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Asymptotic Properties of Bayes Risk of
a General Class of Shrinkage Priors in Multiple
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Abstract. Consider the problem of simultaneous testing for the means of inde-

pendent normal observations. In this paper, we study some asymptotic optimality

properties of certain multiple testing rules induced by a general class of one-group

shrinkage priors in a Bayesian decision theoretic framework, where the overall loss

is taken as the number of misclassified hypotheses. We assume a two-groups nor-

mal mixture model for the data and consider the asymptotic framework adopted

in Bogdan et al. (2011) who introduced the notion of asymptotic Bayes optimality

under sparsity in the context of multiple testing. The general class of one-group

priors under study is rich enough to include, among others, the families of three

parameter beta, generalized double Pareto priors, and in particular the horseshoe,

the normal–exponential–gamma and the Strawderman–Berger priors. We estab-

lish that within our chosen asymptotic framework, the multiple testing rules under

study asymptotically attain the risk of the Bayes Oracle up to a multiplicative

factor, with the constant in the risk close to the constant in the Oracle risk. This

is similar to a result obtained in Datta and Ghosh (2013) for the multiple test-

ing rule based on the horseshoe estimator introduced in Carvalho et al. (2009,

2010). We further show that under very mild assumption on the underlying spar-

sity parameter, the induced decisions using an empirical Bayes estimate of the

corresponding global shrinkage parameter proposed by van der Pas et al. (2014),

asymptotically attain the optimal Bayes risk up to the same multiplicative factor.

We provide a unifying argument applicable for the general class of priors under

study. In the process, we settle a conjecture regarding optimality property of the

generalized double Pareto priors made in Datta and Ghosh (2013). Our work also

shows that the result in Datta and Ghosh (2013) can be improved further.
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1 Introduction

Multiple hypothesis testing has become a topic of growing importance in statistics, par-
ticularly for the analysis of high-dimensional data. Its application extends over various
scientific fields such as genomics, bio-informatics, medicine, economics, finance, just to
name a few. For example, in microarray experiments, thousands of tests are performed
simultaneously to identify the differentially expressed genes, that is, genes whose expres-
sion levels are associated with some biological trait of interest. Microarray experiment
is just one out of many examples where one needs to analyze sparse high-dimensional
data, the main objective being detection of a few signals amidst a large body of noises.
Multiple hypothesis testing is one convenient and fruitful approach towards this end.
The biggest impetus to research in multiple hypothesis testing came from the classic
paper of Benjamini and Hochberg (1995). Since then the topic has received considerable
attention from both frequentists and Bayesians.

In this paper, we consider simultaneous testing for means of independent normal
observations. Suppose we have m independent observations X1, . . . , Xm, such that
Xi∼N(μi, σ

2), for i = 1, . . . ,m. The unknown parameters μ1, . . . , μm represent the
effects under investigation, while σ2 is the variance of the random noise. We wish to
test H0i : μi = 0 against H1i : μi �= 0, for i = 1, . . . ,m. Our focus is on situations when
m is large and the fraction of non-zero μi’s is small. For each i, μi is assumed to be a
random variable whose distribution is determined by the latent binary random variable
νi, where νi = 0 denotes the event that H0i is true while νi = 1 corresponds to the
event that H0i is false. Here νi’s are assumed to be i.i.d. Bernoulli(p) random variables,
for some p in (0, 1). Under H0i, μi = 0, i.e., μi ∼ δ{0}, the distribution having mass 1
at 0, while under H1i, μi �= 0 and it is assumed to follow an N(0, ψ2) distribution with
ψ2 > 0. Thus

μi
i.i.d.∼ (1− p)δ{0} + pN(0, ψ2), i = 1, . . . ,m. (1)

The marginal distributions of the Xi’s are then given by the following two-groups model:

Xi
i.i.d.∼ (1− p)N(0, σ2) + pN(0, σ2 + ψ2), i = 1, . . . ,m. (2)

Our testing problem is now equivalent to testing simultaneously

H0i : νi = 0 versus H1i : νi = 1 for i = 1, . . . ,m. (3)

It is assumed that p, ψ2 and σ2 depend on the number of hypotheses m. The parameter
p is the theoretical proportion of non-nulls in the population. In sparse situations, where
most of the μi’s are zero or very small in magnitude, it is natural to assume that p is
small and converges to 0 as the number of hypotheses m tends to infinity. The vari-
ance component ψ2 is typically assumed to be large to identify the true signals. Such
a model is very natural where one has few potentially large signals among a large pool
of noise terms and has been very popular in the literature. See, for example, Mitchell
and Beauchamp (1988), for an early use of modeling of this kind in Bayesian variable
selection where a uniform prior is used for the absolutely continuous part in place of
the normal prior as in (1) above. The two-groups model has the advantage of capturing
information across different tests through learning about the common hyperparameters
based on information from all the data points. Fully Bayesian approaches towards mul-
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tiple testing based on the two-groups model by placing hyperpriors on the underlying
model parameters are available in the literature, see, for example, Scott and Berger
(2006) and Bogdan et al. (2008). Empirical Bayes approaches using the two-groups for-
mulation have been considered, for example, in Efron (2004, 2008), Storey (2007) and
Bogdan et al. (2008), just to name a few. Under model (2) and the usual additive loss
function, Bogdan et al. (2011) provided conditions under which the optimal Bayes risk
(that is, the risk corresponding to the Bayes rule) can be attained asymptotically under
sparsity by a multiple testing procedure as the number of tests grows to infinity. They
referred to this property as Asymptotic Bayes Optimality under Sparsity (ABOS). In
particular, they showed that the procedures of Benjamini and Hochberg (1995) and
Bonferroni attain the ABOS property under mild conditions. The optimal Bayes rule is
also referred to as a Bayes Oracle in Bogdan et al. (2008) and Bogdan et al. (2011) and
will be discussed in detail further in Section 3.

In contrast to the above two-groups formulation, there are proposals to model the
unknown parameters in sparse situations through hierarchical one-group “shrinkage”
priors. Such priors can be expressed as scale-mixtures of normals and their use re-
quire substantially less computational effort than the two-groups model, especially, in
high-dimensional problems as well as in complex parametric frameworks. These priors
capture sparsity by assigning large probabilities to means close to zero while at the
same time they give non-trivial probabilities to large means. This is achieved by em-
ploying two levels of parameters to express the prior variances of the μi’s, namely, the
“local shrinkage parameters”, which control the degree of shrinkage at the individual
levels, and a “global shrinkage parameter”, common for all the μi’s to cause an overall
shrinking effect. If the mixing density corresponding to the local shrinkage parameters
is appropriately heavy tailed, the large observations are left almost unshrunk which
is often referred to as the “tail robustness” property. Choice of the global shrinkage
parameter varies in different specifications and will be discussed in greater detail in
Section 2.

Some early examples of one-group shrinkage priors are the t-prior (Tipping (2001)),
the Laplace prior in the context of Bayesian Lasso (Park and Casella (2008) and Hans
(2009)) and the family of normal–exponential–gamma priors (Griffin and Brown (2005)).
More recently, Carvalho et al. (2009, 2010) introduced a hierarchical Bayesian one-group
prior called the horseshoe prior. Various new one-group shrinkage priors have been
proposed in the literature and studied since then. Armagan et al. (2011) introduced the
class of “three parameter beta normal” mixture priors while the class of “generalized
double Pareto” priors was introduced in Armagan et al. (2012). The family of three
parameter beta normal mixture priors generalizes some well known shrinkage priors
such as the horseshoe, Strawderman–Berger and normal–exponential–gamma priors. See
also, Polson and Scott (2011, 2012), Scott (2011) and Griffin and Brown (2010, 2012,
2013), in this context. Many of these one-group priors, including the horseshoe, employ
local shrinkage parameters with priors having the aforesaid tail robustness property.

The horseshoe prior has acquired an important place in the literature on “shrink-
age” priors and it has been used in estimation as well as in multiple testing and variable
selection problems. Carvalho et al. (2010) proposed a new multiple testing procedure
for the normal means problem based on the horseshoe prior. They observed through
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numerical findings that under sparsity of the true normal means, the procedure based on
the horseshoe prior performs closely to the Bayes rule when the true data comes from a
two-groups model and the loss of a testing procedure is taken as the number of misclas-
sified hypotheses. Datta and Ghosh (2013) theoretically established this optimality by
showing that the ratio of the Bayes risk for this procedure to that of the Bayes Oracle
under the two-groups model (2) is within a constant factor asymptotically. Moreover,
it was numerically shown in their paper, that priors having exponential or lighter tails,
such as the Laplace or the normal prior, fail to achieve such optimality property.

As commented in Carvalho et al. (2009), a carefully chosen two-groups model can
be considered a “gold standard” for sparse problems. Therefore, it may be used as a
benchmark against which the “shrinkage” priors can be judged. Motivated by this and
inspired by the results in Carvalho et al. (2010) and Datta and Ghosh (2013), we want
to study in this paper asymptotic optimality properties of multiple testing procedures
induced by a very general class of “shrinkage” priors which are heavy tailed and yet
handle sparsity well. This class contains the “three parameter beta normal” mixture
priors as well as the “generalized double Pareto” priors. We consider multiple testing
rules based on these priors and apply them on data generated from a two-groups model.
We establish that these rules achieve the same Bayesian optimality property as shown
in Datta and Ghosh (2013) for the testing rule based on the horseshoe prior, assuming
that the global shrinkage parameter is appropriately chosen based on the theoretical
proportion of true alternatives. In case this proportion is unknown, we consider an
empirical Bayes version of this test procedure, where the global shrinkage parameter is
estimated using the data as in van der Pas et al. (2014). We show that the resulting
empirical Bayes testing procedure also attains the optimal Bayes risk asymptotically
up to the same multiplicative factor. We also study the performance of such rules on
simulated data and our theoretical results are corroborated by the simulations.

The highlight of this paper is a unified treatment of the question of Bayesian op-
timality in multiple testing under sparsity based on a very general class of one-group
priors, taking the same loss function as in Datta and Ghosh (2013). In the process, we
not only generalize their results for a very broad class of tail robust shrinkage priors, but
also strengthen their optimality result by deriving a sharper asymptotic upper bound
to the corresponding Bayes risk. We have a new unifying argument that enables us to
establish asymptotic bounds to the risk for this whole class of priors. Datta and Ghosh
(2013) conjectured that for the present multiple testing problem, the generalized double
Pareto prior should enjoy similar optimality property like the horseshoe prior. We settle
this conjecture by showing that the generalized double Pareto is indeed a member of this
general class of tail robust priors under consideration. Further, our general technique of
proof shows that some of the arguments in Datta and Ghosh (2013) can be simplified.

The organization of this paper is as follows. In Section 2, we describe the general
class of one-group priors under study and define the multiple testing procedure based
on them. In Section 3, we present our main theoretical results after describing the
optimal Bayes rule under the two-groups model and the asymptotic framework under
which these theoretical results are derived. The main results of Section 3 crucially
depend on some key inequalities involving the posterior distribution of the underlying
shrinkage coefficients, that help us deriving important asymptotic bounds to the type I
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and type II error probabilities. These inequalities and the bounds on both types of
error probabilities are presented in Section 4. Section 5 contains the simulation results
followed by a discussion in Section 6. Proofs of the theoretical results are given in the
Appendix.

1.1 Notations and definition

Given any two sequences of positive real numbers {am} and {bm}, with bm �= 0, we write
am ∼ bm to denote limm→∞ am/bm = 1. For any two sequences of real numbers {am}
and {bm}, with bm �= 0, we write am = O(bm) if |am

bm
| ≤ M for all m, for some positive

real number M independent of m, and am = o(bm) to denote limm→∞ am/bm = 0. Thus
am = o(1) if limm→∞ am = 0. Moreover, given any two positive real valued functions
f(x) and g(x), both having a common domain of definition (A,∞), A ≥ 0, we write
f(x) ∼ g(x) as x → ∞ to denote limx→∞ f(x)/g(x) = 1.

By a random variable Z we mean a N(0, 1) random variable having cumulative
distribution function and probability density function Φ(·) and φ(·), respectively.

Definition 1. A positive measurable function L defined over some (A,∞), A ≥ 0, is
said to be slowly varying or is said to vary slowly (in Karamata’s sense) if for every
fixed α > 0, L(αx) ∼ L(x) as x → ∞.

2 The one-group priors and the corresponding induced
multiple testing procedures

As mentioned in the introduction, our aim in this paper is to study, through theoretical
investigations and simulations, asymptotic risk properties of the multiple testing rules
induced by a very broad class of one-group shrinkage priors, when applied to data
that come from the two-groups model in (2). The class of one-group priors we study
is inspired by a class of priors suggested in Polson and Scott (2011) which can be
represented through the following hierarchical formulation:

μi|(λ2
i , τ

2, σ2) ∼ N(0, λ2
i τ

2σ2), independently for i = 1, . . . ,m,

λ2
i ∼ π(λ2

i ), independently for i = 1, . . . ,m, and,

(τ2, σ2) ∼ π(τ2, σ2).

Our specific choices of π(λ2
i ) and π(τ2, σ2) are described and explained below. Note

that the above hierarchy is in slight variation from that of Polson and Scott (2011) in
that we bring the σ earlier in the sequence, while in their formulation the σ comes later
through the conditional prior of τ given σ. But both formulations produce the same
marginal prior distribution for the μi’s.

