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Abstract. We propose a two-step method for the analysis of copy number
data. We first define the partitions of genome aberrations and conditional on
the partitions we introduce a semiparametric Bayesian model for the anal-
ysis of multiple samples from patients with different subtypes of a disease.
While the biological interest is to identify regions of differential copy num-
bers across disease subtypes, our model also includes sample-specific random
effects that account for copy number alterations between different samples in
the same disease subtype. We model the subtype and sample-specific effects
using a random effects mixture model. The subtype’s main effects are char-
acterized by a mixture distribution whose components are assigned Dirichlet
process priors. The performance of the proposed model is examined using
simulated data as well as a breast cancer genomic data set.

1 Introduction

There has been increasing interest in constructing the genomic architecture of
breast cancer based on alterations in the DNA copy number. The idea is to char-
acterize different subtypes of breast cancer by examining the whole-genome copy
number profiles. In this paper, we present a Bayesian semiparametric model to an-
alyze DNA copy number data for multiple samples with multiple conditions, for
example, disease subtypes.

An example of such data is a set of 122 breast cancer samples known to fall into
three subtypes of breast cancer, namely estrogen receptor-positive (ER-+), proges-
terone receptor-positive (PR+) and triple negative (TN) breast cancer. These three
subtypes potentially possess different copy number profiles in various regions of
the genome. The scientific aims are to assess: (1) the segmented regions of copy
number alterations within each subtype across the genome, and (2) the regions of
differential copy numbers between subtypes.

We propose a two-step method that defines the partitions of genome aberrations
for each sample in the initial step, and a flexible semiparametric Bayesian frame-
work for jointly modeling all samples known to belong to either of two disease
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subtypes as a second step. We report posterior inferences based on the proposed
Bayesian models and make decisions by controlling the false discovery rate (FDR)
(e.g., Newton et al., 2004). To start, we introduce the biological background and
present a brief literature review.

1.1 DNA copy number and arrayCGH

The normal DNA of human beings has 23 pairs of chromosomes. One pair is the
sex chromosomes and the other 22 pairs are autosomal chromosomes, or auto-
somes. The chromosomes in an autosomal pair are identical; hence, the copy num-
ber of DNA is two for each autosome.

Copy number alterations (CNAs) refer to the variations (from two) in the copy
number of DNA, which are common in cancer and other genetic diseases. CNAs
often result from abnormal genetic events, such as a series of mutations that cause
discrete gains or losses in contiguous segments of DNA. To detect genome-wide
CNAs, array-based hybridization technology, such as the array comparative ge-
nomic hybridization (arrayCGH), has been widely applied (Pinkel et al., 1998;
Snijders et al., 2001; Pinkel and Albertson, 2005). In short, arrayCGH uses mi-
croarrays consisting of thousands or millions of genomic targets or “probes” that
are spotted or printed on a glass surface. These probes usually span the whole
genome with a resolution of the order of magnitude ranging from one probe per
one million base pairs (1 MB) for a bacterial artificial chromosome, to one probe
per 50-100 kilo base pairs (kb). A DNA fest sample of interest is labeled with
a dye (say, Cy3) and then mixed with a diploid reference sample that is labeled
with a different dye (say, Cy5). The combined sample is then hybridized to the
microarrays and the intensities of both colors are measured through an imaging
process.

The quantity of interest is the log, ratio of the two intensities for each probe. The
collection of the intensity ratios then contains useful information about genome-
wide changes in copy numbers. In the reference, the copy number of each DNA
fragment is always two; thus, the intensity ratio is determined by the copy number
of the DNA in the test sample. If that copy number is also two, the log, intensity
ratio equals zero, that is, no CNA. If there is a single copy loss in the test sam-
ple, the theoretical ratio is log, 1/2 = —1, assuming all the cells in the test sample
lost one copy of the DNA fragment. Likewise, if there is a single copy gain, the
theoretical ratio is log, 3/2 = 0.58. Multiple copy gains are called amplifications,
and the corresponding theoretical intensity ratios are log, 4/2, log, 5/2, etc. When
both copies are lost (called deletion), the theoretical ratio is —oo, and a large neg-
ative value is usually observed in experiments. Due to the fact that not all the cells
in the test sample have the same copy number and there is a possibility of tumor
heterogeneity and other genetic contamination such as cross-hybridization, the ab-
solute values of the observed intensity ratios are often smaller than their theoretical
values.
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1.2 Previous work on arrayCGH analysis

