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GLOBAL RATES OF CONVERGENCE OF THE MLES OF
LOG-CONCAVE AND s-CONCAVE DENSITIES

BY CHARLES R. DOSS AND JON A. WELLNER

University of Minnesota and University of Washington

We establish global rates of convergence for the Maximum Likelihood
Estimators (MLEs) of log-concave and s-concave densities on R. The main
finding is that the rate of convergence of the MLE in the Hellinger metric
is no worse than n−2/5 when −1 < s < ∞ where s = 0 corresponds to the
log-concave case. We also show that the MLE does not exist for the classes
of s-concave densities with s < −1.

1. Introduction and overview.

1.1. Preliminary definitions and notation. We study global rates of conver-
gence of nonparametric estimators of log-concave and s-concave densities, with
focus on maximum likelihood estimation and the Hellinger metric. A density p on
R

d is log-concave if

p = eϕ where ϕ : Rd �→ [−∞,∞) is concave.

We denote the class of all such densities p on R
d by Pd,0. Log-concave densi-

ties are always unimodal and have convex level sets. Furthermore, log-concavity is
preserved under marginalization and convolution. Thus, the classes of log-concave
densities can be viewed as natural nonparametric extensions of the class of Gaus-
sian densities.

The classes of log-concave densities on R and R
d are special cases of the classes

of s-concave densities studied and developed by [5–7] and [30]. Dharmadhikari
and Joag-Dev [11], pages 84–99, gives a useful summary. These classes are defined
by the generalized means of order s as follows. Let

Ms(a, b; θ) ≡
⎧⎪⎨⎪⎩
(
(1 − θ)as + θbs

)1/s
, s �= 0, a, b ≥ 0,

a1−θbθ , s = 0,

min(a, b), s = −∞.

Then p ∈ P̃d,s , the class of s-concave densities on C ⊂R
d , if p satisfies

p
(
(1 − θ)x0 + θx1

) ≥ Ms

(
p(x0),p(x1); θ)
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for all x0, x1 ∈ C and θ ∈ (0,1). It is not hard to see that P̃d,0 = Pd,0 consists of
densities of the form p = eϕ where ϕ ∈ [−∞,∞) is concave; densities p in P̃d,s

with s < 0 have the form p = ϕ1/s where ϕ ∈ [0,∞) is convex; and densities p

with s > 0 have the form p = ϕ
1/s
+ where x+ = max(x,0) and ϕ is concave on

C [and then we write P̃d,s(C)]; see, for example, [11] page 86. These classes are
nested since

P̃d,s(C) ⊂ P̃d,0 ⊂ P̃d,r ⊂ P̃d,−∞ if −∞ < r < 0 < s < ∞.(1.1)

Here, we view the classes P̃1,s defined above for d = 1 in terms of the generalized
means Ms as being obtained as increasing transforms hs of the class of concave
functions on R with

hs(y) =
⎧⎪⎨⎪⎩

ey, s = 0,

(−y)
1/s
+ , s < 0,

y
1/s
+ , s > 0.

Thus, with λ denoting Lebesgue measure on R
d we define

Pd,s = {
p = hs(ϕ):ϕ is concave on R

d}∩
{
p:

∫
p dλ = 1

}
,

where the concave functions ϕ are assumed to be closed (i.e., upper semicontin-
uous), proper and are viewed as concave functions on all of Rd rather than on a
(possibly) specific convex set C. Thus, we consider ϕ as a function from R into
[−∞,∞). See (2.1) in Section 2. This view simplifies our treatment in much the
same way as the treatment in [33], but with “increasing” transformations replacing
the “decreasing” transformations of Seregin and Wellner, and “concave functions”
here replacing the “convex functions” of Seregin and Wellner.

1.2. Motivations and rationale. There are many reasons to consider the s-
concave classes Ps with s �= 0, and especially those with s < 0. In particular,
these classes contain the log-concave densities corresponding to s = 0, while re-
taining the desirable feature of being unimodal (or quasi-concave), and allowing
many densities with tails heavier than the exponential tails characteristic of the
log-concave class. In particular, the classes P1,s with s ≤ −1/2 contain all the tν -
densities with degrees of freedom ν ≥ 1. Thus, choice of an s-concave class Ps

may be viewed as a choice of how far to go in including heavy tailed densities. For
example, choosing s = 1/2 yields a class which includes all the tν -densities with
ν ≥ 1 (and all the classes Ps with s > −1/2 since the classes are nested), but not
the tν -densities for any ν ∈ (0,1). Once a class Ps is fixed, it is known that the
MLE over Ps exists (for sufficiently large sample size n) without any choice of
tuning parameters, and as will be reviewed in Theorem 2.1, below, is consistent in
several senses. The choice of s plays a role somewhat analogous to some index of
smoothness, α say, in more classical nonparametric estimation based on smooth-
ness assumptions: smaller values of s yield larger classes of densities, much as
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smaller values of a smoothness index α yield larger classes of densities. But for the
shape constrained families Ps , no bandwidth or other tuning parameter is needed
to define the estimator, whereas such tuning parameters are typically needed for
estimation in classes defined by smoothness conditions. For further examples and
motivations for the classes Ps , see [6] and [28]. Heavy tailed data are quite com-
mon in many application areas including data arising from financial instruments
(such as stock returns, commodity returns, and currency exchange rates), and mea-
surements that arise from data networks (such as sizes of files being transmitted,
file transmission rates and durations of file transmissions) often empirically exhibit
heavy tails. Yet another setting where heavy-tailed data arise is in the purchasing
of reinsurance: small insurance companies may themselves buy insurance from
a larger company to cover possible extreme losses. Assuming such losses to be
heavy-tailed is natural since they are by definition extreme. Two references (of
many) providing discussion of these examples and of inference in heavy-tailed
settings are [1] and [29].

1.3. Review of progress on the statistical side. Nonparametric estimation of
log-concave and s-concave densities has developed rapidly in the last decade. Here
is a brief review of recent progress.

1.3.1. Log-concave and d = 1. For log-concave densities on R, [27] estab-
lished existence of the Maximum Likelihood Estimator (MLE) p̂n of p0, provided
a method to compute it, and showed that it is Hellinger consistent: H(p̂n,p0) →a.s.

0 where H 2(p, q) = (1/2)
∫ {√p − √

q}2 dx is the (squared) Hellinger distance.
Dümbgen and Rufibach [19] also discussed algorithms to compute p̂n and rates of
convergence with respect to supremum metrics on compact subsets of the support
of p0 under Hölder smoothness assumptions on p0. Balabdaoui et al. [2] estab-
lished limit distribution theory for the MLE of a log-concave density at fixed points
under various differentiability assumptions and investigated the natural mode esti-
mator associated with the MLE.

1.3.2. Log-concave and d ≥ 2. Estimation of log-concave densities on R
d

with d ≥ 2 was initiated by [10]; they established existence and uniqueness and al-
gorithms for computation. Cule and Samworth [9] proved consistency in weighted
L1 and appropriate supremum metrics, while [20, 32] investigated stability and
robustness properties and use of the log-concave MLE in regression problems. Re-
cently, [25] study upper and lower bounds for minimax risks based on Hellinger
loss. When specialized to d = 1 and s = 0, their results are consistent with (and
somewhat stronger than) the results we obtain here. (See Section 5 for further dis-
cussion.)
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1.3.3. s-concave and d ≥ 1. While the log-concave (or 0-concave) case has
received the most attention among the s-concave classes, some progress has been
made for other s-concave classes. Seregin and Wellner [33] showed that the MLE
exists and is Hellinger consistent for the classes Pd,s with s ∈ (−1/d,∞). Koenker
and Mizera [26] studied estimation over s-concave classes via estimators based
on Rényi and other divergence criteria rather than maximum likelihood. Consis-
tency and stability results for these divergence estimator analogous to those estab-
lished by [20] and [32] for the MLE in the log-concave case have been investigated
by [24].

1.4. What we do here. In this paper, we will focus on global rates of conver-
gence of MLEs for the case d = 1. We make this choice because of additional tech-
nical difficulties when d > 1. Although it has been conjectured that the s-concave
MLE is Hellinger consistent at rate n−2/5 in the one-dimensional cases (see, e.g.,
[33], pages 3778–3779), to the best of our knowledge this has not yet been proved
(even though it follows for s = 0 and d = 1 from the unpublished results of [14]
and [25]).

