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JUMP ACTIVITY ESTIMATION FOR PURE-JUMP
SEMIMARTINGALES VIA SELF-NORMALIZED STATISTICS1

BY VIKTOR TODOROV

Northwestern University

We derive a nonparametric estimator of the jump-activity index β of a
“locally-stable” pure-jump Itô semimartingale from discrete observations of
the process on a fixed time interval with mesh of the observation grid shrink-
ing to zero. The estimator is based on the empirical characteristic function
of the increments of the process scaled by local power variations formed
from blocks of increments spanning shrinking time intervals preceding the
increments to be scaled. The scaling serves two purposes: (1) it controls for
the time variation in the jump compensator around zero, and (2) it ensures
self-normalization, that is, that the limit of the characteristic function-based
estimator converges to a nondegenerate limit which depends only on β. The
proposed estimator leads to nontrivial efficiency gains over existing estima-
tors based on power variations. In the Lévy case, the asymptotic variance de-
creases multiple times for higher values of β. The limiting asymptotic vari-
ance of the proposed estimator, unlike that of the existing power variation
based estimators, is constant. This leads to further efficiency gains in the case
when the characteristics of the semimartingale are stochastic. Finally, in the
limiting case of β = 2, which corresponds to jump-diffusion, our estimator of
β can achieve a faster rate than existing estimators.

1. Introduction. In this paper we are interested in estimating the jump activ-
ity index of a process defined on a filtered probability space (�,F, (Ft )t≥0,P)

and given by

dXt = αt dt + σt− dLt + dYt ,(1.1)

when L is locally stable pure-jump Lévy process (i.e., a pure-jump Lévy process
whose Lévy measure around zero behaves like that of a stable process) and Y is
a pure-jump process which is “dominated” at high-frequencies by L in a sense
which is made precise below; see Assumption A. All formal conditions for X are
given in Section 2. The jump activity index of X on a given fixed time interval is
the infimum of the set of powers p for which the sum of pth absolute moments
of the jumps is finite. Provided σ does not vanish on the interval and has càdlàg
paths, the jump activity index of X coincides with the Blumenthal–Getoor index of
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the driving Lévy process L (recall Y is dominated by L at high frequencies). The
dominant role of L at high frequencies, together with its stable-like Lévy measure
around zero, manifests into the following limiting behavior at high frequencies:

h−1/β(Xt+sh − Xt)
L−→ σt × (St+s − St ) as h → 0 and s ∈ [0,1],(1.2)

for every t and where S is β-stable process, with the convergence being for the
Skorokhod topology. Equation (1.2) holds when β > 1 which is the case we con-
sider in this paper. (When β < 1 the drift will be the “dominant” component at
high-frequencies, and some of our results can be extended to this case as well.) We
study estimation of β from discrete equidistant observations of X on a fixed time
interval with mesh of the observation grid shrinking to zero.

Estimation of the jump activity index has received a lot of attention recently.
[20] consider estimation from low-frequency observations in the setting of Lévy
processes. [4] and [6] consider estimation from low-frequency data in the setting of
time-changed Lévy processes with an independent time-change process. [2] con-
sider estimation from low-frequency and options data. [3] and [5] consider estima-
tion from low frequency data in certain stochastic volatility models. [27–29] pro-
pose estimation from high-frequency data using power variations in a pure-jump
setting. [1] and [16] consider estimation in high-frequency setting when the under-
lying process can contain a continuous martingale via truncated power variations.
[23] propose estimation of the jump activity index in pure-jump setting via power
variations with adaptively chosen optimal power. [22] extend [23] via power vari-
ations of differenced increments which provide further robustness and efficiency
gains. [15] consider jump activity estimation from noisy high-frequency data.

The estimation of β from high-frequency data, thus far, makes use of the de-
pendence of the scaling factor of the high-frequency increments in (1.2) on β . For
example, consider the power variation

V (p,�n) =
n∑

i=1

∣∣�n
i X

∣∣p, �n
i X = Xi/n − X(i−1)/n,

(1.3)

�n = 1

n
, p > 0.

Under certain technical conditions, (1.2) implies

�1−p/β
n V (p,�n)

P−→ μ

∫ 1

0
|σs |p ds,

(2�n)
1−p/βV (p,2�n)

P−→ μ

∫ 1

0
|σs |p ds,

where μ is some constant. An estimate of β then can be simply formed as a non-
linear function of the ratio V (p,�n)

V (p,2�n)
. This makes inference for β possible despite

the unknown process σ .
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The limit result in (1.2), however, contains much more information about β

than previously used in estimation. In particular, (1.2) implies that over a short
interval of time the increments of X, conditional on σ at the beginning of the
interval, are approximately i.i.d. stable random variables. In this paper we propose
a new estimator of β that utilizes this additional information in (1.2) and leads to
significant efficiency gains over existent estimators based on high-frequency data.

The key obstacle in utilizing the result in (1.2) in inference for β is the fact that
the process σ is unknown and time-varying. The idea of our method is to form
a local estimator of σ using a block of high-frequency increments with asymp-
totically shrinking time span via a localized version of (1.3). We then divide the
high-frequency increments of X by the local estimator of σ . The division achieves
“self-normalization” in the following sense. First, the scale factor for the local es-
timator of σ and the high-frequency increment of X are the same, and hence by
taking the ratio, they cancel. Second, both the high-frequency increment of X and
the local estimator of σ are approximately proportional to the value of σ at the
beginning of the high-frequency interval, and hence taking their ratio cancels the
effect of the unknown σ . The resulting scaled high-frequency increments are ap-
proximately i.i.d. stable random variables, and we make inference for β via an
analogue of the empirical characteristic function approach, which has been used
in various other contexts; see, for example, [8].

After removing an asymptotic bias, the limit behavior of the empirical char-
acteristic function of the scaled high-frequency increments is determined by two
correlated normal random variables. One of them is due to the limiting behavior
of the empirical characteristic function of the high-frequency increments scaled
by the limit of the local power variation. The other is due to the error in estimat-
ing the local scale by the local realized power variation. Importantly, because of
the “self-normalization,” the F -conditional asymptotic variance of the empirical
characteristic function of the scaled high-frequency increments is not random but
rather a constant that depends only on β and the power p. This makes feasible
inference very easy.

When comparing the new estimator with existing ones based on the power vari-
ation, we find nontrivial efficiency gains. There are two reasons for the efficiency
gains. First, as we noted above, our estimator makes full use of the limiting result
in (1.2) and not just the dependence of the scale of the high-frequency increments
on β , which is the case for existing ones. Second, by locally removing the effect
of the time-varying σ , we make the inference as if σ is constant; that is, the limit
variance is the same, regardless of whether X is Lévy or not. By contrast, the es-
timator based on the ratios of power variations is asymptotically mixed normal

with F -conditional variance of the form K(p,β)
∫ 1

0 |σs |2p ds

(
∫ 1

0 |σs |p ds)2
, for some constant

K(p,β), and we note that
∫ 1

0 |σs |2p ds

(
∫ 1

0 |σs |p ds)2
≥ 1 with equality whenever the process |σ |

is almost everywhere constant on the interval [0,1]. That is, the presence of time-
varying σ decreases the precision of the power-variation based estimator of β .
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The efficiency gains of our estimator are bigger for higher values of β . In the
limit case of β = 2, which corresponds to L being a Brownian motion, we show
that our estimator can achieve a faster rate of convergence than the standard

√
n

rate for existing estimators.
The rest of the paper is organized as follows. In Section 2 we introduce the

setting. In Section 3 we construct our statistic, and in Section 4 we derive its limit
behavior. In Section 5 we build on the developed limit theory and construct new
estimators of the jump activity and derive their limit behavior. This section also
shows the efficiency gains of the proposed jump activity estimators over existing
ones. Section 6 deals with the limiting case of jump-diffusion. Sections 7 and 8
contain a Monte Carlo study and an empirical application, respectively. Proofs are
in Section 9.

2. Setting and assumptions. We start with introducing the setting and stating
the assumptions that we need for the results in the paper. We first recall that a
Lévy process L with the characteristic triplet (b, c, ν), with respect to truncation
function κ (Definition II.2.3 in [14]), is a process with a characteristic function
given by

E
(
eiuLt

) = exp
[
itub − tcu2/2 + t

∫
R

(
eiux − 1 − iuκ(x)

)
ν(dx)

]
,

(2.1)
t ≥ 0.

In what follows we will always assume for simplicity that κ(−x) = −κ(x). Our
assumption for the driving Lévy process in (1.1) as well as the “residual” jump
component Y is given in Assumption A.

ASSUMPTION A. L in (1.1) is a Lévy process with characteristic triplet
(0,0, ν) for ν a Lévy measure with density given by

ν(x) = A

|x|1+β
+ ν′(x), β ∈ (0,2),(2.2)

where A > 0 and ν ′(x) is such that there exists x0 > 0 with |ν′(x)| ≤ C/|x|1+β ′

for |x| ≤ x0 and some β ′ < β .
Y is an Itô semimartingale with the characteristic triplet ([14], Definition II.2.6)

(
∫ t

0
∫
R

κ(x)νY
s (dx) ds,0, dt ⊗νY

t (dx)) when β ′ < 1 and (0,0, dt ⊗νY
t (dx)) other-

wise, with
∫
R
(|x|β ′+ι ∧ 1)νY

t (dx) being locally bounded and predictable, for some
arbitrarily small ι > 0.

Assumption A formalizes the sense in which Y is dominated at high frequencies
by L: the activity index of Y is below that of L. We also stress that Y and L can
have dependence. Therefore, as shown in [24], we can accommodate in our setup
time-changed Lévy models, with absolute continuous time-change process, that
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have been extensively used in applied work. Finally, we note that (2.2) restricts
only the behavior of ν around zero, and ν′ is a signed measure. Therefore many
parametric jump specifications outside of the stable process are satisfied by As-
sumption A (e.g., the tempered stable process). We next state our assumption for
the dynamics of α and σ .