There have been a number of approaches proposed for analyzing arrayCGH data
depending on the scientific question of interest. A common starting point of most
investigations is in locating genomic regions that have abnormal copy numbers
and determining the number of DNA copies in that region. In the frequentist do-
main, these include hidden Markov models (Fridlyand et al., 2004), finite mix-
ture models (Hodgson et al., 2001) and change-point models (Olshen et al., 2004;
Pollack et al., 2002) and penalization approaches such as least squares criterion
(Huang et al., 2005), penalized quantile smoothing (Eilers and de Menezes, 2005),
and fused lasso penalty (Tibshirani and Wang, 2008). While these approaches (at
times) enable fast fitting due to their model construction and provide point es-
timations, however, they do not explicitly provide quantification of uncertainties
associated with the genomic copy number aberrations. To overcome these chal-
lenges, Bayesian probabilistic approaches have been proposed by Guha, Li and
Neuberg (2008) who use a parametric hidden Markov model to assess copy num-
ber aberrations at the probe-level. In a Bayesian nonparametric setting, Yau et al.
(2011) proposed a mixture model that combines a hidden Markov model for the
locations (states), with a Dirichlet process prior for the scales. However, all the
above approaches are only applicable for single sample analyses and do not pro-
vide a mechanism to borrow strength between samples to detect population level
copy number changes.

Recently, several approaches have been developed to allow joint modeling of
multiple arrayCGH samples. These include segmentation methods based on gen-
eralized fused lasso (Zhang, Lange and Sbatti, 2012) and correlated random-effect
models of Teo et al. (2011). Bayesian methods for single samples analysis have
been provided by Baladandayuthapani et al. (2010) who use a Bayesian segmenta-
tion model to detect shared aberrations between multiple samples, and Shah et al.
(2007) who propose a class of novel hierarchical hidden Markov models for recur-
rent copy number aberrations. However, these class of methods suffer from two
drawbacks. First, they rely on parametric models that do not allow more flexible
structures to be determined from the data, and second, they do not explicitly test (or
model) differential aberrations between multiple populations of samples—a gap in
literature this work aims to fill.

In this paper, we generalize the previous methods in two key directions:

(i) First, from a statistical modeling point of view, we propose a semiparametric
Bayesian model for arrayCGH data, where we build hierarchical models with
mixture specifications and Dirichlet process (DP) priors (Ferguson, 1973) for
the copy number states of specific genomic regions. The semiparametric for-
mulation allows for a more flexible and adaptive data-driven mechanism for
identification of copy number aberrations.

(i) More importantly, the proposed models account for variability in the samples,
both within and between different conditions, such as cancer subtypes. This
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enables researchers to borrow strength across samples within the same condi-
tion, as well as to infer the identification of differential copy numbers between
different conditions.

Our approach allows for borrowing strength across repeated experiments and
does not rely on specific parametric distributions. A nonparametric specification
for the copy number states prevents us from considering a finite number of states
(typically loss, neutral and gain) and allows us to cope with more states present
in the data. Additionally, we compare different disease subtypes by considering a
kind of bivariate spike and slap prior.

The paper is structured thusly: In Section 2, we present the semiparametric
model and the corresponding posterior distributions required to make inference;
in Section 3, we describe the analysis of simulated and real data; and in Section 4,
we conclude with a discussion.

2 Semiparametric modeling

2.1 Notation

For ease of exposition, we illustrate our proposed model for one chromosome.
The same model is used for other chromosomes in the analysis. Let n denote
the number of probes printed on the microarray for the chromosome. Let A =
{t1, 12, ..., t,} be the index of probes. These indexes are ordered based on the phys-
ical genomic locations of the probes on the chromosome. For example, probe ¢ is
located at the very beginning of the chromosome (e.g., at the p-arm) while probe
t, is at the end (e.g., the g-arm). Typically, the number of probes is the same for
all samples from the same platform. When different types of microarrays are used,
we assume that .4 is a union of all the probes in the samples. For each sample j,
we assume that there are n; probes, which are a subset of A.

To build the models, we require J + 1 different partitions of 4. One parti-

tion for each sample j, {Alj}lL:jl, j=1,...,J, plus a common partition {Qk}le
for all samples. For each sample j, the partition {Alj}lL:j | is defined such that

L; . .
AN Ay ;= and |, Z | A;j = A. Each element A;; contains a consecutive set
of indexes in \A. That is, denoting {tj =c1; <c2j--- < CL+1,j = t,} a subset of
A, we define

{A[j = [C[j,cl_;,_],j),l: 1,...,Lj}

as a partition of .4. Some probes, ;’s, may not be present in sample j, in which case
we simply remove those probes #;’s and the partition remains unchanged. These
partitions can be obtained, for example, by applying circular binary segmentation
(CBS) (Olshen et al., 2004) to each sample, ;.