The main difficulty in establishing global rates of convergence with respect to
the Hellinger or other metrics has been to derive suitable bounds for the metric
entropy with bracketing for appropriately large subclasses P of log-concave or
s-concave densities. We obtain bounds of the form

logN[·](ε,P,H) ≤ Kε−1/2, ε > 0,(1.2)

where N[·](ε,P,H) denotes the minimal number of ε-brackets with respect to the
Hellinger metric H needed to cover P . We will establish such bounds in Section 3
using recent results of [16] (see also [22]) for convex functions on R. These recent
results build on earlier work by [8] and [17]; see also [18], pages 269–281. The
main difficulty has been that the bounds of [8] involve restrictions on the Lipschitz
behavior of the convex functions involved as well as bounds on the supremum
norm of the functions. The classes of log-concave functions to be considered must
include the estimators p̂n (at least with arbitrarily high probability for large n).
Since the estimators p̂n are discontinuous at the boundary of their support (which
is contained in the support of the true density p0), the supremum norm does not
give control of the Lipschitz behavior of the estimators in neighborhoods of the
boundary of their support. Dryanov [16] showed how to get rid of the constraint on
Lipschitz behavior when moving from metric entropy with respect to supremum
norms to metric entropies with respect to Lr norms. Furthermore, [22] showed
how to extend Dryanov’s results from R to R

d and the particular domains [0,1]d .
Here, we show how the results of [16] and [22] can be strengthened from metric
entropy with respect to Lr to bracketing entropy with respect to Lr , and we carry
these results over to the class of concave-transformed densities. Once bounds of
the form (1.2) are available, then tools from empirical process theory due to [4, 34,
38] and developed further in [35] and [36], become available.
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The major results in this paper are developed for classes of densities, more
general than the s-concave classes, which we call concave-transformed classes.
(They will be rigorously defined later; see Section 4.) These are the classes stud-
ied in [33]. The main reason for this generality is that it does not complicate the
proofs, and, in fact, actually makes the proofs easier to understand. For instance,
when h(y) = ey , h′(y) = h(y), but the proofs are more intuitively understood if
one can tell the difference between h′ and h. Similarly, this generality allows us to
keep track of the tail behavior and the peak behavior of the concave-transformed
classes separately (via the parameters α and β , see page 964). The tail behavior
turns out to be relevant for global rates of convergence, as we see in this paper.

Here is an outline of the rest of our paper. In Section 2, we define the MLEs for
s-concave classes and briefly review known properties of these estimators. We also
show that the MLE does not exist for Ps for any s < −1. In Section 3, we state
our main rate results for the MLEs over the classes P1,s with s > −1. In Section 4,
we state our main general rate results for h-transformed concave classes. Section 5
gives a summary as well as further problems and prospects. The proofs are given
in Section 6 and in supplementary material [12].

2. Maximum likelihood estimators: Basic properties. We will restrict at-
tention to the class of concave functions

C := {
ϕ : R→ [−∞,∞)|ϕ is a closed, proper concave function

}
,(2.1)

where [31] defines proper (page 24) and closed (page 52) convex functions. A con-
cave function is proper or closed if its negative is a proper or closed convex func-
tion, respectively. Since we are focusing on the case d = 1, we write Ps for P1,s ;
this can be written as

Ps =
{
p :

∫
p dλ = 1

}
∩ hs ◦ C.(2.2)

We also follow the convention that all concave functions ϕ are defined on all of R
and take the value −∞ off of their effective domains, domϕ := {x : ϕ(x) > −∞}.
These conventions are motivated in [31] (page 40). For any unimodal function p,
we let mp denote the (smallest) mode of p. For two functions f and g and r ≥ 1,
we let Lr(f, g) = ‖f − g‖r = (

∫ |f − g|r dλ)1/r . We will make the following
assumption.

ASSUMPTION 2.1. We assume that Xi , i = 1, . . . , n are i.i.d. random vari-
ables having density p0 = hs ◦ ϕ0 ∈ Ps for s ∈R.

Write Pn = n−1 ∑n
i=1 δXi

for the empirical measure of the Xi’s. The maximum
likelihood estimator p̂n = hs(ϕ̂n) of p0 maximizes


n(ϕ) = Pn logp = Pn(loghs) ◦ ϕ
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over all functions ϕ ∈ C for which
∫

hs(ϕ) dλ = 1. When s > −1, from [33] (Theo-
rem 2.12, page 3757) we know that ϕ̂n exists if n ≥ γ /(γ − 1) with γ ≡ −1/s > 1
in the case s < 0, and if n ≥ 2 when s ≥ 0. Seregin and Wellner [33], page 3762,
conjectured that ϕ̂n is unique when it exists. See also [27, 37] and [19] (Theo-
rem 2.1) for the s = 0 case.

The existence of the MLE has been shown only when s > −1. One might won-
der if this is a deficiency in the proofs or is fundamental. It is well known that the
MLE does not exist for the class of unimodal densities, P−∞; see, for example, [3].
The following proposition shows that in fact the MLE does not exist for Ps when
s < −1. The case s = −1 is still not resolved.

PROPOSITION 2.1. A maximum likelihood estimator does not exist for the
class Ps for any s < −1.

Proposition 2.1 gives a negative result about the MLE for an s-concave density
when s < −1. When s > −1, there are many known positive results, some of which
are summarized in the next theorem, which gives boundedness and consistency
results. In particular, we already know that the MLEs for s-concave densities are
Hellinger consistent; our main Theorem 3.2 extends this result to give the rate of
convergence, when s > −1.

Additionally, from lemmas and corollaries involved in the proof of Hellinger
consistency, we know that on compact sets strictly contained in the support of p0
we have uniform convergence, and we know that the s-concave MLE is uniformly
bounded almost surely. We will need these latter two results in the proof of the rate
theorem to show we only need to control the bracketing entropy of an appropriate
subclass of Ps .

THEOREM 2.1 (Consistency and boundedness of p̂n for Ps ). Let Assump-
tion 2.1 hold with s > −1 and let p̂n be the corresponding MLE. Then:

(i) H(p̂n,p0) →a.s. 0 as n → ∞,
(ii) If S is a compact set strictly contained in the support of p0,

sup
x∈S

∣∣p̂n(x) − p0(x)
∣∣ →a.s. 0 as n → ∞,

(iii) lim supn→∞ supx p̂n(x) ≤ supx p0(x) ≡ M0 < ∞ almost surely.

PROOF. The first statement (i) is proved by [27] for s = 0, and for s > −1 in
Theorem 2.17 of [33]. Statement (ii) for s = 0 is a corollary of Theorem 4.1 of [19],
and for s > −1 follows from Theorem 2.18 of [33]. Statement (iii) is Theorem 3.2
of [27] for s = 0, and is Lemma 3.17 in [33] for s > −1. �

In order to find the Hellinger rate of convergence of the MLEs, we will bound
the bracketing entropy of classes of s-concave densities. In general, by using
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known consistency results, one does not need to bound the bracketing entropy
of the entire function class being considered, but rather of a smaller subclass in
which the MLE is known to lie with high probability. This is the approach we
will take, by using parts (ii) and (iii) of Theorem 2.1. We therefore consider the
following subclasses PM,s of s-concave densities which (we show in the proof
of Theorem 3.2) for some M < ∞ will contain both p0 and p̂n, after translation
and rescaling, with high probability for large n. (Recall the Hellinger distance is
invariant under translations and rescalings.) For 0 < M < ∞, let

PM,s ≡
{
p ∈ Ps : sup

x∈R
p(x) ≤ M,1/M ≤ p(x) for all |x| ≤ 1

}
.(2.3)

The next proposition gives an envelope for the class PM,s . This envelope is an
important part of the proof of the bracketing entropy of the class PM,s .

PROPOSITION 2.2. Fix 0 < M < ∞ and s > −1. Then there exists a constant
0 < L < ∞ depending only on s and M such that for any p ∈ PM,s

p(x) ≤
⎧⎨⎩
(
Ms + L

2M
|x|

)1/s

, |x| ≥ 2M + 1

M, |x| < 2M + 1

⎫⎬⎭ .(2.4)

PROOF. A corresponding statement for the more general h-transformed den-
sity classes is given in Proposition 4.2 in the Appendix. However, (2.4) does
not immediately follow from the statement of Proposition 4.2 applied to h ≡
hs(y) = (−y)

1/s
+ , since the requirement α > −1/s disallows the case α = −1/s,

which is what we need. However, (6.6) from the proof of Proposition 4.2 with
h−1

s (y) = −ys for y ∈ (0,∞), yields

p(x) ≤ hs

(
−Ms − L

2M
|x|

)
for |x| ≥ 2M + 1, which gives us (2.4). �

3. Main results: Log-concave and s-concave classes. Our main goal is to
establish rates of convergence for the Hellinger consistency given in (i) of Theo-
rem 2.1 for the s-concave MLE. As mentioned earlier, the key step toward proving
rate results of this type is to bound the size, in terms of bracketing entropy, of
the function class over which we are estimating. Thus, we have two main results
in this section. In the first, we bound the bracketing entropy of certain s-concave
classes of functions. This shows that for appropriate values of s, the transformed
classes have the same relevant metric structure as (compact) classes of concave
functions. Next, using the bracketing bound, our next main result gives the rates of
convergence of the s-concave MLEs.