The above one-group formulation is often referred to as a global-local scale mixtures
of normals. The parameter τ is called the “global” shrinkage parameter, while the pa-
rameters λ2

i ’s are called the “local” shrinkage parameters. The corresponding posterior
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mean of μi is given by,

E(μi|Xi, τ, σ) = (1− E(κi|Xi, τ, σ))Xi, (4)

where κi = 1/(1+λ2
i τ

2) is called the ith shrinkage coefficient. It is observed in Carvalho
et al. (2010) and Polson and Scott (2011) that under the two-groups model (2), for large
ψ2, the posterior mean of μi can be approximated as

E(μi|Xi, p, ψ, σ) ≈ ωi(Xi)Xi (5)

where ωi(Xi) denotes the posterior probability that H1i is true. It may be noted further
that when p ≈ 0, most of the ωi’s are expected to be very close to zero unless Xi

is sufficiently large, in which case the corresponding ωi is expected to be close to 1,
provided ψ2 is large enough. This ensures that the noise observations are mostly shrunk
towards zero, while the large Xi’s are left mostly unshrunk. Here the parameter p is
responsible for achieving an overall shrinkage, while the large ψ2 is helpful in discovering
the true signals.

Using the above observations, for the one-group model, Polson and Scott (2011)
argued that in sparse problems, the global shrinkage parameter τ (whose role is analo-
gous to p in the two-groups prior) should be small and its prior should have substantial
mass near zero, whereas the prior for the local shrinkage parameters λ2

i should have thick
tails. This ensures that the resulting prior for the μ’s is highly peaked near zero but also
heavy tailed enough to accommodate large signals. In this sense, the one-group priors
can be thought of as approximately similar to a two-groups prior with an appropriately
heavy-tailed absolutely continuous part.

Motivated by the preceding discussion and the work of Polson and Scott (2011), we
take π(λ2

i ) to be of the form

π(λ2
i ) = K(λ2

i )
−a−1L(λ2

i ), (6)

in our hierarchical formulation. Here K > 0 is the constant of proportionality, a is
a positive real number and L is a positive measurable, non-constant, slowly varying
function over (0,∞). It follows from Theorem 1 of Polson and Scott (2011) that the
above general class of one-group priors achieves the desired “tail robustness” property
in the sense that for any given τ and σ, E(μi|Xi, τ, σ) ≈ Xi, for large Xi’s. Since π(λ2

i )
is assumed to be proper, the possibility of L(·) being a constant function is ruled out.

It will be proved in Section 2.2 and Section 2.3 that a very broad class of one-group
priors, such as, the generalized double Pareto and the three parameter beta normal
mixtures, actually fall inside the general class of shrinkage priors under consideration.
It is worth pointing out here that in some one-group formulations, like the original
form of the generalized double Pareto in Armagan et al. (2012), the global shrinkage
parameter is not explicitly mentioned or equivalently it is kept fixed at 1. In some
other cases, like the three parameter beta normal mixtures, a shared global shrinkage
parameter is explicitly given. Armagan et al. (2011) opined that it is reasonable to put
a prior on the global shrinkage parameter, but this parameter may also be kept fixed
at a certain value which reflects the prior knowledge about sparsity if such information
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is available. In case such prior knowledge is unavailable, one can consider either of the
two approaches, namely, (i) a full Bayes approach by placing further hyperprior over τ
and (ii) an empirical Bayes approach by learning about τ through the data. In the line
of recommendation of Polson and Scott (2011), for a full Bayes treatment of the present
multiple testing problem, we consider the following joint prior distribution of (τ, σ),

τ ∼ C+(0, 1) and π(σ) ∝ 1

σ
, (7)

which will be used later in our simulation study. It should be noted here that Gelman
(2006) strongly recommended the use of a half-Cauchy (or more generally, a folded non-
central-t) distribution as a prior for the global variance component τ in a hierarchical
Bayesian formulation. Though, in his original recommendation, he suggested using a
half-Cauchy prior C+(0, σ) for τ scaled by the error variance σ2, we take C+(0, 1)
since the error variance term σ2 appears earlier in our hierarchical formulation. We also
consider an empirical Bayes approach to be discussed in detail shortly.

We describe below the multiple testing rules considered in this paper. We first con-
sider two rules (defined in (8) and (10) below) for which asymptotic optimality results
have been derived theoretically. For this we assume σ2 to be known and equal to 1. For
the first rule, we treat τ as a tuning parameter to be chosen freely depending on the
value of p, while the second one is based on an empirical Bayes estimate of τ . Note that a
comparison between the expressions in (4) and (5) for the posterior mean of μi, together
with the previous discussion, suggest that the posterior shrinkage weights E(1−κi|Xi, τ)
based on tail robust shrinkage priors, should behave like the posterior inclusion prob-
ability ωi(Xi) in the two-groups model. Using this observation, Carvalho et al. (2010)
proposed a natural classification rule based on the posterior shrinkage weights under a
symmetric 0–1 loss for the horseshoe prior. Borrowing the same idea, we consider the
following multiple testing procedure based on our chosen class of tail-robust one-group
shrinkage priors, given by:

reject H0i if 1− E(κi|Xi, τ) > 0.5, i = 1, . . . ,m. (8)

As mentioned in the introduction, Datta and Ghosh (2013) considered the multiple
testing rule defined in (8) based on the horseshoe prior. They showed that it asymptot-
ically attains the optimal Bayes risk up to a multiplicative factor. It will be seen later
that the Oracle optimality property of the decision rule in (8) based on our general class
of one-group priors, critically depends on appropriate choice of τ depending on p. This
plays a significant role in the limiting value of the type II error measure and in con-
trolling the rate of the overall contribution from type I error in the risk function. This
is similar to the observations made in Datta and Ghosh (2013) for the above multiple
testing rule based on the horseshoe prior.

In a recent article, van der Pas et al. (2014) considered the problem of estimating
an m-dimensional multivariate normal mean vector which is sparse in the nearly black
sense, that is, the number of non-zero entries is of a smaller order than m as m → ∞.
They modeled the mean vector through the horseshoe prior and estimated it by the
corresponding posterior mean, namely, the horseshoe estimator. They showed that for
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suitably chosen τ depending on the proportion of non-zero elements of the mean vec-
tor, the horseshoe estimator asymptotically attains the corresponding minimax l2 risk,
possibly up to a multiplicative constant, and the corresponding posterior distribution
contracts at this optimal rate. But in practice p is usually unknown. A natural approach
in such situations is to learn about τ from the data and then plug this choice into the
corresponding posterior mean. When p is unknown, van der Pas et al. (2014) proposed a
natural estimator of τ and showed that the horseshoe estimator based on this estimate,
attains the corresponding minimax l2 risk up to some multiplicative factor. Inspired by
this, we consider the following estimator of τ due to van der Pas et al. (2014) in case p
is unknown:

τ̂ = max

{
1

m
,

1

c2m

m∑
j=1

1{|Xj | >
√
c1 logm}

}
(9)

where c1 ≥ 2 and c2 ≥ 1 are some predetermined finite positive constants. Note that the
above estimator of τ is truncated below by 1

m and hence it is not susceptible to collapsing
to zero, which is a major concern for the use of such empirical Bayes approaches as
mentioned in Carvalho et al. (2009), Scott and Berger (2010), Bogdan et al. (2008) and
Datta and Ghosh (2013). We refer to van der Pas et al. (2014) for a detailed discussion
on this point. Let E(1−κi|Xi, τ̂) denote the posterior shrinkage weight E(1−κi|Xi, τ)
evaluated at τ = τ̂ . We consider the following empirical Bayes procedure based on
E(1− κi|Xi, τ̂), i = 1, . . . ,m, given by:

reject H0i if 1− E(κi|Xi, τ̂) > 0.5, i = 1, . . . ,m. (10)

For the simulations we consider two cases, firstly, a full Bayes treatment with (τ, σ)
given the joint prior distribution as in (7), and the corresponding rule is defined as

reject H0i if 1− E(κi|X1, . . . , Xm) > 0.5, i = 1, . . . ,m, (11)

where 1−E(κi|X1, . . . , Xm) denotes the ith posterior shrinkage weight after integrating
E(1− κi|Xi, τ, σ) with respect to the joint posterior density of (τ, σ). We also consider
the empirical Bayes decisions as in (10) for the simulation study where we fix σ2 = 1.
We apply the above decision rules in (11) or (10) induced by these priors in the multiple
testing problem (3), where the true data are generated from the two-groups mixture
model (2) described before. We show in this paper, through theoretical analysis and
simulations, that the aforesaid decision rules enjoy similar optimality property as shown
for the horseshoe prior in Datta and Ghosh (2013).

2.1 Some well known one-group shrinkage priors

In this section, we demonstrate that some popular shrinkage priors actually fall within
the general class of one-group priors considered in this paper. This follows from observ-
ing that the mixing density π(λ2

i ) corresponding to the local shrinkage parameter λ2
i can

be expressed in the form (6) where L(·) is a slowly varying function over (0,∞). This in
turn can be shown by proving that the corresponding L(t) converges to a finite positive
limit as t goes to infinity. We also show that for each of these priors the corresponding
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L(·) is uniformly bounded by some finite positive constant. The boundedness property
of L(·) is important, as it makes the proofs of the theoretical results of this paper much
simpler. This will become clear in Section 4 of this paper.

2.2 Three parameter beta normal mixtures

Let us consider the following global-local scale mixture formulation of one-group priors:

μi | λ2
i , τ

2, σ2 ∼ N(0, λ2
i τ

2σ2) independently for i = 1, . . . ,m,

λ2
i ∼ π(λ2

i ) independently for i = 1, . . . ,m,

(τ2, σ2) ∼ π(τ2, σ2)

with

π(λ2
i ) =

Γ(α+ β)

Γ(α)Γ(β)
(λ2

i )
α−1

(
1 + λ2

i

)−(α+β)
(12)

for α > 0, β > 0. The mixing density given in (12), in fact, corresponds to an inverted-
beta density (or, beta density of the second kind) with parameters α and β. The prior
density corresponding to the shrinkage coefficients κi =

1
1+λ2

i τ
2 is then given by

π(κi) =
Γ(α+ β)

Γ(α)Γ(β)
(τ2)βκβ−1

i (1− κi)
α−1

{
1−

(
1− τ2

)
κi

}−(α+β)

which corresponds to an TPB(α, β, τ2) density. Therefore, the above hierarchical one-
group formulation can alternatively be represented as

μi | κi, σ
2 ∼ N

(
0, (κ−1

i − 1)σ2
)
independently for i = 1, . . . ,m,

κi ∼ TPB(α, β, τ2) independently for i = 1, . . . ,m.

This gives the three parameter beta normal mixture priors introduced by Armagan
et al. (2011) and is denoted by TPBN(α, β, τ2σ2). The TPBN family of priors is rich
enough to generalize some well known shrinkage priors, such as the horseshoe prior with
α = 1

2 , β = 1
2 , the Strawderman–Berger prior with α = 1, β = 1

2 and τ2 = 1 and the
normal–exponential–gamma priors with α = 1, β > 0.

Note that the prior in (12) can also be written as

π(λ2
i ) = K(λ2

i )
−β−1L(λ2

i )

where L(λ2
i ) = (1 + 1

λ2
i
)−(α+β) and K = Γ(α+β)

Γ(α)Γ(β) . Clearly, limλ2→∞ L(λ2) = 1, thereby

implying that the TPBN family of priors falls within our general class of global-scale
mixture normals. Also, note that supt∈(0,∞) L(t) = 1, which shows that the associated
function L(·) is bounded as mentioned earlier.
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2.3 Generalized double Pareto priors

Let us consider the hierarchical one-group global-local scale mixture formulation as
described at the beginning of Section 2, where π(λ2

i ) is defined as

λ2
i |γi ∼ Exponential(

γ2
i

2
) independently for i = 1, . . . ,m,

γi|α, β ∼ Gamma(α, β) independently for i = 1, . . . ,m,

for some fixed α > 0 and β > 0. It follows that μi | (τ, σ) has the density

π(μi|τ, σ) =
1

2τσβ/α

(
1 +

|μi|
α · τσβ/α

)−(1+α)

. (13)

The density in (13) above, corresponds to a generalized double Pareto density with
shape parameter α and scale parameter ξ = τσβ/α > 0 and is denoted by GDP (α, ξ).
Equivalently, it may also be interpreted as the density of a GDP (α, β/α) random vari-
able multiplied by τσ. When α = 1 and β = 1, a GDP (α, β/α) distribution is known as
the standard double Pareto distribution. We refer to this hierarchical global-local scale
mixture formulation with π(λ2

i ) defined as above, as the generalized double Pareto prior
introduced by Armagan et al. (2012). For simulations in Section 5, in our hierarchical
global-local scale mixture formulation, when we talk about the standard double Pareto
prior, we mean that λ2

i ∼ GDP (1, 1), and we mix further with respect to the joint den-
sity of (τ, σ) for a full Bayes treatment or use an empirical Bayes estimate of τ taking
σ2 to be fixed, as mentioned before.

Now we demonstrate that the generalized double Pareto prior falls within our chosen
class of tail robust shrinkage priors. Towards this end, we first observe that the mixing
density π(λ2

i ) corresponding to the generalized double Pareto prior can be written as

π(λ2
i ) =

βα

2Γ(α)

∫ ∞

0

e−(
γ2
i λ2

i
2 +βγi)γα+1

i dγi. (14)

Note that using Fubini’s Theorem one has
∫ ∞
0

π(λ2
i )dλ

2
i = 1, so that the density given

in (14) is proper. Now, using the change of variable u = λ2
i γ

2
i /2 in the integral on the

right hand side of (14), we obtain

π(λ2
i ) =

βα(λ2
i )

−α
2 −1

21−
α
2 Γ(α)

∫ ∞

0

e
−β

√
2u

λ2
i e−uu(α

2 +1)−1du

= K(λ2
i )

−α
2 −1L(λ2

i ), say,

where L(λ2
i ) = 2

α
2 −1

∫ ∞
0

e
−β

√
2u

λ2
i e−uu(α

2 +1)−1du and K = βα

Γ(α) .