ASSUMPTION B. The processes α and σ are Itô semimartingales of the form

αt = α0 +
∫ t

0
bα
s ds +

∫ t

0

∫
E

κ
(
δα(s, x)

)
μ̃(ds, dx)

+
∫
E

κ ′(δα(s, x)
)
μ(ds, dx),

(2.3)

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0

∫
E

κ
(
δσ (s, x)

)
μ̃(ds, dx)

+
∫
E

κ ′(δσ (s, x)
)
μ(ds, dx),

where κ ′(x) = x − κ(x), and:

(a) |σt |−1 and |σt−|−1 are strictly positive;
(b) μ is Poisson measure on R+ × E, having arbitrary dependence with the

jump measure of L, with compensator dt ⊗ λ(dx) for some σ -finite measures λ

on E;
(c) δα(t, x) and δσ (t, x) are predictable, left-continuous with right limits in t

with |δα(t, x)| + |δσ (t, x)| ≤ γk(x) for all t ≤ Tk , where γk(x) is a deterministic
function on R with

∫
R
(|γk(x)|r+ι ∧ 1)λ(dx) < ∞ for arbitrarily small ι > 0 and

some 0 ≤ r ≤ β , and Tk is a sequence of stopping times increasing to +∞;
(d) bα and bσ are Itô semimartingales having dynamics as in (2.3) with coeffi-

cients satisfying the analogues of conditions (b) and (c) above.

We note that μ does not need to coincide with the jump measure of L, and hence
it allows for dependence between the processes α, σ and L. This is of particular
relevance for financial applications. For example, Assumption B is satisfied by the
COGARCH model of [17] in which the jumps in σ are proportional to the squared
jumps in X. More generally, Assumption B is satisfied if, for example, (X,α,σ )

is modeled via a Lévy-driven SDE, with each of the elements of the driving Lévy
process satisfying Assumption A.

3. Construction of the self-normalized statistics. We continue next with the
construction of our statistics. The estimation in the paper is based on observations
of X at the equidistant grid times 0, 1

n
, . . . ,1 with n → ∞, and we denote �n =

1
n

. To minimize the effect of the drift in our statistics, we follow [22] and work
with the first difference of the increments, �n

i X − �n
i−1X, where �n

i X = Xi/n −
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X(i−1)/n for i = 1, . . . , n. The above difference of increments is purged from the
drift in the Lévy case, and in the general case the drift has a smaller asymptotic
effect on it. For each �n

i X − �n
i−1X, we need a local power variation estimate for

the scale. It is constructed from a block of kn high-frequency increments, for some
1 < kn < n − 2, as follows:

V n
i (p) = 1

kn

i−2∑
j=i−kn−1

∣∣�n
jX − �n

j−1X
∣∣p, i = kn + 3, . . . , n.(3.1)

Block-based local estimators of volatility have been also used in other contexts in a
high-frequency setting, for example, in [13] and [25]. The empirical characteristic
function of the scaled differenced increments is given by

L̂n(p,u) = 1

n − kn − 2

n∑
i=kn+3

cos
(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
, u ∈R+.(3.2)

We proceed with some notation needed for the limiting theory of L̂n(p,u). Let S1,
S2 and S3 be random variables corresponding to the values of three independent
Lévy processes at time 1, each of which with the characteristic triplet (0,0, ν),
for any truncation function κ and where ν has the density A

|x|1+β . Then we denote

μp,β = (E|S1 − S2|p)β/p , which does not depend on κ , and we further use the

shorthand notation E(eiu(S1−S2)) = e−Aβuβ
for any u > 0 with Aβ being a (known)

function of A and β . Using Example 25.10 in [21] and references therein, we have

Cp,β = Aβ

μp,β

=
[

2p
((1 + p)/2)
(1 − p/β)√
π
(1 − p/2)

]−β/p

,(3.3)

which depends only on p and β but not on the scale parameter of the stable random
variables S1 and S2. With this notation, we set

L(p,u,β) = e−Cp,βuβ

, u ∈ R+,(3.4)

which will be the limit in probability of L̂n(p,u). We finish with some more nota-
tion needed to describe the asymptotic variance of L̂n(p,u). First, we denote for
some u ∈ R+,

ξ1(p,u,β) =
(

cos
(

u(S1 − S2)

μ
1/β
p,β

)
−L(p,u,β),

|S1 − S2|p
μ

p/β
p,β

− 1
)′

,

(3.5)

ξ2(p,u,β) =
(

cos
(

u(S2 − S3)

μ
1/β
p,β

)
−L(p,u,β),

|S2 − S3|p
μ

p/β
p,β

− 1
)′

.

We then set for u, v ∈R+
�i(p,u, v,β) = E

(
ξ1(p,u,β)ξ ′

1+i(p, v,β)
)
, i = 0,1(3.6)
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and

G(p,u,β) = β

p
e−Cp,βuβ

Cp,βuβ,

(3.7)

H(p,u,β) = G(p,u,β)

(
β

p
Cp,βuβ − β

p
− 1

)
.

4. Limit theory for ̂Ln(p,u). We start with convergence in probability.

THEOREM 1. Assume X satisfies Assumptions A and B for some β ∈ (1,2)

and β ′ < β . Let kn be a deterministic sequence satisfying kn � n� for some � ∈
(0,1). Then, for 0 < p < β , we have

L̂n(p,u)
P−→ L(p,u,β) as n → ∞,(4.1)

locally uniformly in u ∈ R+.

We note that we restrict β > 1; that is, we focus on the infinite variation case.
The above theorem will continue to hold for β ≤ 1, but for the subsequent results
about the limiting distribution of L̂n(p,u), we will need quite stringent additional
restrictions in the case β ≤ 1. We do not pursue this here. The other conditions
for the convergence in probability result are weak. The requirements for α and
σ for Theorem 1 to hold are actually much weaker than what is assumed in As-
sumption B, but for simplicity of exposition we keep Assumption B throughout.
We note that for consistency, we have a lot of flexibility about the block size kn:
(1) kn → ∞ so that we consistently estimate the scale via V n

i (p) and (2) kn/n → 0
so that the span of the block is asymptotically shrinking to zero, and therefore no
bias is generated due to the time variation of σ . In the case when X is a Lévy
process, the second condition is obviously not needed.

To derive a central limit theorem (c.l.t.) for L̂n(p,u), we will need to restrict
the choice of kn more. We will assume kn/

√
n → 0, so that biases due to the time

variation in σ , which are hard to feasibly estimate, are negligible. For such a choice
of kn, however, an asymptotic bias due to the sampling error of V n

i (p) appears, and
for stating a c.l.t., we need to consider the following bias-corrected estimator:

L̂n(p,u,β)′ = L̂n(p,u)
(4.2)

− 1

kn

1

2
H(p,u,β)

(
�

(2,2)
0 (p,u,u,β) + 2�

(2,2)
1 (p,u,u,β)

)
.

We state the c.l.t. for L̂n(p,u,β)′ in the next theorem.

THEOREM 2. Assume X satisfies Assumptions A and B with β ∈ (1,2) and
β ′ < β

2 , and that the power p and block size kn satisfy

ββ ′

2(β − β ′)
∨ β − 1

2
< p <

β

2
,(4.3)
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kn � n� ,
p

β
∨ 1

3
< � <

1

2
.(4.4)

Then, as n → ∞, we have
√

n
(
L̂n(p,u,β)′ −L(p,u,β)

) L−→ Z1(u) + G(p,u,β)Z2(u),(4.5)

locally uniformly in u ∈ R+. Z1(u) and Z2(u) are two Gaussian processes with
the following covariance structure:

E
(
Z(u)Z(v)

) = �0(p,u, v,β) + 2�1(p,u, v,β), u, v ∈ R+,(4.6)

where Z(u) = (Z1(u),Z2(u))′.
Let β̂ be an estimator of β with β̂ − β = op(kn

√
�n) as n → ∞. Then

√
n
(
L̂n(p,u, β̂)′ − L̂n(p,u,β)′

) P−→ 0,(4.7)

locally uniformly in u ∈ R+.

The conditions for the power p in (4.3) are exactly the same as in [22] for the
analysis of the realized power variation, and they are relatively weak. For example,
the condition p >

β−1
2 will be always satisfied as soon as we pick power slightly

above 1
2 . Moreover, this condition is not needed in the case when X is a Lévy

process. Further, the condition in (4.4) for kn shows that we have more flexibility
for the choice of kn whenever p is not very close to its upper bound of β/2.

Due to the self-normalization in the construction of our statistic, the limiting
distribution in (4.5) is Gaussian and not mixed Gaussian, which is the case for
most limit results in high-frequency asymptotics (and in particular for the power
variation based estimator of β); see [26] for another exception. This is very con-
venient as the estimation of the asymptotic variance is straightforward. The bias
correction in (4.2) is infeasible, as it depends on β . However, (4.7) shows that
a feasible version of the debiasing would work provided the initial estimator of
β is op(kn

√
�n). When one estimates β using L̂n(p,u), with explicit estimators

provided in the next section, β̂ − β will be Op(1/kn). Hence, such a preliminary
estimate of β will satisfy the required rate condition in Theorem 2.

5. Jump activity estimation. We now use the limit theory developed above
to form estimators of β . The simplest one is based on L̂n(p,u) and is given by

β̂f s(p,u, v) = log(− log(L̂n(p,u))) − log(− log(L̂n(p, v)))

log(u/v)
,(5.1)

for u, v ∈ R+ with u 
= v. Because of the asymptotic bias in L̂n(p,u),
β̂f s(p,u, v) − β will be only Op(1/kn), with p and kn satisfying (4.3)–(4.4).
An explicit estimate of β using feasible debiasing is given by

β̂(p,u, v) = log(− log(L̂n(p,u, β̂f s)′)) − log(− log(L̂n(p, v, β̂f s)′))
log(u/v)

,(5.2)
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for some u, v ∈ R+ with u 
= v, and where β̂f s is a suitable initial estimator of β

[like the one in (5.1)]. While convenient, the above estimators have two potential
drawbacks. One, we do not take into account the information about β in the con-
stant Cp,β . This is because in the asymptotic limit of the above estimators, Cp,β

gets canceled. Second, u and v are chosen arbitrarily, and one can include more
moment conditions for the estimation of β using L̂n(p,u, β̂f s)′. In the next theo-
rem we provide a general estimator of β which overcomes these drawbacks of the
explicit estimators above.

THEOREM 3. Assume X satisfies Assumptions A and B with β ∈ (1,2) and
β ′ < β/2, and that the conditions in (4.3) and (4.4) hold. Suppose β̂f s is a con-
sistent estimator of β with β̂f s − β = op(kn

√
�n). Denote with ûl and ûh two se-

quences of K × 1-dimensional vectors, for some finite K ≥ 1, satisfying ûl
P−→ ul

and ûh
P−→ uh as n → ∞, for some ul,uh ∈ R

K+ with ui
l < ui

h, u
j
l < u

j
h and

(ui
l , u

i
h) ∩ (u

j
l , u

j
h) = ∅ for every i, j = 1, . . . ,K with i 
= j where ui

l and ui
h de-

note the ith element of the vectors ul and uh, respectively. Set further the shorthand
u = [ul;uh] and û = [̂ul; ûh].