The common partition {Qk}f: | of size K is defined as the union of all parti-
tion segments over j =1, ..., J. Thatis, Qi = [ck, ck+1) With {fj =c1 <2+ <
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Figure 1 Toy example with two individual partitions { A1} and {A>} and the common partition {<2}.

CK41 =1t} = Uj{tl =Clj <C2j < CLj41,j = t,}. Therefore, for a given probe
t;, it must be in one and only one 2, for k =1, ..., K. Note that this common
partition is finer than each of the individual sample partitions. To better understand
the relation between individual and common partition, we show in Figure 1 a toy
example with two individual partitions and how they relate to form the common
partition.

Let g; € {1, 2} indicate the disease subtype for sample j. In our motivating ex-
ample, g; = 1 denotes the ER+ subtype and g; = 2 denotes the TN subtype of
breast cancer. We also define some distribution notations: N(u, o2) denotes a nor-
mal distribution with mean p and variance o2; N p(, X) is a p-variate multivari-
ate normal distribution with mean g and variance—covariance matrix X; Ga(a, 8)
is a gamma distribution with mean «/8; IGa(c, B) represents an inverse gamma
distribution with mean §/(« — 1); and Ber(;r) denotes a Bernoulli distribution with
success parameter . DP(a, F) is a Dirichlet process with precision parameter a
and centering measure F'. We proceed with the introduction of a sampling model,
followed by the priors.

2.2 Probability model

With the two aforementioned objectives in mind, we construct the following hi-
erarchical models. Let Y;; be the log, ratio of probe #; at sample j. We assume
that ¥;; arises from the sum of a population mean, a sample-specific mean, plus
a measurement error. Specifically, let the population mean be jix g;, if probe #; is
in the population segment €2 and sample j is from disease subtype g;; let m;; be
a random effect specific to sample j, assuming that probe #; is in sample-specific
segment A;;; and denote the measurement error by ¢;;. For simplicity, let us as-
sume that #; = i. In summary, the model has a linear expression of the form

K Lj
Yij = g1 €Q)+ Y myli€Ay)+ej, (2.1)

k=1 I=1
fori=1,...,njand j=1,..., J. We assume that the measurement errors ¢;; are

independent and identically distributed N(O, 03).
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We set up the following prior distributions to fulfill our objectives. Denote by
Iy = (k1, Hik2) the vector of population copy number levels for subtypes 1 and 2,
respectively, with distribution G. We construct G as a mixture of two distributions
G and G1, which in turn are assigned nonparametric Dirichlet process priors. In
notation, we have

w GG, fork=1,....K
G =0-m)Go+nG

G, la, " DP,, F,), r=0,1,
where a, and F, are the precision and centering measure parameters, respectively.
Thus, the g, ’s turn out to be partially exchangeable. For the centering measures of
the nonparametric Dirichlet process priors, we take a degenerate bivariate normal
on the identity line Fo(p;) = N(ug1 | O, k%)l(,ukl = l2) and a proper bivariate
normal F1(m;) =No(py |0, Ay), with A(Q) as a nonnegative scalar and A a posi-
tive defined variance—covariance matrix, where we take the covariance to be zero,
that is, A = diag(1?, A%), to ensure identification in the mixture. Note that these
choices for the centering measures are equivalent to the well-known spike and slab
priors (e.g., Mitchell and Beauchamp, 1988) but in two dimensions.

The mixture construction G = (1 — 7)Go + 7 G and the centering measures
for D'P, Fy and F1, allow us to determine regions along the chromosome for which
the two subgroups manifest different copy numbers. That is, with prior probability
(1 — ), the random distribution G comes from a DP with a degenerated centering
measure Fp, where g = g2 almost surely. With prior probability 7, the random
distribution G comes from a DP with a centering measure that obeys a bivariate
normal law, for which w1 # pr2 almost surely (see the Appendix for a simple
proof). Therefore, introducing a latent indicator zzx = I (ux; # Uk2) and assuming
Pr(zx = 1) = &, we can rewrite the prior for u as

i |2k, Go, G1 ™ G, with z¢ * Ber(x) and G, ™S DP(ar, ),  (2.2)
fork=1,...,K and r =0, 1. Note that (2.1) and (2.2) define a Dirichlet process
mixture model (e.g., MacEachern and Miiller, 1998).

