proof of Lemma 9. For (s, t) ∈ Bα , if we have kc/n(x − s, y − t) �= 0, then

1 − ∣∣n(x − s)/c
∣∣ > 0 and 1 − ∣∣n(y − t)/c

∣∣ > 0

and thus, for c/n < α,

|x| ≤ |x − s| + |s| < c

n
+ δ

2
√

2
<

δ√
2
,

∣∣y − σ 2∣∣ ≤ |y − t | + ∣∣t − σ 2∣∣ <
c

n
+ δ

2
√

2
<

δ√
2
.

Hence, (x, y) ∈ Bδ and

∀(s, t) ∈ Bα kc/n(x − s, y − t) = kc/n(x − s, y − t)1Bδ (x, y).

This implies that

1Bα × (
kc/n ∗ (

fne
nFg1Bδ

)) = 1Bα × (
kc/n ∗ (

fne
nFg

))
.

We have shown that, for c/n < α,

An,c,3 =
∫
R2

1Bα (s, t)
[
fn(s, t)e

nFg(s,t) − kc/n ∗ (
fne

nFg
)
(s, t)

]
dν̃n,ρ(s, t).
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Let (s, t) ∈ Bα . We have[
fne

nFg − kc/n ∗ (
fne

nFg
)]

(s, t)

=
∫
R2

(
fn(s, t)e

nFg(s,t) − fn(s − x, t − y)enFg(s−x,t−y))kc/n(x, y) dx dy

= enFg(s,t)fn(s, t)

∫
R2

(
1 − en�s,t,n(cx/n,cy/n))k(x, y) dx dy

= enFg(s,t)fn(s, t)

∫
[−1,1]2

(
1 − en�s,t,n(cx/n,cy/n))k(x, y) dx dy,

with, for each (x, y) ∈ R
2,

�s,t,n(x, y) = Fg(s − x, t − y) − Fg(s, t) − iuxn1/4.

By hypothesis, the function g has a fourth derivative at 0, thus g is C1 in a neigh-
bourhood of 0. As a consequence, Fg is C1 in a neighbourhood of (0, σ 2). Hence,
the mean value inequality implies that there exist r > 0 and M > 0 such that, for
any (s, t) ∈ Br and (x, y) ∈ [−1,1]2,

|x| < r and |y| < r �⇒ ∣∣Fg(s − x, t − y) − Fg(s, t)
∣∣ ≤ M

∥∥(x, y)
∥∥.

If δ is small enough (so that α ≤ r) and c ≤ rn then, for any (s, t) ∈ Bα and
(x, y) ∈ [−1,1]2,∣∣∣∣n�s,t,n

(
cx

n
,
cy

n

)∣∣∣∣ ≤ Mn

∥∥∥∥(
cx

n
,
cy

n

)∥∥∥∥ + n

∣∣∣∣ucx

n

∣∣∣∣n1/4

≤ M
√

2c + |u|cn1/4.

By applying the mean value inequality to the function (x, y) ∈ R
2 	−→ ex+iy , we

prove that, if z ∈ C has a small enough real part, then |1 − ez| ≤ 2|z|. Therefore, if
cn1/4 goes to 0, then, for any (s, t) ∈ Bα , uniformly over (x, y) ∈ [−1,1]2,∣∣1 − en�s,t,n(cx/n,cy/n)

∣∣ ≤ 2M
√

2c + 2|u|cn1/4 = o(1).

Hence, if δ, c/n and cn1/4 are small enough, then An,c,3 = o(En(0)) when n goes
to +∞ and c goes to 0. Next, for (s, t) ∈ R

2, we have

kc/n ∗ (
fne

nFg1Bδ

)
(s, t)

=
∫
[−c/n,c/n]2

kc/n(x, y)
(
fne

nFg1Bδ

)
(s − x, t − y)dx dy.

We suppose that ‖s, t − σ 2‖ > δ + √
2c/n. For |x| ≤ c/n and |y| ≤ c/n, we have

then ∥∥(s − x, t − y) − (
0, σ 2)∥∥ ≥ ∥∥s, t − σ 2∥∥ − ‖x, y‖

> δ + √
2c/n −

√
(c/n)2 + (c/n)2 > δ
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so that 1Bδ (s − x, t − y) = 0 and then

kc/n ∗ (
fne

nFg1Bδ

)
(s, t) = 0.