Let W(p,u, β) be K × K matrix with (i, j) element given by

W(p,u, β)i,j =
∫ ui

h

ui
l

∫ u
j
h

u
j
l

w(p,u, v,β) dudv,(5.3)

w(p,u, v,β) = 1

L(p,u,β)L(p, v,β)

(
1

G(p,u,β)

)′

× �(p,u, v,β)

(
1

G(p,v,β)

)
,

where �(p,u, v,β) = �0(p,u, v,β) + 2�1(p,u, v,β).
Define the K × 1 vector m̂(p, û, β̂f s,u, β) by

m̂
(
p, û, β̂f s,u, β

)
i =

∫ ûi
h

ûi
l

(
log

(
L̂n(p,u, β̂f s)′) − log

(
L(p,u,β)

))
du,(5.4)

for i = 1, . . . ,K , and set

β̂(p,u)
(5.5)

= argmin
β∈(1,2)

m̂
(
p, û, β̂f s,u, β

)′W−1(p, û, β̂f s)m̂(
p, û, β̂f s,u, β

)
.

Finally define the K × 1 vector M(p,u, β) by

M(p,u, β)i =
∫ ui

h

ui
l

∇β log
(
L(p,u,β)

)
du, i = 1, . . . ,K.(5.6)
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Then for β ∈ (1,2), p ∈ (
ββ ′

2(β−β ′) ,
β
2 ) and β ′ < β/2, we have

√
n
(
β̂(p,u) − β

) L−→
√

M(p,u, β)′W−1(p,u, β)M(p,u, β) ×N ,(5.7)

for n → ∞ with N being standard normal random variable.
A consistent estimator for the asymptotic variance of β̂(p,u) is given by

M(p, û, β̂)′W−1(p, û, β̂)M(p, û, β̂),(5.8)

where M(p, û, β̂) is defined as M(p,u, β) with u and β replaced by û and β̂ .

Theorem 3 allows us to adaptively choose the range of u over which to match
L̂n(p,u, β̂f s)′ with its limit. This is convenient because the limiting variance of
L̂n(p,u, β̂f s)′ depends on β . For this reason also the weight function in (5.3)
optimally weighs the moment conditions in the estimation. We discuss the practical
issues regarding the construction of m̂(p, û, β̂f s,u, β) in Section 7.

We now illustrate the efficiency gains provided by the new method over existing
power variation based estimators of β . The power variation estimator based on the
differenced increments is given by (see [22])

β̃(p) = p log(2)

log[Ṽ n
2 (p)/Ṽ n

1 (p)]1{Ṽ n
1 (p) 
=Ṽ n

2 (p)},(5.9)

where

Ṽ n
1 (p) =

n∑
i=2

∣∣�n
i X − �n

i−1X
∣∣p,

(5.10)

Ṽ n
2 (p) =

n∑
i=4

∣∣�n
i X − �n

i−1X + �n
i−2X − �n

i−3X
∣∣p.

On Figure 1, we plot the limiting standard deviation of the estimators in (5.5)
and (5.9) for different values of β . [The estimator in (5.9) is derived under exactly
the same assumptions for X as our estimator here.] The asymptotic standard de-
viation of β̃(p) is computed from [22]. β̂(p,u) is far less sensitive to the choice
of p than β̃(p), with lower powers yielding marginally more efficient β̂(p,u).
The news estimator β̂(p,u) provides nontrivial efficiency gains irrespective of the
values of p and β . The gains are bigger for high values of the jump activity. For
example, for β = 1.75, β̂(p,u) is around two times more efficient (in terms of
asymptotic standard deviation) than β̃(p).

6. The limiting case of jump-diffusion. So far our analysis has been for the
pure-jump case of β ∈ (1,2). We now look at the limiting case of β = 2, which
corresponds to L in (1.1) being a Brownian motion. In this case the asymptotic
behavior of the high-frequency increments in (1.2) holds with S being a Brownian
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FIG. 1. Asymptotic standard deviation of jump activity estimators. The straight line corresponds to
the asymptotic standard deviation of the characteristic function based estimator defined in (5.5) and
the ∗ line to the power variation based estimator of [22] given in (5.9) (when σ is constant). For each
cases of β , the power p ranges in the interval p ∈ ( 7

40 , 19
40 )β . For the estimator in (5.5), the vector

ul = [0.1 : 0.05 : 5] and uh = [0.15 : 0.05 : 5.05].

motion. Thus deciding β = 2 versus β < 2 amounts to testing pure-jump versus
jump-diffusion specification for X. It turns out that when β = 2, our estimation
method can lead to a faster rate of convergence than the

√
n rate we have seen

for the case β ∈ (1,2). This is unlike the power-variation based estimation meth-
ods for which the rate of convergence is

√
n, both for β = 2 and β < 2; see, for

example, [23].
The faster rate of convergence in the case β = 2 can be achieved by letting the

argument u of the empirical characteristic function L̂(p,u) drift toward zero as

n → ∞. In this case, − log(L̂(p,un,2)′)
Cp,2u

2
n

and − log(L̂(p,ρun,2)′)
Cp,2ρ

2u2
n

, for some ρ > 0, are

asymptotically perfectly correlated, and their difference converges at a faster rate.
We note that this does not work in the pure-jump case of β < 2. To state the for-
mal result we first introduce some notation. For S1, S2 and S3 being independent
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standard normal random variables, we denote

ξ̃1(p) =
( |S1 − S2|4

μ2
p,2

− 12

μ2
p,2

,
|S1 − S2|p

μ
p/2
p,2

− 1
)′

,

(6.1)

ξ̃2(p) =
( |S2 − S3|4

μ2
p,2

− 12

μ2
p,2

,
|S2 − S3|p

μ
p/2
p,2

− 1
)′

,

and then set �̃i(p) = E(̃ξ1(p)̃ξ ′
1+i (p)) for i = 0,1. The difference from the anal-

ogous expression for the case β < 2 is in the first terms of ξ̃1(p) and ξ̃2(p). Note
that the expression for the bias-correction remains exactly the same as it involves
only the variance and covariance of the second elements of ξ̃1(p) and ξ̃2(p), which
remain the same as their pure-jump counterparts.

THEOREM 4. Suppose X has dynamics given by (1.1) with L being a Brown-
ian motion, Y satisfying the corresponding condition for it in Assumption A and α

and σ satisfying Assumption B for some r < 2. Suppose p < 1, kn

√
�n → 0 and

un → 0, and further

�
(p/β ′−p/2)∧(p+1)/(r∨1+1)−ι
n ∨ k

−(1/p∧3/2)+ι
n ∨ (kn�n)

1−ι

u6
n

√
�n

→ 0,

(6.2)
(kn�n)

1/r∧(2−p)/2−1/2

u6
n

→ 0.

Then for some ρ > 0

β̂f s(p,un, ρun) − 2 = Op

(
k−1
n u2

n

)
.(6.3)

Further, if for some initial estimator β̂f s − 2 = op(knu
2
n

√
�n), then

√
n

u2
n(1 − ρ2)

(
β̂(p,un, ρun) − 2

) L−→ − 1

log(ρ)

(
1

24Cp,2
Z1 − 2

p
Cp,2Z2

)
,(6.4)

where Z1 and Z2 are two zero-mean normal random variables with covariance
given by �̃0(p) + 2�̃1(p).

When X is a Lévy process, the requirement for kn and un reduces to

un → 0,
�

(p/β ′∧1−p/2)−ι
n ∨ k

−(1/p∧3/2)+ι
n

u6
n

√
�n

→ 0.(6.5)

The rate of convergence of the estimator for β is now
√

nu−2
n and is faster than

the one in Theortem 3, when un converges to zero. The latter is determined by
the restriction in (6.2), which in turn is governed by the presence of the “residual”
term Y , the variation in σ and the sampling variation in measuring the scale via
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V n
i (p). For the condition to be satisfied we need p ∈ (1/2,1) and β ′ < 1; that is,

the jumps in X are of finite variation; for testing the null hypothesis of presence of
diffusion when the process can contain infinite variation jumps under the null, see
the recent work of [18]. Without any prior knowledge on β ′ and r , we can set kn

according to (4.4), with β = 2, and then set un � log(n)−1. The requirement on un

can be further relaxed when X is a Lévy process as evident from (6.5). Finally, we
can draw a parallel between our finding for faster rate of convergence of the esti-
mator of β when β = 2 with the result in [9, 10] for faster rate of convergence for
the maximum likelihood estimator of the stability index of i.i.d. β-stable random
variables when β = 2.

7. Monte Carlo. We test the performance of the proposed method for jump
activity estimation on simulated data from the following model

dXt = σt− dLt , dσt = −0.03σt dt + dZt ,(7.1)

where L and Z are two Lévy processes independent of each other with Lévy den-
sities given by νL(x) = e−λ|x|( A0

|x|1+β + A1
|x|1+β/3 ) and νZ(x) = 0.0293 e−3x

x1.5 1{x>0},
respectively. σ is a Lévy-driven Ornstein–Uhlenbeck process with a tempered sta-
ble driving Lévy subordinator. The parameters governing the dynamics of σ imply
E(σt ) = 1 and half-life of shock in σ of around one month (when unit of time is
a day). L is a mixture of tempered stable processes with the parameter β coincid-
ing with the jump activity index of X. We fix λ = 0.25, and consider four cases
for β . In each of the cases we set A0 and A1 so that A0

∫
R

|x|1−βe−λ|x| dx = 1 and
A1

∫
R

|x|1−β/3e−λ|x| dx = 0.2. The four cases are: (1) β = 1.05 and A0 = 0.1299,
A1 = 0.0113; (2) β = 1.25 and A0 = 0.1443, A1 = 0.0125; (3) β = 1.50 and
A0 = 0.1410, A1 = 0.0141 and (4) β = 1.75 and A0 = 0.0975, A1 = 0.0158.

In the Monte Carlo we set T = 10 and n = 100 which corresponds approx-
imately to two weeks of 5-minute return data in a typical financial setting. We
further set kn = 50 and p = 0.51. The initial estimator to construct the moments
and the optimal weight matrix is simply β̂f s(p,u, v) with u = 0.1 and v = 1.1.
If p ≥ β̂f s(p,u, v)/2, then we reduce the power to p = β̂f s(p,u, v)/4. Based on
the initial beta estimator, we estimate the values of u for which L(p,u,β) = 0.95
and L(p,u,β) = 0.25, and then split this interval in five equidistant regions which
are used in constructing the moment vector in (5.4).