Now applying Lebesgue’s Dominated Convergence Theorem, we obtain

lim
λ2
i→∞

L(λ2
i ) = 2

α
2 −1

∫ ∞

0

e−uu(α
2 +1)−1du = 2

α
2 −1Γ(

α

2
+ 1) > 0,
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which means that L(·) defined above slowly varies over (0,∞). This also shows that the
mixing density given in (14) can be expressed in the form given by (6) with L(·) as above
and a = α/2. Thus, the generalized double Pareto prior falls within our general class
of tail-robust shrinkage priors. Moreover, using the monotone convergence theorem, it
follows that supt∈(0,∞) L(t) = 2

α
2 −1Γ(α2 + 1), which means the function L(·) defined

above is bounded as well.

3 Asymptotic framework and the main results

In this section, we present our major theoretical results about asymptotic optimality
of the multiple testing rules (8) and (10) under study. In Section 3.1, first we de-
scribe the decision theoretic setting and the optimal Bayes rule under this setting.
We then describe the asymptotic framework under which our theoretical results are
derived. Section 3.2 presents the main theoretical results of this paper involving asymp-
totic bounds to the Bayes risk of the induced decisions (8) and (10) under study. The
Oracle optimality properties of these decision rules up to O(1) then follow immedi-
ately.

3.1 Optimal Bayes rule and the asymptotic framework

Suppose X1, . . . , Xm are independently distributed according to the two-groups model
(2), with σ2 = 1. We are interested in the multiple testing problem (3). We assume
a symmetric 0–1 loss for each individual test and the total loss of a multiple testing
procedure is assumed to be the sum of the individual losses incurred in each test.
Letting t1i and t2i denote the probabilities of type I and type II errors of the ith test,
respectively, the Bayes risk of a multiple testing procedure under the two-groups model
(2) is given by

R =

m∑
i=1

{
(1− p)t1i + pt2i

}
. (15)

It was shown in Bogdan et al. (2008) and Bogdan et al. (2011) that the multiple testing
rule which minimizes the Bayes Risk in (15) is the test which, for each i = 1, . . . ,m,
rejects H0i if

f(xi|νi = 1)

f(xi|νi = 0)
>

1− p

p
, i.e., X2

i > c2,

where f(xi|νi = 1) denotes the marginal density of Xi under H1i while f(xi|νi = 0)

denotes that under H0i and c2 ≡ c2ψ,f = 1+ψ2

ψ2 (log(1 + ψ2) + 2 log(f)), with f = 1−p
p .

The above rule is called Bayes Oracle since it makes use of the unknown parameters ψ
and p, and hence is not attainable in finite samples. By introducing two new parameters
u = ψ2 and v = uf2, the above threshold becomes

c2 ≡ c2u,v = (1 +
1

u
)(log v + log(1 +

1

u
)).

Bogdan et al. (2011) considered the following asymptotic scheme:
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Assumption 1. The sequence of vectors (ψm, pm) satisfies the following conditions:

1. pm → 0 as m → ∞.

2. um = ψ2
m → ∞ as m → ∞.

3. vm = umf2 = ψ2
m( 1−pm

pm
)
2 → ∞ as m → ∞.

4. log vm
um

→ C ∈ (0,∞) as m → ∞.

Under Assumption 1, Bogdan et al. (2011) obtained the following asymptotic ex-
pressions of type I and type II error probabilities of the Bayes Oracle given by

tBO
1 = e−C/2

√
2

πv log v
(1 + o(1)) and (16)

tBO
2 = (2Φ(

√
C)− 1)(1 + o(1)), (17)

and the corresponding optimal Bayes risk was given by

RBO
Opt = m((1− p)tBO

1 + ptBO
2 ) = mp(2Φ(

√
C)− 1)(1 + o(1)). (18)

In (16)–(18) above, the o(1) terms tend to zero as m → ∞.

We want to study asymptotic optimality properties of the multiple testing rules (8)
and (10), induced by our general class of one-group tail robust shrinkage priors when
applied to data generated from the two-groups model (2), where the hyperparameters
(ψm, pm) of the two-groups model satisfy Assumption 1. For simplicity of notation,
henceforth we drop the subscript m from pm, τ2m and ψ2

m. For the sake of completeness,
we describe below the one-group prior specification for our theoretical analysis:

μi|(λ2
i , τ

2)
ind∼ N(0, λ2

i τ
2), for i = 1, . . . ,m,

λ2
i

ind∼ π(λ2
i ) = K(λ2

i )
−a−1L(λ2

i ), for i = 1, . . . ,m,

}
(19)

where a > 0, K > 0 and L is a non-constant slowly varying function over (0,∞). Under
(19), the shrinkage coefficients κi = 1/(1 + λ2

i τ
2)’s are independently distributed given

(X1, . . . , Xm, τ2), with the posterior of κi only depending on (Xi, τ
2) and given by

π(κi|Xi, τ) ∝ κ
a+ 1

2−1
i (1− κi)

−a−1L
( 1

τ2
( 1

κi
− 1

))
e−

κiX
2
i

2 , κi ∈ (0, 1).

3.2 Main theoretical results

In this section, we present in Theorem 1 and Theorem 2 the main theoretical findings
of this paper. Theorem 1 gives asymptotic upper and lower bounds to the Bayes risk
of the multiple testing procedure (8) under study, when the global shrinkage parameter
τ is treated as a tuning parameter, while Theorem 2 gives asymptotic upper bound to
the Bayes risk of the empirical Bayes procedure defined in (10). Proofs of Theorem 1
and Theorem 2 are based on some asymptotic bounds for the corresponding type I and
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type II error probabilities of the individual decisions in (8) and (10), which, in turn,
depend on a set of concentration and moment inequalities. We present these inequalities
and the asymptotic bounds on both kinds of error probabilities in Section 4 of this paper.
Proofs of Theorem 1 and Theorem 2 are given in the Appendix.

Theorem 1. Suppose X1, . . . , Xm are i.i.d. observations having the two-groups normal
mixture distribution in (2) with σ2 = 1, and we wish to test the m hypotheses H0i : νi = 0
vs H1i : νi = 1, for i = 1, . . . ,m, simultaneously, using the decision rule (8) induced
by the one-group priors (19). Suppose Assumption 1 is satisfied by the sequence of
parameters (ψ2, p). Further assume that τ → 0 as m → ∞ such that limm→∞ τ/p ∈
(0,∞), and π(λ2

i ) is such that

(I) 1
2 < a < 1,

(II) a = 1
2 and L(t)/

√
log(t) → 0 as t → ∞.

Then, as m → ∞, the Bayes risk of the multiple testing rules in (8), denoted ROG,
satisfies

mp
[
2Φ

(√
2a

√
C

)
− 1

](
1 + o(1)

)
≤ ROG ≤ mp

[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
(20)

for every fixed η ∈ (0, 1
2 ) and δ ∈ (0, 1). The o(1) terms above are not necessarily the

same, tend to zero as m → ∞, and depend on the choice of η ∈ (0, 1
2 ) and δ ∈ (0, 1).

As a consequence of Theorem 1, for a very large class of priors covered by (I) or (II)
of the stated theorem, the ratio of the Bayes risk of the induced decisions in (8) to that
of the Bayes Oracle (see (18) in Section 3.1) is asymptotically bounded by

2Φ(
√
2a

√
C)− 1

2Φ(
√
C)− 1

(
1 + o(1)

)
≤ ROG

RBO
Opt

≤ 2Φ(
√
2a/(η(1− δ))

√
C)− 1

2Φ(
√
C)− 1

(
1 + o(1)

)
, (21)

as m → ∞, for every fixed η ∈ (0, 1
2 ) and every fixed δ ∈ (0, 1). That is,

ROG = O(RBO
Opt) as m → ∞.

For small values of C and appropriately chosen η ∈ (0, 1
2 ) and δ ∈ (0, 1), the ratios in

(21) given above can be made close to 1. Therefore, we see that, in sparse situations when
the global shrinkage parameter τ is asymptotically of the order of the proportion of true
alternatives p, the decision rules (8), imposed by a very broad class of tail robust one-
group priors satisfying (I) or (II) of Theorem 1, asymptotically attain the optimal Bayes
risk up to a multiplicative constant, the constant being close to 1. It may be seen that the
condition (II) of Theorem 1 is satisfied if, in the prior on the local shrinkage parameter
in (19), one has a = 1

2 and L(·) is, say, uniformly bounded or limt→∞ L(t) ∈ (0,∞). It
has already been shown in Section 2 that the horseshoe prior, the Strawderman–Berger
prior, members from the families of normal–exponential–gamma priors and generalized
double Pareto priors with appropriate choice of (α, β), satisfy these conditions.
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The theoretical results of the forthcoming sections of this paper suggest that, for
the above Oracle optimality property to be true, the optimal choice of τ should be such
that it is asymptotically of the order of p, that is, τ

p has a finite, positive limit as the
number of tests m grows to infinity. It will be shown further that there are other choices
of τ depending on p, for which the desired Oracle optimality up to O(1) may no longer
be true. These will be discussed later in a greater detail in Section 4.2 of this paper.

The next theorem gives an asymptotic upper bound for the Bayes risk of the empir-
ical Bayes procedure defined in (10) under the asymptotic framework of Bogdan et al.
(2011) together with the assumption that p ≡ pm ∝ m−ε for 0 < ε < 1. As a conse-
quence, the Oracle optimality property of the empirical Bayes procedure (10) follows
immediately. Note that the condition p ∝ m−ε, where 0 < ε < 1, is very mild in nature
and covers most of the cases of theoretical and practical interest.

Theorem 2. Suppose X1, . . . , Xm are i.i.d. observations having the two-groups mixture
distribution described in (2) with σ2 = 1, and we wish to test the m hypotheses H0i :
νi = 0 vs H1i : νi = 1, i = 1, . . . ,m, simultaneously, using the decision rule (10)
induced by the one-group priors (19). Suppose Assumption 1 is satisfied by (ψ2, p) with
p ∝ m−ε, for some 0 < ε < 1. Further assume that in the prior π(λ2

i ) for the local
shrinkage parameter λ2

i in (19) satisfies:

(I) 1
2 < a < 1, or,

(II) a = 1
2 and L(t)/

√
log(t) → 0 as t → ∞.

Then, the Bayes risk of the multiple testing rules in (10), denoted REB
OG, is bounded

above by

REB
OG ≤ mp

[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
as m → ∞, (22)

for every fixed η ∈ (0, 1
2 ) and δ ∈ (0, 1), where the o(1) term above tends to zero as

m → ∞ and depends on the choice of η ∈ (0, 1
2 ) and δ ∈ (0, 1).

Now using Theorem 2 it follows immediately that

REB
OG = O(RBO

Opt) as m → ∞.

As before, for small values of C, and appropriately chosen η ∈ (0, 1
2 ) and δ ∈ (0, 1), the

ratio of risk REB
OG/R

BO
Opt can be made close to 1.

Using the techniques employed for deriving asymptotic upper bounds for the type I
and type II error probabilities of the empirical Bayes decisions in (10), one can show
easily that the empirical Bayes estimate τ̂ defined in (9) consistently estimates the un-
known degree of sparsity p up to some multiplicative factor. This will be made more
precise in Remark 4. As mentioned already that the desired Bayesian optimality prop-
erty as presented in Theorem 1 holds when τ is asymptotically of the order of p, which
seems to be the optimal choice of τ in case p is known. This perhaps explains the good
performance of our proposed empirical Bayes procedure using the estimate τ̂ and gives
a strong theoretical support in favor of using such a plug-in estimate of τ .
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3.3 A comparison with the work of Datta and Ghosh (2013)

A careful inspection of the proof of Theorem 3.4 of Datta and Ghosh (2013) reveals
the following. Under Assumption 1, when limm→∞ τ/p ∈ (0,∞), the Bayes risk of the
decision rules (8) induced by the horseshoe prior, denoted RHS(DG), satisfies

RHS(DG) ≤ mp

[
2Φ

(√
2C

η(1− δ)

)
− 1

](
1 + o(1)

)
as m → ∞, (23)

for every fixed η ∈ (0, 1
2 ) and δ ∈ (0, 1). A comparison between the upper bounds in (20)

and (23) shows that our results not only generalize the theoretical finding concerning
the asymptotic Bayes optimality of the horseshoe prior, but at the same time, sharpen
the upper bound to the Bayes risk of the induced decisions under study, for 1

2 ≤ a < 1,
across the general class of priors given in (19), and satisfying conditions (I) or (II) of
Theorem 1, including the horseshoe, in particular.

Although a few ideas employed in the proofs of this paper are similar to those in
Datta and Ghosh (2013), our arguments heavily hinge upon appropriate use of properties
of slowly varying functions. It will be observed later in this paper that application of
well-known properties of slowly varying functions often leads to exact asymptotic orders
of certain integrals, without the need to depend mainly on using algebraic upper and
lower bounds which can be improved further. In fact, using this technique, we obtain a
sharper asymptotic bound to the probability of type II errors and hence on the overall
risk (in Theorem 1) as compared to that in Datta and Ghosh (2013). See Remark 2 in
this context.

4 Some key inequalities and bounds on probabilities of
type I and type II errors

In Section 4.1, we present some concentration and moment inequalities involving the
posterior distributions of the shrinkage coefficients κi’s. These inequalities are essential
for deriving asymptotic bounds for probabilities of type I and type II errors of the
multiple testing procedures (8) and (10) under study, presented in Section 4.2 and
Section 4.3, respectively. Proofs of all these results are given in the Appendix.