Due to the discrete nature of the DP prior, some of the u;’s will be identical. In
summary, the mean copy numbers of segment k for the two disease subtypes, wx1’s
and uk2, will be clustered in two ways: those segments with the same population
copy number levels across the chromosome probes, and those segments with the
same population copy number levels across the two disease subtypes.

The model specification is completed with the following prior constructions.
For the random effects, m,;, in (2.1), which account for the heterogeneity in the
segment means across samples, we assume that

mi; "N, 7). with 7 " 1Gaar, B). (2.3)
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The sample variance is also assigned a prior distribution of the form 062

IGa(ay, Bs). Finally, for the precision parameter of the Dirichlet processes in

~

(2.2), we further assume a, i Ga(ay, by), forr =0, 1.

2.3 Posterior computation
The likelihood function is the density of the joint distribution of Y = {Y;;}, given
by

J .
| p.m) = 2ro2) VP En

1 J nj K
xexp[—g Z{yij—Zngjl(ier)

j=li=lI k=1

™o

Lj 2
- myjl(ie A,j)} }
=1
We introduce some notation that will be useful in characterizing the posterior:
nj nj
sii=>_1GeQ),  sy=Y 1€y,
i=1 i=1
nj
sij =Y 1 € QI € Ay, (2.4)
i=1
nj

nj
S/fj = Zy,-jl(i € ), and s,yj = Zyijl(i € Ajj).
i=1 i=l

We now report the conditional posterior distributions needed to perform Markov
chain Monte Carlo simulations.

1. Update (py, zi). We will jointly update p; and z;. Based on the Polya urn
representation of the DP prior (see the Appendix), we can derive the prior condi-
tional distribution for the pair (g, zk), given all other pairs (p;, zj)’s for j # k, as

(Mg 20) | s 2

wl(ze=1) K
~ ANy (g | 0. A D) + D 8y (i) I (zj = 1)
a1 + Ky ik

n (1 —=m)I(zx =0)
ao + Ko

{aoN(Mkl 10, A3) T (i1 = x2)

K
+Zaﬂj<uk)1<z,-=0>},
j#k
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where K, = Zﬁék I(zj=r),r =0, 1 such that Ky + K| = K — 1. Therefore, the

posterior conditional for (g, zx) is given by

F (g, zi 1y, rest) = gooN (k1 | Bo, Co)I (i1 = i) (zk = 0)
K

+ > q0jdu, (w1 (zj = 0)I (zx = 0)

J#k
(2.5
+ q1oN2(uk | B1, C1)I(zg =1)
K

+ D q18u, () (zj =Dz =1),

Jj#k
where
doo = ap(l —m)Ap doi = (I —m)Dy;
(ao+ Kop)Q'’ 7 (a0 + Ko)Q'
a1mAq 7TD1j

M= +kne T wrkno

with Q the normalizing constant such that ggp + g10 + Z;’gﬁk (goj +q1j) =1, and

V1 V2 1 1 >_1 ( 1 1 >_1 2}
Ag = o, —+ — Aot
0 ¢{<1/fk11 * i//k22><¢k11 * Y2 Yr11 * 9%} M

Vi1 Vi2
By— (— + —)co,
Vil Y

Co= (L—}—L%-i)_l,
kil Yk A2
Doj = ¢(j1 | i1, YerD)@ (1 | e, Yr22),
=¢2(¥x |0, Wi + A1),

for j £k,

k1 ( 1) !
Wi \ Wkt )»
Bi=| »
k2 ( L 1
Wi \ Wi )»
~1

1= la NG) ) NG} )
s Y A2 Yk A3
Dij=¢a(p; | ¥k, Yi), for j #k,
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where ¢ and ¢, are the univariate and bivariate normal density functions, respec-
tively. Finally,

LA
Yio (g = 1)(s); — X2 mujsuy)
_ YT 1(gj = sy

Yi = L:
Z,j-zl 1(gj =2)(s; — X2y mujsuaj)
Yo 1(gj =2)sk)
and
2
J % 0
Zj:1 I(gj = Dsj
o
0 €
Y1 1(gj =2)si)
fork=1,..., K, with s;; and s,fj as given in (2.4).