Regarding the number of moment conditions, K , in the construction of our esti-
mator, we should keep in mind the following. Larger K helps improve efficiency of
the estimator as our equal weighting of the characteristic function within each mo-
ment condition is suboptimal. However, the feasible estimate of the optimal weight
matrix is unstable in small samples when K is large. (This is similar to “curse of
dimensionality” problems occurring in related contexts; see, e.g., [11] and [19].)
Moreover, since the characteristic function is smooth, one typically does not need
many moment conditions to gain efficiency. For example, we also experimented in
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TABLE 1
Monte Carlo results

̂β(p,u) ˜β(p)

Case Median IQR MAD Median IQR MAD

β = 1.05 1.0801 0.0791 0.0518 1.1154 0.0925 0.0792
β = 1.25 1.3058 0.0817 0.0680 1.3229 0.1158 0.0932
β = 1.50 1.5398 0.0886 0.0622 1.5767 0.1405 0.1072
β = 1.75 1.7782 0.0806 0.0536 1.8196 0.1704 0.1183

Note: IQR is the inter-quartile range, and MAD is the mean absolute deviation around the true value.
The power p for β̃(p) is set to the value which minimizes the corresponding asymptotic standard
deviation displayed in Figure 1.

the Monte Carlo with ten moment conditions (by splitting the region of u into ten
equidistant regions). The performance of the estimator based on the ten moment
conditions was very similar to the one based on the five moment conditions whose
performance we summarize below.

The results from the Monte Carlo are reported in Table 1. For comparison, we
also report results for β̃(p) where p is set to the level which minimizes the corre-
sponding asymptotic standard deviation in Figure 1. We notice satisfactory finite
sample performance of β̂(p,u). In all cases for β , β̂(p,u) contains relatively small
upward biases. These biases, however, are well below those of β̃(p). We note that
the finite sample bias of β̂(p,u) can be significantly reduced if, similar to β̃(p),
one uses an adaptive choice of power in the range (β/4, β/3). The superiority of
β̂(p,u) holds also in terms of precision in estimating β , with inter-quantile ranges
of β̂(p,u) typically well below those of β̃(p).

8. Empirical application. We now apply the developed inference procedures
on high-frequency data for the VIX index. The VIX index is a option-based mea-
sure for volatility in the market (S&P 500 index). It serves as a popular indicator
for investors’ uncertainty, and it is used as the underlying asset for many volatility-
based derivative contracts traded in the financial exchanges. Earlier work, consis-
tent with parametric models for volatility, has provided evidence that the VIX in-
dex is a pure-jump Itô semimartingale. Here, we estimate its jump activity index.
The estimation is based on 5-minute sampled data during the trading hours for the
year 2010. Like in the Monte Carlo, we split the year into intervals of 10 days
(two weeks) and estimate the jump activity over each of them. The moments, the
power p and the block size kn, are selected in the same way as in the Monte Carlo.
Estimation results are presented in Figure 2. The estimated jump activity index
takes values around 1.6. Overall, our results support a pure-jump specification of
the VIX index.
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FIG. 2. Jump Activity for the VIX Index. Estimation is done over periods of 10 days in the year
2010. In the estimation, moments p and kn are selected as in the Monte Carlo.

9. Proofs. In the proofs we use the shorthand notation E
n
i (·) ≡ E(·|Fi�n) and

P
n
i (·) ≡ P(·|Fi�n). We also denote with K a positive constant that does not depend

on n and u and might change from line to line in the inequalities that follow. When
we want to highlight that the constant depends only on some parameters a and b,
we write Ka,b.

9.1. Decompositions and additional notation. In what follows it is convenient
to extend appropriately the probability space and then decompose the driving Lévy
process L as follows:

Lt + Ŝt = St + S̃t ,(9.1)

where S, Ŝ and S̃ are pure-jump Lévy processes with the first two characteris-
tics zero [with respect to the truncation function κ(·)] and Lévy densities A

|x|1+β ,

2|ν′(x)|1{ν′(x)<0} and |ν′(x)|, respectively. We denote the associated counting
jump measures with μ, μ1 and μ2. (Note that there can be dependence between μ,
μ1 and μ2.)

S is β-stable process, and Ŝ and S̃ are “residual” components whose effect on
our statistic, as will be shown, is negligible (under suitable conditions). The proof
of the decomposition in (9.1) as well as the explicit construction of S, Ŝ and S̃ can
be found in Section 1 of the supplementary Appendix of [24].
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We now introduce some additional notation that will be used throughout the
proofs. We denote for i = kn + 3, . . . , n,

V̂ n
i (p) = 1

kn

i−2∑
j=i−kn−1

|σ(j−2)�n−|p∣∣�n
jS − �n

j−1S
∣∣p,

V
n

i (p) = 1

kn

i−2∑
j=i−kn−1

|�n
jS − �n

j−1S|p
μ

p/β
p,β

,

V̇ n
i (p) =

i−2∑
j=i−kn−1

{ [(i − j − 4) ∨ 0 + 1{j<i−3}]
kn

(|σj�n−|p − |σ(j−2)�n−|p)

+ (|σ(j−1)�n−|p − |σ(j−2)�n−|p)1{j<i−2}
kn

}
× ∣∣�n

jS − �n
j−1S

∣∣p,

|σ |pi = 1

kn

i−2∑
j=i−kn−1

|σ(j−2)�n−|p.

We further denote the function

fi,u(x) = exp
(
−Cp,βuβ |σ(i−2)�n−|β

xβ/p

)
,

and direct computation yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′
i,u(x) = β

p
fi,u(x)

Cp,βuβ |σ(i−2)�n−|β
xβ/p+1 ,

f ′′
i,u(x) = fi(u, x)

(
β

p

Cp,βuβ |σ(i−2)�n−|β
xβ/p+1

)2

− fi(u, x)
β

p

(
β

p
+ 1

)
Cp,βuβ |σ(i−2)�n−|β

xβ/p+2 .

We note

sup
x∈R+

∣∣fi,u(x) + f ′
i,u(x) + f ′′

i,u(x) + f ′′′
i,u(x)

∣∣ < Ku,(9.2)

where the positive constant Ku depends only on u and is finite as soon as u is
bounded away from zero.

With this notation, we make the following decomposition for any u ∈ R+:

L̂n(p,u) −L(p,u,β) = 1

n − kn − 2

[
Ẑn

1 (u) + Ẑn
2 (u) +

4∑
j=1

Rn
j (u)

]
,
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where Ẑn
j (u) = ∑n

i=kn+3 z
j
i (u) for j = 1,2 with

z1
i (u) = cos

(
u
σ(i−2)�n−(�n

i S − �n
i−1S)

(V n
i (p))1/p

)
− exp

(
−Aβuβ |σ(i−2)�n−|β

�−1
n (V n

i (p))β/p

)
,

z2
i (u) = exp

(
− Cp,βuβ |σ(i−2)�n−|β

�−1
n (|σ |pi V

n

i (p))β/p

)
− exp

(
−Cp,βuβ |σ(i−2)�n−|β

(|σ |pi )β/p

)
,

and Rn
j (u) = ∑n

i=kn+3 r
j
i (u) for j = 1,2,3,4 with

r1
i (u) = cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
− cos

(
u
σ(i−2)�n−(�n

i S − �n
i−1S)

(V n
i (p))1/p

)
,

r2
i (u) = exp

(
−Aβuβ |σ(i−2)�n−|β

�−1
n (V n

i (p))β/p

)
− exp

(
−Aβuβ |σ(i−2)�n−|β

�−1
n (V̂ n

i (p))β/p

)
,

r3
i (u) = exp

(
−Aβuβ |σ(i−2)�n−|β

�−1
n (V̂ n

i (p))β/p

)
− exp

(
− Cp,βuβ |σ(i−2)�n−|β

�−1
n (|σ |pi V

n

i (p))β/p

)
,

r4
i (u) = exp

(
−Cp,βuβ |σ(i−2)�n−|β

(|σ |pi )β/p

)
− exp

(−Cp,βuβ).
We finally introduce the following: Z

n

1(u) = ∑n
i=kn+3 z1

i (u), Z
(a,n)

2 (u) =∑n
i=kn+3 z

(a,2)
i (u) and Z

(b,n)

2 (u) = ∑n
i=kn+3 z

(b,2)
i (u) where

z1
i (u) = cos

(
u�−1/β

n μ
−1/β
p,β

(
�n

i S − �n
i−1S

)) −L(p,u,β),

z
(a,2)
i (u) = G(p,u,β)

(
�−p/β

n V
n

i (p) − 1
)
,

z
(b,2)
i (u) = 1

2H(p,u,β)
(
�−p/β

n V
n

i (p) − 1
)2

.

9.2. Localization. We prove results under the following strengthened version
of Assumption B:

ASSUMPTION SB. We have Assumption B and in addition:

(a) the processes |σt | and |σt |−1 are uniformly bounded;
(b) the processes bα and bσ are uniformly bounded;
(c) |δα(t, x)| + |δσ (t, x)| ≤ γ (x) for all t , where γ (x) is a deterministic

bounded function on R with
∫
R

|γ (x)|r+ιλ(dx) < ∞ for arbitrarily small ι > 0
and some 0 ≤ r ≤ β;

(d) the coefficients in the Itô semimartingale representation of bα and bσ satisfy
the analogues of conditions (b) and (c) above;

(e) the process
∫
R
(|x|β ′+ι ∧ 1)νY

t (dx) is bounded, and the jumps of Ŝ, S̃ and Y

are bounded.
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Extending the results to the case of the more general Assumption B follows by
standard localization arguments given in Section 4.4.1 of [12].

9.3. Preliminary results. The strategy of the proofs is to bound the terms

Rn
j (u) for j = 1,2,3,4 as well as Ẑn

1 (u) − Z
n

1(u) and Ẑn
2 (u) − Z

(a,n)

2 (u) −
Z

(b,n)

2 (u), and to derive the asymptotic limits of Z
n

1(u), Z
(a,n)

2 (u) and Z
(b,n)

2 (u).
We do this in a sequence of lemmas starting with one containing some preliminary
bounds needed for the subsequent lemmas.

