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Bayesian Semiparametric Inference on
Functional Relationships in Linear Mixed

Models

Seonghyun Jeong∗ and Taeyoung Park†

Abstract. Regression models with varying coefficients changing over certain un-
derlying covariates offer great flexibility in capturing a functional relationship
between the response and other covariates. This article extends such regression
models to include random effects and to account for correlation and heteroscedas-
ticity in error terms, and proposes an efficient new data-driven method to esti-
mate varying regression coefficients via reparameterization and partial collapse.
The proposed methodology is illustrated with a simulated study and longitudinal
data from a study of soybean growth.
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1 Introduction

Nonparametric statistical methods are well known to reduce modeling bias and increase
the flexibility and applicability of parametric statistical models, but their use can be
hampered by the curse of dimensionality. Many studies have been conducted to over-
come the problem by imposing semiparametric structures to nonparametric models. An
additive model (Breiman and Friedman, 1985; Buja et al., 1989), a partially linear model
(Engle et al., 1986), and a varying-coefficient model (Cleveland et al., 1991; Hastie and
Tibshirani, 1993) are among examples that represent such attempts. Although these
models were motivated by different ideas and concepts, they can be viewed as special
cases of a so-called partially linear varying-coefficient model (Ahmad et al., 2005; Fan
and Huang, 2005), which includes both fixed effects and varying regression coefficients
that change over some underlying covariates such as time, temperature, and geograph-
ical locations.

The partially linear varying-coefficient model is motivated by applications rather
than simply a desire to extend a mathematical model (Fan and Zhang, 2008; Park et al.,
2015). In many applications, there is often interest in assessing a relationship between
a response variable and a certain covariate, which can be confounded with another
underlying covariate called an effect modifier. Then one may consider a model in which
the main effects of both covariates on the response are added with their interaction
term. The interaction term, however, fails to account for nonlinear confounding and is
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not even easily interpretable when both covariates are continuous. In such cases, the
varying-coefficient model allows the effect of a certain covariate on a response variable to
vary with an effect modifier, which permits a nonlinear interaction between the certain
covariate and effect modifier in an easily interpretable manner. For example, in studying
the effects of risk factors on infant mortality in China, there may be need to account
for a potential effect modifier. That is, it is well known that China has undergone a
dramatic change since 1949, so that it is not reasonable to assume the constant effects
of risk factors on infant mortality over time (Cheng et al., 2009). In this case, the
varying-coefficient model can include the main effects of risk factors on infant mortality
and allow the corresponding regression coefficients to smoothly vary as a function of
time; see also our longitudinal data example in Section 5.

Different nonparametric approaches have been proposed to approximate an unknown
smooth function of a varying regression coefficient. Estimation of the varying-coefficient
using a smoothing spline has been studied in Hastie and Tibshirani (1993) and Hoover
et al. (1998), while a kernel smoothing method is used in Fan and Zhang (1999), Wu
and Chiang (2000), and Cai (2002). These approaches, however, require estimating
the optimal value of a tuning parameter, that is, either a smoothing parameter or a
bandwidth, which is a continuous variable. An approximate solution to the optimiza-
tion based on cross-validation is then derived by discretizing the support of the tuning
parameter. There also has been an issue of dealing with multiple tuning parameters.
In the presence of multiple varying-coefficients, local polynomial fitting based on a
single tuning parameter is not possible to achieve plausible smoothing for all varying-
coefficients simultaneously. The curse of dimensionality is then inevitably incurred as
the dimension of tuning parameters increases to improve model flexibility with multiple
varying-coefficients.

In addition to the smoothing spline and kernel smoothing method, a regression
spline, defined as a linear combination of spline basis terms such as B-spline or radial
basis functions, has been also used to model a varying regression coefficient, where the
basis terms are defined by a set of knots (Huang et al., 2002, 2004). Because the shape
and smoothness of an unknown function modeled as a regression spline is determined by
knot placement, the estimation of a varying regression coefficient based on a regression
spline typically uses the number of equally spaced knots as a tuning parameter. In
this way, a regression spline no longer requires approximation to the support of the
tuning parameter, and cross-validation can be used to determine the optimal number
of knots. However, methods based on cross-validation are again hampered by the curse
of dimensionality, and simultaneous inference on the number and location of knots
becomes a challenging task with the regression spline. To simultaneously determine an
unknown number of knots and their unknown locations from data, we develop a data-
driven method based on the notion of Bayesian free-knot splines (Smith and Kohn,
1996; Denison et al., 1998; DiMatteo et al., 2001; Kohn et al., 2001; Park et al., 2012).
By doing so, we avoid biases in the estimates of fixed effects whose inference depends
on the unknown number and location of knots in spline basis terms. In the context of
a varying regression coefficient, Biller and Fahrmeir (2001) proposed a method based
on the reversible-jump Markov chain Monte Carlo by treating the number and location
of knots as random variables. The method, however, yields results that are sensitive to
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the choice of a prior distribution on the number of knots and includes only varying-
coefficients without fixed or random effects, as compared to our proposed method.

In a (partially linear) varying-coefficient model, error terms are typically assumed to
follow a zero-mean Gaussian process with known covariance structure. Such restriction
is, however, sometimes inappropriate because it fails to fully account for correlated and
heteroscedastic errors that are commonly present in longitudinal or spatial data. In this
article, we thus generalize the existing partially linear varying-coefficient model to allow
for an unknown covariance matrix of errors as well as random effects. This extension
allows a parsimonious and flexible modeling framework for the marginal covariance
structure of the Gaussian process. In this paper, we thus develop an efficient data-driven
method for estimating varying regression coefficients with the unknown number and
location of knots in spline basis terms, while simultaneously accounting for correlation
and heteroscedasticity in a covariance structure as well as random effects.

The rest of this article is organized as follows. In Section 2, we develop a partially
linear varying-coefficient mixed models with correlated and heteroscedastic errors based
on radial basis functions and covariance matrix decomposition. Section 3 proposes an
efficient posterior simulation method via reparameterization and partial collapse. In
Section 4, a simulation study is conducted to illustrate the performance of the proposed
method. Section 5 applies the methodology to the soybean growth data, and Section 6
concludes with discussion.