Now let the bracketing entropy of a class of functions F with respect to a semi-
metric d on F be defined in the usual way; see, for example, [18] page 234, [36],
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page 83 or [35], page 16. The Lr -size of the brackets depends on the relationship
of s and r . In particular, for our results, we need to have light enough tails, which
is to say we need −1/s to be large enough. Our main results are as follows.

THEOREM 3.1. Let r ≥ 1 and M > 0. Assume that either s ≥ 0 or that γ ≡
−1/s > 2/r . Then

logN[·]
(
ε,P1/2

M,s,Lr

)
� ε−1/2,(3.1)

where the constants in � depend only on r , M and s. By taking r = 2 and s > −1,
we have that

logN[·](ε,PM,s,H) � ε−1/2.

Theorem 3.1 is the main tool we need to obtain rates of convergence for the
MLEs p̂n. This is given in our second main theorem.

THEOREM 3.2. Let Assumption 2.1 hold, and let s > −1. Suppose that p̂n,s

is the MLE of the s-concave density p0. Then

H(p̂n,s,p0) = Op

(
n−2/5).

Theorem 3.2 is a fairly straightforward consequence of Theorem 3.1 by ap-
plying [35], Theorem 7.4, page 99, or [36], Theorem 3.4.4 in conjunction with
Theorem 3.4.1, pages 322–323.

In the case s = 0, one can extend our results (an upper bound on the rate of con-
vergence) to an upper bound on the risk Ep0(H

2(p̂n,0,p0)) over the entire class
of log-concave densities p0; [25] show how this can be done; they use the fact
that the log-concave density class is compact in the sense that one can translate
and rescale to have, for example, any fixed mean and covariance matrix one would
like (since the Hellinger metric is invariant under translation and rescaling), and
the class of densities with fixed mean and variance is uniformly bounded above.
However, to show the risk bound for s = 0, [25] use many convergence results that
are available for 0-concave densities but not yet available for s-concave densities
with s < 0. In particular, their crucial Lemma 11, page 33, relies on results con-
cerning the asymptotic behavior of the MLE beyond the log-concave model P0

due to Dümbgen et al. [20]. We do not yet know if such a result holds for the MLE
in any of the classes Ps with s < 0. Thus, for the moment, we leave our results as
rates of convergence rather than risk bounds.

In addition to Theorem 3.2, we have further consequences since the Hellinger
metric dominates the total variation or L1-metric and via [35], Corollary 7.5,
page 100.
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COROLLARY 3.1. Let Assumption 2.1 hold and let s > −1. Suppose that p̂n,s

is the MLE of the s-concave density p0. Then∫
R

∣∣p̂n,s(x) − p0(x)
∣∣dx = Op

(
n−2/5).

COROLLARY 3.2. Let Assumption 2.1 hold and let s > −1. Suppose that p̂n,s

is the MLE of the s-concave density p0. Then the log-likelihood ratio (divided by n)
Pn log(p̂n,s/p0) satisfies

Pn log
(

p̂n,s

p0

)
= Op

(
n−4/5).(3.2)

The result (3.2) is of interest in connection with the study of likelihood ratio
statistics for tests (and resulting confidence intervals) for the mode m0 of p0 which
are being developed by the first author. In fact, the conclusions of Theorem 3.2 and
Corollary 3.2 are also true for the constrained maximum likelihood estimator p̂0

n

of p0 constrained to having (known) mode at 0. We will not treat this here, but
details will be provided along with the development of these tests in [13] and [15].

The rates we have given are for the Hellinger distance (as well as any dis-
tance smaller than the Hellinger distance) and also for the log-likelihood ratio. The
Hellinger metric is very natural for maximum likelihood estimation given i.i.d. ob-
servations, and thus many results are stated in terms of Hellinger distance (e.g.,
[35] focuses much attention on Hellinger distance). Use of the Hellinger metric is
not imperative, for example, Theorem 3.4.1 of [36] is stated for a general metric,
but getting rates for other metrics (e.g., Lr for r > 1) would require additional
work since using Theorem 3.4.1 of [36] requires verification of additional condi-
tions which are not immediate.

Estimators based on shape constraints have been shown to have a wide range of
adaptivity properties. For instance, [19] study the sup-norm on compacta (which
we expect to behave differently than Hellinger distance) and show that the log-
concave MLE is rate-adaptive to Hölder smoothness β when β ∈ [1,2]. In the
case of univariate convex regression, [23] were able to show that the least-squares
estimator achieves a parametric rate (up to log factors) at piecewise linear func-
tions ϕ0. They do this by computing entropy bounds for local classes of convex
functions within a distance δ of the true function. We have not yet succeeded in
extending the bracketing entropy bound of our Theorem 3.1 to analogous local
classes, because the proof method used for our theorem does not keep tight enough
control of concave-function classes that do not drop to 0 except near a prespecified
boundary (where one expects the entropies to be smaller). It seems that techniques
more similar to those used by [16] or [22] may be applicable.
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4. Main results: General h-transformed classes. Here, we state and prove
the main results of the paper in their most general form, via arbitrary concave-
function transformations, h. Similar to our definition of Ps , we define

Ph := {h ◦ C} ∩
{
p :

∫
p dλ = 1

}
,(4.1)

the class of h-concave-transformed densities, and we study the MLE over Ph.
These will be described in more detail in Definition 4.1 and Assumption 4.1. In
order to study rates of convergence, we need to bound bracketing entropies of
relevant function classes. Control of the entropies of classes of concave (or con-
vex) functions with respect to supremum metrics requires control of Lipschitz con-
stants, which we do not have. Thus, we will use Lr metrics with r ≥ 1. First, we
will define the classes of concave and concave-transformed functions which we
will be studying.

While we consider ϕ ∈ C to be defined on R, we will still sometimes consider
a function ψ which is the “restriction of ϕ to I” for an interval I ⊂ R. By this,
in keeping with the above-mentioned convention, we still mean that ψ is defined
on R, where if x /∈ I then ψ(x) = −∞, and otherwise ψ(x) = ϕ(x). We will let
ϕ|I denote such restricted functions ψ . When we want to speak about the range of
any function f (not necessarily concave) we will use set notation, for example, for
S ⊆R, f (S) := {y : f (x) = y for some x ∈ S}. We will sometimes want to restrict
not the domain of ϕ but, rather, the range of ϕ. We will thus let ϕ|I denote ϕ|Dϕ,I

for any interval I ⊂ R, where Dϕ,I = {x : ϕ(x) ∈ I }. Thus, for instance, for all
intervals I containing ϕ(domϕ) we have ϕ|I ≡ ϕ.

We will be considering classes of nonnegative concave-transformed functions
of the type h ◦ C for some transformation h where h(−∞) = 0 and h(∞) = ∞.
We will elaborate on these transformations shortly, in Definition 4.1 and Assump-
tion 4.1. We will slightly abuse notation by allowing the dom operator to apply to
such concave-transformed functions, by letting domh ◦ ϕ := {x : h(ϕ(x)) > 0} be
the support of h ◦ ϕ.

The function classes in which we will be interested in the end are the classes
PM,s defined in (2.3), or, more generally PM,h defined in (4.3), to which the MLEs
(of translated and rescaled data) belong, for some M < ∞, with high probability as
sample size gets large. However, such classes contain functions that are arbitrarily
close to or equal to 0 on the support of the true density p0, and these correspond
to concave functions that take unboundedly large (negative) values on the support
of p0. Thus, the corresponding concave classes do not have finite bracketing en-
tropy for the Lr distance. To get around this difficulty, we will consider classes of
truncated concave functions and the corresponding concave-transformed classes.

DEFINITION 4.1. A concave-function transformation, h, is a continuously dif-
ferentiable increasing function from [−∞,∞] to [0,∞] such that h(∞) = ∞ and
h(−∞) = 0. We define its limit points ỹ0 < ỹ∞ by ỹ0 = inf{y : h(y) > 0} and
ỹ∞ = sup{y : h(y) < ∞}, we assume that h(ỹ0) = 0 and h(ỹ∞) = ∞.
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REMARK 4.1. These transformations correspond to “decreasing transforma-
tions” in the terminology of [33]. In that paper, the transformations are applied
to convex functions whereas here we apply our transformations to concave ones.
Since negatives of convex functions are concave, and vice versa, each of our
transformations h defines a decreasing transformation h̃ as defined in [33] via
h̃(y) = h(−y).