LEMMA 1. Under Assumptions A and SB and kn � n� for � ∈ (0,1), we
have for 0 < p < β , ι > 0 arbitrarily small and 1 ≤ x <

β
p

and y ≥ 1,

�−p/β
n E

∣∣V n
i (p) − V̂ n

i (p)
∣∣ ≤ Kαn,(9.3)

αn = �
(2−1/β)(1+(p−1/2)∧0−ι)
n √

kn

∨ �1/β−ι
n ∨ �p/β ′∧1−p/β−ι

n

∨ �(p+1)/(β+1)−ι
n ,

E
∣∣�−p/β

n V̂ n
i (p) − μ

p/β
p,β |σ |pi

∣∣x +E
∣∣�−p/β

n V
n

i (p) − 1
∣∣x

(9.4)

≤ K

{
k
−x/2
n , if β/p > 2,

k1−x
n , if β/p ≤ 2,∣∣En

i−kn−3
(|σ |pi − |σ(i−2)�n−|p)∣∣ ≤ Kkn�n,(9.5)

E
n
i−kn−3

∣∣|σ |pi − |σ(i−2)�n−|p∣∣y ≤ K(kn�n)
y/r∧1−ι,(9.6)

�−p/β
n

∣∣En
i−kn−3

(
V̂ n

i (p) − μ
p/β
p,β |σ |pi V

n

i (p) − V̇ n
i (p)

)∣∣ ≤ Kkn�n,(9.7)

�−xp/β
n E

∣∣V̂ n
i (p) − μ

p/β
p,β |σ |pi V

n

i (p) − V̇ n
i (p)

∣∣x ≤ K(kn�n)
x/r∧1−ι,(9.8)

�−xp/β
n E

∣∣V̇ n
i (p)

∣∣x ≤ K�(β−xp)/β∧x/r−ι
n .(9.9)

PROOF. We start with (9.3). We apply exactly the same decomposition and
bounds as for the term A3 in Section 5.2.3 in [22] to get the result in (9.3). We
continue with (9.4). Without loss of generality we assume kn ≥ 2, and we denote
the two sets ⎧⎪⎪⎨⎪⎪⎩

J e
i =

{
i − kn − 1 + 2k :k = 0, . . . ,

⌊
kn − 1

2

⌋}
,

J o
i =

{
i − kn − 1 + 2k + 1 :k = 0, . . . ,

⌊
kn − 2

2

⌋}
.
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With this notation, we can decompose V̂ n
i (p) into

V̂
(e,n)
i (p) = 1

kn

∑
j∈J e

i

|σ(j−2)�n−|p∣∣�n
jS − �n

j−1S
∣∣p,

V̂
(o,n)
i (p) = V̂ n

i (p) − V̂
(e,n)
i (p).

We further denote |σ |pe,i = 1
kn

∑
j∈J e

i
|σ(j−2)�n−|p and |σ |po,i = 1

kn
×∑

j∈J o
i
|σ(j−2)�n−|p . Using the triangular inequality, we then have∣∣�−p/β
n V̂ n

i (p) − μ
p/β
p,β |σ |pi

∣∣
≤ ∣∣�−p/β

n V̂
(e,n)
i (p) − μ

p/β
p,β |σ |pe,i

∣∣ + ∣∣�−p/β
n V̂

(o,n)
i (p) − μ

p/β
p,β |σ |po,i

∣∣.
Now, since E

n
j−2|�n

jS − �n
j−1S|p = �

p/β
n μ

p/β
p,β , the sums �

−p/β
n V̂

(e,n)
i (p) −

μ
p/β
p,β |σ |pe,i and �

−p/β
n V̂

(o,n)
i (p) − μ

p/β
p,β |σ |po,i are discrete martingales. From here,

the result in (9.4) for the case β/p ≤ 2 follows by a direct application of the
Burkholder–Davis–Gundy inequality and the algebraic inequality∣∣∣∣∑

i

|ai |
∣∣∣∣p ≤ ∑

i

|ai |p ∀p ∈ (0,1] and any real-valued {ai}i≥1.(9.10)

We are left with the case β/p > 2. We only show the bound involving the term
V̂

(e,n)
i (p), with the result for V̂

(o,n)
i (p) being shown analogously. We first denote

�
−p/β
n V̂

(e,n)
i (p) − μ

p/β
p,β |σ |pe,i = 1

kn

∑
j∈J e

i
ζ n
j where ζ n

j = �
−p/β
n |σ(j−2)�n−|p ×

(|�n
jS − �n

j−1S|p − μ
p/β
p,β ). Applying the Burkholder–Davis–Gundy inequality,

we have

E

∣∣∣∣ ∑
j∈J e

i

ζ n
j

∣∣∣∣x ≤ KE

( ∑
j∈J e

i

(
ζ n
j

)2
)x/2

.

If x ≤ 2, the result in (9.4) then follows by Jensen’s inequality. If x > 2, applying
again Burkholder–Davis–Gundy, we have

E

( ∑
j∈J e

i

(
ζ n
j

)2
)x/2

≤ KE

( ∑
j∈J e

i

((
ζ n
j

)2 −E
n
j−2

(
ζ n
j

)2))x/2

+ KE

( ∑
j∈J e

i

E
n
j−2

(
ζ n
j

)2
)x/2

(9.11)

≤ KE

( ∑
j∈J e

i

((
ζ n
j

)2 −E
n
j−2

(
ζ n
j

)2)2
)x/4

+ Kkx/2
n ,
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where we also made use of the fact that the β-stable random variable has finite pth
absolute moment as soon as p ∈ (0, β). If x ≤ 4, the result will then follow from an
application of (9.10). If x > 4, then we repeat (9.11) with x replaced by x/2 and ζ n

j

replaced (ζ n
j )2 −E

n
j−2(ζ

n
j )2. We continue in this way, applying k = sup{i : 2i < x}

times (9.11) and then (9.10). This shows (9.4).
We continue with (9.5) and (9.6). We make use of the following algebraic in-

equality: ∣∣|a + b|p − |a|p − p sign{a}|a|p−1b
∣∣ ≤ Kp|a|p−2|b|2,

for any a, b ∈ R with a 
= 0, 0 < p < 1 and Kp that depends only on p. Applying
this inequality as well as the triangular inequality, and using the fact that under
Assumption SB the process |σ | is bounded from below, we have∣∣Es

(|σt |p − |σs |p)∣∣ ≤ K|t − s|, 0 ≤ s ≤ t,(9.12)

Es

∣∣|σt |p − |σs |p
∣∣q ≤ KEs

(|σt − σs |q ∨ |σt − σs |2q),
(9.13)

0 ≤ s ≤ t, q ≥ 1,

with some constant K that does not depend on s and t . From here (9.5) follows.
Application of Corollary 2.1.9 of [12] further gives

Es |σt − σs |q ≤ K|t − s|q/r∧1−ι, 0 ≤ s ≤ t, q ≥ 1,(9.14)

and applying this inequality with q = y and q = 2y, for y the constant in (9.6), we
have that result.

We proceed by showing the bounds in (9.7)–(9.9). We can decompose |σ |pi −
|σ(k−2)�n−|p = ∑4

j=1 a
j
k for k = i − kn − 1, . . . , i − 2 and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
k = 1

kn

i−2∑
j=k+3

(|σ(j−2)�n−|p − |σk�n−|p),
a2
k = (i − k − 4) ∨ 0

kn

(|σk�n−|p − |σ(k−2)�n−|p),
a3
k = ((|σk�n−|p − |σ(k−2)�n−|p)1{k<i−3}

+ (|σ(k−1)�n−|p − |σ(k−2)�n−|p)1{k<i−2}
)
/kn,

a4
k = 1

kn

k∑
j=i−kn−1

(|σ(j−2)�n−|p − |σ(k−2)�n−|p),
with a1

k being zero for k ≥ i − 4. Using the law of iterated expectations and the
bound in (9.6), we have for k = i − kn − 1, . . . , i − 2,

�−xp/β
n E

(∣∣a1
k + a4

k

∣∣∣∣�n
kS − �n

k−1S
∣∣p)x ≤ K(kn�n)

x/r∧1−ι.(9.15)



JUMP ACTIVITY ESTIMATION VIA SELF-NORMALIZED STATISTICS 1851

Using the Hölder inequality, the bound in (9.12), as well as the fact that a stable
random variable has finite absolute moments for powers less than β , we have for
k = i − kn − 1, . . . , i − 2,

�−xp/β
n E

(∣∣a2
k + a3

k

∣∣∣∣�n
kS − �n

k−1S
∣∣p)x

(9.16)
≤ K�((βx/r)/(β−xp)∧1)(β−xp)/β−ι

n .

Combining (9.15) and (9.16), we get the results in (9.8) and (9.9).
Further, using (9.12), we get for k = i − kn − 1, . . . , i − 2,

�−p/β
n

∣∣En
i−kn−3

((
a1
k + a4

k

)∣∣�n
kS − �n

k−1S
∣∣p)∣∣ ≤ Kkn�n.(9.17)

From here we get the result in (9.7). �

LEMMA 2. Under Assumptions A and SB and kn � n� for � ∈ (0,1), we
have for 0 < p < β , ι > 0 arbitrarily small and every 0 < a < b < ∞,

1

n − kn − 2
E

(
sup

u∈[a,b]
∣∣Rn

1 (u)
∣∣) ≤ Ka,b

(
αn ∨ k−(β/(2p)∧(β−p)/p)+ι

n

)
,(9.18)

1

n − kn − 2
E

(
sup

u∈[a,b]
∣∣Rn

2 (u)
∣∣) ≤ Ka,bαn,(9.19)

1

n − kn − 2
E

(
sup

u∈[a,b]
∣∣Rn

3 (u)
∣∣)

(9.20)

≤
{

Ka,b

(
(kn�n)

1−ι ∨ k−1/2
n (kn�n)

1/r∧(β−p)/β−ι), if β/p > 2,

Ka,b

(
(kn�n)

1/r∧1−ι ∨ �(β−p)/β−ι
n

)
, if β/p ≤ 2,

1

n − kn − 2
E

(
sup

u∈[a,b]
∣∣Rn

4 (u)
∣∣) ≤ Ka,b(kn�n)

1−ι,(9.21)

where Ka,b depends only on a, and b and is finite-valued.