If c/n is small enough so that δ + √
2c/n ≤ 2δ, then

kc/n ∗ (
fne

nFg1Bδ

) = (
kc/n ∗ (

fne
nFg1Bδ

)) × 1B2δ
.

Hence,

|An,c,5|
≤

∫
(Bα)c∩B2δ

(∫
R2

∣∣kc/n(s − x, t − y)
(
fne

nFg1Bδ

)
(x, y)

∣∣dx dy

)
dν̃n,ρ(s, t)

≤
∫
(Bα)c∩B2δ

(
kc/n ∗ enFg

)
(s, t) dν̃n,ρ(s, t).

We note that, for δ small enough, we have on B2δ ,∣∣kc/n ∗ enFg
∣∣ ≤ enFg + ∣∣enFg − kc/n ∗ enFg

∣∣ ≤ enF (1 + 2M
√

2c),

if c/n is small enough (we use here the same argument as in the control of An,c,3,
with u = 0). Finally,

An,c,5 =
n→∞
c→0

O

(∫
(Bα)c

enF(s,t) dν̃n,ρ(s, t)

)
.

This completes the proof of the lemma. �

Appendix: Proof of Theorem 8

The ideas of the proof of Theorem 8 come from the article of Anders Martin-Löf
(1982). It relies also on the following proposition.

Proposition 10. Let ν be a non-degenerate probability measure on R
d such that

the interior of DL is non-empty. Let AJ be the admissible domain of J .

(a) The function ∇L is a C∞-diffeomorphism from
◦

DL to AJ . Moreover,

AJ ⊂ DJ = {
x ∈ R

d :J (x) < +∞}
.

(b) Denote by λ the inverse C∞-diffeomorphism of ∇L. Then the map J is C∞
on AJ and for any x ∈ AJ ,

J (x) = 〈
x,λ(x)

〉 − L
(
λ(x)

)
,

∇J (x) = (∇L)−1(x) = λ(x) and D2
xJ = (

D2
λ(x)L

)−1
.
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(c) If DL is an open subset of Rd then AJ = ◦
DJ = ◦

C where C denotes the
convex hull of the support of ν.

The points (a) and (b) of the above proposition are proved in Andriani and Baldi
(1997) and Borovkov and Mogulskii (1992) and the point (c) in Cerf and Gorny
(2016). We will also need the two following lemmas.

Lemma 11. For any c > 0 and z ∈ C,∫
Rd

e〈x,z〉kc(x) dx =
d∏

j=1

2(cosh(czj ) − 1)

(czj )2 .

Moreover, for any compact K of R, there exists M > 0 such that

∀s ∈ R sup
u∈K

∣∣∣∣2(cosh(u + is) − 1)

(u + is)2

∣∣∣∣ ≤ M

1 + s2 .

Proof. For any ζ ∈ C \ {0},∫
R

eζs max
(
1 − |s|,0

)
ds =

∫ 1

−1
eζs(1 − |s|)ds

=
∫ 1

−1
eζs ds − 2

∫ 1

0
s cosh(ζ s) ds

= 2 sinh(ζ )

ζ
− 2

(
sinh(ζ )

ζ
− cosh(ζ ) − 1

(ζ )2

)

= 2(cosh(ζ ) − 1)

ζ 2

and this last function can be extended to a continuous function at ζ = 0. By Fu-
bini’s theorem, we have, for any c > 0 and z ∈ C

d ,∫
Rd

e〈x,z〉kc(x) dx =
d∏

j=1

1

c

∫
R

exj zj max
(

1 −
∣∣∣∣xj

c

∣∣∣∣,0
)

dxj

=
d∏

j=1

∫
R

exj czj max
(
1 − |xj |,0

)
dxj

=
d∏

j=1

2(cosh(czj ) − 1)

(czj )2 .

Next, we define

f : (s, u) ∈ R× K 	−→ 2(1 + s2)(cosh(u + is) − 1)

(u + is)2 .
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This is a continuous function on R × K (at u = s = 0 it can be extended to a
continuous function by setting f (0,0) = 1). Thus, f is bounded over the compact
set [−1,1] × K . Moreover, if |s| > 1 and u ∈ K , we have∣∣f (s, u)

∣∣ = 2(1 + s2)

u2 + s2

∣∣cosh(u + is) − 1
∣∣ ≤ 2

(
1

s2 + 1
)(

cosh(u) + 1
)

≤ 4 sup
u∈K

(
cosh(u) + 1

)
< +∞.