2 Modeling procedures

2.1 Model description

Let Yij be the jth observation within group i and let ni be the total number of obser-
vations for group i. A general form of a partially linear varying-coefficient mixed model
is given by

Yij = w�
ijα(uij) + x�

ijβ + z�ijξi + εij , i = 1, . . . , N, j = 1, . . . , ni, (1)

where wij = (wij1, . . . , wijpw)
�, xij = (xij1, . . . , xijpx)

�, and zij = (zij1, . . . , zijpz)
�

are pw×1, px×1, and pz×1 vectors of covariates, respectively, uij = (uij1, . . . , uijpw)
�

is a pw × 1 vector of underlying effect modifiers that change the effects of wij on Yij

in a nonparametric way, α(uij) = (α1(uij1), . . . , αpw(uijpw))
� is a pw × 1 vector of

varying-coefficients to wij , β is a px × 1 vector of fixed effects, ξi is a pz × 1 vector of
random effects following an independent and identical multivariate normal distribution,

ξi
iid∼ Npz(0,Ψ), with Ψ a pz × pz positive definite covariance matrix, and εij ’s are

error terms following a normal distribution with a certain covariance structure which

is assumed independent across groups, that is, εi = (εi1, . . . , εini)
� ind∼ Nni(0,Σi), with

Σi being an ni × ni positive definite matrix, and ξi ⊥ εi. We refer to the covariance
matrix Σi as a within-group covariance matrix. The within-group covariance is often
assumed to be Σi = σ2Ri with a known positive definite matrix Ri (Laird and Ware,
1982; van Dyk, 2000; Park and Min, 2014). Such restriction do not flexibly model a



1140 Functional Relationships in Linear Mixed Models

marginal covariance matrix, causing bias in the estimation of a mean response. We thus
use a within-group covariance structure that is known up to some variance parameters.
Specifically, we define Hi(η) = diag(exp(v�

i1η/2), . . . , exp(v
�
ini

η/2)) and

Pi(ρ) =

⎛⎜⎜⎜⎝
1 ρ‖ti1−ti2‖ · · · ρ‖ti1−tini

‖

ρ‖ti1−ti2‖ 1 · · · ρ‖ti2−tini
‖

...
...

. . .
...

ρ‖ti1−tini
‖ ρ‖ti2−tini

‖ · · · 1

⎞⎟⎟⎟⎠ ,

where ‖ · ‖ denotes the L2-norm, vij = (vij1, . . . , vijpv)
� and tij = (tij1, . . . , tijpt)

� are
pv × 1 and pt × 1 vectors of covariates, respectively, η is a pv × 1 vector of parame-
ters representing heteroscedasticity related to the covariates vij , and ρ is a parameter
representing non-negative correlation. The covariance matrix can then be decomposed
into Σi = σ2Hi(η)Pi(ρ)Hi(η) in terms of variance parameters (σ2, η, ρ), so that the
conditional covariance structure model is written as

logVar(Yij |ξi) = log(σ2) + v�
ijη,

Corr(Yij , Yik|ξi) = ρ‖tij−tik‖,

where log(σ2) is considered an intercept of the model. The correlation matrix Pi(ρ)
implies that different observations within the same group become more closely correlated
as the Euclidean distance of their tij ’s decreases. This formulation of the correlation
matrix is useful in a temporal or spatial setting if tij represents time or geographical
locations. In particular, when tij denotes the univariate time of observation, Pi(ρ) is
reduced to a serial correlation matrix of continuous-time AR(1) models in Jones and
Boadi-Boateng (1991). When Pi(ρ) is an ni × ni identity matrix, Σi can be viewed as
a covariance matrix specified in heteroscedastic linear regression models (Chan et al.,
2006; Leslie et al., 2007).

Note that, for identifiability, the sets of covariates wij and xij should be dis-
joint because the varying-coefficients α(uij) include constant effects. In practice, it
is of interest to partition the covariates into two groups, depending on whether the
effect of each covariate is varying or constant. Without any prior knowledge on co-
variates with constant effects, it is recommended that all covariates be assigned to
wij , assuming interactions with uij . Then our proposed data-driven method in Sec-
tion 2.2 can distinguish covariates with constant effects from those with varying effects
via Bayesian knot selection, circumventing the problem of overfitting; refer to Sec-
tion 4.3.

If the effects of covariateswij on Yij are believed to vary with a single effect modifier,
we let uijk = u∗

ij for k = 1, . . . , pw and the model in (1) is rewritten as

Yij = w�
ijα(u∗

ij) + x�
ijβ + z�ijξi + εij , (2)

where α(u∗
ij) = (α1(u

∗
ij), . . . , αpw(u

∗
ij))

�. When the common effect modifier u∗
ij repre-

sents the time of observation, the model in (2) is reduced to a time-varying-coefficient
model that has been widely studied in the literature (Hoover et al., 1998; Cai et al.,
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2000; Huang et al., 2002; Liang et al., 2003; Huang et al., 2004; Cai, 2007; Li et al.,
2011). Unlike the existing time-varying-coefficient model, the model in (2) simultane-
ously accounts for both the random effects and non-spherical within-group errors to
flexibly model marginal errors in a longitudinal setting. If we let vij = tij = u∗

ij for
the within-group errors and u∗

ij represents the time of observation, the model in (2) can
capture serial correlation and monotone heteroscedasticity over time.

2.2 Approximation with a regression spline

To closely approximate an unknown smooth function of a varying-coefficient, we propose
to express αk(·) as a linear combination of spline basis terms. In the regression spline, the
number of knots for the basis terms controls the shape and smoothness of a fitted curve.
In this paper, we develop a data-driven method to determine the unknown number and
location of knots while simultaneously fitting the other model parameters. Because the
number of knots is assumed unknown, the dimension of the spline basis terms is not
fixed but varying. To deal with the varying-dimensional spline basis terms, we consider
a set of potential basis terms and let data suggest a set of plausible ones. In particular,
we use the (Lk + 2)× 1 vector of potential radial basis functions defined by

bk(u) =

{
1, u,

∣∣∣u− τk1
ck

∣∣∣2 log (∣∣∣u− τk1
ck

∣∣∣2), . . . , ∣∣∣u− τkLk

ck

∣∣∣2 log (∣∣∣u− τkLk

ck

∣∣∣2)}�
, (3)

where the abscissae, τk1, . . . , τkLk
, are candidates for knot locations which lie in the

range of the kth underlying effect modifier, and ck denotes a predetermined scale factor
that is set to the sample standard deviation of the kth underlying effect modifier in
our study. Then we introduce the (Lk + 1)× 1 vector of latent knot indicator variables
γk = (γk0, γk1, . . . , γkLk

)�, where γkm = 1 if the (m + 2)th term in (3) is used as a
basis function and 0 otherwise, for m = 0, 1, . . . , Lk. Note that the first term in (3)
corresponds to a constant basis function that is always included in the model. If the
effect of a covariate is truly constant, all knot indicator variables will become zero
and overfitting can be avoided by using only the first term in (3); see Section 4.3 for
details.

One issue with our model specification is the choice of candidates for knot locations.
The knot candidates are typically specified by the equally spaced interior points or
observed order statistics of an underlying effect modifier. When observed data are locally
sparse, it is more stable to use the observed order statistics. While the number Lk of knot
candidates is desirable to be large enough to capture an unknown functional structure,
spline estimates with too many knot candidates can yield a high local variance. As a
guideline, it is recommended to use 20 to 30 knot candidates if an underlying effect
modifier is continuous. If an underlying effect modifier is ordinal, the number of knot
candidates must be smaller than the number of distinct values.