PROOF. We start with showing (9.18). We define the set

Cn
i = {∣∣�−p/β

n V n
i (p) − μ

p/β
p,β |σ |pi

∣∣ > 1
2μ

p/β
p,β |σ |pi

}
, i = kn + 3, . . . , n,

and then we note that

1{Cn
i } ≤ 1

(
�−p/β

n

∣∣V n
i (p) − V̂ n

i (p)
∣∣ > 1

4μ
p/β
p,β |σ |pi

)
+ 1

(∣∣�−p/β
n V̂ n

i (p) − μ
p/β
p,β |σ |pi

∣∣ > 1
4μ

p/β
p,β |σ |pi

)
.

Hence we can apply (9.3) and (9.4) and conclude

E

[
sup

u∈R+

(∣∣r1
i (u)

∣∣1{Cn
i }
)] ≤ K

(
αn ∨ k−(β/(2p)∧(β−p)/p)+ι

n

)
.(9.22)
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We proceed with a sequence of inequalities. First, from Assumption SB,

E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(αu − αu−�n) du

∣∣∣∣ ≤ K�1+1/(r∨1)−ι
n .(9.23)

Next, if β ′ < 1, we can decompose

Ŝt =
∫ t

0

∫
R

xμ1(ds, dx) − t

∫
R

κ(x)2
∣∣ν′(x)

∣∣1{ν′(x)<0} dx,(9.24)

and separate accordingly
∫ i�n

(i−1)�n
σu− dŜu and

∫ (i−1)�n

(i−2)�n
σu− dŜu. For the differ-

ence of the integrals against time, we can proceed exactly as in (9.23). Further, us-
ing the algebraic inequality in (9.10), as well as Assumption A for the measure ν′,
we have

E
n
i−1

∣∣∣∣∫ i�n

(i−1)�n

∫
R

σu−xμ1(du, dx)

∣∣∣∣x ≤ K�x/β ′−ι
n for x ≤ β ′.(9.25)

When β ′ ≥ 1, we can apply the Burkholder–Davis–Gundy inequality and get

E
n
i−1

∣∣∣∣∫ i�n

(i−1)�n

σu−x dŜu

∣∣∣∣x ≤ K�x/β ′−ι
n for x ≤ β ′.(9.26)

The same inequalities hold for the analogous integrals involving S̃. Next, applica-
tion of the Burkholder–Davis–Gundy and Hölder inequalities, as well as Assump-
tion SB yields

E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(σu− − σ(i−2)�n−)κ(x)μ̃(du, dx)

∣∣∣∣ ≤ K�2/β−ι
n .(9.27)

Finally, denoting κ ′(x) = x − κ(x) and upon noting that κ ′(x) is zero for x suffi-
ciently close to zero, we have

E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(σu− − σ(i−2)�n−)κ ′(x)μ(du, dx)

∣∣∣∣ι ≤ K�n ∀ι > 0.(9.28)

Combining the estimates in (9.23)–(9.28), as well as the inequality | cos(x) −
cos(y)| ≤ 2|x − y|p for every x, y ∈ R and p ∈ (0,1], we have

E

[
sup
u≥a

(∣∣r1
i (u)

∣∣1{(Cn
i )c}

)] ≤ Ka

(
�(β−β ′)/(β(β ′∨1))−ι

n ∨ �1/β∧1/(r∨1)−ι
n

)
.(9.29)

Equations (9.22) and (9.29) yield (9.18). We continue next with (9.19). This bound
follows from a first-order Taylor expansion of fi,u(x) and the bounds in (9.2)
and (9.3).

We proceed by showing the result for Rn
4 (u). Using a second-order Taylor ex-

pansion and the Cauchy–Schwarz inequality, as well as (9.6), we get

E

(
sup

u∈[a,b]

∣∣∣∣∣Rn
4 (u) − β

p
e−Cp,βuβ

Cp,βuβ
n∑

i=kn+3

r̃4
i

∣∣∣∣∣
)

≤ Kkn,(9.30)
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where

r̃4
i = |σ(i−2)�n−|p − |σ |pi

|σ(i−kn−3)�n−|p .

Using (9.5), we have

E

∣∣∣∣∣
n∑

i=kn+3

E
n
i−kn−3

(̃
r4
i

)∣∣∣∣∣ ≤ Kkn.(9.31)

Further, without loss of generality (because kn�n → 0), we assume n ≥ 2kn + 3.
Using the shorthand χi = r̃4

i −E
n
i−kn−3(̃r

4
i ), we then decompose

n∑
i=kn+3

χi =
kn+1∑
j=1

Aj +
n∑

i=2kn+4+(�(n−kn−2)/(kn+1)�−1)(kn+1)

χi,

Aj =
�(n−kn−2)/(kn+1)�∑

i=1

χkn+3+(j−1)+(i−1)(kn+1), j = 1, . . . , kn + 1.

Applying the Burkholder–Davis–Gundy inequality for discrete martingales and
making use of (9.6), we have

E|Aj | ≤ K(kn�n)
−ι, j = 1, . . . , kn + 1.(9.32)

Combining (9.30) and (9.32), we get the bound in (9.21).
We are left with (9.20). The case β/p ≤ 2 follows from

E
∣∣r3

i (u)
∣∣ ≤ Ka,b

∣∣�−p/β
n V̂ n

i (p) − μ
p/β
p,β V

n

i (p)
∣∣

and by applying the bounds in (9.8)–(9.9). We now show (9.20) for the case
β/p > 2. We first decompose r3

i (u) = ∑3
j=1 �

j
i (u), where

�1
i (u) = f ′

i,u

(
�−p/β

n V
n

i (p)|σ |pi
)

× �−p/β
n

(
μ

−p/β
p,β V̂ n

i (p) − |σ |pi V
n

i (p) − μ
−p/β
p,β V̇ n

i (p)
)
,

�2
i (u) = f ′

i,u(x̃)�−p/β
n μ

−p/β
p,β V̇ n

i (p),

�3
i (u) = (

f ′
i,u(x̃) − f ′

i,u

(
�−p/β

n V
n

i (p)|σ |pi
))

× �−p/β
n

(
μ

−p/β
p,β V̂ n

i (p) − |σ |pi V
n

i (p) − μ
−p/β
p,β V̇ n

i (p)
)

and x̃ is a random number between �
−p/β
n μ

−p/β
p,β V̂ n

i (p) and �
−p/β
n |σ |pi V

n

i (p).
We further introduce

�̃1
i (u) = G(p,u,β)

|σ(i−kn−3)�n−|p �−p/β
n

(
μ

−p/β
p,β V̂ n

i (p) − |σ |pi V
n

i (p) − μ
−p/β
p,β V̇ n

i (p)
)
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and note G(p,u,β) = |σ(i−2)�n−|pf ′
i,u(|σ(i−2)�n−|p). Then direct calculation for

the function xf ′
i,u(x) and the boundedness of the process |σ | yields∣∣�1

i (u) − �̃1
i (u)

∣∣ ≤ Ka,b

(
d

(1)
i + d

(2)
i

)
ei,

where ⎧⎪⎪⎨⎪⎪⎩
d

(1)
i = ∣∣�−p/β

n V
n

i (p) − 1
∣∣,

d
(2)
i = ∣∣|σ |pi − |σ(i−2)�n−|p∣∣ + ∣∣|σ(i−2)�n−|p − |σ(i−kn−3)�n−|p∣∣,

ei = �
−p/β
n

∣∣μ−p/β
p,β V̂ n

i (p) − |σ |pi V
n

i (p) − μ
−p/β
p,β V̇ n

i (p)
∣∣.

From here, we use the Hölder inequality and (9.4), (9.6) and (9.8) to get⎧⎪⎪⎨⎪⎪⎩
E
∣∣d(1)

i ei

∣∣ ≤ K
(
E
[(

d
(1)
i

)β/(p+βι)])p/β+ι(
E
(
e
β/(β−p−βι)
i

))(β−p)/β−ι

≤ Kk
−1/2
n (kn�n)

1/r∧(β−p)/β−2ι,

E
∣∣d(2)

i ei

∣∣ ≤ √
E
(
d

(2)
i

)2
E(ei)2 ≤ K(kn�n)

1−ι.

(9.33)

For the sum
∑n

i=kn+3 �̃1
i (u), using the bounds in (9.7) and (9.8), we can proceed

exactly as for the analysis of
∑n

i=kn+3 χi above and split it into kn +1 terms, which
are the terminal values of discrete martingales. Together, this yields

E

(
sup

u∈[a,b]

∣∣∣∣∣
n∑

i=kn+3

�̃1
i (u)

∣∣∣∣∣
)

≤ Ka,bkn(kn�n)
−ι.(9.34)

Next, using the bound in (9.9) as well as the boundedness of the derivative f ′
i,u(x)

(for u ∈ [a, b]), we have

E

(
sup

u∈[a,b]
∣∣�2

i (u)
∣∣) ≤ Ka,b�

(β−p)/β∧1/r−ι
n .(9.35)

We continue with the term �3
i (u). We first introduce the set

En
i = {∣∣μ−p/β

p,β V̂ n
i (p) − |σ |pi V

n

i (p) − μ
−p/β
p,β V̇ n

i (p)
∣∣ > 1

}
, i = kn + 3, . . . , n.

With this notation, using (9.8) and the boundedness of the derivative f ′
i,u(x) (for

u ∈ [a, b]), we have

E

(
sup

u∈[a,b]
∣∣�3

i (u)
∣∣1{En

i }
)

≤ Ka,b(kn�n)
1−ι.(9.36)

Next using the boundedness of the second derivative f ′′
i,u(x), as well as the bounds

in (9.8) and (9.9), we get

E

(
sup

u∈[a,b]
∣∣�3

i (u)
∣∣1{(En

i )c}
)

≤ Ka,b

(
(kn�n)

1−ι ∨ �(β−p)/β∧1/r−ι
n

)
.(9.37)

Combining (9.33)–(9.37), we get the result in (9.20). �
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LEMMA 3. Under Assumptions A and SB and kn � n� for � ∈ (0,1), we
have for 0 < p < β , ι > 0 arbitrarily small and every 0 < a < b < ∞,

1

n − kn − 2
sup

u∈[a,b]
∣∣Ẑn

1 (u) − Z
n

1(u)
∣∣

(9.38)
= op

(
αn ∨ k−(β/(2p)∧(β−p)/p)+ι

n ∨ √
�n

)
,

and further if p < β/2,

1

n − kn − 2
sup

u∈[a,b]
∣∣Ẑn

2 (u) − Z
(a,n)

2 (u) − Z
(b,n)

2 (u)
∣∣

(9.39)
= op

(
k−(1/2)(β/p∧3)+ι
n ∨ k−1/2

n (kn�n)
1/r∧(β−p)/β−ι).