Hence, f is bounded over R × K by some constant M > 0. This completes the
proof of the lemma. �

Lemma 12 (Uniform dominated convergence theorem). Let X be a separable
metric space and let (�,F,μ) be a measurable space. Let f and fn, n ≥ 1, be real
or complex-valued measurable functions defined on X × �. Suppose that, for any
ω ∈ �, the functions x 	−→ f (x,ω) and x 	−→ fn(x,ω), n ∈N, are continuous on
X and that

sup
x∈X

∣∣fn(x,ω) − f (x,ω)
∣∣ −→
n→∞ 0.

Suppose also that there exists a non-negative and integrable function g on � such
that

∀n ∈N ∀x ∈X ∀ω ∈ �
∣∣fn(x,ω)

∣∣ ≤ g(ω).

Then for any x ∈ X , the function ω 	−→ f (x,ω) is integrable and

sup
x∈X

∣∣∣∣∫
�

fn(x,ω)dμ(ω) −
∫
�

f (x,ω)dμ(ω)

∣∣∣∣ −→
n→∞ 0.

Proof. We adapt the proof of the classical dominated convergence theorem in
Rudin (1987). Sending n to +∞ in the domination inequality, we get

∀(x,ω) ∈ X × �
∣∣f (x,ω)

∣∣ ≤ g(ω).

This shows that ω 	−→ f (x,ω) is integrable. For any n ∈ N, we set

hn :ω 	−→ sup
x∈X

∣∣fn(x,ω) − f (x,ω)
∣∣.

For all n ∈ N and ω ∈ �, the function x ∈ X 	−→ |fn(x,ω) − f (x,ω)| is con-
tinuous and, since X is separable, its supremum is equal to its supremum on a
countable dense subset of X . Therefore, hn is a measurable function. Moreover,
(2g − hn)n∈N is a sequence of non-negative functions whose limit is the function
2g. Fatou’s lemma implies that∫

�
2g dμ =

∫
�

lim inf
n→+∞(2g − hn) dμ ≤ lim inf

n→+∞

∫
�
(2g − hn) dμ

=
∫
�

2g dμ − lim sup
n→+∞

∫
�

hn dμ.
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Since g is integrable, we get that

lim sup
n→+∞

∫
�

hn dμ ≤ 0.

Hence,
∫
� hn dμ → 0 since for any n ∈ N, hn is a non-negative function. Finally,

sup
x∈X

∣∣∣∣∫
�

fn(x,ω)dμ(ω) −
∫
�

f (x,ω)dμ(ω)

∣∣∣∣
≤ sup

x∈X

∫
�

∣∣fn(x,ω) − f (x,ω)
∣∣dμ(ω) ≤

∫
�

hn dμ −→
n→∞ 0

and the lemma is proved. �

Proof of Theorem 8. Lemma 11 implies that

∀s ∈ R
d k̂c(s) =

d∏
j=1

2(1 − cos(csj ))

(csj )2

and, for any u ∈R
d , the function x 	−→ e〈u,x〉kc(x) has the Fourier transform

s ∈ R
d 	−→

d∏
j=1

2(cosh(c(uj + isj )) − 1)

(c(uj + isj ))2 ,

which can be rewritten as

s ∈ R
d 	−→

d∏
j=1

2(1 − cos(c(sj − iuj )))

(c(sj − iuj ))2 = k̂c(s − iu).

This is an integrable function, thus the Fourier inversion formula (see Rudin
(1987)) implies that the Fourier transform of s 	−→ (2π)−d k̂c(s − iu) is the func-
tion y 	−→ e−〈u,y〉kc(y). Let x ∈ KJ and u ∈ R

d . A straightforward computation
yields us that the Fourier transform of

s 	−→ 1

(2π)d
e−n〈x,u+is〉k̂c(s − iu)

is the function y 	−→ e−〈u,y〉kc(y − nx). We have then

ϕn,c(x) =
∫
Rd

e−〈u,y〉kc(y − nx)e〈u,y〉 dν∗n(y)

=
∫
Rd

(∫
Rd

ei〈s,y〉 e−n〈x,u+is〉k̂c(s − iu)

(2π)d
ds

)
e〈u,y〉 dν∗n(y).

By Fubini’s theorem,

ϕn,c(x) =
∫
Rd

e−n〈x,u+is〉k̂c(s − iu)

(2π)d

(∫
Rd

ei〈s,y〉e〈u,y〉 dν∗n(y)

)
ds

=
∫
Rd

e−n〈x,u+is〉k̂c(s − iu)

(2π)d
M(u + is)n ds.
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However, x ∈ AJ thus, if λ denotes the inverse function of ∇L, then Theorem 8
states that

J (x) = 〈
λ(x), x

〉 − lnM
(
λ(x)

)
.