We will sometimes make the following assumptions.

ASSUMPTION 4.1 (Consistency assumptions on h). Assume that the transfor-
mation h satisfies:

T.1 h′(y) = o(|y|−(α+1)) as y ↘ −∞ for some α > 1;
T.2 If ỹ0 > −∞, then for all ỹ0 < c < ỹ∞, there is an 0 < Mc < ∞ such that

h′(y) ≤ Mc for all y ∈ (ỹ0, c];
T.3 If ỹ∞ < ∞, then for some 0 < c < C, c(ỹ∞−y)−β ≤ h(y) ≤ C(ỹ∞−y)−β

for some β > 1 and y in a neighborhood of ỹ∞;
T.4 If ỹ∞ = ∞, then h(y)γ h(−Cy) = o(1) for some γ,C > 0, as y → ∞.

EXAMPLE 4.1. The class of log-concave densities, as discussed in Section 3
is obtained by taking h(y) = ey ≡ h0(y) for y ∈ R. Then ỹ0 = −∞ and ỹ∞ = ∞.
Assumption T.4 holds with any γ > C > 0, and assumption T.1 holds for any
α > 1.

EXAMPLE 4.2. The classes Ps of s-concave densities with s ∈ (−1,0), as
discussed in Section 3, are obtained by taking h(y) = (−y)

1/s
+ ≡ hs(y) for s ∈

(−1,0) and for y < 0. Here, ỹ0 = −∞ and ỹ∞ = 0. Assumption T.3 holds for
β = −1/s, and assumption T.1 holds for any α ∈ (1,−1/s).

Note that the same classes of densities Ps result from the transforms h̃s(y) =
(1 + sy)

1/s
+ for y ∈ (−∞,−1/s) = (ỹ0, ỹ∞): if p = hs(ϕ) ∈ Ps , then also p =

h̃s(ϕ̃s) ∈ Ps where ϕ̃s ≡ −(ϕ + 1)/s is also concave. With this form of the trans-
formation, we clearly have h̃s(y) → ey as s ↗ 0, connecting this example with
Example 4.1.

EXAMPLE 4.3. The classes of s-concave functions with 0 < s < ∞, as dis-
cussed in Section 3 are obtained by taking h(y) = (y)

1/s
+ ≡ hs(y). Here ỹ0 = 0

and ỹ∞ = ∞. Assumption T.1 holds for any α > 1, assumption T.2 fails if s > 1,
and assumption T.4 holds for any (small) C,γ > 0. These (small) classes Ph are
covered by our Corollary 4.3.

EXAMPLE 4.4. To illustrate the possibilities further, consider h(y) = h̃s(y) =
(1 + sy)1/s for y ∈ [0,−1/s) with −1 < s < 0, and h(y) = h̃r (y) for y ∈ (−∞,0)

and r ∈ (−1,0]. Here, ỹ0 = −∞ and ỹ∞ = −1/s. Assumption T.3 holds for β =
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−1/s, and assumption T.1 holds for any α ∈ (1,−1/r). Note that s = 0 is not
allowed in this example, since then if r < 0, assumption T.4 fails.

The following lemma shows that concave-transformed classes yield nested fam-
ilies Ph much as the s-concave classes are nested, as was noticed in Section 1.

LEMMA 4.1. Let h1 and h2 be concave-function transformations. If 
 is a
concave function such that h1 = h2 ◦ 
 , then Ph1 ⊆ Ph2 .

PROOF. Lemma 2.5, page 6, of [33] gives this result, in the notation of “de-
creasing (convex) transformations.” �

Now, for an interval I ⊂ R, let

C
(
I, [−B,B])= {

ϕ ∈ C : −B ≤ ϕ(x) ≤ B if x ∈ domϕ = I
}
.

Despite making no restrictions on the Lipschitz behavior of the function class, we
can still bound the entropy, as long as our metric is Lr with 1 ≤ r < ∞ rather than
L∞.

PROPOSITION 4.1 (Extension of Theorem 3.1 of [22]). Let b1 < b2. Then
there exists C < ∞ such that

logN[·]
(
ε,C

([b1, b2], [−B,B]),Lr

) ≤ C

(
B(b2 − b1)

1/r

ε

)1/2
(4.2)

for all ε > 0.

Our first main result has a statement analogous to that of the previous proposi-
tion, but it is not about concave or convex classes of functions but rather about
concave-transformed classes, defined as follows. Let h be a concave-function
transformation. Let I[b1, b2] be all intervals I contained in [b1, b2], and let

F
(
I[b1, b2], [0,B])= {

f : f = h ◦ ϕ,ϕ ∈ C,domϕ ⊂ [b1, b2],0 ≤ f ≤ B
}
.

THEOREM 4.1. Let r ≥ 1. Assume h is a concave-function transformation. If
ỹ0 = −∞ then assume h′(y) = o(|y|−(α+1)) for some α > 0 as y → −∞. Other-
wise assume assumption T.2 holds. Then for all ε > 0

logN[·](ε,F(I[b1, b2], [0,B]),Lr)

(B(b2 − b1)1/r )1/2 � ε−1/2,

where � means ≤ up to a constant. The constant implied by � depends only on r

and h.
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Thus, a bounded class of transformed-functions for any reasonable transforma-
tion behaves like a compact class of concave functions.

We extend the definition (2.3) to an arbitrary concave-function transformation
h as follows:

PM,h ≡
{
p ∈ Ph: sup

x∈R
p(x) ≤ M,1/M ≤ p(x) for all |x| ≤ 1

}
.(4.3)

As with the analogous classes of log-concave and s-concave densities, the class
PM,h is important because it has an upper envelope, which is given in the following
proposition.

PROPOSITION 4.2. Let h be a concave-function transformation such that
assumption T.1 holds with exponent αh > 1. Then for any p1/2 ∈ P1/2

M,h with
0 < M < ∞,

p1/2(x) ≤
⎧⎪⎨⎪⎩D1/2

(
1 + L

2M
|x|

)−αh/2

, |x| ≥ 2M + 1,

M1/2, |x| < 2M + 1
(4.4)

≡ p
1/2
u,h(x),

where 0 < D,L < ∞ are constants depending only on h and M .

We would like to bound the bracketing entropy of the classes PM,h. This re-
quires allowing possibly unbounded support. To do this, we will apply the enve-
lope from the previous proposition and then apply Theorem 4.1. Because the size
or cardinality of the brackets depends on the height of the function class, the upper
bound on the heights given by the envelope allows us to take brackets of corre-
spondingly decreasing size and cardinality out towards infinity. Combining all the
brackets from the partition of R yields the result. Before we state the theorem,
we need the following assumption, which is the more general version of Assump-
tion 2.1.

ASSUMPTION 4.2. We assume that Xi , i = 1, . . . , n are i.i.d. random vari-
ables having density p0 = h ◦ ϕ0 ∈ Ph where h is a concave-function transforma-
tion.

THEOREM 4.2. Let r ≥ 1, M > 0, and ε > 0. Let h be a concave-function
transformation such that for g ≡ h1/2, Assumption 4.1, T.1–T.4 hold, with α ≡
αg > 1/r ∨ 1/2. Then

logN[·]
(
ε,P1/2

M,h,Lr

) ≤ Kr,M,hε
−1/2,(4.5)

where Kr,M,h is a constant depending only on r , M , and h.
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For the proof of this theorem (given with the other proofs, in Section 6), we
will pick a sequence yγ , for γ = 1, . . . , kε to discretize the range of values that
a concave function ϕ may take, where kε defines the index of truncation which
necessarily depends on ε in order to control the fineness of the approximation.
This allows us to approximate a concave function ϕ more coarsely as yγ decreases,
corresponding to approximating the corresponding concave-transformed function
h ◦ ϕ at the same level of fineness at all yγ levels.

REMARK 4.2. We require that h1/2, rather than h itself, is a concave-function
transformation here because to control Hellinger distance for the class PM,h, we
need to control L2 distance for the class P1/2

M,h. Note that when h is hs for any
s ∈ R, h1/2 is also a concave-function transformation.