4.1 Concentration and moment inequalities

Before presenting the theoretical results of this section, let us first briefly describe how
they can be useful in studying the error probabilities of two kinds. Let t1i and t2i
respectively denote the probabilities of type I and type II errors of the ith individual
decision in (8). Then, by definition, t1i = Pr(E(1 − κi|Xi, τ) > 1

2 |H0i is true) and
t2i = Pr(E(κi|Xi, τ) >

1
2 |H1i is true). It seems that finding the exact asymptotic orders

of t1i and t2i is infeasible. Therefore, one convenient and fruitful approach to study
their asymptotic behaviors is to find non-trivial asymptotic bounds for them. One way
of accomplishing this is to obtain appropriate bounds for either of E(1− κi|Xi, τ) and
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Pr(κi > η|Xi, τ) (since E(κi|Xi, τ) can be bounded above by η + Pr(κi > η|Xi, τ), for
any η ∈ (0, 1)), followed by some judicious applications of these bounds.

The following theorem is our first step towards this and gives the first concentration
inequality involving the posterior distribution of κi’s. Using this theorem, one can derive
an upper bound to E(1− κi|Xi, τ) in a very simple way in case the function L in (19)
is bounded above, as indicated in Remark 1 below.

Theorem 3. Suppose Xi ∼ N(μi, 1) independently for i = 1, . . . ,m. Consider the one-
group prior given in (19) and let κi =

1
1+λ2

i τ
2 . Then, for any fixed ε ∈ (0, 1) and any

fixed τ > 0,

Pr(κi < ε|Xi, τ) ≤ Ke
X2

i
2

{ ∫ ∞

1
τ2 ( 1

ε−1)

t−a−1L(t)dt

}
(1 + o(1)),

where the o(1) term above is independent of both the index i and the data point Xi, but
depends on τ in such a way that limτ→0 o(1) = 0.

Corollary 1. Suppose the function L(·) in (19) is uniformly bounded above by some
constant M > 0. Then under the assumptions of Theorem 3, for any fixed ε ∈ (0, 1) and
any fixed τ > 0,

Pr(κi < ε|Xi, τ) ≤
KM

a
εa(1− ε)−ae

X2
i
2 τ2a(1 + o(1)),

where the o(1) term above is independent of both the index i and the data point Xi, but
depends on τ in such a way that limτ→0 o(1) = 0.

Remark 1. In case the function L(·) is bounded above by some M > 0, then using
Corollary 1 one can readily obtain the following upper bound on E(1− κi|Xi, τ):

E(1− κi

∣∣Xi, τ) =

∫ 1

0

Pr(κi < ε|Xi, τ)dε ≤
KM

a(1− a)
e

X2
i
2 τ2a(1 + o(1)). (24)

It has already been shown in Section 2.2 and Section 2.3 that for many of the commonly
used shrinkage priors including the horseshoe, the corresponding L(·) is bounded above
by some constant M . Using the upper bound from Theorem 3 makes the task of finding
an upper bound for E(1− κi|Xi, τ) very simple in such cases. Finding an upper bound
for E(1 − κi|Xi, τ) in case of a general L(·), as given in Theorem 4 below, is quite
non-trivial and requires pretty delicate arguments based on properties of slowly varying
functions.

Theorem 4. Consider the set up of Theorem 3, with the prior on the local shrinkage
parameter as in (19) with a ∈ (0, 1). Then, for every fixed τ < 1,

E(1− κi

∣∣Xi, τ) ≤
A0K

a(1− a)
e

X2
i
2 τ2aL(

1

τ2
)(1 + o(1)), (25)

where the o(1) term above is independent of both the index i and the data point Xi, but
depends on τ in such a way that limτ→0 o(1) = 0. Here A0 ≥ 1 is a constant depending
on L, such that, L(·) is bounded in every compact subset of [A0,∞).
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The next theorem gives the second concentration inequality of this paper involving
the term Pr(κi > η|Xi, τ).

Theorem 5. Under the setup of Theorem 3, for any fixed τ > 0, and each fixed η ∈ (0, 1)
and δ ∈ (0, 1),

Pr(κi > η|Xi, τ) ≤ H(a, η, δ)e−
η(1−δ)X2

i
2

τ2aΔ(τ2, η, δ)
, uniformly in Xi ∈ R,

where Δ(τ2, η, δ) = ξ(τ2, η, δ)L
( 1

τ2
(
1

ηδ
− 1)

)
,

ξ(τ2, η, δ) =

∫ ∞
1
τ2

(
1
ηδ−1

) t−(a+ 1
2+1)L(t)dt

(a+ 1
2 )

−1
(

1
τ2

(
1
ηδ − 1

))−(a+ 1
2 )L( 1

τ2

(
1
ηδ − 1

)
)
, and

H(a, η, δ) =
(a+ 1

2 )(1− ηδ)a

K(ηδ)(a+
1
2 )

.

Remark 2. It is to be observed in this context that, for 0 < a < 1, the upper bound
in Theorem 5 of the present article is of a smaller order compared to that derived in
Theorem 3.2 of Datta and Ghosh (2013). In particular, using properties of slowly varying
functions (see the Appendix), it can be easily established that the ratio of the former to
the latter tends to zero as τ → 0. The sharper asymptotic bound in Theorem 5 results
in a sharper asymptotic upper bound to the probability of type II error, and hence on
the overall risk ROG (in Theorem 1) of the procedure (8) as compared to that in Datta
and Ghosh (2013).

Several important features of the posterior distribution of the shrinkage coefficients
κi’s based on our general class of tail robust shrinkage priors, now become clear from
Theorem 3 through Theorem 5. These are listed in Corollary 2 – Corollary 5 given
below. While Corollary 2 and Corollary 3 are derived using Theorem 3 and Theorem 4,
respectively, the rest follow from Theorem 5. Proofs of these results are trivial and hence
are omitted. It should however be remembered that these corollaries have no direct use
in proving the main theoretical results of this paper.

Corollary 2. Under the assumptions of Theorem 3, Pr(κi ≥ ε|Xi, τ) → 1 as τ → 0 for
any fixed ε ∈ (0, 1) uniformly in Xi ∈ R.

Thus, for each fixed x ∈ R, the posterior distribution of κi’s, based on the tail robust
priors under consideration, tend to concentrate near 1 for small values of τ .

Corollary 3. Under the assumptions of Theorem 3, E(1− κi|Xi, τ) → 0 as τ → 0 for
any fixed ε ∈ (0, 1) uniformly in Xi ∈ R.

Corollary 3 above says that for small values of τ , noise observations will be squelched
towards the origin by the kind of one-group priors considered in this paper.



770 Bayes Risk of General Shrinkage Priors

Corollary 4. Under the assumptions of Theorem 5, Pr(κi ≤ η|Xi, τ) → 1 as Xi → ∞,
for any fixed τ > 0 and every fixed η ∈ (0, 1).

Corollary 5. Under the assumptions of Theorem 5, E(1− κi|Xi, τ) → 1 as Xi → ∞,
for any fixed τ > 0.

Corollary 5 above shows that, for each of the heavy tailed shrinkage priors under
consideration, even if the global variance component τ is very small, the amount of pos-
terior shrinkage will be negligibly small for largeXi’s, thus leaving the large observations
almost unshrunk.

4.2 Asymptotic bounds on probabilities of type I and type II errors
when τ is treated as a tuning parameter

Theorem 6 and Theorem 7 below give asymptotic upper bounds to the probability of
type I error (t1i) and the probability of type II error (t2i) of the ith decision in (8),
respectively, while Theorem 8 and Theorem 9 respectively give asymptotic lower bounds
for t1i and t2i. As mentioned before, these results lead to the asymptotic bounds on the
Bayes risk (ROG) of the multiple testing procedure in (8).

Theorem 6. Suppose X1, . . . , Xm are i.i.d. observations having the two-groups mixture
distribution described in (2) with σ2 = 1 and suppose Assumption 1 is satisfied by
(ψ2, p). Suppose one is testing H0i : νi = 0 vs H1i : νi = 1 using the decision rule
(8) induced by the general class of one-group shrinkage priors (19) where a ∈ (0, 1) in
π(λ2

i ). Suppose τ = τm → 0 as m → ∞. Then the probability t1i of type I error of the
ith decision in (8) satisfies

t1 ≡ t1i ≤
1√
πa

· 2A0K

a(1− a)
·
τ2aL( 1

τ2 )√
log( 1

τ2 )
(1 + o(1)) as m → ∞,

where the o(1) term above does not depend on i and tends to zero as m → ∞. The
constant A0 has already been defined in Theorem 4.

Theorem 7. Consider the set-up of Theorem 6 but allow the parameter a to be any
positive real number in the definition of the prior π(λ2

i ) of the local shrinkage parameter
in (19). Assume further that τ = τm → 0 as m → ∞ in such a way that limm→∞

τ
p ∈

(0,∞). Then the probability t2i of type II error of the ith decision in (8) satisfies

t2 ≡ t2i ≤
[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
as m → ∞,

for every fixed η ∈ (0, 1
2 ) and δ ∈ (0, 1). Here the o(1) term above depends on η ∈ (0, 1

2 )
and δ ∈ (0, 1) and is independent of i, and tends to zero as m → ∞.

Remark 3. We record here that, instead of limm→∞ τ/p ∈ (0,∞), if we assume log τ ∼
log p, keeping the other conditions unaltered, the proof of Theorem 7 goes through.
Consequently, the upper bound on the Bayes risk ROG in Theorem 1, which has been
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derived by combining the results of Theorem 6 and Theorem 7, also holds when log τ ∼
log p, under conditions specified in (I). A similar inspection shows that under conditions
specified in (II), the upper bound of Theorem 1 holds when the conditions log τ ∼ log p
and τ = O(p) both hold as m → ∞.

Theorem 8. Consider the set-up of Theorem 6. Let us fix any 0 < η < 1/2 and any
0 < δ < 1. Then the probability t1i of type I error of the ith decision in (8) satisfies

t1 ≡ t1i ≥
( 12 − η)/

√
πa

H(a, η, δ)
·
τ

2a
η(1−δ)L( 1

τ2 )√
log( 1

τ2 )
(1 + o(1)) as m → ∞,

where the o(1) term above depends on η ∈ (0, 1
2 ) and δ ∈ (0, 1) and is independent

of i, and tends to zero as m → ∞. The constant H(a, η, δ) has already been defined in
Theorem 5.

Theorem 9. Consider the set-up of Theorem 7. Then the probability t2i of type II error
of the ith decision in (8) satisfies

t2 ≡ t2i ≥ (2Φ(
√
2a

√
C)− 1)(1 + o(1)) as m → ∞,

where the o(1) term above does not depend on i and tends to zero as m → ∞.

Some important observations regarding an appropriate choice of τ now follow as
consequences of Theorem 6 – Theorem 9. Note that, the type I and type II error prob-
abilities of the ith decision in (8), that is, t1i and t2i, do not depend on i and their
common values are given by t1 and t2, respectively. See the proofs of Theorem 6 and
Theorem 7 in the Appendix for an explanation of this fact. Thus, the Bayes risk of the
decision rules in (8) is given by ROG = mp( 1−p

p t1+ t2) (using (15)). Suppose now τ → 0
at such a rate that

(1− p)τ
2a

η(1−δ)L( 1
τ2 )

p
√

log( 1
τ2 )

→ ∞ as m → ∞. (26)

Then combining Theorem 8 and Theorem 9 together, it follows that 1−p
p t1 + t2 → ∞

as m → ∞. Consequently, ROG/R
BO
Opt → ∞ as m → ∞. Consider, for example, the

horseshoe or the standard double Pareto prior. For each of these priors, one has a = 0.5
and the corresponding L(·) has a finite positive limit at infinity as already shown before.
Let us take τ = pα, for α > 0. Now, for 0 < α < 1

2 , one can always choose some η ∈ (0, 1
2 )

and some δ ∈ (0, 1), such that 0 < α < η(1−δ) < 1
2 . As a result, (26) holds and we have

ROG/R
BO
Opt → ∞ as m → ∞, when 0 < α < 1

2 . Thus the desired Bayesian optimality
property up to O(1) no longer holds in such situations. However, from the derived lower
bounds, we cannot yet conclude the same if α ≥ 1

2 since, in that case, the quantity in

(26) tends to zero as m → ∞. But, the upper bound for 1−p
p t1 + t2, as obtained by

combining Theorem 6 and Theorem 7, tends to infinity as m → ∞, when 1
2 ≤ α < 1.

This indicates, though not conclusively, that, for such tail robust priors, τ = pα with
0 < α < 1 is not likely to be a good choice.
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It should be noted further that the proofs of Theorem 7 and Theorem 9 work
even if we take τ = pα, for α ≥ 1 (see Appendix), and the constants in the corre-
sponding asymptotic bounds should be replaced by (2Φ(

√
2aαC/(η(1− δ))) − 1) and

(2Φ(
√
2aαC) − 1), respectively. Each of these bounds increases with an increase in α,

and so does the corresponding bound on the overall Bayes risk ROG. Thus, ROG tends to
be away from the optimal Bayes risk RBO

Opt in (18), for values of α > 1, thereby implying
that τ = pα is also not a good choice for α > 1. Note that all these arguments remain
valid even if we assume τ/pα has a finite positive limit as m → ∞. Thus our results
give a partial indication that τ = p (or, limm→∞ τ/p ∈ (0,∞)) should be the optimal
choice of τ . Similar observations were also made by van der Pas et al. (2014) for the
horseshoe prior when p = o(1). They found that for optimal contraction of the corre-
sponding posterior distribution around the truth as well as the horseshoe estimator, the
optimal choice for τ should be τ = p (or, up to some logarithmic factor of it). Moreover,
they showed that when τ = pα, the posterior distribution based on the horseshoe prior,
contracts around the horseshoe estimator at a sub-optimal rate in the squared l2 sense
if 0 < α < 1, while it contracts too quickly to yield an adequate measure of uncertainty
when α > 1. Our results are, therefore, in a partial agreement with that of van der Pas
et al. (2014) regarding the optimal choice of τ , when p is assumed to be known.