For notational simplicity, we define γ = (γ�
1 , . . . ,γ

�
pw

)�, Jk(γk) =
∑Lk

m=0 γkm, and
J(γ) =

∑pw

k=1 Jk(γk). Letting bγk
(·) denote a (Jk(γk)+1)× 1 vector of basis functions

determined by γk and letting φγk
denote a (Jk(γk)+1)×1 vector of the corresponding
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coefficients, each varying-coefficient αk(·) can be approximated as

αk(Uk) ≈ b�
γk

(Uk)φγk
,

where Uk denotes the kth underlying effect modifier. The model in (1) is then expressed
in a matrix form as

Yi = W�
iBγ,iφγ +Xiβ + Ziξi + εi, (4)

where Yi is an ni×1 vector of observations for group i, W�
i =

⊕ni

j=1 w
�
ij is an ni×nipw

design matrix,Bγ,i = (
⊕pw

k=1 bγk
(ui1k), . . . ,

⊕pw

k=1 bγk
(uinik))

� is an nipw×(J(γ)+pw)

matrix of radial basis functions, φγ = (φ�
γ1
, . . . ,φ�

γp
)� is a (J(γ) + pw) × 1 vector of

the corresponding coefficients, and Xi = (xi1, . . . ,xini)
� and Zi = (zi1, . . . , zini)

� are
ni × px and ni × pz design matrices, respectively. The notation

⊕
denotes the direct

sum of matrices or vectors. Then the model in (4) is equivalent to linear mixed models
with (φγ ,β) treated as fixed effects, except that the dimension of φγ is varying. As a
result, the marginal covariance matrix is computed as Cov(Yi) = σ2Hi(η)Pi(ρ)Hi(η)+
ZiΨZ�

i , which flexibly models marginal variation accounting for covariate effects. When
γ is given, we consider adopting the method of partial collapse after reparameterization
for efficient Bayesian inference on the linear mixed models; see Section 3.

In practice, the most popular choice of basis functions in the context of a regression
spline model for a varying-coefficient is a B-spline basis due to its numerically stable
computation as compared to polynomial spline bases. However, we employ radial basis
functions to circumvent the drawbacks of the B-spline bases arising in a Bayesian knot
selection procedure. Specifically, when B-spline bases are used for the regression spline,
the addition or deletion of a knot does not simply add or delete a basis term, but forms
new basis terms by altering some neighboring bases (Thompson and Rosen, 2008).
Because knot-selection does not correspond to the selection of basis functions and it
is required to modify some columns of W�

iBγ,i every iteration, the use of B-splines
makes an iterative algorithm inefficient and time-consuming. In the case of radial basis
functions, however, the selection of knots corresponds to the selection of basis terms
because bγk

(·) is a subvector of bk(·), and thus the design matrix W�
iBγ,i consists

of selected columns of W�
iBi, where Bi = (

⊕pw

k=1 bk(ui1k), . . . ,
⊕pw

k=1 bk(uinik))
�. This

difference makes an iterative algorithm with radial basis functions computationally much
faster than with B-spline bases.

3 Bayesian semiparametric inference

3.1 Prior specification

The indicator variables γk0, . . . , γkLk
for the kth varying-coefficient are assigned inde-

pendent and identical Bernoulli prior distributions,

γkm|π iid∼ Bernoulli(π), k = 1, . . . , pw, m = 0, . . . , Lk,
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where the hyper-parameter π has a beta prior distribution,

π ∼ Beta(a, b),

where a and b are considered known. We assign a multivariate normal prior distribution
to the fixed effect θγ = (φ�

γ ,β
�)�,

θγ |(γ, κ, ρ,η, σ2,Λ) ∼ NJ(γ)+pw+px

(
0, κσ2

[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Cγ,i

]−1
)
,

where Cγ,i = [W�
iBγ,i,Xi] is an ni × (J(γ) + pw + px) design matrix, Ωi(ρ,η,Λ) =

(Hi(η)Pi(ρ)Hi(η) + ZiΛZ�
i )

−1 is an ni × ni weight matrix, κ is considered as a dis-
persion factor, and Λ is a part of the covariance matrix of random effects such that
Ψ = σ2Λ; see Section 3.2 for details. This prior distribution can be viewed as Zellner’s
g-prior (Zellner, 1986) for the linear mixed models, which facilitates posterior com-
putation by reducing and simplifying some terms in the sampling scheme and has an
invariance property with respect to the scale of covariates and observations; refer to
Kohn et al. (2001) for the fixed-effects models with independent and identically dis-
tributed errors. To get minimal prior information on θγ with γ fixed, κ needs to be
sufficiently large. In the limiting case when κ → ∞, however, the prior specification
does not have vague prior information because p(γkm = 1|γ−km, ρ,η,Λ,Y) goes to 0
for all k and m; refer to Step 1 in Section 3.2. Thus, it is difficult to choose a fixed
value of κ representing vague prior information. Some authors refer to this problem
as Bartlett’s paradox of g-priors (Clyde and George, 2004; Liang et al., 2008). To cir-
cumvent such difficulty, we treat κ as a random variable by assigning a scaled inverse
chi-squared prior distribution,

κ ∼ qN/χ2
q,

where N is the number of groups and q is a constant fixed in advance. Considering the
parameter space of ρ, we assign a beta prior distribution to ρ,

ρ ∼ Beta(c, d),

where c and d are fixed constants. To construct a Metropolis–Hastings proposal kernel
using the method in Gamerman (1997), the parameters representing heteroscedasticity
η are assigned a multivariate normal prior distribution,

η ∼ Npv(m,S),

with fixed constants m and S; see Appendix A. To complete a Bayesian specification of
the proposed model, we choose the following conjugate prior distributions,

σ2 ∼ rs2
/
χ2
r,

Λ|σ2 ∼ IW(g,D/σ2),

for the remaining model parameters, where IW stands for an inverse Wishart distribu-
tion. In our study, the constants a, b, q, c, d, m, S, r, s2, g, and D are fixed in advance
to make the corresponding prior distribution diffuse.
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3.2 Efficient posterior computation

For efficient posterior computation, we consider (partially) collapsing some model pa-
rameters out of the proposed model (Liu, 1994; van Dyk and Park, 2008). First, the
knot-indicator probability π is completely collapsed out of the model without complicat-
ing posterior computation. Thus, we aim to generate samples from the target posterior
distribution p(γ, κ,θγ , ρ,η, σ

2, ξ,Λ|Y), where ξ = (ξ�1 , . . . , ξ
�
N )� is a collection of ran-

dom effects and Y = (Y�
1 , . . . ,Y

�
N )� is a collection of observations. Second, to further

facilitate posterior computation via the method of partial collapse, we reparameterize
the covariance matrix of random effects such that Ψ = σ2Λ (Park and Min, 2014). The
utility of this reparameterization was also noted in the context of an EM-type algorithm
for linear mixed models (van Dyk, 2000). The reparameterization allows (ξ,θγ , σ

2) to
be partially collapsed out of the model. Using the three basic tools developed by van
Dyk and Park (2008), the posterior sampling scheme based on the method of partial
collapse is constructed as follows.