We can now state our main rate result theorem, which is the general form of The-
orem 3.2. It is proved by using Theorem 4.2, specifying to the case r = 2. There
is seemingly a factor of two different in the assumptions for the s-concave rate
theorem (requiring −1/s > 1) and the assumption in the h-concave rate theorem,
requiring α > 1/2 (where, intuitively, we might think α corresponds to −1/s). The
reason for this discrepancy is that α in the h-concave theorem is αg correspond-
ing to g ≡ h1/2, rather than corresponding to h itself; thus αg corresponds not to
(−1/s) but to (−1/s)/2.

THEOREM 4.3. Let Assumption 4.2 hold and let p̂n be the h-transformed
MLE of p0. Suppose that Assumption 4.1, T.1–T.4 holds for g ≡ h1/2. Assume
that α ≡ αg > 1/2. Then

H(p̂n,p0) = Op

(
n−2/5).(4.6)

The following corollaries connect the general Theorem 4.3 with Theorem 3.2
via Examples 4.1, 4.2 and 4.3.

COROLLARY 4.1. Suppose that p0 in Assumption 4.2 is log-concave; that is,
p0 = h0 ◦ ϕ0 with h0(y) = ey as in Example 4.1 and ϕ0 concave. Let p̂n be the
MLE of p0. Then H(p̂n,p0) = Op(n−2/5).

COROLLARY 4.2. Suppose that p0 in Assumption 4.2 is s-concave with −1 <

s < 0; that is, p0 = hs ◦ ϕ0 with hs(y) = (−y)1/s for y < 0 as in Example 4.2
with −1 < s < 0 and ϕ0 concave. Let p̂n be the MLE of p0. Then H(p̂n,p0) =
Op(n−2/5).

COROLLARY 4.3. Suppose that p0 in Assumption 4.2 is h-concave where h is
a concave transformation satisfying Assumption 4.1. Suppose that h satisfies h =
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h2 ◦
 where 
 is a concave function and h2 is a concave-function transformation
such that g ≡ h

1/2
2 also satisfies Assumption 4.1, and such that α ≡ αg > 1/2. Let

p̂n be the h-concave MLE of p0. Then

H(p̂n,p0) = Op

(
n−2/5).(4.7)

In particular, the conclusion holds for h = hs given by hs(y) = y
1/s
+ with s > 0.

Corollaries 4.1 and 4.2 follow immediately from Theorem 4.3 (see Exam-
ples 4.1 and 4.2). However, Corollary 4.3 requires an additional argument (given
in the proofs section). Together, these three corollaries yield Theorem 3.2 in the
main document.

Theorem 4.3 has further corollaries, for example, via Example 4.4.

5. Summary, further problems, and prospects. In this paper, we have
shown that the MLEs of s-concave densities on R have Hellinger convergence rates
of n−2/5 for all s > −1 and that the MLE does not exist for s < −1. Our brack-
eting entropy bounds explicitly quantify the growth of these classes as s ↘ −1
and are of independent interest in the study of convergence rates for other possi-
ble estimation methods. In the rest of this section, we briefly discuss some further
problems.

5.1. Behavior of the constants in our bounds. It can be seen from the proof of
Theorem 4.2 that the constants in our entropy bounds diverge to +∞ as α = αg ↘
1/r . When translated to Theorem 3.1 and r = 2, this occurs as (−1/(2s)) ↘ 1/2.
It would be of interest to establish lower bounds for these entropy numbers with
the same property. On the other hand, when r = 2 and s = −1/2, the constant Kr,α

in the proof of Theorem 4.2 becomes very reasonable: K2,1 = M1/5(4M +2)1/5 +
16(2D1/2M/L)2/5 where M,D, and L are the constants in the envelope function
pu,h of Proposition 4.2. Note that the constant K̃r,α from Theorem 4.1 arises as a
factor in the constant for Theorem 4.2, but from the proof of Theorem 4.1 it can
be seen that unless α ↘ 0, K̃r,α stays bounded.

5.2. Alternatives to maximum likelihood. As noted by [26], page 2999, there
are great algorithmic advantages in adapting the method of estimation to the partic-
ular class of shape constraints involved, thereby achieving a convex optimization
problem with a tractable computational strategy. In particular, [26] showed how
Rényi divergence methods are well-adapted to the s-concave classes in this re-
gard. As has become clear through the work of [24], there are further advantages
in terms of robustness and stability properties of the alternative estimation proce-
dures obtained in this way.
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5.3. Rates of convergence for nonparametric estimators, d ≥ 2. Here, we have
provided global rate results for the MLEs over P1,s with respect to the Hellinger
metric. Global rate results are still lacking for the classes Pd,s on R

d with d ≥ 2.
Kim and Samworth [25] provides interesting and important minimax lower bounds
for squared Hellinger risks for the classes Pd,0 with d ≥ 1, and their lower bounds
apply to the classes Pd,s as well in view of the nesting properties in (1.1) and
Lemma 4.1. Establishment of comparable upper bounds for d ≥ 2 remains an ac-
tive area of research.

5.4. Rates of convergence for the Rényi divergence estimators. Although
global rates of convergence of the Rényi divergence estimators of [26] have not
yet been established even for d = 1, we believe that the bracketing entropy bounds
obtained here will be useful in establishing such rates. The results of [24] provide
some useful starting points in this regard.

5.5. Global rates of convergence for density estimation in L1. Rates of con-
vergence with respect to the L1 metric for MLEs for the classes Pd,0 and Pd,s with
d ≥ 2 and s < 0 are not yet available. At present, further tools seem to be needed.

5.6. Rate efficient estimators when d ≥ 3. It has become increasingly clear
that nonparametric estimators based on minimum contrast methods (either MLE
or minimum Rényi divergence) for the classes Pd,s with d ≥ 3 will be rate in-
efficient. This modified form of the conjecture of [33], Section 2.6, page 3762,
accounts for the fact pointed out by [25] that the classes Pd,s with −1/d < s ≤ 0
contain all uniform densities on compact convex subsets of Rd , and these densities
have Hellinger entropies of order ε−(d−1). Hence, alternative procedures based on
sieves or penalization will be required to achieve optimal rates of convergence.
Although these problems have not yet been pursued in the context of log-concave
and s-concave densities, there is related work by [21], in a closely related problem
involving estimation of the support functions of convex sets.

6. Main results: Proofs. This section contains the proofs of the main results.

PROOF OF PROPOSITION 2.1. Let s < −1 and set r ≡ −1/s < 1. Consider
the family of convex functions {ϕa} given by

ϕa(x) = a−1/r (br − ax)1[0,br /a](x),

where br ≡ (1 − r)1/(1−r) and a > 0. Then ϕa is convex and

pa(x) ≡ ϕa(x)1/s = ϕa(x)−r = a

(br − ax)r
1[0,br /a)(x)

is a density. The log-likelihood is given by


n(a) = logLn(a) = log
n∏

i=1

pa(Xi) =
n∑

i=1

{
loga − r log(br − aXi)

}
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on the set Xi < br/a for all i ≤ n, and hence for a < br/X(n) where X(n) ≡
max1≤i≤n Xi . Note that 
n(a) ↗ ∞ as a ↗ br/X(n). Hence, the MLE does note
exist for {pa : a > 0}, and a fortiori the MLE does not exist for {p : p ∈ P1,s} with
s < −1. �

PROOF OF PROPOSITION 4.1. The proof consists mostly of noticing that The-
orem 3.1 in [22] essentially yields the result stated here; the difference in the state-
ments is that we use Lr bracketing entropy whereas they use Lr metric entropy.
For the details of the proof, see supplementary material [12]. �

To prove Theorem 4.1, we discretize the domains and the range of the concave-
transformed functions. We define a sequence of values yγ that discretize the range
of the concave functions. As |yγ | get large, h(yγ ) get small, so we can define
brackets of increasing size. The increasing size of the brackets will be governed by
the values of εB

γ in the proof. We also have to discretize the domain of the func-
tions to allow for regions where the concave-transformed functions can become 0
(which corresponds to concave functions becoming infinite, and which thus can-
not be bracketed at the concave level). The sizes of the discretization of the domain
corresponding to each level yγ is governed by the values of εS

γ in the proof.

PROOF OF THEOREM 4.1. First note that the Lr bracketing numbers scale in
the following fashion. For a function f supported on a subset of [b1, b2] and with
|f | bounded by B , we can define a scaled and translated version of f ,

f̃ (x) := f (b1 + (b2 − b1)x)

B
,

which is supported on a subset of [0,1] and bounded by 1. Then

Br
∫
[0,1]

∣∣f̃ (x) − g̃(x)
∣∣r dx = 1

(b2 − b1)

∫
[b1,b2]

∣∣f (x) − g(x)
∣∣r dx.