4.3 Asymptotic bounds on probabilities of type I and type II errors
for the empirical Bayes procedure

In Theorem 10 and Theorem 11 below, we present asymptotic upper bounds to the
probabilities of type I and type II errors of the individual decisions corresponding to
the empirical Bayes procedure in (10). Proofs of these theorems are significantly different
from those of Theorem 6 and Theorem 7, when τ is treated as a tuning parameter. This
is so because for each i, E(1 − κi|Xi, τ̂) depends on the data (X1, . . . , Xm) through
τ̂ ≡ τ̂(X1, . . . , Xm) and Xi in a complicated manner. Therefore, in order to avoid
dealing with E(1 − κi|Xi, τ̂) directly, we employ some nontrivial and novel arguments
as follows. First, we introduce a dummy parameter that turns out to be asymptotically
of the order of p, and then using this new parameter, we divide the range of τ̂ into two
mutually disjoint parts. For one part, as noted by van der Pas et al. (2014), we use the
fact that, for each fixed x ∈ R, E(1−κi|x, τ) is non-decreasing in τ , and then we use the
results of Theorem 6 and Theorem 7, while for the other part, we exploit the structure
of τ̂ , together with the independence among the Xi’s.

Theorem 10. Suppose X1, . . . , Xm are i.i.d. observations having the two-groups mix-
ture distribution described in (2) with σ2 = 1, and we wish to test the m hypotheses
H0i : νi = 0 vs H1i : νi = 1, i = 1, . . . ,m, simultaneously, using the decision rule (10)
induced by the one-group priors (19) where a ∈ (0, 1) in π(λ2

i ). Suppose Assumption 1
is satisfied by (ψ2, p) with p ∝ m−ε, for some 0 < ε < 1. Then, the probability t̃1i of
type I error of the ith induced decision in (10) satisfies

t̃1i ≤ B∗
1

α2a
mL( 1

α2
m
)√

log( 1
α2

m
)
(1 + o(1)) +

1/
√
π

mc1/2
√
logm

+ e−2(2 log 2−1)βmp(1+o(1)) as m → ∞,
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where the o(1) terms appearing above are independent of i, and tend to zero as m → ∞.
Here B∗

1 and β are some finite positive constants, each being independent of m, while
αm = Pr(|X1| >

√
c1 logm) depends on m.

Theorem 11. Let us consider the set-up of Theorem 10. Then the probability t̃2i of
type II error of the ith decision in (10) satisfies

t̃2i ≤
[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
as m → ∞,

for every fixed η ∈ (0, 1
2 ) and δ ∈ (0, 1). Here the o(1) term tends to zero as m → ∞

and is independent of i, but depends on the choices of η ∈ (0, 1
2 ) and δ ∈ (0, 1).

Remark 4. Using the architecture of the proofs of Theorem 10 and Theorem 11, one
can show now that

τ̂

p

p−→ 2β as m → ∞, (27)

where the above probability convergence is taken with respect to the joint distribution
of Xi’s defined through (2). Since αm ∼ 2βp and β = 1−Φ(c1C/(2ε)) > 0 (see the proof
of Theorem 10), it will be enough to show that, given any δ0 > 0, Pr(| τ̂

αm
− 1| > δ0) =

o(1). This follows quite easily using the techniques used for proving Theorem 10 and
Theorem 11. Thus, (27) says that the estimator τ̂ will be asymptotically of the order of
the proportion of true alternatives p. Note that when c1 = 2 and C/ε is small, 2β ≈ 1.
In that case, τ̂ is expected to be very close to the unknown degree of sparsity p with a
large probability.

5 Simulations

In this section, we present and interpret the results obtained in our simulation study.
The simulation study has several objectives. The first objective is to motivate the use of
the decision rules based on the global-local tail robust priors when data actually come
from a two-groups model. Secondly, we want to study empirically the suitability of these
priors for handling sparsity as well as their robustness in handling large signals. Thirdly,
we want to study the role of τ as a global shrinkage parameter. The most important
objective is to compare the simulation averages of the proportion of misclassified hy-
potheses (as estimate of the misclassification probability) of these testing rules with
that of the Bayes Oracle for the two-groups problem to understand how closely these
rules actually perform vis-a-vis the Oracle.

We present in this section the numerical results obtained by using the horseshoe
prior, the standard double Pareto prior, the Strawderman–Berger prior, and the normal–
exponential–gamma prior (with α = 1, β = 0.6) when the data actually come from a
two-groups model. We consider a fully Bayesian approach as well as an empirical Bayes
approach. For the fully Bayesian approach, (τ, σ) is assigned a hyperprior given by

τ ∼ C+(0, 1) and π(σ) ∝ 1

σ
,
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and the marginal prior for μi’s is obtained by mixing further with respect to this joint
prior distribution of (τ, σ). For the empirical Bayes approach, σ is taken to be equal to
1, and we use the procedure in (10), where we take c1 = 2 and c2 = 1 in the definition
of τ̂ in (9).

Our simulation data are generated as follows. For each fixed p ∈ (0, 1), we draw
m = 200 independent observations X1, . . . , Xm using the two groups model (2), with
ψm =

√
2 logm = 3.26 and σ2 = 1. For estimating the misclassification probability, the

process is replicated 1000 times and simulation averages of misclassification proportions
are taken as estimates of the misclassification probabilities of the different multiple
testing procedures under study. Our results lend support to our theoretical findings and
also justification for our theoretical study presented earlier in Section 3 and Section 4.

Figure 1: Comparison between the posterior inclusion probabilities and the posterior
shrinkage weights 1− E(κi|X1, . . . , Xm) when p = 0.10.

Taking p = 0.10, we plot in Figure 1, the theoretical posterior inclusion probabilities
wi(Xi) = P (νi = 1|Xi) for the two-groups model (2) given by

ωi(Xi) = π(νi = 1|Xi) =

{(1− p

p

)√
1 + ψ2e

−X2
i
2

ψ2

1+ψ2 + 1

}−1

,

along with the shrinkage weights (1−E(κi|X1, . . . , Xm)) corresponding to the four one-
group shrinkage priors mentioned above against the data. The blue dots in the figure
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denote the theoretical posterior inclusion probabilities while the red dots correspond to
the shrinkage weights (1 − E(κi|X1, . . . , Xm)). The figures clearly show the proximity
of the two quantities for small values of the sparsity parameter p for each of the four
shrinkage priors mentioned above. This fact and the theoretical observations made in
Section 2 justify the use of (1 − E(κi|X1, . . . , Xm)) as an approximation to the corre-
sponding posterior inclusion probabilities ωi(Xi) in sparse situations and thus motivates
the use of decision rules based on (1 − E(κi|X1, . . . , Xm)) using one-group tail robust
shrinkage priors.

Figure 2: Estimated misclassification probabilities for the full Bayes approach.

Figure 2 shows the (estimated) misclassification probability (MP) plots of the de-
cision rule (11) corresponding to the four priors under consideration along with those
of the Bayes Oracle and the Benjamini–Hochberg rule against values of p lying in the
set {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. As mentioned before, these are
obtained as average values of misclassification proportions of the decision rule (11) and
that corresponding to the Bayes Oracle (defined in Section 3.1). The Bayes Oracle serves
as the lower bound to the MP whereas the line MP = p corresponds to the situation
when we reject all null hypotheses without looking into the data. It is clear from Fig-
ure 2 that when the sparsity parameter p is small, the MP plots corresponding to the
four priors under consideration almost coincide with that of the Bayes Oracle which is
in conformity with the theoretical results of the present article. While the MP plots of
the horseshoe and the standard double Pareto prior are nearly identical, the MP plot
corresponding to the the Strawderman–Berger prior is in close proximity. The same is
true for the MP plot for the normal–exponential–gamma plot, for small values of p.
When p is larger, say above 0.4, performance of each of these priors become inferior
compared to the Bayes Oracle. We also plot the MP for the Benjamini–Hochberg rule,
for α = 1/ logm = 0.1887. Bogdan et al. (2011) theoretically established that for such
choices of α, the corresponding Benjamini–Hochberg rule becomes ABOS in the present
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set up. This is also corroborated by Figure 2 where we see that the Benjamini–Hochberg
rule achieves practically the same MP as the Bayes Oracle. Similar phenomenon can
also be observed for the empirical Bayes procedure (10) in Figure 3. However, Figure 3
also shows that the normal–exponential–gamma prior (with α = 1 and β = 0.6) per-
forms significantly better in terms of the overall MP in the empirical Bayes approach
compared to its full Bayes counterpart in Figure 2.

Figure 3: Estimated misclassification probabilities for the empirical Bayes approach.

Shrinkage properties corresponding to the four tail-robust priors under consideration
along with the Laplace and the half-normal priors having exponential tails are demon-
strated through Figure 4. Here we plot the posterior expectations E(μi|X1, . . . , Xm)
against different values (Xi) of the observations. Figure 4 clearly shows that the noise
observations are shrunk towards zero efficiently while the big signals are left mostly un-
shrunk by each of the four tail robust shrinkage priors under consideration. That is, for
each of the four tail robust priors under consideration, the amount of posterior shrink-
age (that is, the difference between the 45◦ straight line and the posterior expectation
curve) is negligibly small for observations lying on the two extremes of the horizontal
axis, while the difference becomes more prominent for observations near the origin. This
corroborates our theoretical findings given in Corollary 2 – Corollary 5 regarding the
nature of the posterior distribution of the shrinkage coefficients κi’s based on the gen-
eral class of one-group priors under study. However, this is clearly not the case for the
normal and the Laplace priors since these priors shrink even the large signals by some
non-diminishing amounts which is evident from Figure 4. Similar observations was also
made in Datta and Ghosh (2013) about the Laplace and the half-normal priors.

Finally, we demonstrate in Figure 5 how the global shrinkage parameter τ adapts
to the sparsity level of the data in the full Bayes approach. We draw box-plots of the
posterior draws for τ across different levels of sparsity for each of the four priors in focus.
It may be observed that box-plots are highly concentrated near zero for small values
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Figure 4: Posterior Mean E(μ|X) versus X plot for p = 0.25.

Figure 5: Posterior draws of tau for the horseshoe, the Strawderman–Berger, the normal–
exponential–gamma and the standard double Pareto priors across different levels of
sparsity.
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of p while as p gets large, the median of the posterior samples of τ tends to increase
systematically. Thus, the overall sparsity level of the data is reflected well through the
posterior distribution of the global shrinkage parameter τ . Moreover, the ratio of the
posterior draws of τ to p seems to lie within a bounded factor as can be seen from
Figure 5. Similar phenomenon was observed in Datta and Ghosh (2013) in the context
of the horseshoe prior. This indicates how global shared parameters can control error
rates in multiple testing by estimating the overall sparsity level, as already discussed in
Scott and Berger (2006) and Carvalho et al. (2010).

6 Discussion

We have considered in this paper multiple hypothesis testing under sparsity in a decision
theoretic framework. Global-local shrinkage priors are used towards this end. We have
proved an Oracle property of the resulting decision rules similar to those of Datta
and Ghosh (2013). We have also considered an empirical Bayes version of the induced
decisions by using an estimate of the global shrinkage parameter τ and shown its Oracle
optimality property under very mild restriction over the sparsity parameter p. One of
the salient features of our work is that we have provided unified results for a very
general class of shrinkage priors including some of the commonly used priors such as the
horseshoe prior, generalized double Pareto priors, normal–exponential–gamma priors,
and many others. As a special case of our general result, we have strengthened the
optimality result for the horseshoe prior as considered in Datta and Ghosh (2013).
Further, we have settled a conjecture of these authors related to generalized double
Pareto priors. Our technique of proof shows that some of the arguments of Datta and
Ghosh (2013) can be simplified. Moreover, in the theoretical treatment of this paper,
we have exploited properties of slowly varying functions to obtain a general unifying
argument that works across a large class of one-group priors for investigating their
theoretical properties, which to the best of our knowledge, has not been done before
and can be very useful in other contexts.

The Oracle optimality property of the multiple testing rules studied in this paper
assumes σ2 to be known and treats τ as a tuning parameter or it is estimated from the
data. A natural question is whether these decision rules retain this optimality property
if we use a full Bayes approach by assigning a hyperprior to (τ, σ). Thus one would like
to know whether the decision rules in (11) enjoy similar Bayesian optimality property.
Our simulation results indicate that this is indeed the case, though giving a formal
theoretical justification for the same is difficult. To elucidate this point, let us first take
a look at the posterior means of μi’s based on which the full Bayes decision rules in (11)
are defined. For each i = 1, . . . ,m, it is given by

E(μi|X1, · · · , Xm) =

∫ ∞

0

∫ ∞

0

E(μi|X1, . . . , Xm, τ, σ)π(τ, σ|X1, . . . , Xm)dτdσ

= (1− E(κi|X1, . . . , Xm))Xi

where E(κi|X1, . . . , Xm) = E(τ,σ|X1,...,Xm)E(κi|X1, . . . , Xm, τ, σ). Here, the posterior
distribution of κi depends on the entire dataset and not only on Xi, which is the case
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when τ is treated as a tuning parameter and σ2 is assumed to be known. Also, for
each i, the posterior distribution π(κi|X1, . . . , Xm) is analytically quite intractable in
this case. Therefore, finding estimates or asymptotic bounds on the type I and type
II error measures directly using this posterior distribution does not look feasible. By
looking at the expression for E(κi|X1, . . . , Xm) given above, one may however wish to
explore for possibilities of using the concentration and moment inequalities based on
E(κi|X1, . . . , Xm, τ, σ) first (as given in Section 4.2), and then finding suitable bounds
for E(κi|X1, . . . , Xm) using π(τ, σ|X1, . . . , Xm). But that also seems very non-trivial
as we do not have any proper handle over π(τ, σ|X1, . . . , Xm). The problem does not
become any easier even if we assume σ2 to be known and put a hyperprior for τ only.
It seems that one needs to invoke significantly new techniques and arguments for a full
Bayes treatment of the type of one-group priors studied in this paper. We leave this as
an interesting problem for future research.