2. Update my;. For the specific random effects m;;, the conditional posterior is
given by

f(myj |y, rest) =N(my; | m*, 72), (2.6)
where
y _
« ST Dk Mkg;Sklj and 72— Sij + i :
 02(sj /o2 +1/T3) *\e2 ) 7
e Wlj/9¢ J € j
forl=1,...,L;and j=1,...,J, where s;;, slyj and sg;; are as given in (2.4).

3. Update o2. For the measurement error variance o2, the conditional posterior
is given by

f(a? |y, rest) =1Ga(o? | o, B), 2.7)

where

17

oy =y + = Z n;j
24
j=1
and
12 K Lj 2
By =Bo + 3 DO Avii— D g 1G € Q) + Y myI(i € Ayj)
j=li=1 k=1 I=1
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4. Update rjz. For the variance of the specific random effects rjz, the conditional
posterior depends on only mlzj and is given by

f(t7 Imyj) =1Ga(x} | . B7), (2.8)

where
L; 1 L
a;"za,—i-?] and ﬂf=ﬁ1+52mlzj.
=1

5. Resampling p;. As is customary when dealing with almost surely discrete
random measures, as in the case for the Dirichlet process, an acceleration step is
required to resample the cluster locations (e.g., Bush and MacEachern, 1996). If
we denote by 7, ..., py; the distinct values of the w;’s, and by z7, ..., z7; the cor-
responding latent indicators, then each u, conditional on the cluster configuration
(c.c.), needs to be resampled from

f(ug 1y, cc., zp =0,rest) =N(ujp, | By, Cg), (2.9)
where
i 3 (e )
(k: ) N VR k22
and

i-{, 2 Gt am) ol

(ke me=p)

if z; =0 and setting 2 = wp1; or from

f(my 1y, cc., zj =1,rest) = Na(pj|B], C). (2.10)
where
Cn X o
. ke =) * K
= _
D D
th: =g} T2
and

1 1\7! 1 1\7!
Ci=d anta) (X o) )
: 1ag{< 2 Vg 2 i A3

{k: pi=pp {k: pe=pj}

ifz; =1.
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6. Update a,. Finally, for the precision parameters a,, r =0, 1 in the Dirichlet
processes, we know from Antoniak (1974) that the conditional posterior distribu-
tion of a, depends on only the number of distinct p;’s and the sample size, that
1s,

F@)  Hotae-1,-pua,
far | Hr, K;) x F(ar-i—Kr)a’ e , (2.11)
where K, = Zle I(zx =r) and H, is the number of distinct values u;’s such
that zy =r, forr =0, 1.

The precision parameter a, plays a very important role. It largely affects the
number of clusters in the u;’s. A small value of a, implies fewer clusters, whereas
a large value results in many clusters. Since for the arrayCGH data we anticipate
having a relatively small number of segments per chromosome, we will consider
relatively informative priors in such a way that they assign most of the mass to
small values of a,.

Sampling from each of the previous conditional posterior distributions is
straightforward, since almost all of them have a standard form. The exception is the
updating step 6, for which we would require a Metropolis—Hastings step (Tierney,
1994). The main challenge lies in the speed of computation for large data sets,
which we have. Programming language such as R will not scale. Instead, we used
Fortran, a low-level but much faster language for coding. The computing speed is
much improved.

2.4 Calling differential copy number alterations

There are several quantities of interest that we want to focus on in order to achieve
our inferential objectives. We break down these quantities into two categories,
those for population-level inference, and those for sample-specific inference. The
key parameters of interest are w = (uk1, 1k2), 2k, and my;.

To obtain summaries at the population level, for each population segment k =
1,..., K, we compute marginal posterior probabilities for each disease subtype,
say p; = P(|ux1| > d; | data) and p» = P(|ux2| > d> | data), for given values of d
and d,. Higher values of these probabilities will imply a marginal CNA for each
subtype.

Moreover, to determine differential CNAs across disease subtypes, we compute
the joint posterior probabilities,

p: =P({lmk1| = dy or |uia| > do}, {zx = 1} | data),

for k=1, ..., K. Higher values of these probabilities indicate that segment k has
CNAs in any of the disease subtypes and there are differential copy numbers across
the two subtypes. The different combinations given in the previous description of
the probability may also produce alternative inferences. The threshold to determine
high probability values for py, p and p, is set according to a prespecified FDR.
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For the sample-specific inference, for each sample j and segment [, the
segment-specific mean copy number is (i g; + my, j), in which the population
segment k overlaps with the sample-specific segment. Note that there can be sev-
eral population segments that are embedded in the same sample-specific segment.
When this is the case, we simply report inference according to the segments de-
fined by the population segments.