Thus, a class of ε-sized Lr brackets when b1 = 0, b2 = 1 and B = 1 scales to be a
class of ε(b2 −b1)

1/rB brackets for general b1, b2, and B . Thus, for the remainder
of the proof we take b1 = 0, b2 = 1 and B = 1. By replacing h by a translation
of h (since concave functions plus a constant are still concave), and using the fact
that the range of h is (0,∞), we assume that h−1(1) < 0.

We will shortly define a sequence of epsilons, εB
γ and εS

γ , depending on ε. We
will need εS

γ ≤ 1 for all γ . Thus, we will later specify a constant ε∗ such that ε ≤ ε∗
guarantees εS

γ ≤ 1.
We will consider the cases ỹ0 = −∞ and ỹ0 > −∞ separately; the former case

is more difficult, so let us begin by assuming that ỹ0 = −∞. Let yγ = −2γ for
γ = 1, . . . , kε ≡ �log2 h−1(ε)�. The yγ ’s discretize the range of possible values
a concave function takes. We let εB

γ = ε(−yγ−1)
(α+1)ζ and εS

γ = εr(−yγ−1)
rαζ ,

where we choose ζ to satisfy 1 > ζ > 1/(α + 1).
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We start by discretizing the support [0,1]. At each level γ = 1, . . . , kε , we use
εS
γ to discretize the support into intervals on which a concave function can cross

below yγ .
We place �2/εS

γ � points al in [0,1], l = 1, . . . , �2/εS
γ �, such that 0 < al+1 −al <

εS
γ /2, l = 0, . . . , �2/εS

γ � taking al0 = 0 and al�2/εSγ �+1
= 1. There are NS

γ ≡ (�2/εS
γ �

2

)
pairs of the points, and for each pair (l1, l2) we define a pair of intervals, IL

i,γ and

IU
i,γ by

IL
i,γ = [al1, al2] and IU

i,γ = [al1−1, al2+1],
for i = 1, . . . ,NS

γ . We see that logNS
γ ≤ 4 log(1/εS

γ ), that λ(IU
i,γ \ IL

i,γ ) ≤ εS
γ and

that for each γ , for all intervals I ⊂ [0,1] [i.e., for all possible domains I of a
concave function ϕ ∈ C([0,1], [−1,1])], there exists 1 ≤ i ≤ NS

γ such that IL
i,γ ⊆

I ⊆ IU
i,γ .

Now, we can apply Proposition 4.1 so for each γ = 1, . . . , kε we can pick brack-
ets [lα,i,γ (x), uα,i,γ (x)] for C(IL

i,γ , [yγ , y0]) with α = 1, . . . ,Nγ = �exp(C(|yγ |/
εB
γ )1/2)� (since y0 ≤ |yγ |) and Lr(lα,i,γ , uα,i,γ ) ≤ εB

γ . Note that by Lemma A.2
kε ≤ log2 Mε−1/α for some M ≥ 1, so we see that

εS
γ ≤ ε(1−ζ )r

(
M

2

)rαζ

,

and thus taking ε∗ ≡ (2/M)αζ/(1−ζ ) the above display is bounded above by 1 for
all ε ≤ ε∗, as needed.

Now we can define the brackets for F(I[0,1], [0,1]). For multi-indices i =
(i1, . . . , ikε ) and α = (α1, . . . , αkε ), we define brackets [f U

i,α, f L
i,α] by

f U
i,α(x) =

kε∑
γ=1

(
h
(
uαγ ,iγ ,γ (x)

)
1{x∈IL

iγ ,γ \⋃γ−1
j=1 IU

ij ,j }

+ h(yγ−1)1{x∈IU
iγ ,γ \(⋃γ

j=1 IL
ij ,j

⋃γ−1
j=1 IU

ij ,j )}
)+ ε1{x∈[0,1]\⋃γ

j=1 IU
ij ,j },

f L
i,α(x) =

kε∑
γ=1

h
(
lαγ ,iγ ,γ (x)

)
1{x∈IL

iγ ,γ \⋃γ−1
j=1 IU

ij ,j }.

Figure A in the supplementary material [12] gives a plot of [f L
i,α, f U

i,α]. For

x ∈ IL
iγ ,γ \ ⋃γ−1

j=1 IU
ij ,j , we can assume that yγ ≤ uiγ ,αγ ,γ (x) ≤ yγ−1 by replacing

uiγ ,αγ ,γ (x) by (uiγ ,αγ ,γ (x) ∧ yγ−1) ∨ yγ . We do the same for liγ ,αγ ,γ (x).
We will check that these do indeed define a set of bracketing functions for

F(I[0,1], [0,1]) by considering separately the different domains on which f U
i,α

and f L
i,α are defined. We take any h(ϕ) ∈ F(I[0,1], [0,1]), and then for γ =
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1, . . . , kε , we can find IL
iγ ,γ ⊆ dom(ϕ|[yγ ,∞)) ⊆ IU

iγ ,γ for some iγ ≤ NS
γ . So, in

particular,

ϕ(x) < yγ for x /∈ IU
iγ ,γ and yγ ≤ ϕ(x) for x ∈ IL

iγ ,γ .(6.1)

Thus, there is an αγ such that lαγ ,iγ ,γ and uαγ ,iγ ,γ have the bracketing property for
ϕ on IL

iγ ,γ , by which we mean that for x ∈ IL
iγ ,γ , lαγ ,iγ ,γ (x) ≤ ϕ(x) ≤ uαγ ,iγ ,γ (x).

Thus, on the sets IL
iγ ,γ \⋃γ−1

j=1 IU
ij ,j , the functions f U

i,α and f L
i,α have the bracketing

property for h(ϕ). Now, f L
i,α is 0 everywhere else and so is everywhere below h(ϕ).

f U
i,α is everywhere above h(ϕ) because for x ∈ (

⋃γ−1
j=1 IU

ij ,j )
c, we know h(ϕ(x)) ≤

h(yγ−1) by (6.1). It just remains to check that f U
i,α(x) ≥ h(ϕ(x)) for x ∈ [0,1] \⋃γ

j=1 IU
ij ,j , and this follows by the definition of kε which ensures that h(ykε ) ≤ ε

and from (6.1). Thus, [f L
i,α, f U

i,α] are indeed brackets for F(I[0,1], [0,1]).
Next, we compute the size of these brackets. We have that Lr

r(f
U
i,α, f L

i,α) is∫ (
f U

i,α − f L
i,α

)r
dλ ≤

kε∑
γ=1

∫
IL
iγ ,γ \IU

iγ−1,γ−1

(
h(uαγ ,iγ ,γ ) − h(lαγ ,iγ ,γ )

)r
dλ

+
∫
IU
iγ ,γ \IL

iγ ,γ

h(yγ−1)
r dλ + εr

≤
kε∑

γ=1

sup
y∈[yγ ,yγ−1]

h′(y)r
∫
IL
iγ ,γ \IU

iγ−1,γ−1

(uαγ ,iγ ,γ − lαγ ,iγ ,γ )r dλ

+
kε∑

γ=1

h(yγ−1)
rεS

γ + εr ,

since we specified the brackets to take values in [yγ , yγ−1] on IL
iγ ,γ \ IU

iγ−1,γ−1.

By our assumption that h′(y) = o(|y|−(α+1)) [so, additionally, h(y) = o(|y|−α)]
as y → −∞, and the definition of εB

γ , the above display is bounded above by

εr +
kε∑

γ=1

(−yγ−1)
−(α+1)rεr (−yγ−1)

(α+1)ζ r + εr(−yγ−1)
−αr(1−ζ ) ≤ C̃1ε

r

since αr(1 − ζ ) and (α + 1)r(1 − ζ ) are both positive, where C̃1 = (1 + 2/(1 −
2−αr(1−ζ ))).

Finally, we can see that the log-cardinality of our set of bracketing functions,
log

∏kε

γ=1 Nγ NS
γ , is

kε∑
γ=1

C

( |yγ |
εB
γ

)1/2

+ 4 log
(

1

εS
γ

)
,(6.2)
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with C from Proposition 4.1. The above display is bounded above by

C

kε∑
γ=1

2γ /2

ε1/2 2−(γ−1)(α+1)ζ/2 + 4 log
(
ε−r (−yγ−1)

−rαζ )

≤ (C ∨ 4)

( ∞∑
γ=0

2−((α+1)ζ−1)γ /2+1/2

ε1/2 +
∞∑

γ=0

(−yγ )−αζ/2

ε1/2

)
.