Step 1. Draw γkm from p(γkm|γ−km, κ, ρ,η,Λ,Y), which is Bernoulli,

γkm|(γ−km, κ, ρ,η,Λ,Y)

∼ Bernoulli

(
p(γkm = 1,γ−km|κ, ρ,η,Λ,Y)

p(γkm = 1,γ−km|κ, ρ,η,Λ,Y) + p(γkm = 0,γ−km|κ, ρ,η,Λ,Y)

)
,

for k = 1, . . . , pw and m = 0, . . . , Lk, where γ−km = (γ�
1 , . . . ,γ

�
k−1,γ

�
k\m,γ�

k+1, . . . ,

γ�
pw

)� with γk\m = (γk0, . . . , γk,m−1, γk,m+1, . . . , γkLk
)�, and the conditional distribu-

tion of γ given (κ, ρ,η,Λ,Y) is given by

p(γ|κ, ρ,η,Λ,Y) ∝ Γ
(
a+ J(γ)

)
Γ
(
b+

∑pw

k=1
Lk + pw − J(γ)

)
× (κ+ 1)−(J(γ)+pw+px)/2 Ξ(γ, κ, ρ,η,Λ)

−(r+
∑N

i=1 ni+gpz)/2

with

Ξ(γ, κ, ρ,η,Λ) = rs2 + tr(DΛ−1) +
∑N

i=1
Y�

i Ωi(ρ,η,Λ)Yi

− κ

κ+ 1

{[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Yi

]�
×
[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Cγ,i

]−1[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Yi

]}
.

Step 2. Draw ϕ = logit(ρ) = log{ρ/(1 − ρ)} from p(ϕ|γ, κ,η,Λ,Y) and set ρ =
logit−1(ϕ), where the conditional distribution of ϕ given (γ, κ,η,Λ,Y) is proportional
to

p(ϕ|γ, κ,η,Λ,Y) ∝
[
logit−1(ϕ)

]c [
1− logit−1(ϕ)

]d
×Ξ(γ, κ, logit−1(ϕ),η,Λ)

−(r+
∑N

i=1 ni+gpz)/2
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×
∏N

i=1

(∣∣Λ−ΛZ�
i Ωi(logit

−1(ϕ),η,Λ)ZiΛ
∣∣1/2

×
∣∣Hi(η)Pi(logit

−1(ϕ))Hi(η)
∣∣−1/2

)
.

The logit transformation makes the algorithm more stable because the support of ρ
is bounded by 0 and 1. To simulate ϕ, we use a Metropolized independent sampler
with a normal proposal distribution that is tuned to match the mode and curvature of
p(ϕ|γ, κ,η,Λ,Y).

Step 3. Draw σ2 from p(σ2|γ, κ, ρ,η,Λ,Y), which is scaled inverse chi-squared,

σ2|(γ, κ, ρ,η,Λ,Y) ∼ Ξ(γ, κ, ρ,η,Λ)
/
χ2
r+

∑N
i=1 ni+gpz

.

Step 4. Draw θγ from p(θγ |γ, κ, ρ,η, σ2,Λ,Y), which is multivariate normal,

θγ |(γ, κ, ρ,η, σ2,Λ,Y)

∼ NJ(γ)+pw+px

(
κ

κ+ 1
θ̂γ(γ, ρ,η,Λ),

κσ2

κ+ 1

[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Cγ,i

]−1
)
,

where θ̂γ(γ, ρ,η,Λ) = [
∑N

i=1C
�
γ,iΩi(ρ,η,Λ)Cγ,i]

−1[
∑N

i=1C
�
γ,iΩi(ρ,η,Λ)Yi].

Step 5. Draw ξ from p(ξ|γ, κ,θγ , ρ,η, σ
2,Λ,Y), which is a product of N independent

multivariate normal distributions,

ξi|(γ, κ,θγ , ρ,η, σ
2,Λ,Y)

ind∼ Npz

(
ξ̂i(γ,θγ , ρ,η,Λ), σ2

[
Λ−ΛZ�

i Ωi(ρ,η,Λ)ZiΛ
])

, i = 1, . . . , N,

with ξ̂i(γ,θγ , ρ,η,Λ) = ΛZ�
i Ωi(ρ,η,Λ)(Yi −Cγ,iθγ).

Step 6. Draw κ from p(κ|γ,θγ , ρ,η, σ
2, ξ,Λ,Y), which is scaled inverse chi-squared,

κ|(γ,θγ , ρ,η, σ
2, ξ,Λ,Y)

∼
(
qN +

1

σ2
θ�
γ

[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Cγ,i

]
θγ

)/
χ2
q+J(γ)+pw+px

.

Step 7. Draw Λ from p(Λ|γ, κ,θγ , ρ,η, σ
2, ξ,Y), where the conditional distribution of

Λ given (γ, κ,θγ , ρ,η, σ
2, ξ,Y) is proportional to

p(Λ|γ, κ,θγ , ρ,η, σ
2, ξ,Y) ∝ NJ(γ)+pw+px

(
θγ ;0, κσ

2
[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Cγ,i

]−1)
× IW

(
Λ; g +N,

[
D+

∑N

i=1
ξiξ

�
i

]/
σ2

)
, (5)

whereNd( · ;μ,Σ) denotes the probability density function of a d-dimensional multivari-
ate normal distribution with mean vector μ and covariance matrix Σ, and IW( · ; ν,Ψ)
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denotes the probability density function of an inverse Wishart distribution with ν de-
grees of freedom and scale matrix Ψ. To simulate Λ, we use a Metropolized independent
sampler with an inverse Wishart proposal distribution given by

IW
(
Λ; g +N,

[
D+

∑N

i=1
ξiξ

�
i

]/
σ2

)
;

see Appendix A for the construction of the proposal distribution.

Step 8. Draw η from p(η|γ, κ,θγ , ρ, σ
2, ξ,Λ,Y), which is proportional to

p(η|γ, κ,θγ , ρ, σ
2, ξ,Λ,Y) ∝ NJ(γ)+pw+px

(
θγ ;0, κσ

2
[∑N

i=1
C�

γ,iΩi(ρ,η,Λ)Cγ,i

]−1)
×Npv(η;m,S)

×
∏N

i=1
Nni

(
Yi;Cγ,iθγ + Ziξi, σ

2Hi(η)Pi(ρ)Hi(η)
)
.