3 Data analysis

In this section, we consider two analyses, one with simulated data under different
scenarios to test our model, and the other with real data obtained from a breast
cancer study conducted at MD Anderson Cancer Center.

3.1 Simulated data

We implemented a simulation study in order to evaluate the operating characteris-
tics of our approach. We simulated samples with n = 1000 probes, with ordered lo-
cations ranging from 1 to n. For group g = 1, we considered four regions of shared
aberrations around locations {200, 400, 600, 800}, alternating gain and loss. Group
g = 2 contains only two regions of aberration at locations {600, 800}, identified
as a copy number gain and loss, respectively. We randomly generated aberration
widths from a Ga(2.5, 0.05) distribution that has a mean of 50 and 99% interval
(5, 168), which shows a large variability and accommodates both large and short
segments. We took the level of the profiles for each probe to be zero for the neutral
zones and to be a positive/negative random value Un(0.1, 0.25) for the gain/loss
zones, respectively.

We then added white noise to these mean profiles. We generated random errors
from N(0, 02), with o2 € {0.1, 0.3} to show low and high levels of noise in the log,
ratios. We generated 100 profiles, 50 from each group. To test our model under
different conditions, only a percentage w100% of the profiles presented the shared
aberrations; the remainder (1 — w)100% were all neutral, showing only white noise
around zero. We took three prevalence levels, w € {1, 0.6, 0.3}. Therefore, we have
a total of 6 different scenarios. Scenarios 1 to 3 have low noise with 100%, 60%
and 30% prevalence levels, respectively, and scenarios 4 to 6 have high noise with
100%, 60% and 30% prevalence levels, respectively.

Figure 2 shows four profiles for the low (left column) and high (right column)
noise levels. We can see that for the high noise profiles, it is very difficult to dis-
tinguish (visually) the aberration zones. In the same figure, we present group 1,
with four aberration zones (top row) and group 2, with only two aberration zones
(bottom row).

To obtain the sample-specific partitions {A;;}, we ran the CBS algorithm with
the default tuning parameter o = 0.01. We fitted our model with the following
prior specifications: A(Z) = )L% = A% = 100 to induce flat centering measures, and
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Figure 2 Simulated aCGH data. No copy number alterations (white dots), amplifications
(green/medium grey dots) and deletions (red/dark grey dots). Group 1 (top row) and group 2 (bottom
row). Low noise level (left column) and high noise level (right column).

(atg, Ba) = (1, 1) as a relatively informative prior to induce a small a,, and thus a
low number of point masses in the Dirichlet processes. For the inverse gamma prior
on the sampling variance 03, we took (s, Bs) = (2, 1) to be a little informative.
The crucial parameter in the model is the variance of the segment-specific random
effects, 72. Large values of 77 would make the sample-specific effects capture most
of the variability of the data, leaving little information for the population mean.
On the other hand, if rjz is small, the variability of the data is shared between the
population effects and the sample-specific effects. In fact, if we choose (a;, ;) =
(2, 1), the logarithm of the pseudo marginal likelihood (LPML) statistic (Geisser
and Eddy, 1979) for scenario 1 is 88, 686; whereas if (a¢, 87) = (3,0.01), the
LPML is 80, 211. Although the fitting of the individual samples is better with the
former choice, we prefer the latter because it produces better estimates for both
the population and individual samples. In all cases, we ran the Gibbs sampler for
10,000 iterations with a burn-in of 1000, keeping every other draw after burn-in for
computing the estimates. The Markov chain converged quickly and mixed well.

For calling differential CNAs, we took FDR = 5%, with thresholds d; = d, =d.
Since we have different levels of prevalence of aberrations in the samples, in the
different scenarios, it is more difficult to call a CNA. To be fair, we took d =
0.10, 0.05, 0.03 as threshold values for the 100%, 60% and 30% prevalence levels,
respectively.