We expect that Oracle optimality properties like those studied in this paper, should
now easily be obtained even if one considers π(λ2

i ) ∼ (λ2
i )

−a−1L(λ2
i ) as λ2

i → ∞,
as originally considered in Theorem 1 of Polson and Scott (2011), by employing the
techniques given in this paper together with the fact that the ratio of these two functions
belongs to a small neighborhood of 1 not containing the origin, for all sufficiently large
λ2
i . It may be commented at this point that we have provided a set of sufficient conditions

that are quite general in nature under which such Bayesian optimality results hold true.
However, characterizing priors of this kind having such optimality property is quite
challenging and remains an interesting and open problem till date.

Our results bear the potential of application also in variable selection. In particular,
we want to examine how to extend the proposed decision rule for selection of regression
parameters and study optimality of such decision rules in that context. It has been
mentioned earlier that van der Pas et al. (2014) considered the problem of estimation of
a sparse multivariate normal mean vector using the horseshoe estimator. They showed
among other things that the horseshoe estimator achieves (up to a multiplicative factor)
the minimax squared error risk and the corresponding posterior distribution contracts
around the truth at the minimax rate. A similar optimality result was proved for an
empirical Bayes version of the horseshoe estimator. The thing to be noted is that the
“optimal” choice of τ that makes all the good results come through is given by the
theoretical proportion of non-zero entries p in the mean vector (up to a logarithmic
factor), and choices of τ of the order of pα for α > 1 and α < 1 were shown to be sub-
optimal for such purposes. It is interesting to note, as already argued in Section 4.2, that
a choice of τ which is asymptotically of the order of p seems to be the optimal choice of
τ in our case, when p is assumed to be known. Therefore, the choice of τ in the vicinity
of p seems to be optimal for the two most important inferential problems. In a recent
technical report, Ghosh and Chakrabarti (2015) adopted the framework of van der Pas
et al. (2014) and proved generalizations of their results using Bayes estimators coming
from a very general class of one-group tail robust priors and taking τ proportional to the
fraction p. Proofs of these results crucially exploit the inequalities given in Theorem 4
and Theorem 5 of the present article. It is also worth noting that the empirical Bayes
estimate of τ that turned out to be useful in the paper of van der Pas et al. (2014) also
turns out to be equally handy in the present multiple testing problem. We have already
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commented that a possible reason for this is the fact that the empirical Bayes estimate
τ̂ proposed by van der Pas et al. (2014) is asymptotically of the order of p under the
present two-groups formulation.

Like Datta and Ghosh (2013) or van der Pas et al. (2014), our theoretical results
mostly treat the global shrinkage parameter τ as a tuning parameter. As explained be-
fore, a fully Bayesian approach using a hyperprior on τ seems difficult to handle. The
difficulty in analyzing the posterior distribution for a full Bayes analysis corresponding
to horseshoe-type priors with heavy tails has also been addressed in Bhattacharya et al.
(2012, 2014) and Pati et al. (2014). The authors of these articles studied the contrac-
tion properties of global-local shrinkage priors and proved their sub-optimal properties
in cases where the tails of the distributions decay at an exponential or faster rate. How-
ever, they conjectured that heavy tailed priors, such as, the horseshoe, the generalized
double Pareto, and the normal–exponential–gamma priors, should have optimal poste-
rior contraction properties. This has already been established in van der Pas et al. (2014)
for the horseshoe prior and subsequently by Ghosh and Chakrabarti (2015) for a broader
class of one-group tail-robust priors which is rich enough to include, among others, the
horseshoe, the generalized double Pareto and the normal–exponential–gamma priors in
particular. Results of the last two articles, however, assume τ to be a tuning param-
eter. On the other hand, Bhattacharya et al. (2012, 2014) and Pati et al. (2014) used
full Bayes approaches for studying concentration probabilities around sparse vectors
and rate of convergence of the corresponding posterior distributions based on their pro-
posed class of shrinkage priors, referred to as Dirichlet–Laplace (DL)-type priors. Such
priors result in a prior distribution for the individual means which is highly peaked
near the origin and has thick tails. However, the DL-type priors are fundamentally dif-
ferent from the global-local scale mixture representation of Polson and Scott (2011)
and hence cannot be covered by our general class of tail robust one-group priors. For
example, Bhattacharya et al. (2014) used a set of scalars (φ1τ, . . . , φmτ) instead of a
single global shrinkage component τ and assigned a Dirichlet prior to (φ1, . . . , φm),
with a common Dirichlet concentration parameter. Moreover, the asymptotics of con-
traction for the DL-type priors are quite different from those derived in this paper, and
hence do not seem to apply to our present asymptotic framework, at least, as far as we
can see.

Recently, there has been a growing interest in identifying the “rare and weak” signals
and also in estimating the proportion of true signals using a two-groups formulation
slightly different from the one considered in this paper. See, for example, Ingster (1997),
Donoho and Jin (2004), Meinshausen and Rice (2006), Cai et al. (2007) and Cai and
Jin (2010), in this context. As suggested by one of the referees, another interesting
and related problem to consider is when both the mean and the variance of the signal
density vary with the number of testsm under such two-groups framework. For example,
people have considered the case when the mean tends to infinity at a slower rate,
but the variance remains bounded as m goes to infinity. However, in order to look at
the feasibility of any one-group formulation, one needs to first carefully understand
what kind of shrinkage priors, if any, would possibly be a good approximation to the
two-groups formulation in such contexts. We hope to address these issues elsewhere in
future.
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Appendix

A.1 Some important properties of slowly varying functions

The theoretical results derived in this paper depend heavily up on some fundamental
properties of general slowly varying functions. These are listed as Lemmas 1 – 4 given
below. Interested readers are referred to the classic text of Bingham et al. (1987) for a
detailed treatment of these results.

Lemma 1. If L is any slowly varying function and α < −1, then∫ ∞
x

tαL(t)dt

xα+1L(x)
∼ −1

α+ 1
as x → ∞.

Lemma 2. If L is any slowly varying function then there exists A0 > 0 such that L is
locally bounded in [A0,∞), that is, L is bounded in all compact subsets of [A0,∞).

Lemma 3. If L is any slowly varying function, A0 is so large such that L is locally
bounded in [A0,∞) and α > −1, then∫ x

A0
tαL(t)dt

xα+1L(x)
∼ 1

1 + α
as x → ∞.

Lemma 4. If L is any slowly varying function then

(i) lim
x→∞

logL(x)
log (x) = 0,

(ii) Lβ is slowly varying for all β ∈ R, and,

(iii) lim
x→∞

x−αL(x) = 0, for all α > 0.

A.2 Proofs

This section contains the proofs of all the major theoretical results of this paper. But
before proving the main theoretical results given in Section 3, namely, Theorem 1 and
Theorem 2, we shall first present the proofs of the results of Section 4 since these results
are essential for deriving Theorem 1 and Theorem 2. But above all, let us first prove the
following lemma, which we shall use often for proving rest of the results of this paper.

Lemma 5. Let L : (0,∞) → (0,∞) be a measurable function and a be a real number
such that

∫ ∞
0

t−a−1L(t)dt = K−1, K ∈ (0,∞). Then, assuming τ → 0,∫ 1

0

ua+ 1
2−1(1− u)−a−1L

(
1

τ2
( 1
u
− 1

))
du = K−1τ−2a(1 + o(1)),

where the o(1) term above depends on τ in such a way that limτ→0 o(1) = 0.
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Proof. Let J =
∫ 1

0
ua+ 1

2−1(1− u)−a−1L( 1
τ2 (

1
u − 1))du. Since the integrand in J is non-

negative, using the change of variable t = 1
τ2 (

1
u − 1), one has

J = (τ2)−a

∫ ∞

0

(1 + tτ2)−
1
2 t−a−1L(t)dt.

Since t−a−1L(t) is assumed to be integrable, the proof follows immediately using
Lebesgue’s Dominated Convergence Theorem, where the o(1) term is such that
lim
τ→0

o(1) = 0.

Proof of Theorem 3. Fix any ε ∈ (0, 1). Then by definition,

Pr(κi < ε|Xi, τ) =

∫ ε

0
κ
a+ 1

2−1
i (1− κi)

−a−1L
(

1
τ2

(
1
κi

− 1
))
e−

κiX
2
i

2 dκi∫ 1

0
κ
a+ 1

2−1
i (1− κi)−a−1L

(
1
τ2

(
1
κi

− 1
))
e−

κiX
2
i

2 dκi

≤
e

X2
i
2

∫ ε

0
κ
a+ 1

2−1
i (1− κi)

−a−1L
(

1
τ2

(
1
κi

− 1
))
dκi∫ 1

0
κ
a+ 1

2−1
i (1− κi)−a−1L

(
1
τ2

(
1
κi

− 1
))
dκi

which follows from the fact that e−
X2

i
2 ≤ e−

κiX
2
i

2 ≤ 1 for every κi ∈ (0, 1). Now using
the change of variable t = 1

τ2 (
1
κi

− 1) to the numerator of the right hand side of the
above inequality and applying Lemma 5 to the corresponding denominator, we obtain

Pr(κi < ε|Xi, τ) ≤ Ke
X2

i
2

{∫ ∞

1
τ2 ( 1

ε−1)

t−a−1L(t)dt

}
(1 + o(1)).

Here the o(1) term is independent of Xi and tends to zero as τ → 0. This completes
the proof of Theorem 3.

Proof of Theorem 4. Since L is slowly varying and a ∈ (0, 1), by Lemma 3, there exists
some A0 > 0 such that L is locally bounded on [A0,∞) and

lim
z→∞

∫ z

A0
t−aL(t)dt

z1−aL(z)
=

1

1− a
. (28)

Without any loss of generality, one may assume that A0 ≥ 1. Now observe that from
the definition of E(1− κi|Xi, τ), it directly follows that

E(1− κi

∣∣Xi, τ) =

∫ 1

0
κ
a+ 1

2−1
i (1− κi)

−aL
(

1
τ2

(
1
κi

− 1
))
e−

κiX
2
i

2 dκi∫ 1

0
κ
a+ 1

2−1
i (1− κi)−a−1L

(
1
τ2

(
1
κi

− 1
))
e−

κiX
2
i

2 dκi

≤
e

X2
i
2

∫ 1

0
κ
a+ 1

2−1
i (1− κi)

−aL
(

1
τ2

(
1
κi

− 1
))
dκi∫ 1

0
κ
a+ 1

2−1
i (1− κi)−a−1L

(
1
τ2

(
1
κi

− 1
))
dκi

. (29)
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Then, using the change of variable t = 1
τ2 (

1
κi

− 1) to the numerator of (29) and
applying Lemma 5 to its denominator, we obtain the following:

E(1− κi

∣∣Xi, τ) ≤
e

X2
i
2 (τ2)−a+1

∫ ∞
0

(1 + tτ2)−
3
2 t−aL(t)dt

K−1τ−2a(1 + o(1))

= Ke
X2

i
2 τ2

∫ ∞

0

(1 + tτ2)−
3
2 t−aL(t)dt(1 + o(1))

= KJτe
X2

i
2 (1 + o(1)), say, (30)

where Jτ = τ2
∫ ∞
0

(1 + tτ2)−
3
2 t−aL(t)dt and the o(1) term in (30) does not depend on

Xi nor on the index i, and tends to zero as τ → 0.

Now we observe that for any τ < 1, we can split Jτ as

Jτ =

( ∫ A0

0

+

∫ A0
τ2

A0

+

∫ ∞

A0
τ2

)
tτ2

(1 + tτ2)
3
2

t−a−1L(t)dt = J1τ + J2τ + J3τ , say.

First note that

J1τ ≤
∫ A0

0

A0τ
2

(1 + tτ2)
3
2

t−a−1L(t)dt ≤ Aoτ
2K−1. (31)

Next, we have

J2τ ≤ A1−a
0 τ2a

1− a
L

(A0

τ2
)
(1 + o(1)) ≤ A0τ

2a

1− a
L(

1

τ2
)(1 + o(1)), (32)

where the above inequality in (32) comes from using (28) and then the slowly varying
property of L, together with the fact that A0 ≥ 1 and a ∈ (0, 1).

Finally, using Lemma 1 and the slowly varying property of L, we have

J3τ ≤ A−a
0 τ2a

a
L

(A0

τ2
)
(1 + o(1)) ≤ A0τ

2a

a
L(

1

τ2
)(1 + o(1)). (33)

Using (31), (32) and (33) it follows that

Jτ ≤
A0τ

2aL( 1
τ2 )

a(1− a)

[
K−1 (

1
τ2 )

a−1

L( 1
τ2 )

+ a(1 + o(1)) + (1− a)(1 + o(1))

]
=

A0τ
2aL( 1

τ2 )

a(1− a)
(1 + o(1)). (34)

The equality in (34) follows as limτ→0(
1
τ2 )

a−1/L( 1
τ2 ) = 0, which, in turn, follows from

Proposition part (iii) of Lemma 4. Theorem 4 now follows from (30) and (34).