Replacing u by λ(x) in the previous integral, we get

ϕn,c(x) = e−nJ (x)
∫
Rd

e−in〈x,s〉 M(λ(x) + is)n

M(λ(x))n
k̂c

(
s − iλ(x)

) ds

(2π)d
.

We denote by μx the measure on R
d such that

dμx(y) = e〈x+y,λ(x)〉

M(λ(x))
dν(y + x).

Its Fourier transform is the function

s 	−→ e−i〈x,s〉 M(λ(x) + is)

M(λ(x))

so that

ϕn,c(x) = e−nJ (x)
∫
Rd

(
μ̂x(s)

)n
k̂c

(
s − iλ(x)

) ds

(2π)d
.

For any x ∈ KJ , the mean of μx is∫
Rd

y
e〈x+y,λ(x)〉

expM(λ(x))
dν(y + x) =

∫
Rd

(z − x)
e〈z,λ(x)〉

M(λ(x))
dν(z) = ∇L

(
λ(x)

) − x = 0

and its covariance matrix is �x = D2
λ(x)L since for 1 ≤ i, j ≤ d and s ∈ DL,

(�x)i,j =
∫
Rd yiyj e

〈λ(x),y+x〉 dν(y + x)

M(λ(x))
=

∫
Rd (zi − xi)(zj − xj )e

〈λ(x),z〉 dν(z)

M(λ(x))

=
∫
Rd zizj e

〈λ(x),z〉 dν(z)

M(λ(x))
− xixj = ∂2L

∂sisj

(
λ(x)

)
.

When t → 0, uniformly over x ∈ KJ , we have the expansion

μ̂x(t) = 1 − 1

2
〈�xt, t〉 + o

(‖t‖2)
.

Indeed the function (x, t) 	−→ μ̂x(t) is C∞ on AJ ×R
d (by Proposition 10), thus

the Taylor–Lagrange formula guarantees that the remainder term is uniformly con-
trolled over x ∈ KJ . Therefore, for any t ∈ R

d , uniformly over x ∈ KJ ,

μ̂x

(
t√
n

)n

−→
n→∞ exp

(
−1

2
〈�xt, t〉

)
.

Moreover, for any c > 0, n ≥ 1, t ∈R
d and x ∈ KJ ,

k̂c

(
t√
n

− iλ(x)

)
=

∫
Rd

fc,n(x, s) ds,
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with

∀s ∈R
d fc,n(x, s) = exp

(
i

c√
n
〈s, t〉 + c

〈
s, λ(x)

〉)
k(s).

We have

sup
x∈KJ

∣∣fc,n(x, s) − k(s)
∣∣

= k(s) sup
x∈KJ

∣∣∣∣exp
(
i

c√
n
〈s, t〉 + c

〈
s, λ(x)

〉) − 1
∣∣∣∣ −→
n→+∞

c→0

0

and, for all s ∈ R
d , x ∈ KI , c ≤ 1 and n ≥ 1,∣∣fc,n(x, s)

∣∣ ≤ k(s) sup
x∈KI

t∈[−1,1]d
exp

〈
t, λ(x)

〉
.

The term on the right defines an integrable function on R
d since k(s) = 0 for

any s /∈ [−1,1]d . Thus, the uniform dominated convergence theorem (Lemma 12)
states that, for any t ∈ R

d , uniformly over x ∈ KJ ,

k̂c

(
t√
n

− iλ(x)

)
−→

n→+∞
c→0

1.

The functions x 	−→ μ̂x(t) and x 	−→ exp(−〈�xt, t〉/2), t ∈ R
d , are continuous on

KJ . In order to apply the dominated convergence theorem (the uniform variant),
we need to get a uniform domination of the sequence of functions. For x ∈ AJ , �x

is a positive definite symmetric matrix thus εx , its smallest eigenvalue, is positive.
The largest eigenvalue of the inverse of �x is ε−1

x . Therefore, for any x ∈ AJ ,

εx = (
max

{
α :α eigenvalue of �−1

x

})−1 =
(

sup
y �=0

〈�−1
x y,�−1

x y〉
〈y, y〉

)−1/2

.