PROOF. We start with (9.38). We split Ẑn
1 (u) − Z

n

1(u) = En
1 (u) + En

2 (u)

with En
1 (u) = ∑n

i=kn+3(z
1
i (u) − z1

i (u))1{Cn
i } and En

2 (u) = ∑n
i=kn+3(z

1
i (u) −

z1
i (u))1{(Cn

i )c}. For En
1 (u), using Lemma 1, we easily have

1

n − kn − 2
E

(
sup

u∈[a,b]
∣∣En

1 (u)
∣∣) ≤ Ka,b

(
αn ∨ k−(β/(2p)∧(β−p)/p)+ι

n

)
.(9.40)

We proceed with En
2 (u). We first note that

E
n
i−2

[(
z1
i (u) − z1

i (u)
)
1{(Cn

i )c}
] = 0.(9.41)

Further, using the algebraic inequalities | cos(x)−cos(y)|2 ≤ 2|x −y| for x, y ∈ R

and |e−x − e−y |2 ≤ 2|x − y| for x, y ∈ R+, as well as the definition of the set Cn
i ,

we get

E
n
i−2

∣∣(z1
i (u) − z1

i (u)
)
1{(Cn

i )c}
∣∣2 ≤ Ka,b

∣∣�−p/β
n V n

i (p) − μ
p/β
p,β |σ(i−2)�n−|p∣∣.

Applying the above two inequalities, the bounds in (9.3), (9.4) and (9.6), as well
as the algebraic inequality 2xy ≤ x2 + y2 for x, y ∈R, we have

E
(
En

2 (u)
)2 = E

(
n∑

i=kn+3

(
z1
i (u) − z1

i (u)
)21{(Cn

i )c}
)

+E

( ∑
i,j : |i−j |=1

(
z1
i (u) − z1

i (u)
)
1{(Cn

i )c}
(
z1
j (u) − z1

j (u)
)
1{(Cn

j )c}
)

≤ Ka,b

n∑
i=kn+3

E
∣∣�−p/β

n V n
i (p) − μ

p/β
p,β |σ(i−2)�n−|p∣∣

≤ Ka,b�
−1
n

(
αn ∨ k−(β/(2p)∧(β−p)/p)+ι

n ∨ (kn�n)
1/r∧1−ι).

As a result, 1√
n−kn−2

En
2 (u)

P−→ 0 finite-dimensionally in u. Finally, we need
to show that the convergence holds uniformly in u ∈ [a, b]. For this we apply
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a criteria for tightness on the space of continuous functions equipped with the
uniform topology; see, for example, Theorem 12.3 of [7]. Using again (9.41), we
have

E
(
En

2 (u) − En
2 (v)

)2

≤ KE

(
n∑

i=kn+3

(
z1
i (u) − z1

i (u) − z1
i (v) + z1

i (v)
)21{(Cn

i )c}
)
.

Hence for arbitrarily small ι > 0,

1

n − kn − 2
E

(
n∑

i=kn+3

(
z1
i (u) − z1

i (u) − z1
i (v) + z1

i (v)
)21{(Cn

i )c}
)

≤ K
{∣∣uβ − vβ

∣∣2 ∨ |u − v|β−ι},
and since β > 1, we have 1√

n−kn−2
supu∈[a,b] |En

2 (u)| P−→ 0. We turn next
to (9.39). We first introduce some additional notation. Based on a second-order
Taylor expansion of the function fi,u(x), we can further decompose Ẑn

2 (u) =
Ẑ

(a,n)
2 (u) + Ẑ

(b,n)
2 (u) + Ẑ

(c,n)
2 (u), with Ẑ

(k,n)
2 (u) = ∑n

i=kn+3 z
(k,2)
i (u) for k =

a, b, c, where z
(c,2)
i (u) = z2

i (u) − z
(a,2)
i (u) − z

(b,2)
i (u) and

z
(a,2)
i (u) = f ′

i,u

(|σ |pi
)|σ |pi

(
�−p/β

n V
n

i (p) − 1
)
,

z
(b,2)
i (u) = 1

2f ′′
i,u

(|σ |pi
)(|σ |pi

)2(
�−p/β

n V
n

i (p) − 1
)2

.

Note further that{ |σ(i−2)�n−|pf ′
i,u

(|σ(i−2)�n−|p) = G(p,u,β),

|σ(i−2)�n−|2pf ′′
i,u

(|σ(i−2)�n−|p) = H(p,u,β).

Direct calculation, and using the boundedness of the process σ by Assumption SB,
shows ∣∣|σ |pi f ′

i,u

(|σ |pi
) − G(p,u,β)

∣∣ + ∣∣(|σ |pi
)2

f ′′
i,u

(|σ |pi
) − H(p,u,β)

∣∣
≤ Ka,b

∣∣|σ |pi − |σ(i−2)�n−|p∣∣, u ∈ [a, b], i = kn + 3, . . . , n,

for some finite-valued constant Ka,b which depends only a and b. From here, using
the bounds in (9.4) and (9.6), we have

E

(
sup

u∈[a,b]
∣∣z(a,2)

i (u) − z
(a,2)
i (u)

∣∣) ≤ Ka,b

(
k−1/2
n (kn�n)

1/r∧(β−p)/β−ι),
and similarly

E

(
sup

u∈[a,b]
∣∣z(b,2)

i (u) − z
(b,2)
i (u)

∣∣) ≤ Ka,b

(
k−β/(2p)+ι
n ∨ k−1/2

n (kn�n)
1/r∧(β−p)/β−ι).
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Therefore,

1

n − kn − 2
sup

u∈[a,b]
∣∣Ẑ(a,n)

2 (u) − Z
(a,n)

2 (u) + Ẑ
(b,n)
2 (u) − Z

(b,n)

2 (u)
∣∣

(9.42)
= op

(
k−β/(2p)+ι
n ∨ k−1/2

n (kn�n)
1/r∧(β−p)/β−ι).

We are left with Ẑ
(c,n)
2 (u). Using the boundedness of the derivatives in (9.2), we

have ∣∣z(c,2)
i (u)

∣∣ ≤ Ka,b

∣∣�−p/β
n V

n

i (p) − 1
∣∣x, 2 < x < β/p ∧ 3.

From here, applying (9.19), we have

1

n − kn − 2
sup

u∈[a,b]
∣∣Ẑ(c,n)

2 (u)
∣∣ = op

(
k−(1/2)(β/p∧3)+ι
n

)
.(9.43)

Combining the results in (9.42) and (9.43), we get (9.39). �

LEMMA 4. Let p ∈ (0, β/2). If kn � n� for � ∈ (0,1), we have

1√
n − kn − 2

(
Z

n

1(u)

Z
(a,n)

2 (u)

)
L−→ ζ(u),(9.44)

where ζ(u) is a Gaussian process with covariance function given by(
1

G(p,u,β)

)′
�(p,u, v,β)

(
1

G(p,v,β)

)
, u, v ∈R+,(9.45)

for �(p,u, v,β) = �0(p,u, v,β) + 2�1(p,u, v,β). The convergence in (9.44) is
in the space of continuous functions R+ → R

2 equipped with the local uniform
topology. The convergence result for Z

n

1(u) in (9.44) continues to hold for p ∈
[β/2, β).

Further, for some ι > 0,

kn

n − kn − 2
Z

(b,n)

2 (u)

− 1

2
H(p,u,β)

(
�

(2,2)
0 (p,u,u,β) + 2�

(2,2)
1 (p,u,u,β)

)
(9.46)

= op

(
(kn�n)

1−2p/β∨1/2−ι),
locally uniformly in u ∈ R+.

PROOF. We can write(
Z

n

1(u)

Z
(a,n)

2 (u)

)
=

n−kn−1∑
i=kn+1

ζ i (u) + El(u) + Er(u),(9.47)
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where

ζ i (u) =
(

cos
(
u�

−1/β
n μ

−1/β
p,β

(
�n

i S − �n
i−1S

)) −L(p,u,β)

G(p,u,β)
[
�

−p/β
n μ

−p/β
p,β

∣∣�n
i S − �n

i−1S
∣∣p − 1

]
)

,

El(u) =
kn∑

i=2

i − 1

kn

(
0

ζ
(2)
i (u)

)
−

kn+2∑
i=kn+1

(
ζ

(1)
i (u)

0

)
,

Er(u) =
n−2∑

i=n−kn

n − 1 − i

kn

(
0

ζ
(2)
i (u)

)
+

n∑
i=n−kn

(
ζ

(1)
i (u)

0

)
.

We note that for u ∈ R+,

E
n
i−2

(
ζ i (u)

) = 0, i = 2, . . . , n.(9.48)

Further, making using of the inequality | cos(x) − cos(y)| ≤ 2|x − y|p for every
p ∈ (0,1] and x, y ∈ R, we have for u, v ∈ R+,

E
n
i−2

(
ζ

(1)
i (u) − ζ

(1)
i (v)

)2 ≤ K|u − v|p ∨ ∣∣uβ − vβ
∣∣2, 1 < p < β.(9.49)

Making use of (9.48) and the fact that ζ
(2)
i (u) depends on u only through

H(p,u,β) and supu∈R+ |H(p,u,β)| is a finite constant, we have

1

kn

E

(
sup

u∈R+

∣∣El(u)
∣∣2) ≤ K.(9.50)

Making use of (9.49) and the differentiability of G(p,u,β) in u, we also have

1

kn

E
(
Er(u) − Er(v)

)2 ≤ ∣∣F(u) − F(v)
∣∣p,

for some increasing function F(·) and some p > 1. Applying then a criteria for
tightness on the space of continuous functions equipped with the uniform topology
(see, e.g., Theorem 12.3 in [7]) as well as making use of the fact that kn�n → 0,
we have locally uniformly in u,

1√
n − kn − 2

Er(u)
P−→ 0.(9.51)

We are left with the first term on the right-hand side of (9.47). First, we establish
convergence for this term finite-dimensionally in u. We have the decomposition

n−kn−1∑
i=kn+1

ζ i (u) =
n−kn−1∑
i=kn+1

(
ζ i (u) −E

n
i−1

(
ζ i (u)

)) +
n−kn−2∑

i=kn

E
n
i

(
ζ i+1(u)

)
.