Proof of Theorem 5. Fix η ∈ (0, 1) and δ ∈ (0, 1). Then by definition,

Pr(κi > η|Xi, τ) =

∫ 1

η
κ
a+ 1

2−1
i (1− κi)

−a−1L
(

1
τ2

(
1
κi

− 1
))
e−

κiX
2
i

2 dκi∫ 1

0
κ
a+ 1

2−1
i (1− κi)−a−1L

(
1
τ2

(
1
κi

− 1
))
e−

κiX
2
i

2 dκi
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≤
e−

η(1−δ)X2
i

2

∫ 1

η
κ
a+ 1

2−1
i (1− κi)

−a−1L
(

1
τ2

(
1
κi

− 1
))
dκi∫ ηδ

0
κ
a+ 1

2−1
i (1− κi)−a−1L

(
1
τ2

(
1
κi

− 1
))
dκi

.

Now applying the change of variable t = 1
τ2 (

1
κi

− 1) to both the numerator and denom-
inator on the right hand side of the preceding inequality, we obtain

Pr(κi > η|Xi, τ) ≤ e−
η(1−δ)X2

i
2 (τ2)−a

∫ 1
τ2

(
1
η−1

)
0 (1 + tτ2)−

1
2 t−a−1L(t)dt

(τ2)−a
∫ ∞

1
τ2

(
1
ηδ−1

)(1 + tτ2)−
1
2 t−a−1L(t)dt

≤ K−1e−
η(1−δ)X2

i
2√

1−ηδ
τ2

∫ ∞
1
τ2

(
1
ηδ−1

) t−(a+ 1
2+1)L(t)dt

=
H(a, η, δ)e−

η(1−δ)X2
i

2

τ2aΔ(τ2, η, δ)
,

where we use the fact that
∫ 1

τ2 ( 1
η−1)

0
t−a−1L(t)√

1+tτ2
dt ≤

∫ ∞
0

t−a−1L(t)dt = K−1 and tτ2

1+tτ2 ≥
1 − ηδ for each t ≥ 1

τ2 (
1
ηδ − 1) as t 
→ tτ2/(1 + tτ2) is an increasing function of t for

any fixed τ2 > 0. This completes the proof of Theorem 5.

Proof of Theorem 6. First note that the form of the posterior density of κi given (Xi, τ
2)

as a function of (Xi, τ
2) is the same for each i = 1, . . . ,m. Also under H0i, the distribu-

tion of Xi does not depend on i. Therefore the probability t1i = Pr(E(1 − κi|Xi, τ) >
1
2 |H0i is true) of type I error for the ith test is the same for each i, and we denote it
by t1. Using Theorem 4, for any τ < 1, the event {E(1 − κi|Xi, τ) > 1

2} implies the
following event:{

X2
i > 2a log(

1

τ2
)− 2 logL(

1

τ2
)− 2 log(

2A0K

a(1− a)
)− 2 log(1 + o(1))

}
,

where the o(1) term tends to zero as τ → 0 and is independent of Xi. Note that
2a log( 1

τ2 ) → ∞ as τ → 0, log(1+o(1)) → 0 as τ → 0 and 2A0K/(a(1−a)) is a positive
constant. Also, using part (i) of Lemma 4, limτ→0 log(L(

1
τ2 ))/ log(

1
τ2 ) = 0. Therefore,

we have, for all sufficiently small τ < 1,

t1 ≤ Pr

(
X2

i > 2

{
a log

( 1

τ2
)
+ log(

1

L( 1
τ2 )

) + log(
a(1− a)

2A0K
)

}∣∣∣∣H0i is true

)
(1 + o(1)),

(35)
where limτ→0 o(1) = 0 and this term does not depend on i, since under H0i, the dis-
tribution of Xi is N(0, 1) independently of i. Also note that for all sufficiently small
τ < 1, {

a log
( 1

τ2
)
+ log(

1

L( 1
τ2 )

) + log(
a(1− a)

2A0K
)

}
> 0. (36)
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Using (35) and (36), and the fact that 1− Φ(t) < φ(t)
t , for t > 0 we have, as τ → 0,

t1 ≤ Pr

(
|Z| >

√
2a log

( 1

τ2
)
+ 2 log(

1

L( 1
τ2 )

) + 2 log(
a(1− a)

2A0K
)

)
(1 + o(1))

≤ 2 ·
φ
(√

2a log
(

1
τ2

)
+ 2 log( 1

L( 1
τ2 )

) + 2 log(a(1−a)
2A0K

)
)

√(
2a log

(
1
τ2

)
+ 2 log( 1

L( 1
τ2 )

) + 2 log(a(1−a)
2A0K

)
) (1 + o(1))

=
1√
πa

· 2A0K

a(1− a)
·
τ2aL( 1

τ2 )√
log( 1

τ2 )
(1 + o(1)).

In the above the o(1) term tends to zero as τ → 0, and clearly it does not depend
on i. The last equality follows using the functional form of φ(·) in the numerator and
by getting an asymptotic expression for the denominator using the observations made
earlier about the relative magnitudes of the different terms as τ → 0. Since as m → ∞,
τ = τm → 0, all the limiting statements used in the theorem also hold whenm → ∞.

Proof of Theorem 7. Let us fix any η ∈ (0, 1
2 ) and any δ ∈ (0, 1). Using the inequality

κi ≤ 1{η < κi ≤ 1}+ η,

we get the following:

E(κi|Xi, τ) ≤ Pr(κi > η|Xi, τ) + η. (37)

Equation (37) coupled with Theorem 5, implies that for every Xi ∈ R we have

{
E(κi|Xi, τ) >

1

2

}
⊆

{
H(a, η, δ)e−

η(1−δ)X2
i

2

τ2aΔ(τ2, η, δ)
>

1

2
− η

}
. (38)

Using exactly similar argument as used in Theorem 6 about equality of t1i for i =
1, . . . ,m, but now noting that under H1i, the distribution of Xi does not depend on i,
it follows that t2i = t2 for some t2 for i = 1, . . . ,m, where t2i denotes the probability of
type II error of the ith test. Now observe that for sufficiently large m, τ = τm < 1 and
hence log( 1

τ2 ) �= 0. Therefore, using (38), we have,

t2 = Pr
(
E(κi|Xi, τ) >

1

2

∣∣H1iis true
)

≤ Pr

(
H(a, η, δ)e−

η(1−δ)X2
i

2

τ2aΔ(τ2, η, δ)
>

1

2
− η

∣∣H1i is true

)
= Pr

(
X2

i <
2

η(1− δ)

(
a log(

1

τ2
)+ log(

1

Δ(τ2, η, δ)
)+ log

(H(a, η, δ)
1
2 − η

))
|H1i is true

)
= Pr

(
X2

i <
2a

η(1− δ)
log(

1

τ2
)(1 + o(1))

∣∣H1i is true

)
as m → ∞. (39)
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To prove the equality in (39), we first observe that log( 1
τ2 ) → ∞ as m → ∞ and that

log(H(a,η,δ)
1
2−η

) is a bounded quantity. Furthermore, one can show that

log( 1
Δ(τ2,η,δ) )

log( 1
τ2 )

→ 0 as τ → 0 and hence as m → ∞. (40)

Combination of these facts prove the last equality in (39). For the time being let us
assume (40), and the proof of this will be given at the end.

To complete the proof of the theorem let us proceed as follows. Note that under

H1i, Xi ∼ N(0, 1 + ψ2). Therefore, by (39) and the fact that lim
m→∞

ψ2

1+ψ2 = 1 under

Assumption 1, we have

t2 ≤ Pr

(
|Z| <

√
2a

η(1− δ)

√
log( 1

τ2 )

ψ2
(1 + o(1))

)
as m → ∞. (41)

Now under the assumption limm→∞ τ/p ∈ (0,∞), it follows from Assumption 1 that,
log( 1

τ2 )/ψ
2 → C ∈ (0,∞) as m → ∞. Together with (41), this shows

t2 ≤ Pr

(
|Z| <

√
2aC

η(1− δ)

(
1 + o(1)

))
as m → ∞

= Pr

(
|Z| <

√
2aC

η(1− δ)

)(
1 + o(1)

)
as m → ∞

=

[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
as m → ∞.

It is clear from the proof that the o(1) terms do not depend on i. This completes the
proof of the theorem, modulo the proof of (40) which is given below.

Since L(·) is slowly varying and a > 0, from Lemma 1 it follows that, for every fixed
η ∈ (0, 1) and δ ∈ (0, 1),

lim
τ→0

ξ(τ2, η, δ) = lim
τ→0

∫ ∞
1
τ2

(
1
ηδ−1

) t−(a+ 1
2+1)L(t)dt

(a+ 1
2 )

−1
(

1
τ2

(
1
ηδ − 1

))−(a+ 1
2 )L( 1

τ2

(
1
ηδ − 1

)
)
= 1, (42)

where ξ(τ2, η, δ) is defined in the statement of Theorem 5. Again, using Lemma 3, we
obtain

lim
τ→0

logL( 1
τ2

(
1
ηδ − 1

)
)

log 1
τ2

= 0, (43)

for every fixed η ∈ (0, 1) and every fixed δ ∈ (0, 1), since L(·) is slowly varying. (42)
and (43), together with the definition of Δ(τ2, η, δ), lead to (40) immediately.
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Proof of Theorem 8. By definition, the probability of type I error for the ith decision
in (8) is given by

t1 = Pr(E(1− κi|Xi, τ) >
1

2
|H0i is true)

where t1 does not depend on i as already shown in the proof of Theorem 6 before.

Now, using (37) and Theorem 5, for every fixed η ∈ (0, 1/2) and every fixed δ ∈ (0, 1),
we have

E(κi|Xi, τ) ≤ η +
H(a, η, δ)e−

η(1−δ)X2
i

2

τ2aΔ(τ2, η, δ)

whence it follows that{
E(1− κi|Xi, τ) >

1

2

}
⊇

{
H(a, η, δ)e−

η(1−δ)X2
i

2

τ2aΔ(τ2, η, δ)
<

1

2
− η

}
. (44)

Therefore, using the definition of t1 and (44), we obtain the following:

t1 ≥ Pr

(
H(a, η, δ)e−

η(1−δ)X2
i

2

τ2aΔ(τ2, η, δ)
<

1

2
− η|H0i is true

)
= Pr

(
X2

i >
2

η(1− δ)
{a log( 1

τ2
) + log(

1

Δ(τ2, η, δ)
) + log(

H(a, η, δ)
1
2 − η

)}|H0i is true

)
.

Then using (40) coupled with the arguments as in the proof of Theorem 6, we obtain

t1 ≥
( 12 − η)/

√
πa

H(a, η, δ)
· τ

2a
η(1−δ)√
log( 1

τ2 )
Δ(τ2, η, δ)(1 + o(1)) as m → ∞,

where the o(1) term above does not depend on i, and tends to zero as m → ∞.

Since Δ(τ2, η, δ) ∼ L( 1
τ2 ) as τ → 0 and hence as m → ∞, the stated result follows

immediately. This completes the proof of Theorem 8.

Proof of Theorem 9. By definition, the probability of type II error for the ith decision
in (8) is given by

t2 = Pr
(
E(1− κi|Xi, τ) ≤

1

2

∣∣H1i is true
)

where t2 does not depend on i as already shown in the proof of Theorem 7 before.

Note that, by our assumption, τ → 0 as m → ∞. Therefore, using Theorem 4, for
all sufficiently large m, we have{

A0K

a(1− a)
e

X2
i
2 τ2aL(

1

τ2
)(1 + o(1)) ≤ 1

2

}
⊆

{
E(1− κi|Xi, τ) ≤

1

2

}
,
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where the o(1) term tends to zero as m → ∞, and does not depend on i or Xi. Hence,
for all such m,

t2 = Pr
(
E(1− κi|Xi, τ) ≤

1

2

∣∣H1i is true
)

≥ Pr
( A0K

a(1− a)
e

X2
i
2 τ2aL(

1

τ2
)(1 + o(1)) ≤ 1

2

∣∣H1i is true
)

≥ Pr
(
X2

i ≤ 2
{
log(

1

τ2a
) + log(

1

L( 1
τ2 )

)

+ log(
a(1− a)

2A0K
) + log(1 + o(1))}

∣∣H1i is true
)
.

Since lim
τ→0

log( 1
L( 1

τ2 )
)/log( 1

τ2 ) = 0 and log( 1
τ2 ) → ∞ as τ → 0, we have, for all sufficiently

large m,

2
{
log(

1

τ2a
) + log(

1

L( 1
τ2 )

) + log(
a(1− a)

2A0K
) + log(1 + o(1))

}
= 2a log(

1

τ2
)(1 + o(1)) > 0.

Since Xi ∼ N(0, 1 + ψ2) under H1i and ψ2 → ∞, we have,

t2 ≥ Pr
(
X2

i ≤ 2a log(
1

τ2
)(1 + o(1))

∣∣H1i is true
)

= Pr
(
|Z| ≤

√
2a

√
log( 1

τ2 )

ψ2
(1 + o(1))

)
= 2(Φ(

√
2a

√
C)− 1)(1 + o(1)).

The second inequality in the above chain of inequalities follows using Assumption 1
and the fact that lim

m→∞
τ/p ∈ (0,∞). This completes the proof of Theorem 9.

Proof of Theorem 10. We fix any c1 ≥ 2 and c2 ≥ 1 in the definition of τ̂ in (9).