(6)

To simulate η, we devise a Metropolis–Hastings algorithm with an efficient proposal
distribution that is multivariate normal with mean vector ζ(γ,θγ , ρ,η

(t), σ2, ξ) and
covariance matrix Δ(ρ), where

ζ(γ,θγ , ρ,η, σ
2, ξ) = Δ(ρ)

(
S−1m+

1

2

∑N

i=1
V�

i

[
Pi(ρ) ◦Pi(ρ)

]−1
νi(γ,θγ ,η, σ

2, ξ)
)
,

νi(γ,θγ ,η, σ
2, ξ) =

(
v�
i1η − 1 +

e2i1(γ,θγ , ξ)

σ2 exp(v�
i1η)

, · · · ,v�
ini

η − 1 +
e2ini

(γ,θγ , ξ)

σ2 exp(v�
ini

η)

)�
,

Δ(ρ) =
(
S−1 +

1

2

∑N

i=1
V�

i

[
Pi(ρ) ◦Pi(ρ)

]−1
Vi

)−1

,

Vi = (vi1, . . . ,vini)
� is an ni × pv design matrix, ◦ denotes the Schur product, and

e2ij(γ,θγ , ξ) is a squared residual calculated as the square of the jth element of the
vector (Yi −Cγ,iθγ − Ziξi) in each iteration; see Appendix A for details.

Note that the resulting posterior sampling scheme consists of a functionally incom-
patible set of conditional distributions, so that changing the order of the sampling steps
may upset the target stationary distribution of the corresponding Markov transition
kernel (van Dyk and Park, 2008; Park and van Dyk, 2009). Thus, great care must be
taken to implement the resulting posterior sampling scheme.

4 Simulation study

In this section, we assess the performance and validity of the proposed method by
conducting a simulation study. Here we consider three scenarios of varying-coefficients
to illustrate the issues of flexibility and robustness.
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4.1 Varying-coefficients from spline bases

Under the first scenario, varying-coefficients are generated from a regression spline with
the radial basis functions in (3). The true functions for varying-coefficients are given
by α1(U1) = b�

1 (U1)φ1 and α2(U2) = b�
2 (U2)φ2, for 0 < U1, U2 < 1, where bk(·)

is the radial basis functions of the kth varying-coefficient with the following internal
knots,

τ ∗
1 = (0.2, 0.5, 0.8)�,

τ ∗
2 = (0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95)�,

and the corresponding coefficients are

φ1 = (−1.5, 0, 0.4, −1.5, 0.4)�,

φ2 = (−15, 0, 3.8, −6, 2.7, −4.5, 2.7, −6, 3.8)�.

Along with these varying-coefficients, the true values of two fixed effects are given by
β = (β1, β2)

� = (−3, 3)�, the true values of parameters for two random effects are
given by σ2 = 3 and

Λ =

(
λ11 λ12

λ12 λ22

)
=

(
5 7
7 10

)
,

and the true values of parameters representing correlation and heteroscedasticity are
given by ρ = 0.3 and η = (η1, η2)

� = (2,−2)�. That is, a positive correlation exists
among observations in each group and the random effects are strongly and positively
correlated. The number ni of observations for each group is randomly generated from
Poisson(10) + 1, the number N of groups is set to 100, the values of underlying effect
modifiers uij = (uij1, uij2)

� are randomly drawn from a uniform distribution between
0 and 1, and all values of known covariates wij = (wij1, wij2)

�, xij = (xij1, xij2)
�,

zij = (zij1, zij2)
�, vij = (vij1, vij2)

�, and tij = (tij1, tij2)
� are generated from in-

dependent standard normal distributions for all i and j. For each varying-coefficient,
candidates of knot locations are chosen to be 30 equally spaced interior points which lie
in the range of the corresponding underlying effect modifier. Given the test data gen-
erated under the simulation settings, we run the proposed sampling scheme for 10000
iterations with two over-dispersed starting values. The convergence of the sampling
scheme is then assessed by computing the R̂1/2 statistic (Gelman and Rubin, 1992) for
all model parameters of fixed dimension, and our posterior inference is based on the
collection of second halves from the two chains.

Posterior estimates of two varying-coefficients modeled with regression splines are
presented in Figure 1. The top two panels of Figure 1 show an estimated posterior
inclusion probabilities of the linear basis term and knot locations for each of the two
varying-coefficients. The true locations of knots are correctly specified by the high pos-
terior inclusion probabilities of knot locations in the vicinity of true ones. The estimated
inclusion probability of the linear basis term in each varying-coefficient is close to zero
because its true value equals zero. The bottom two panels of Figure 1 present an esti-
mated trajectory of each varying-coefficient as a function of the corresponding underly-
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Figure 1: Posterior inclusion probabilities of knot locations and estimated functions
of varying-coefficients under the first scenario. The top two panels show the posterior
inclusion probabilities of the linear basis term (open square) and knot locations (solid
lines) with true knot locations (vertical dashed lines). The bottom two panels show the
true curves of varying-coefficients (dashed lines), point-wise posterior medians of the
estimated curves (solid lines), and point-wise 95% intervals (gray regions).

ing effect modifier. The true trajectory of each varying-coefficient is well estimated by
its point-wise posterior medians and reasonably covered by its 95% point-wise poste-
rior intervals. Figure 2 shows the marginal posterior distributions of model parameters
other than ones related to varying-coefficients, along with their autocorrelation plots.
To numerically evaluate the performance of the proposed sampling scheme, the top right
corner of each autocorrelation plot in Figure 2 presents the estimate of the integrated
autocorrelation time (IAT), defined by

IAT = 1 + 2
∑∞

k=1
υk,

where υk is an autocorrelation at lag k. The autocorrelation plots along with the esti-
mates of the IAT illustrate the quick convergence characteristics of the proposed sam-
pling scheme. In Figure 2, the true values of the model parameters used to simulate
the test data are well covered by the corresponding marginal posterior distributions,
thereby illustrating the validity of the proposed method.



S. Jeong and T. Park 1149

Figure 2: Autocorrelation plots and marginal posterior distributions for model param-
eters other than ones related to varying-coefficients. The vertical dashed lines in the
marginal posterior distributions represent the true values of the parameters.

4.2 Varying-coefficients with different parametric structures

To assess the flexibility of the proposed method, we now suppose that each varying-

coefficient is a unique parametric function rather than a regression spline with the radial
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Figure 3: Posterior inclusion probabilities of knot locations and estimated functions of
varying-coefficients under the second scenario. The top two panels show the posterior
inclusion probabilities of the linear basis term (open square with a dotted line) and
knot locations (solid lines). The bottom two panels show the true curves of varying-
coefficients (dashed lines), point-wise posterior medians of the estimated curves (solid
lines), and point-wise 95% intervals (gray regions).

basis functions. Under the second scenario, the true functions for varying-coefficients
correspond to

α1(U1) = sin3(2πU1
3),

α2(U2) = N1(U2; 0.2, 0.05
2)/5 +N1(U2; 0.6, 0.15

2)/5,

for 0 < U1, U2 < 1. Other simulation settings are identical to the first scenario in
Section 4.1.