Since (α + 1)ζ − 1 > 0, the above display is finite and can be bounded by C̃2ε
−1/2

where C̃2 = (C∨4)( 23/2

1−2−((α+1)/4−1/2) ∨ 2
1−2−α/4 ). We have now shown, for ỹ0 = −∞

and ε ≤ ε∗ that

logN[·]
(
εC̃

1/r
1 ,F

(
I[0,1], [0,1]),Lr

) ≤ C̃2ε
−1/2

or for ε ≤ C̃
1/r
1 ε∗,

logN[·]
(
ε,F

(
I[0,1], [0,1]),Lr

) ≤ K̃r,hε
−1/2,

with K̃r,h ≡ C̃
1/(2r)
1 C̃2. We mention how to extend to all ε > 0 at the end.

Now let us consider the simpler case, ỹ0 > −∞. Here, we take kε = 1, y0 =
h−1(1) < 0, and y1 = h−1(0) = ỹ0. Then we define εB = ε, take ε∗ ≤ 1, and εS =
εr ≤ ε∗ and we define IU

i,γ , IL
i,γ , NS

γ , [lα,i,γ , uα,i,γ ], and NB
γ as before, except we

will subsequently drop the γ subscript since it only takes one value. We can define
brackets [f L

i,α, f U
i,α] by

f U
i,α(x) = h

(
uα,i,(x)

)
1AL

i
(x) + h(y0)1AU

i \AL
i
(x),

f L
i,α(x) = h

(
lα,i,(x)

)
1AL

i
(x).

Their size, Lr
r(f

U
i,α, f L

i,α) is bounded above by

sup
y∈[y1,y0]

h′(y)r
∫
AL

i

(uα,i, − lα,i,)
r dλ + h(y0)

r
∫
AU

i \AL
i

dλ ≤ Mrεr + h(y0)
rεr

for some 0 < M < ∞ by assumption T.2. Thus, the bracket size is of order ε, as
desired. The log cardinality logNBNS is

C

( |y1|
ε

)1/2

+ 4 log
(
ε−r).

Thus, we get the same conclusion as in the case ỹ0 = −∞, and we have completed
the proof for ε < ε∗.

When either ỹ0 = −∞ or ỹ0 > −∞, we have proved the theorem when 0 < ε ≤
ε∗. The result can be extended to apply to any ε > 0 in a manner identical to the
extension at the end of the proof of Proposition 4.1. �
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PROOF OF PROPOSITION 4.2. First, we find an envelope for the class PM,h

with αh > 1. For x ∈ [−(2M + 1),2M + 1], the envelope is trivial. Thus, let x ≥
2M + 1. The argument for x ≤ −(2M + 1) is symmetric. We show the envelope
holds by considering two cases for p = h ◦ ϕ ∈ PM,h. Let R ≡ domϕ ∩ [1,∞).
First, consider the case

inf
x∈R

p(x) ≤ 1/(2M).(6.3)

We pick x1 ∈ R such that p(x1) = h(ϕ(x1)) = 1/(2M) and such that

ϕ(0) − ϕ(x1) ≥ h−1(M−1)− h−1(M−1/2
) ≡ L > 0.(6.4)

This is possible since ϕ(0) ≥ h−1(M−1) by the definition of P1,M,h and by our
choice of x1 [and by the fact that domϕ is closed, so that we attain equality in
(6.3)].

If p(z) ≥ 1/(2M), then concavity of ϕ means p ≥ 1/(2M) on [0, z] and since p

integrates to 1, we have z ≤ 2M . Thus, x1 ≤ 2M . Fix x > 2M +1 ≥ x1 > 0, which
(by concavity of ϕ) means ϕ(0) > ϕ(x1) > ϕ(x). We will use Proposition A.1 with
x0 = 0 and x1 and x as just defined. Also, assume ϕ(x) > −∞, since otherwise
any 0 < D,L < ∞ suffice for our bound. Then we can apply (A.16) to see

p(x) ≤ h

(
ϕ(0) − h

(
ϕ(x1)

)ϕ(0) − ϕ(x1)

F (x) − F(0)
x

)
.(6.5)

Since (F (x) − F(0))−1 ≥ 1 (since α > 1), (6.5) is bounded above by

h

(
h−1(M) − L

2M
x

)
< ∞.(6.6)

We can assume h−1(M) = −1 without loss of generality. This is because, given
an arbitrary h, we let hM(y) = h(y + 1 + h−1(M)) which satisfies h−1

M (M) = −1.
Note that PM,h = PM,hM

since translating h does not change the class Ph or PM,h.
Thus, if (4.4) holds for all p ∈ PM,hM

then it holds for all p ∈ PM,h. So without
loss of generality, we assume h−1(M) = −1. Then (6.6) is equal to

h

(
−1 − L

2M
x

)
< ∞.(6.7)

Now, h(y) = o(|y|−α) as y → −∞, which implies that h(y) ≤ D(−y)−α on
(−∞,−1] for a constant D that depends only on h and on M , since −1 −
(L/(2M))x ≤ −1. Thus, (6.6) is bounded above by

D

(
1 + L

2M
x

)−α

.(6.8)

We have thus found an envelope for the case wherein (6.3) holds and when
x ≥ 2M + 1. The case x ≤ −(2M + 1) is symmetric.



LOG- AND S-CONCAVE MLE GLOBAL RATES 975

Now consider the case where p satisfies

inf
x∈R

p(x) ≥ 1/(2M).(6.9)

As argued earlier, if p(z) ≥ 1/(2M), then concavity of ϕ means p ≥ 1/(2M) on
[0, z] and since p integrates to 1, we have z ≤ 2M . So, when (6.9) holds, it fol-
lows that p(z) = 0 for z > 2M . We have thus shown p ≤ pu,h [with pu,h defined
in (4.4)]. For q ≡ p1/2 ∈ P1/2

M,h, it is now immediate that q ≤ p
1/2
u,h . �

To prove Theorem 4.2, we partition R into intervals, and on each interval we
apply Theorem 4.1. The envelope from Proposition 4.2 gives a uniform bound on
the heights of the functions in P1/2

M,h, which allows us to control the cardinality of
the brackets given by Theorem 4.1.

PROOF OF THEOREM 4.2. We will use the method of Corollary 2.7.4 of [36]
for combining brackets on a partition of R, together with Theorem 4.1. Let
I0 = [−(2M + 1),2M + 1]; for i > 0 let Ii = [iγ , (i + 1)γ ] \ I0, and for
i < 0 let Ii = [−|i − 1|γ ,−|i|γ ] \ I0. Let A0 = M1/2(4M + 2)1/r and Ai =
D1/2(1 + |i|γ L/(2M))−α((i + 1)γ − iγ )1/r where α ≡ αh1/2 (so by Lemma A.3
αh = 2αh1/2 > 1) for |i| > 0, and with D,L as defined in Proposition 4.2, which

will correspond to B(b2 − b1)
1/r in Theorem 4.1 for P1/2

M,h restricted to Ii . For

i ∈ Z, let ai = A
β
i where we will pick β ∈ (0,1) later. Fix ε > 0. We will apply

Theorem 4.1 to yield Lr brackets of size εai for the restriction of P1/2
M,h to each

interval Ii . For i ∈ Z, we apply Theorem 4.1 and form εai brackets, which we
denote by [f L

i,j , f
U
i,j ] for j = 1, . . . ,Ni , for the restriction of P1/2

M,h to Ii . We will

bound Ni later. We have thus formed a collection of brackets for P1/2
M,h by{[∑

i∈Z
f L

i,ji
1Ii

,
∑
i∈Z

f U
i,ji

1Ii

]
: ji ∈ {1, . . . ,Ni}, i ∈ Z

}
.

The cardinality of this bracketing set is
∏

i∈Z Ni . The Lr
r size of a bracket [f L,f U ]

in the above defined collection is∫
R

∣∣f U − f L
∣∣r dλ ≤ ∑

i∈Z
εrar

i .