Now, using the facts X1|ν1 = 0 ∼ N(0, 1) and X1|ν1 = 1 ∼ N(0, 1 + ψ2), we have

αm = Pr
(
|X1| >

√
c1 logm

)
= 2

[
(1− p) Pr

(
Z >

√
c1 logm

)
+ pPr

(
Z >

√
c1 logm

1 + ψ2

)]
. (45)

Observe that under the assumption p ≡ pm ∝ m−ε, 0 < ε < 1 and Assumption 1, one
has c1 logm/(1 + ψ2) → c1C/(2ε), where the constant C ∈ (0,∞) has already been
defined in Assumption 1. Hence, Pr(Z >

√
c1 logm/(1 + ψ2)) = β(1 + o(1)), where

β = 1 − Φ(c1C/(2ε)). Clearly, 0 < β < 1/2. On the other hand, applying Mill’s ratio,

we have p−1 Pr(Z >
√
c1 logm) ∼ m−c1/2p−1

√
2πc1 logm

→ 0 as m → ∞. Therefore, using these

observations in (45) we obtain αm = 2βp(1 + o(1)).
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Now, using the definition of type I error of the ith decision in (10), we have

t̃1i = Pr
(
E(1− κi|Xi, τ̂) >

1

2

∣∣H0i is true
)

= Pr
(
E(1− κi|Xi, τ̂) >

1

2
, τ̂ ≤ 2αm

∣∣H0i is true
)

+Pr
(
E(1− κi|Xi, τ̂) >

1

2
, τ̂ > 2αm

∣∣H0i is true
)
. (46)

As noted in van der Pas et al. (2014), for each fixed x, E(1− κi|x, τ) is non-decreasing
in τ . Therefore, E(1−κi|Xi, τ̂) ≤ E(1−κi|Xi, 2αm) whenever τ̂ ≤ 2αm. Thus, we have

Pr
(
E(1− κi|Xi, τ̂) >

1

2
, τ̂ ≤ 2αm

∣∣H0i is true
)

≤ Pr
(
E(1− κi|Xi, 2αm) >

1

2

∣∣H0i is true
)

≤ B∗
1

α2a
mL( 1

α2
m
)√

log( 1
α2

m
)
(1 + o(1)) as m → ∞, (47)

for some finite positive constant B∗
1 , independent of m. The last step of the above chain

of inequalities follows using the same arguments as in the proof of Theorem 6 and then
applying the slowly varying property of L.

Let τ̂1 ≡ 1
m and τ̂2 = 1

c2m

∑m
j=1 1{|Xj | >

√
c1 logm}. Thus, τ̂ = max{τ̂1, τ̂2}.

Now observe that, since αm = 2βp(1 + o(1)) and p ∝ m−ε, for 0 < ε < 1, we have,
1/m < 2αm for all large m. Therefore, Pr(τ̂1 > 2αm|H0i is true) = 0 for all sufficiently
large m. Using this observation and the fact that {τ̂ > 2αm} ⊆ {τ̂1 > 2αm}

⋃
{τ̂2 >

2αm}, we obtain for all sufficiently large m the following:

Pr
(
E(1− κi|Xi, τ̂) >

1

2
, τ̂ > 2αm

∣∣H0i is true
)

≤ Pr
(
τ̂ > 2αm

∣∣H0i is true
)

≤ Pr
(
τ̂1 > 2αm

∣∣H0i is true
)
+ Pr

(
τ̂2 > 2αm

∣∣H0i is true
)

= Pr
(
τ̂2 > 2αm

∣∣H0i is true
)

≤ Pr
(
|Xi| >

√
c1 logm

∣∣H0i is true
)
+ Pr

(
τ̂2 > 2αm, |Xi| ≤

√
c1 logm

∣∣H0i is true
)

≤ 1/
√
π

mc1/2
√
logm

+ Pr
(
τ̂2 > 2αm, |Xi| ≤

√
c1 logm

∣∣H0i is true
)
, (48)

where we use the facts Xi ∼ N(0, 1) under H0i, 1−Φ(t) < φ(t)
t for t > 0, and 2/c1 ≤ 1,

for the last step in (48).

Note that τ̂2 = 1
c2m

∑m
j( �=i)=1 1{|Xj | >

√
c1 logm} over the set {|Xi| ≤

√
c1 logm}.

Therefore it follows that

Pr

(
τ̂2 > 2αm, |Xi| ≤

√
c1 logm

∣∣∣∣H0i is true

)
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≤ Pr

(
1

c2m

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} > 2αm

∣∣∣∣H0i is true

)

= Pr

(
1

c2m

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} > 2αm

)
, (49)

where the last step in (49) follows from the fact that the distribution of the remaining
Xj ’s do not depend on that of Xi. Therefore, we have

Pr

(
1

c2m

m∑
j( �=i)=1

1{|Xj | >
√
c1 logm} > 2αm

)

= Pr

(
1

m− 1

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} >
2c2m

m− 1
αm

)

≤ Pr

(
1

m− 1

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} ≥ 2αm

)[
since

c2m

m− 1
> 1

]
. (50)

Note that 1{|Xj | >
√
2 logm} i.i.d.∼ Bernoulli(αm) for j ∈ {1, . . . ,m} \ {i}. Also 0 <

αm < 2αm < 1 for all sufficiently large m. Therefore, applying Hoeffding’s inequality
(Hoeffding (1963)), we obtain, for all sufficiently large m,

Pr

(
1

m− 1

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} > 2αm

)
≤ e−(m−1)D(2αm,αm) (51)

where D(2αm, αm) = 2αm log 2 + (1− 2αm) log( 1−2αm

1−αm
).

Recall that log( 1
1−x )/x → 1 as x ↓ 0. Therefore, since αm → 0 as m → ∞, one can

write D(2αm, αm) as

D(2αm, αm) = 2 log 2 · αm − (1− 2αm)
αm

1− αm

(
1 + o(1)

)
=

(
2 log 2− 1

)
αm

(
1 + o(1)

)
. (52)

Since αm ∼ 2βp, we have, (m−1)D(2αm, αm) = 2(2 log 2−1)βmp(1+o(1)) as m → ∞.
Therefore, by combining equations (46)–(52), we finally obtain, for each i = 1, . . . ,m,

t̃1i ≤ B∗
1

α2a
mL( 1

α2
m
)√

log( 1
α2

m
)
(1 + o(1)) +

1/
√
π

mc1/2
√
logm

+ e−2(2 log 2−1)βmp(1+o(1))

provided m is sufficiently large. Before we conclude our arguments, it should be noted
that the o(1) terms appearing in the present proof tend to zero as m → ∞ and are the
same for any i = 1, . . . ,m. This completes the proof of Theorem 10.

Proof of Theorem 11. We fix any c1 ≥ 2 and c2 ≥ 1 in the definition of τ̂ in (9). Let us
choose any fixed γ ∈ (0, 1

c2
).
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Now, by the definition of type II error of the ith decision in (10), we have

t̃2i = Pr
(
E(κi|Xi, τ̂) ≥

1

2

∣∣H1i is true
)

= Pr
(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ ≤ γαm

∣∣H1i is true
)

+Pr
(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ > γαm

∣∣H1i is true
)
. (53)

Recall that for each fixed x ∈ R, E(κi|x, τ) is decreasing in τ . Therefore, one has
E(κi|Xi, τ̂) ≤ E(κi|Xi, γαm) whenever τ̂ > γαm, whence it follows that{

E(κi|Xi, τ̂) ≥
1

2
, τ̂ > γαm

}
⊆

{
E(κi|Xi, γαm) ≥ 1

2

}
.

Therefore, applying the same set of arguments used in the proof of Theorem 7 and using
the fact that under H1i, Xi ∼ N(0, 1 + ψ2), we obtain for every fixed 0 < η < 1/2 and
every fixed 0 < δ < 1, the following:

Pr
(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ > γαm

∣∣H1i is true
)

≤ Pr
(
E(κi|Xi, γαm) ≥ 1

2

∣∣H1i is true
)

= Pr

(
|Z| ≤

√
2a

η(1− δ)

√
2 log

(
1

γαm

)
1 + ψ2

(
1 + o(1)

))
. (54)

Since αm ∼ 2βp, using Assumption 1 it follows that

2 log
(

1
γαm

)
1 + ψ2

=
−2 log p

ψ2
(1 + o(1)) = C(1 + o(1)). (55)

Therefore, from (54) and (55), for every fixed 0 < η < 1/2 and every fixed 0 < δ < 1,
we obtain

Pr
(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ > γαm

∣∣H1i is true
)

≤ Pr

(
|Z| ≤

√
2a

η(1− δ)

√
C

)(
1 + o(1)

)
=

[
2Φ

(√
2a

η(1− δ)

√
C

)
− 1

](
1 + o(1)

)
. (56)

Our aim is to show now that the first term on the right hand side of (53) goes to 0 as
m → ∞. From the definition of τ̂ , it follows that τ̂ ≥ 1

c2m

∑m
j( �=i)=1 1{|Xj | >

√
c1 logm}.

Using this observation and noting that the distribution of the remaining Xj ’s do not
depend on the distribution of Xi (because of independence), we obtain the following:

Pr
(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ ≤ γαm

∣∣H1i is true
)
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≤ Pr
(
τ̂ ≤ γαm

∣∣H1i is true
)

≤ Pr

(
1

c2m

m∑
j( �=i)=1

1{|Xj | >
√
c1 logm} ≤ γαm

)

= Pr

(
−

( 1

m− 1

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} − αm

)
≥

(
1− c2γm

m− 1

)
αm

)
.

Note that 1− c2γm
m−1 → 1− c2γ as m → ∞ and 1− c2γ > 0 since 0 < γ < 1

c2
. Therefore,

1− c2γm
m−1 > 0 for all sufficiently large m.

Therefore, using the preceding arguments and then applying the Markov’s inequality,
we obtain, for all sufficiently large m, the following:

Pr

(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ ≤ γαm

∣∣H1i is true

)
≤ Pr

(
−

( 1

m− 1

m∑
j( �=i)=1

1{|Xj | >
√
c1 logm} − αm

)
≥

(
1− c2γm

m− 1

)
αm

)

≤ Pr

(∣∣ 1

m− 1

m∑
j( �=i)=1

1{|Xj | >
√

c1 logm} − αm

∣∣ ≥ (
1− c2γm

m− 1

)
αm

)

≤
V ar

(
1{|X1| >

√
c1 logm}

)
(m− 1)(1− c2γm

m−1 )
2α2

m

=
(1− c2γ)

−2(1− αm)

mαm

(
1 + o(1)

)
→ 0 as m → ∞,

whence we have

Pr

(
E(κi|Xi, τ̂) ≥

1

2
, τ̂ ≤ γαm

∣∣∣∣H1i is true

)
= o(1) as m → ∞. (57)

Combining (53), (56) and (57), it therefore follows that, for each i = 1, . . . ,m, we have

t̃2i ≤
[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
as m → ∞.

Note that the o(1) terms appearing in this proof tend to zero as m → ∞ and are the
same for any i = 1, . . . ,m. This completes the proof of Theorem 11.

Proof of Theorem 1. We shall prove only the upper bound here. The corresponding
proof for the lower bound will follow analogously. First recall from (15) the general
form of the Bayes Risk of a multiple testing rule under our chosen loss. Now since in
our case t1i = t1 and t2i = t2 for all i = 1, . . . ,m, we have

ROG = m
(
(1− p)t1 + pt2

)
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= mp
( (1− p)

p
t1 + t2).

To prove the result, it suffices to show that under both the situations (I) and (II),
(1−p)

p t1 → 0 as m → ∞. We first use the fact that 1 − p ≤ 1. Then using the upper
bound for t1 obtained in Theorem 6, we have

(1− p)

p
t1 ≤ 1√

πa
· 2A0K

a(1− a)
· τ
p

(
1

τ2

)−(a−1/2) L( 1
τ2 )√

log( 1
τ2 )

(1 + o(1)) as m → ∞. (58)

The proof under case (I) follows from the facts that a > 1/2, limm→∞ τ/p ∈ (0,∞) and
hence limm→∞ τ = 0 and by part (iii) of Lemma 4, limx→∞ x−βL(x) = 0 for any β > 0
as L(·) is slowly varying. Proof for the case (II) is simple using (58).

Proof of Theorem 2. Recall that

REB
OG =

m∑
i=1

{
(1− p)t̃1i + pt̃2i

}
= p

m∑
i=1

{
1− p

p
t̃1i + t̃2i

}
. (59)

For each i, the upper bound to t̃2i as in Theorem 11, is independent of i. Therefore, for
all sufficiently large m,

m∑
i=1

t̃2i ≤ m

[
2Φ

(√
2aC

η(1− δ)

)
− 1

](
1 + o(1)

)
. (60)

Therefore, to complete the proof of the theorem, it will be enough to show

m∑
i=1

1− p

p
t̃1i = o(m) as m → ∞. (61)

For this, we first note that, for each i = 1, . . . ,m, the upper bound for t̃1i, as obtained
in Theorem 10, is independent of i. Using this and noting that 1− p < 1, we obtain

1

m

m∑
i=1

1− p

p
t̃1i ≤ B∗

1

α2a
mL( 1

α2
m
)

p
√

log( 1
α2

m
)
(1+o(1))+

1/
√
π

mc1/2p
√
logm

+
1

p
e−2(2 log 2−1)βmp(1+o(1)),

(62)
for all sufficiently large m, where B∗

1 and β are independent of m and have already been
defined in Theorem 10.

Since p → 0 as m → ∞ and αm ∼ 2βp, the first term on the right hand side of (62)
can be shown to go to zero as m → ∞ under case (I), exactly as in the proof of Theo-
rem 1, whereas for case (II), it goes to zero as m → ∞ using the conditions of the the-
orem. Also, since p ∝ m−ε for 0 < ε < 1, mp → ∞ as m → ∞ and log p = o(mp). This

implies that 1/
√
π

mc1/2p
√
logm

and 1
pe

−2(2 log 2−1)βmp(1+o(1)) = e−2(2 log 2−1)βmp(1+o(1))−log p

both tend to zero as m → ∞. These observations, together with (62), imply that (61)
holds, which on combining with (59) and (60) completes the proof of Theorem 2.
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