The term on the right is the inverse of the operator norm of the linear application
associated to the matrix �−1

x . Moreover, x 	−→ �x = D2
λ(x)L is continuous on AJ

thus the function x 	−→ εx is continuous. Let us denote by ε0 its minimum on KJ .
The compactness of KJ ensures that ε0 > 0. The previous expansion implies that
there exists δ > 0 such that

∀(t, x) ∈ B(0, δ) × KJ

∣∣μ̂x(t)
∣∣ ≤ 1 − 1

2

〈(
�x − ε0

2
Id

)
t, t

〉
.

The spectral theorem for real symmetric matrices yields that, for any x ∈ KJ , the
matrix �x − ε0Id is positive symmetric. Thus,

∀t ∈ R
d

〈(
�x − ε0

2
Id

)
t, t

〉
− ε0

2
‖t‖2 = 〈

(�x − ε0Id)t, t
〉 ≥ 0.
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It follows that

∀(t, x) ∈ B(0, δ) × KJ

∣∣μ̂x(t)
∣∣ ≤ 1 − ε0

4
‖t‖2.

Since 1 − y ≤ e−y for all y ≥ 0, we get

∀n ≥ 1 ∀(t, x) ∈ B(0, δ
√

n) × KJ

∣∣∣∣μ̂x

(
t√
n

)∣∣∣∣n ≤ exp
(
−ε0

4
‖t‖2

)
.

The right term is integrable and does not depend on x ∈ KJ and n. Moreover,
k̂c(t) = k̂(ct) for t ∈ R, and by Lemma 11, the function k̂c(·/√n − iλ(x)) is
bounded uniformly over x ∈ KJ , c > 0 and n ≥ 1. The uniform dominated conver-
gence theorem (Lemma 12) implies that, uniformly over x ∈ KJ ,∫

‖t‖<δ
√

n
μ̂x

(
t√
n

)n

k̂c

(
t√
n

− iλ(x)

)
dt

−→
n→+∞

c→0

∫
Rd

exp
(
−1

2

〈(
D2

λ(x)L
)
t, t

〉)
dt.

Moreover, this second integral is equal to (2π)d/2(det�x)
−1/2 and Proposition 10

guarantees that, for x ∈ AJ , D2
λ(x)L is the inverse matrix of D2

xJ . Therefore, when
n → ∞ and c → 0, uniformly over x ∈ KJ ,∫

‖t‖<δ
μ̂x(t)

nk̂c

(
s − iλ(x)

)
ds

= n−d/2
∫
‖t‖<δ

√
n
μ̂x

(
t√
n

)n

k̂c

(
t√
n

− iλ(x)

)
dt

∼
(

2π

n

)d/2(
det D2

xJ
)1/2

.

Let us consider now the remaining integral∫
‖t‖≥δ

μ̂x(t)
nk̂c

(
s − iλ(x)

)
ds.

The measure ν satisfies the Cramér condition and ν is absolutely continuous with
respect to μx . By Lemma 4 of Bahadur and Ranga Rao (1960), we get that μx also
satisfies the Cramér condition:

sup
‖s‖≥δ

∣∣μ̂x(s)
∣∣ < 1.

Therefore, by the compactness of KJ ,

sup
x∈KJ

sup
‖s‖≥δ

∣∣μ̂x(s)
∣∣ = e−γ < 1,



430 M. Gorny

for some γ > 0. As a consequence,

sup
x∈KJ

∣∣∣∣∫‖s‖≥δ
μ̂x(s)

nk̂c

(
s − iλ(x)

)
ds

∣∣∣∣ ≤ e−nγ
∫
Rd

sup
x∈KJ

k̂c

(
s − iλ(x)

)
ds.

By Lemma 11, we have

∫
Rd

sup
x∈KJ

k̂c

(
s − iλ(x)

)
ds = O

(
d∏

j=1

∫
Rd

1

1 + (csj )2 dsj

)
= O

(
1

cd

)
.

Finally, when n → +∞ and c → 0,

ϕn,c(x) = e−nJ (x)

(2π)d

((
2π

n

)d/2(
det D2

xJ
)1/2(

1 + o(1)
) + O

(
e−nγ c−d))

= (2πn)−d/2(
det D2

xJ
)1/2

e−nJ (x)(1 + o(1) + O
(
nd/2e−γ nc−d))

.

The boundedness of the function x 	−→ (det D2
xJ )1/2 on KJ and the previous study

show us that this expansion is uniform over x ∈ KJ . This completes the proof of
Theorem 8. �
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