Figure 3 presents the CNA calls for the different scenarios. In each panel, we
show three rectangles, with the x-axis indicating the probe location. The first two
rectangles correspond to the marginal CNAs of groups 1 and 2 called from p;
and p». The third rectangle indicates the regions along the chromosome where
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Figure 3 Simulated aCGH data. Calls of marginal CNAs and differences between the two groups
(T1 and T2). Copy number gain (green/medium grey), loss (red/dark grey) and differential CNAs
across groups (blue/light grey). Low noise level (left column) and high noise level (right column).
Prevalence levels: 100% (top row), 60% (middle row) and 30% (bottom row).

there are CNA differences across the two chromosomes, called from p,. As we
can see from this figure, with a low level of noise in the data, our model is able
to detect the regions of aberration in each group, as well as the regions of CNA
differences across the two groups, for the three prevalence scenarios.

Now, looking at the right column in Figure 3, which corresponds to the sce-
nario of a high noise level, our model is able to detect most marginal regions of
aberrations for the cases with 100% and 60% prevalence; however, it is not able to
detect any of the aberrations in the cases with low prevalence. This is reasonable
because, given 30% aberration prevalence in the samples combined with a high
noise level, the findings are essentially white noise. For the 100% aberration preva-
lence in the samples (top right panel in Figure 2), we notice that even though our
model correctly detects the marginal regions of aberrations in each group, it also
detects a difference in the levels of the second region of amplifications, denoted
with a blue/light grey segment aligned with the two green/medium grey segments
in groups 1 and 2. This false discovery is also due to the high level of noise present
in the data.
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To study the dependence of our model to the sample specific partitions {A;;},
we repeated the analysis with other two values of the tuning parameter « in the
CBS algorithm, say 0.001 and 0.05. With a smaller value of o, CBS detects less
changing points, whereas with a larger value, more changing points are detected.
Results (not included here) showed that the impact of the partitions in the inference
is almost null, perhaps it is preferred a partition with more segments (larger « in
the CBS) than another with few segments, specially when the level of prevalence
is low.

3.2 Breast cancer data

At the University of Texas MD Anderson Cancer Center, we conducted arrayCGH
experiments using samples from 122 patients with breast cancer. For each sample,
we used an Agilent HG 4x44K array with 42,416 unique probes. As a result, the
raw data contained a matrix of 42,416 x 122 log, ratios. The tumor samples we
analyzed represented 60 patients with ER+ breast cancer, 11 patients with PR+
breast cancer, and 51 patients with TN breast cancer. Given the reduced number
of patients with the subtype PR+, we concentrated on comparing the other two
subtypes, ER+ and TN. It is common practice to analyze each chromosome sepa-
rately since it is rare to see cross-chromosomal CNAs. Therefore, we split the data
based on the chromosomes and analyzed each of them separately.

To prepare for Bayesian inference, we preprocessed the arrayCGH data, which
included a global normalization process to center the sample mean for each of the
111 samples. Analogous to the simulated data, we obtained sample-specific par-
titions {A;;} by running the CBS algorithm with a tuning parameter of « = 0.01.
We used the same prior specifications that we used in the simulated data analysis.
We ran the Gibbs samplers for 10,000 iterations, with a burn-in of 1000, keep-
ing every other draw. Again, for calling a differential CNA, we took FDR = 5%,
with thresholds d; = d, = 0.2 for all chromosomes. We found CNA differences
between the two cancer subtypes in 16 of the 23 chromosomes; predominantly in
chromosomes 3-7, 9—12, 14-19 and 23.

In Figures 4 and 5, we present marginal CNAs for the two cancer subtypes
(ER+ and TN) and copy number differences across the two subtypes.

Curtis et al. (2012) provided what is perhaps the most comprehensive report on
genomic architecture for breast cancer, based on genomics findings from a study
of 2000 breast tumors. We compared our statistical inference with the findings in
that article, and report the results below.

An ER+ subgroup of breast cancer found in Curtis et al. (2012) is uniquely
marked by 11q deletion. This subgroup of patients exhibited a steep mortality rate
and elevated hazard ratios in the findings of Curtis et al. The top panel of our
Figure 4 clearly shows the deletion to chromosome 11 in the second half, marked
by the red bars. These deletions are not present in the TN subgroup, echoing the
findings of Curtis et al. (2012). Furthermore, the green/medium grey bars in the
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Figure 4 Calls of marginal CNAs and differences between the two cancer subtypes. Copy number
gain (green/medium grey), loss (red/dark grey) and differential CNAs across groups (blue/light grey).
Chromosomes 11 (top) and 5 (bottom).
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Figure 5 Calls of marginal CNAs and differences between the two cancer subtypes. Copy number
gain (green/medium grey), loss (red/dark grey) and differential CNAs across groups (blue/light grey).
Chromosomes 1 (top) and 16 (bottom).

middle of chromosome 11 indicate copy number gains in this region, which was
also reported by Curtis et al. However, these copy number gains are present in
both the ER+4 and TN groups, making them less interesting for distinguishing the
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two subgroups. The bottom panel of our Figure 4 shows a large chunk of copy
number loss on chromosome 5, which is unique to the TN subgroup. This is one
of the major findings of Curtis et al., as well. This is a region containing numerous
important signaling molecules and transcription factors, the aberration of which
not only affects the genes residing in the region, but those regulated by them.
Therefore, this is marked as a trans-influenced region by Curtis et al. (2012).