By Theorem 4.1, logNi ≤ K̃r,h(Ai/(εai))
1/2 for i ∈ Z where K̃r,h is the constant

from that theorem. Thus,

logN[·]
(
ε

(∑
i∈Z

ar
i

)1/r

,P1/2
M,h,Lr

)
≤ K̃r,h

∑
i∈Z

(
Ai

εai

)1/2

.
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We now set β = 1/(2r + 1), so that ar
i = (Ai/ai)

1/2 = A
r/(2r+1)
i and need only to

compute
∑

i∈Z ar
i = ∑

i∈Z(Ai/ai)
1/2. Let Ãi = Ai/D

1/2, and we then see that

∑
|i|≥1

Ã
r/(2r+1)
i = 2

∑
i≥1

(
1 + L

2M
iγ
)−αr/(2r+1)(

(i + 1)γ − iγ
)1/(2r+1)

≤ 2
∑
i≥1

(
1 + L

2M
iγ
)−αr/(2r+1)

iγ /(2r+1)

((
i + 1

i

)γ

− 1
)1/(2r+1)

= 21+γ /(2r+1)
∑
i≥1

(
1 + L

2M
iγ
)−αr/(2r+1)

iγ /(2r+1)

≤ 21+γ /(2r+1)
∑
i≥1

(
L

2M
iγ
)−αr/(2r+1)

iγ /(2r+1),

which equals

21+γ /(2r+1)

(
L

2M

)−αr/(2r+1)∑
i≥1

i−γαr/(2r+1)+γ /(2r+1)

≤ 21+γ /(2r+1)

(
L

2M

)−αr/(2r+1)(
1 +

∫ ∞
1

x−αγ r/(2r+1)+γ /(2r+1)

)
dx,

which equals

21+γ /(2r+1)

(
L

2M

)−αr/(2r+1)(
1 + 1

αγ r/(2r + 1) − γ /(2r + 1) − 1

)
(6.10)

as long as
αγ r

2r + 1
− γ

2r + 1
> 1,

which is equivalent to requiring

α >
1

r
+ 2r + 1

r

1

γ
.(6.11)

Since γ ≥ 1 is arbitrary, for any α > 1/r , we can pick γ = ((2r + 1)/r)2/(α −
1/r). Then the right-hand side of (6.11) becomes (1/r)(1−1/(2r))+α/(2r), and
thus (6.11) becomes

α >
α + 1/r

2
,

which is satisfied for any r ≥ 1 and α > 1/r . Then (6.10) equals

22+(2/(α−1/r))(1/r)

(
L

2M

)−αr/(2r+1)

.
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Thus, defining Kr,α ≡ ∑
i∈Z A

r/(2r+1)
i , we have

Kr,α = Mr/(2(2r+1))(4M + 2)1/(2r+1)

+ Dr/(2(2r+1))22+(2/(α−1/r))(1/r)

(
L

2M

)−αr/(2r+1)

.

Then we have shown that

logN[·]
(
εK1/r

r,α ,P1/2
M,h,Lr

) ≤ K̃r,hKr,αε−1/2,

or

logN[·]
(
ε,P1/2

M,h,Lr

) ≤ K̃r,hK
1+1/(2r)
r,α ε−1/2,

and the proof is complete. �

PROOF OF THEOREM 4.3. Step 1: Reduction from Ph to PM,h. We first show
that we may assume, without loss of generality, for some M > 0 that p0 ∈ PM,h

and, furthermore, p̂n ∈ PM,h with probability approaching 1 as n → ∞. To see
this, consider translating and rescaling the data: we let X̃i = (Xi − b)/a for b ∈ R

and a > 0, so that the X̃i are i.i.d. with density p̃0(x) = ap0(ax + b). Now the
MLE of the rescaled data, p̂n(x̃; X̃) satisfies p̂n(x̃; X̃) = ap̂n(ax̃ + b);X) and,
since the Hellinger metric is invariant under affine transformations, it follows that

H
(
p̂n(·;X),p0

) = H
(
p̂n(·; X̃), p̃0

)
.

Hence, if (4.6) holds for p̃0 and the transformed data, it also holds for p0 and the
original data. Thus, we can pick b and a as we wish. First, we note that there is
some interval B(x0, δ) ≡ {z : |z − x0| ≤ δ} contained in the interior of the sup-
port of p0 ∈ Ph since p0 has integral 1. We take b and a to be x0 and δ, and
thus assume without loss of generality that B(0,1) is in the interior of the sup-
port of p0. Now, by Theorem 2.17 of [33] which holds under their assumptions
(D.1)–(D.4) it follows that we have uniform convergence of p̂n to p0 on compact
subsets strictly contained in the support of p0, such as B(0,1). Additionally, by
Lemma 3.17 of [33], we know that lim supn→∞ supx p̂n(x) ≤ supx p0(x) ≡ M0
almost surely. Assumptions (D.1)–(D.4) of [33] for h are implied by our T.1–
T.4 for g ≡ h1/2 [with βh = 2βg and αh = 2αg , since h′(y) = 2

√
h(y)(h1/2)′(y)

and if g′(y) = o(|y|)−(α+1) then g(y) = o(|y|)−α as y → −∞]. Thus, we let
M = (1 + M0) ∨ 2/(min|x|≤1 p0(x)) < ∞. Then we can henceforth assume that
p0 ∈ PM,h and, furthermore, with probability approaching 1 as n → ∞, that
p̂n ∈ PM,h. This completes step 1.

Step 2. Control of Hellinger bracketing entropy for PM,h suffices.
Step 2a: For δ > 0, let

Ph(δ) ≡ {
(p + p0)/2 : p ∈Ph,H

(
(p + p0)/2,p0

)
< δ

}
.
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Suppose that we can show that

logN[·]
(
ε,Ph(δ),H

)
� ε−1/2(6.12)

for all 0 < δ ≤ δ0 for some δ0 > 0. Then it follows from [36], Theorems 3.4.1
and 3.4.4 (with pn = p0 in Theorem 3.4.4) or, alternatively, from [35], Theo-
rem 7.4 and an inspection of her proofs, that any rn satisfying

r2
n
(1/rn) ≤ √

n,(6.13)

where


(δ) ≡ J[·]
(
δ,Ph(δ),H

)(
1 + J[·](δ,Ph(δ),H)

δ2
√

n

)
and

J[·]
(
δ,Ph(δ),H

) ≡
∫ δ

0

√
logN[·]

(
ε,Ph(δ),H

)
dε

gives a rate of convergence for H(p̂n,p0). It is easily seen that if (6.12) holds then
rn = n−2/5 satisfies (6.13). Thus, (4.6) follows from (6.12).

Step 2b. Thus, we want to show that (6.12) holds if we have an appropriate
bracketing entropy bound for P1/2

M,h. First, note that

N[·]
(
ε,Ph(δ),H

) ≤ N[·]
(
ε,Ph(4δ),H

)
in view of [36], exercise 3.4.4 (or [35], Lemma 4.2, page 48). Furthermore,

N[·]
(
ε,Ph(4δ),H

) ≤ N[·](ε,PM,h,H)

since Ph(4δ) ⊂ PM,h for all 0 < δ ≤ δ0 with δ0 > 0 sufficiently small. This holds
since Hellinger convergence implies pointwise convergence for concave trans-
formed functions which in turn implies uniform convergence on compact subsets
of the domain of p0 via [31], Theorem 10.8. See Lemma A.1 for details of the
proofs.

Finally, note that

N[·](ε,PM,h,H) = N[·]
(
ε,P1/2

M,h,L2(λ/2)
)

= N[·]
(
ε,P1/2

M,h,L2(λ)/
√

2
) = N[·]

(
ε/

√
2,P1/2

M,h,L2(λ)
)

by the definition of H and L2(λ). Thus, it suffices to show that

logN[·]
(
ε,P1/2

M,h,L2(λ)
)
� 1

ε1/2 ,(6.14)

where the constant involved depends only on M and h. This completes the proof
of step 2, and completes the proof, since (6.14) is exactly what we can conclude
by Theorem 4.2 since we assumed Assumption 4.1 holds and that α ≡ αg satisfies
αg > 1/2. �
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PROOF OF COROLLARY 4.3. The proof is based on the proof of Theorem 4.3.
In step 1 of that proof, the only requirement on h is that we can conclude that p̂n is
almost surely Hellinger consistent. Almost sure Hellinger consistency is given by
Theorem 2.18 of [33] which holds under their assumptions (D.1)–(D.4), which are
in turn implied by our T.1, T.3 and T.4 [recalling that all of our h’s are continuously
differentiable on (ỹ0, ỹ∞)].

Then step 2a of the proof shows that it suffices to show the bracketing bound
(6.12) for Ph(δ). Now, by Lemma 4.1 below we have

logN[·]
(
ε,Ph(δ),H

) ≤ logN[·]
(
ε,Ph2(δ),H

)
.

Step 2b of the proof shows that (6.12) holds for transforms h when g ≡ h1/2 satis-
fies α ≡ αg > 1/2, as we have assumed. Thus, we are done. �
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SUPPLEMENTARY MATERIAL

Technical proofs (DOI: 10.1214/15-AOS1394SUPP; .pdf). In the supplement,
we provide additional proofs and technical details that were omitted from the main
paper.
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