The posterior inclusion probabilities and the corresponding posterior estimates of
varying-coefficients are presented in Figure 3. The top two panels of Figure 3 illustrate
that more knots are required to estimate the wiggly parts of the true functions for
varying-coefficients, and the proposed method can adapt to bumps in the true curves.
Because of not being based on cross-validation with equally spaced fixed knots, the
proposed method can avoid overfitting and determine the number of knots and their
locations with uncertainty from data. In the bottom two panels of Figure 3, the true
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functions for varying-coefficients are correctly estimated by the point-wise posterior me-
dians of regression splines and well covered by their point-wise 95% posterior intervals.
While the true functions for varying-coefficients are well estimated by the free-knot
regression splines, the marginal posterior distributions of other model parameters also
correctly estimate their true values, as in Figure 2.

4.3 Robustness against overfitting

A disadvantage of existing methods based on cross-validation is their susceptibility to
overfitting. Under the third scenario, we thus consider a misspecified model which may
overfit data, and conduct a simulation study to illustrate that the proposed method is
not so susceptible to overfitting and provides reliable results. Specifically, test data are
generated from a simple linear mixed model with

Yij = x�
ijβ + z�ijξi + εij , (7)

where εij ’s are independent and identically distributed as N1(0, σ
2), assuming neither

correlation nor heteroscedasticity, i.e., ρ = 0 and η = 0. The true values of four fixed
effects are given by β = (0, 0,−3, 3)�, the true value of the within-group variance is
set to σ2 = 3, and the true value of Λ is set as in Section 4.1. The number ni of
observations for each group and the number N of groups are identical to the simulation
settings in Section 4.1. The values of known covariates, xij = (xij1, . . . , xij4)

� and
zij = (zij1, zij2)

�, are generated in the same way as in Section 4.1.

The test data generated from a simple model in (7) are fit with a complex model
given by

Yij = x�
ijα(uij) + z�ijξi + εij , (8)

where the effects of xij on Yij are assumed to vary smoothly with the underlying effect
modifiers uij and εij ’s are correlated and heteroscedastic errors. The values of additional
known covariates, uij = (uij1, . . . , uij4)

�, vij = (vij1, vij2)
�, and tij = (tij1, tij2)

�, are
generated in the same way as in Section 4.1.

Figure 4 shows the posterior inclusion probabilities of knot locations and the pos-
terior estimates of varying-coefficients. The top panels of Figure 4 illustrate that our
data-driven method used to fit the complex model in (8) tends to include only the con-
stant basis term because the posterior knot inclusion probabilities of the other basis
terms are all close to zero. That is, if the effect of a covariate is truly constant, the pos-
sibility of overfitting is eliminated by data-driven Bayesian knot selection. The bottom
panels of Figure 4 show that the varying-coefficients are estimated as constant and the
true values of constant effects are well covered by the posterior point-wise 95% intervals.

While the test data are generated with uncorrelated errors having the same variance,
the fitted model in (8) assumes correlated and heteroscedastic errors with the possibility
of overfitting. As shown in Figure 5, however, the marginal posterior distributions of pa-
rameters associated with correlation and heteroscedasticity suggest neither correlation
nor heteroscedasticity, avoiding the possibility of misleading the results.
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Figure 4: Posterior inclusion probabilities of knot locations and estimated functions of
varying-coefficients under the third scenario. The top panels illustrate that only the
constant basis term tends to be used in the model if the effect of a covariate is truly
constant. The bottom panels show the estimated effect (solid lines) of a covariate is
constant and the corresponding point-wise 95% intervals (gray regions) cover the true
value (dashed lines) reasonably well.

Figure 5: Marginal posterior distributions for selected model parameters associated with
correlation and heteroscedasticity. The vertical dashed lines represent the true values of
the parameters.

5 Application to soybean data

5.1 Study background and model construction

We illustrate the proposed methodology using longitudinal data from a study of soy-
bean growth (Davidian and Giltinan, 1993, 1995). The soybean data were collected to
compare the growth characteristics of soybeans with two genotypes: plant introduction
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Figure 6: Trajectories of the log-average leaf weight per plant over days after planting.

#416937, an experimental strain, and Forrest, a commercial variety. These two geno-
types are labeled as P and F, respectively. The experiment was conducted in three
consecutive years (1988–1990). In each year, eight plots were planted with each of the
two genotypes. Beginning from two weeks after planting, six plants were randomly se-
lected from each plot roughly weekly and the leaves of the plants were aggregated and
weighed, calculating an average leaf weight per plant. The trajectories of observations
for the two genotypes are presented in Figure 6. Davidian and Giltinan (1995) used
a logistic growth curve model to fit the soybean data. Here the same data are ana-
lyzed with the proposed model that flexibly models a functional relationship between
the log-average leaf weight and genotype as a function of days after planting, while
simultaneously accounting for random effects and non-spherical within-plot errors.

Figure 6 shows that the log-average leaf weight per plant varies among planting
years, which suggests that the effect of planting year on soybean growth should be ac-
counted for. This discrepancy may reflect different meteorological conditions: unusually
dry weather in 1988, moist climate in 1989, and relatively normal conditions in 1990.
Figure 6 also shows that the log-average leaf weight per plant has different variation
for each combination of genotype and year, and that there is a plot-specific effect in
the observed trajectories. To account for the variation among observations, we consider
a random intercept for the plot-specific effect and allow within-plot variation to vary
with days after planting, genotypes, and planting years. In addition, it is reasonable to



1154 Functional Relationships in Linear Mixed Models

assume the presence of serial correlation among observations in such longitudinal data
obtained from repeated measurements over time, so that we account for serial corre-
lation in the within-plot covariance matrix. The genotype–year interaction effects are
assumed to be constant based on our pilot study showing that there is no varying effect
on the interactions; refer to Section 4.3. The proposed model is then given by

Yij = α1(Dij) + α2(Dij)Gi + α3(Dij)I1989,i + α4(Dij)I1990,i

+ β1GiI1989,i + β2GiI1990,i + ξi + εij , (9)

where Yij is the jth observation for the log-average leaf weight of the ith plot, Dij

denotes days after planting, Gi denotes a genotype labeled as 1 if a plant is P and 0
otherwise, It,i is a dummy variable of year t, and ξi is a random effect following a normal
distribution, N1(0, σ

2λ). The within-plot covariance structure assumes that the log of
a within-plot variance is linear in all covariates and a within-plot serial correlation is
subject to a difference in days after planting, i.e.,

logVar(Yij |ξi) = log(σ2) + η1Dij + η2Gi + η3I1989,i + η4I1990,i,

Corr(Yij , Yik|ξi) = ρ|Dij−Dik|/7,

respectively. The observations were measured at approximately weekly intervals, so that
we divide a difference in time intervals by 7 to make ρ represent a within-plot correlation
coefficient between two consecutive observations. The model in (9) corresponds to the
proposed model in (1), where

wij = (1, Gi, I1989,i, I1990,i)
�,

xij = (GiI1989,i, GiI1990,i)
�,

zij = 1,

uij = (Dij , Dij , Dij , Dij)
�,

vij = (Dij , Gi, I1989,i, I1990,i)
�

tij = Dij/7.