The two plots in our Figure 5 show a classical 1q gain and 16q loss pattern that
is shared by luminal A breast cancer, a subgroup of the ER+ subtype. The combi-
nation of copy number gain of 1q and loss of 16q is believed to be a centromere-
close translocation (Russnes et al., 2010), which is mainly seen in the luminal A
subgroup. In contrast, there is little copy number variation on 16q for the TN sub-
group.

We identified several other new findings regarding the copy number variations
between the ER+ and TN subgroups. For example, a large region of 15p loss (Fig-
ure 6) is identified in the TN subgroup, but not the ER+ subgroup. This has not
been reported in the literature. However, in Figure 2 on page 12 in Curtis et al.
(2012), a copy number loss at 15q is present. Figure 7 summarizes the differential
CNA probabilities between groups for the whole genome. We believe that our find-
ings confirm several major results reported in the literature, while also providing
new hypotheses for future validations.

4 Discussion

Determining regions of shared CNAs in different samples is a challenging task
and is of great importance for the advance of medical science. In this article, we
addressed the problem of determining shared CNAs based on a two step model
with the second step based on a semiparametric model. The model is equipped with
the ability to identify differences along the genome where two disease subtypes
show differential CNAs. This was achieved by considering a mixture distribution
for the vector of the population levels, the elements of which were in turn assigned
Dirichlet process priors.

Chromosome 15

ER

™

pz

0 200 400 600 800 1000 1200
Probe
Figure 6 Calls of marginal CNAs and differences between the two cancer subtypes in chromosome

15. Copy number gain (green/medium grey), loss (red/dark grey) and differential CNAs across groups
(blue/light grey).
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Figure 7 Differential CNA probabilities between groups for all chromosomes. Blue/grey lines rep-
resent significant probabilities controlled by a 5% FDR within each chromosome.

Through simulation studies, we have shown that the proposed model adequately
determines the shared aberration regions and detects the differences across the two
subgroups. The model was tested under different levels of aberration prevalence
and with different degrees of noise. In most of the scenarios we considered, our
model worked well. The exception occurred in scenarios with a combination of
high noise level and low aberration prevalence, which is an expected finding. We
also found out that the sample specific partitions have almost no influence in the
final inferences.

Future work includes the extension of our model to compare more than two
groups, for which the number of possible combinations then increases dramati-
cally. For example, in the case of three groups, we would have to consider a total
of five cases: the three groups as equal, any two as equal, and all as different. This
will entail a nontrivial generalization of our mixture prior set-up, a task we will
undertake in the future.

Appendix

Stick breaking and Polya urn representation of a DP

In general, a Dirichlet process G, such that G ~ DP(a, F), is a random dis-
crete measure with precision parameter a and centering measure F. According
to Sethuraman (1994), G can be written as a stick breaking representation of the
form

GO = wpdy, (),

h=1

where 8, (-) defines a point mass at x, 1, " F and wp = vy Hj<h(1 —v;), with

Up td Be(1, a). Additionally, if pq,...,pug | G b G, then after integrating out
the process G, Blackwell and MacQueen (1973) showed that the sequence of u;’s
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has a Polya urn representation of the form
ny~F;

9t —N F 84,
My |y i1 PR +a+k—1/.2::1 s

fork=2,..., K. Denoting by u = (q, ..., g) and by p_; = p \ {p}, it can
be easily shown that

a 1 K
o~ F E Sy
R +a+K—1._‘ i
j=1,j#k

a 1 "
F K8+,
a+K—1 +a+K—1j2::1 JoH

~

where ;Ljf ’s are the distinct values of u;’s and K ;"s are the numbers of repetitions.

By the above construction, it is easy to show that when F = Fy = N(0, A%)I (Ui =
Uik2), almost surely wpr1 = pgo. Alternatively, if F = F; = Ny(0, A1), almost

surely (i1 # fi2-
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