As compared to a nonparametric model with no assumption on the structure, the pro-
posed model in (9) can avoid the curse of dimensionality and the estimated functions
for varying-coefficients are easy to interpret; refer to the case of the varying-coefficient
model (Fan and Zhang, 1999).

5.2 Bayesian semiparametric inference and results

We ran the proposed sampling scheme in Section 3.2 with 15 knot candidates chosen
by the observed order statistics of days after planting. Figure 7 presents the posterior
estimates and point-wise 95% posterior intervals of varying-coefficients. The top-left
panel of Figure 7 shows that the baseline log-average leaf weight per plant increases
as a non-linear function of days after planting. In the top-right panel of Figure 7, the
effect of genotype on the log-average leaf weight per plant is also nonlinear in days after
planting and significantly positive, implying that the log-average leaf weight of plant
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Figure 7: Posterior estimates of varying-coefficients for the soybean data.

introduction #416937 is significantly larger than that of Forest as days after planting
progress. The bottom two panels of Figure 7 show the effects of the year 1989 and 1990
on the log-average leaf weight per plant, as compared to the year 1988. While the effect
of the year 1989 is significantly different from that of the year 1988, the year effect on
the log-average leaf weight per plant is not significantly different between the year 1988
and 1990.

Posterior summary statistics of model parameters other than ones related to varying-
coefficients are presented in Table 1. The genotype-year interaction effects are estimated
as 0.4420 with a 95% posterior interval of (0.3208, 0.5612) for the year 1989 and 0.0437
with a 95% posterior interval of (−0.0806, 0.1673) for the year 1990. As compared to
the year 1988, the genotype-year interaction effect is thus significant for the year 1989
but not for the year 1990. The variance λ of a random effect has a posterior estimate
of 0.1979 with a 95% posterior interval of (0.0795, 0.4713), reflecting significant plot-
specific effects. The serial correlation parameter ρ is estimated as 0.0977 with a 95%
posterior interval of (0.0178, 0.2136), which implies that there exists significant positive
serial correlation over time in within-plot variation. While both 95% posterior intervals
for η1 and η2 include zero, the year-specific heteroscedasticity parameters, η3 and η4,
are estimated as 0.8159 and 0.9373 with 95% posterior intervals of (0.4585, 1.1673) and
(0.5798, 1.2926), respectively. Thus, there exists significant heteroscedasticity across
years but neither with genotype nor with days after planting.
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Parameter Posterior mean Posterior median 2.5 percentile 97.5 percentile
β1 0.4420 0.4427 0.3208 0.5612
β2 0.0437 0.0440 −0.0806 0.1673
σ2 0.0175 0.0169 0.0112 0.0270
λ 0.1979 0.1711 0.0795 0.4713
ρ 0.0977 0.0925 0.0178 0.2136
η1 0.0005 0.0006 −0.0076 0.0084
η2 0.1128 0.1131 −0.1778 0.4134
η3 0.8159 0.8163 0.4585 1.1673
η4 0.9373 0.9357 0.5798 1.2926

Table 1: Posterior summary statistics of selected model parameters.

5.3 Model diagnostics

To investigate the fit of the proposed model, we make a posterior predictive assessment
that checks the ability of the fitted model to predict data to which the model is fit (Meng,
1994; Park et al., 2008). In the posterior predictive checks, we compare observed data to
a posterior predictive distribution and base our comparison on six test statistics, Ti(Y)
for i = 1, . . . , 6: the (1) minimum, (2) first quartile, (3) median, (4) third quartile, (5)
maximum, and (6) mean. To do so, we generate M replicated data sets, denoted by
{Ỹ(m),m = 1, . . . ,M}, from a posterior predictive distribution and compute the test
statistics for each data set. The posterior predictive p-value (ppp-value) is calculated
by the proportion of these M replicated data sets for which each test statistic equals
or exceeds the corresponding observed test statistic, i.e., Ti(Ỹ

(m)) ≥ Ti(Y) for m =
1, . . . ,M and i = 1, . . . , 6.

Figure 8 displays a histogram of the values of Ti(Ỹ
(m)) for m = 1, . . . ,M and

i = 1, . . . , 6, with the observed value, Ti(Y), shown by vertical dashed lines. As shown in
Figure 8, the observed data look plausible under the posterior predictive distribution for
all six test statistics, and the corresponding ppp-values fall into a reasonable range, i.e.,
between 0.05 and 0.95. Thus, the posterior predictive assessment implies the proposed
model in (9) provides an adequate fit under the model’s assumptions.

6 Discussion

This paper proposes a partially linear varying-coefficient mixed model in which er-
rors are correlated and heteroscedastic, and develops a novel data-driven method for
efficient Bayesian semi-parametric inference on the proposed model by means of repa-
rameterization and partial collapse. When making inferences on the varying effects of
covariates on the mean response, existing methods fail to fully account for correlated
and heteroscedastic errors that are commonly present in longitudinal or spatial data.
The soybean growth application presents one typical example of this scenario. By not
only generalizing the error terms but also allowing for the data-adaptive selection of
the number and location of knots in a regression spline, our proposed Bayesian method
provides a unified and flexible approach to inference on a linear mixed model that in-
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Figure 8: Posterior predictive checks. The vertical dashed lines represent the values of
observed test statistics.

volves varying-coefficients. The efficiency of the posterior sampling scheme used to infer
the proposed model is achieved by adopting the method of partial collapse without
complicating posterior updates via reparameterization.

A generalization to random effects in the proposed model can be an interesting area
for future research, allowing random effects to vary over some underlying effect modi-
fiers. It is possible that varying covariate effects across different groups can be group-
specific. This idea is conceptually related to the so-called semiparametric stochastic
mixed models (Zeger and Diggle, 1994; Zhang et al., 1998), though previous methods
are based on either kernel or spline smoothing under known covariance structure. In
future research, the proposed method can be also generalized to analyze count data or
aggregate data within a generalized linear mixed model framework (Park and Jeong,
2015). Lastly, each varying-coefficient in our proposed model can vary as a function of
a single underlying effect modifier, but this restriction may be relaxed by employing an
additive structure or multidimensional smoothing methods (Lee et al., 2012; Park et al.,
2015; Ma and Song, 2015).

Appendix A

Efficient construction of a proposal distribution for Λ

In order to construct an efficient proposal distribution for a Metropolized independent
sampler in Step 7, we approximate the target conditional distribution of Λ in (5). To
do so, we make the following assumptions:
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Assumption 1. The marginal posterior distribution of the model parameters (γ,θγ , ρ,

η, σ2,Λ) converges to a degenerate distribution at its mode (γ̃, θ̃γ̃ , ρ̃, η̃, σ̃
2, Λ̃) as N goes

to infinity.

Assumption 2. The matrix N−1
∑N

i=1C
�
γ,iΩi(ρ,η,Λ)Cγ,i converges to a random ma-

trix as N goes to infinity.

Assumption 3. The matrix N−1
∑N

i=1 ξ̂i(γ,θγ , ρ,η,Λ)ξ̂i(γ,θγ , ρ,η,Λ)� converges
to a random matrix as N goes to infinity.

If Assumptions 1 and 2 hold, it can be seen that, for large N , the marginal distri-
bution of κ′ = κ/N is approximately scaled inverse chi-squared,

κ′|Y app∼
(
q +

1

σ̃2
θ̃
�
γ̃G(γ̃, ρ̃, η̃, Λ̃)θ̃γ̃

)/
χ2
q+J(γ̃)+pw+px

,

where G(γ, ρ,η,Λ) = limN→∞ N−1
∑N

i=1C
�
γ,iΩi(ρ,η,Λ)Cγ,i, and that the marginal

distribution of ξi is approximately multivariate normal,

ξi|Y
app∼ Npz

(
ξ̂i(γ̃, θ̃γ̃ , ρ̃, η̃, Λ̃), σ̃2

[
Λ̃− Λ̃Z�

i Ωi(ρ̃, η̃, Λ̃)ZiΛ̃
])

.

Thus the approximate marginal modes of κ′ and ξi, denoted by κ̃′ and ξ̃i, respectively,
tend to be independent of N as N → ∞. If Assumption 1 holds and the chain converges
to the stationary distribution, the target conditional distribution in (5) is approximately
proportional to

NJ(γ)+pw+px

(
θ̃γ̃ ;0, κ̃

′σ̃2
[ 1

N

∑N

i=1
C�

γ̃,iΩi(ρ̃, η̃,Λ)Cγ̃,i

]−1)
× IW

(
Λ; g +N,

[
D+

∑N

i=1
ξ̃iξ̃

�
i

]/
σ̃2

)
, (10)

for large N .

If Assumption 2 holds, the first term in (10) converges to a function of Λ that is
independent of N , so that its dispersion is likely to remain constant as N → ∞. By
contrast, the dispersion of the second term in (10) decreases as N → ∞, when Assump-
tion 3 holds. With large N and under stationarity, this result implies that the target
conditional distribution in (5) is mostly affected by the second term rather than the first
term in (5). Thus, we construct an efficient proposal distribution of the Metropolized
independent sampler for Λ from the second term in (5).

Efficient construction of a proposal distribution for η

In order to construct an efficient proposal distribution of a Metropolis–Hastings algo-
rithm in Step 8, we again approximate the target conditional distribution in (6). To do
so, we make the following proposition.
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Proposition 1. When other parameters are assumed known and Pi(ρ) is the true
correlation matrix,

√
N(η−η̂) asymptotically follows a multivariate normal distribution

with zero mean vector and covariance matrix

lim
N→∞

2

(
1

N

∑N

i=1
V�

i

[
Pi(ρ) ◦Pi(ρ)

]−1
Vi

)−1

,

under mild regularity conditions, where η̂ is the maximum likelihood estimator of η
computed by an iterative procedure,

η̂(�+1) = Δ∗(ρ)
(1
2

∑N

i=1
V�

i

[
Pi(ρ) ◦Pi(ρ)

]−1
ν�
i (γ,θγ , η̂

(�), σ2, ξ)
)
,

where Δ∗(ρ) = 2(
∑N

i=1V
�
i [Pi(ρ) ◦Pi(ρ)]

−1Vi)
−1 and η̂(�) denotes the �th iterate of η

in the procedure.

Proof. Given fixed parameters, ε2ij/[σ
2 exp(v�

ijη)] follows a chi-squared distribution with

one degree of freedom and corr(ε2ij , ε
2
ik) = ρ2‖tij−tik‖ for j �= k. Thus ε2ij follows a

correlated gamma distribution with mean σ2 exp(v�
ijη), so that η can be viewed as the

coefficients of a generalized linear model with correlated gamma family and log-link. The
proof is then straightforward by the theory of a generalized linear model with correlated
data in Liang and Zeger (1986).

If Assumption 1 holds, Proposition 1 implies that, for large N , the target conditional
distribution in (6) is approximately proportional to

NJ(γ)+pw+px

(
θ̃γ̃ ;0, κ̃

′σ̃2
[ 1

N

∑N

i=1
C�

γ̃,iΩi(ρ̃,η, Λ̃)Cγ̃,i

]−1)
Npv

(
η; ζ∗(ρ̃),Δ(ρ̃)

)
, (11)

where ζ∗(ρ) = Δ(ρ)(S−1m+ (1/2)
∑N

i=1V
�
i [Pi(ρ) ◦Pi(ρ)]

−1Viη̂). To further approxi-
mate this function, we make the following additional assumption.

Assumption 4. The matrix N−1
∑N

i=1V
�
i [Pi(ρ) ◦Pi(ρ)]

−1Vi converges to a random
matrix as N goes to infinity.

When Assumptions 2 and 4 hold, the dispersion of the first term in (11) is likely to
remain constant as N → ∞. By constrast, the dispersion of the second term in (11) de-
creases as N → ∞. With large N and under stationarity, this result implies that the tar-
get conditional distribution in (6) is mostly affected by the last two terms rather than the
first term in (6). Thus, we construct an efficient proposal distribution of the Metropolis–
Hastings algorithm for η based on the likelihood function p(Y|γ,θγ , ρ,η, σ

2, ξ) and the
prior distribution p(η) in (6).

Under an independence assumption, Gamerman (1997) developed an efficient Metro-
polis–Hastings proposal distribution for a generalized linear model based on an itera-
tive weighted least square procedure for the maximum likelihood estimator and its
approximate normality. This method was applied to a heteroscedastic regression model
in Chan et al. (2006). While the previous methods are restricted to an independent
case, we extend the results to correlated data. The proposal distribution in Step 8 is
then constructed by combining the prior distribution p(η) and the asymptotic result in
Proposition 1.
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