From here, we can apply a c.l.t. for triangular arrays (see, e.g., Theorem 2.2.13
of [12]) to establish that 1√

n−2kn−1

∑n−kn−1
i=kn+1 ζ i (u) converges finite-dimensionally

in u to ζ(u). This convergence holds also locally uniformly in u using the bound
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in (9.49) and Theorem VI.4.1 in [14]. Combining the latter with the asymptotic
negligibility results in (9.50) and (9.51), together with the fact that kn/n → 0,
we have the result in (9.44). Furthermore, since Z

n

1(u) depends on p only through
μp,β , the marginal convergence in (9.44) involving Z

n

1(u) holds for any p ∈ (0, β).
We turn next to (9.46). We denote

χi = kn

(
�−p/β

n V
n

i (p) − 1
)2 − (

�
(2,2)
0 (p,u,u,β) + 2�

(2,2)
1 (p,u,u,β)

)
,

and we note that �
(2,2)
0 (p,u,u,β) and �

(2,2)
1 (p,u,u,β) do not depend on u.

Without loss of generality we can assume n ≥ 2kn + 3, and then we set

Aj =
�(n−kn−2)/(kn+1)�∑

i=1

χkn+3+(j−1)+(i−1)(kn+1), j = 1, . . . , kn + 1.

Since E|χi | < K , ∣∣∣∣∣
n∑

i=kn+3

χi −
kn+1∑
j=1

Aj

∣∣∣∣∣ = Op(kn).(9.52)

Further, direct computation shows

E
n
i−kn−3(χi) = 0, i = kn + 3, . . . , n,

and applying the Burkholder–Davis–Gundy inequality for discrete martingales, we
have

E|Aj |x ≤ K(kn�n)
−(x/2∨1), 1 ≤ x <

β

2p
.(9.53)

Using inequality in means we further have∣∣∣∣∣ 1

kn + 1

kn+1∑
j=1

Aj

∣∣∣∣∣
x

≤ 1

kn + 1

kn+1∑
j=1

|Aj |x, 1 ≤ x <
β

2p
.

Applying the above inequality with x sufficiently close to β/(2p) and the bound

in (9.53), we have �n(kn�n)
2p/β∧1/2−1+ι ∑kn+1

j=1 Aj
P−→ 0, and together with the

result in (9.52), this implies (9.46). �

9.4. Proofs of Theorems 1 and 2. Theorem 1 and (4.5) of Theorem 2 fol-
low readily by combining Lemmas 1–4 [and using (9.4) for bounding Ẑn

2 (u)

in the proof of Theorem 1]. To show (4.7), we note first that H(p,u,β) and
�i(p,u,u,β), for i = 0,1, are continuously differentiable in β . For H(p,u,β)

this is directly verifiable, and for �i(p,u,u,β) with i = 0,1, this follows from the
continuous differentiability of the characteristic function β → e−Aβuβ

for u ∈ R+.
Moreover, the derivative ∇βH(p,u,β) is bounded in u. From here, (4.7) follows
from an application of the continuous mapping theorem.
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9.5. Proof of Theorem 3. We denote the true value of the parameter β with β0.
Then the claim in (5.7) will follow if we can show the following:

m̂
(
p, û, β̂f s,u, β

) P−→ m(p,u, β) uniformly in β ∈ [1,2],(9.54)

where m(p,u, β) is defined via

m(p,u, β)i =
∫ ui

h

ui
l

(
log

(
L(p,u,β0)

) − log
(
L(p,u,β)

))
du,

√
nm̂

(
p, û, β̂f s,u, β0

) L−→ W1/2(p,u, β0) × N,(9.55)

where N is K × 1 standard normal vector and

M(p, û, β)
P−→ M(p,u, β) uniformly in a neighborhood of β0.(9.56)

This is because m(p,u, β) = 0 if and only if β = β0 and W(p,u, β0) is positive
definite.

We start with (9.54). We have∫ ûi
h

ûi
l

log
(
L(p,u,β)

)
du

P−→
∫ ui

h

ui
l

log
(
L(p,u,β)

)
du

uniformly in β ∈ [1,2] for i = 1, . . . ,K because of ûl
P−→ ul and ûh

P−→
uh as well as the continuity of the function uβ in β for every u ∈ R+, and
the argument can be used to show (9.56). To show (9.54) it remains to show∫ ûi

h

ûi
l

log(L̂n(p,u, β̂f s)′) du
P−→ ∫ ui

h

ui
l

log(L(p,u,β0)) du for i = 1, . . . ,K . Due the

continuous differentiability of the de-biasing term in β , β̂f s P−→ β0 and the
asymptotic boundedness of ûl and ûh and of L̂n(p,u, β̂f s)′ from below, we have∫ ûi

h

ûi
l

[log(L̂n(p,u, β̂f s)′) − log(L̂n(p,u,β0))]du
P−→ 0. From here (9.54) follows

by applying Theorem 1.
We are left with (9.55). This result follows from applying the uniform conver-

gence of L̂n(p,u, β̂f s)′ in Theorem 2.
Finally, (5.8) follows from the continuity of G(p,u, β) and W−1(p,u, β) in u

and β .

9.6. Proof of Theorem 4. We will use the shorthand notation vn = ρun. We
start with the following lemma.

LEMMA 5. Under the conditions of Theorem 4 we have

L̂n(p,un, β̂
f s)′ −L

(
p,un, β̂

f s) = Op

(√
�nu

2
n

)
,(9.57)

√
n

u2
n − v2

n

Ẑn
L−→ 1

24Cp,2
Z1 − 2

p
Cp,2Z2,(9.58)
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where

Ẑn = 1

Cp,2u2
n

(
L̂n(p,un, β̂

f s)′ −L
(
p,un, β̂

f s))
− 1

Cp,2v2
n

(
L̂n(p,vn, β̂

f s)′ −L
(
p,vn, β̂

f s)).
PROOF. We use the same decomposition of L̂n(p,u,β)−L(p,u,β) as in the

proofs of Theorems 1 and 2. We start with the leading terms Z
n

1(un), Z
(a,n)

2 (un)

and Z
(b,n)

2 (un). Using Taylor’s series expansion, we have for any u ∈ R+ and Z ∈
R,

cos(uZ) − 1 = −u2Z2

2
+ u4Z4

24
+ R(uZ),

∣∣R(uZ)
∣∣ ≤ K|uZ|6,

1 − e−u2 = u2 − u4

2
+ O

(
u6) as u → 0.

Using this approximation we have (note that when Lt is a Brownian motion, then
Aβ = 1 and so Cp,β = 1/μp,β )

1

Cp,2u2
n

Z
n

1(un) − 1

Cp,2v2
n

Z
n

1(vn)

(9.59)

= u2
n − v2

n

24Cp,2

n∑
i=kn+3

[
n2(�n

i S − �n
i−1S)4

μ2
p,2

− 12

μ2
p,2

]
+ Op

(
u4

n

√
n
)
.

We similarly get

1

Cp,2u2
n

Z
(a,n)

2 (un) − 1

Cp,2v2
n

Z
(a,n)

2 (vn)

(9.60)

= (
v2
n − u2

n

) 2

p
Cp,2

n∑
i=kn+3

(
�−p/2

n V
n

i (p) − 1
) + Op

(
u4

n

√
n
)
,

and also

kn

n − kn − 2

n∑
i=kn+3

(
�−p/2

n V
n

i (p) − 1
)2

− (
�

(2,2)
0 (p,un,un,2) + 2�

(2,2)
1 (p,un,un,2)

)
(9.61)

= Op(
√

kn�n).

As in Lemma 4, it is easy to show

1√
n − kn − 2

n∑
i=kn+3

⎛⎜⎝
n2(�n

i S − �n
i−1S)4

μ2
p,2

− 12

μ2
p,2

�−p/2
n V

n

i (p) − 1

⎞⎟⎠ L−→
(

Z1

Z2

)
.(9.62)
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Next, using Taylor’s expansion as well as β̂f s − 2 = op(knu
2
n

√
�n), we have

√
n

u2
nkn

(
H

(
p,un, β̂

f s) − H(p,un,2)
) = op(1).(9.63)

We proceed with the rest of the terms in the decomposition of L̂n(p,un,β) −
L(p,un,β) and L̂n(p, vn,β) − L(p, vnβ). We start with the term Rn

1 (un). It re-
lies on the bound in (9.3), which in turn depends on the analysis of the term A3
in Section 5.2.3 of [22]. When L is a Brownian motion, the bounds for this term
get slightly changed. In particular, the bound in equation (41) of that paper be-
comes now K�1−ι

n for q > r ∨ 1 (this follows by using integration by parts and
the Burkholder–Davis–Gundy inequality) and arbitrarily small ι > 0. Using this, it
is easy to show that when L is a Brownian motion, the bound in (9.3) holds with
αn replaced by βn, where

βn = �
(3/2)(1+(p−1/2)∧0−ι)
n √

kn

∨ �1/(r∨1)−ι
n ∨ �p/β ′∧1−p/2−ι

n ∨ �(p+1)/(r∨1+1)−ι
n .

Now the bound for Rn
1 (un) becomes

E

∣∣∣∣Rn
1 (un)

nu2
n

∣∣∣∣ ≤ K

(
βn ∨ k

−1/p+ι
n

u2
n

)
.(9.64)

Further, using the same steps as in the proofs of Lemmas 1–3, as well as

sup
u,x∈R+

(|u|p∣∣f ′
i,u(x)

∣∣ + |u|2p
∣∣f ′′

i,u(x)
∣∣) < ∞,

we get

E

∣∣∣∣Rn
2 (un)

nu2
n

∣∣∣∣ ≤ Kβnu
−2
n , E

∣∣∣∣Rn
4 (un)

nu2
n

∣∣∣∣ ≤ K(kn�n)
1−ι,(9.65)

E

∣∣∣∣Rn
3 (un)

nu2
n

∣∣∣∣ ≤ Ku−2−2p
n

(
(kn�n)

1−ι ∨ k−1/2
n (kn�n)

1/r∧(2−p)/2−ι),(9.66)

E|Ẑn
1 (un) − Z

n

1(un)|
nu2

n

≤ K

(
(βn ∨ k

−1/p+ι
n )

u2
n

∨ √
�n(kn�n)

1/2−ι

)
,(9.67)

E|Ẑn
2 (un) − Z

(a,n)

2 (un) − Z
(b,n)

2 (un)|
nu2

n
(9.68)

≤ K

(
k
−1/p+ι
n

u
2+2p
n

∨ k−3/2+ι
n ∨ k−1/2

n (kn�n)
1/r∧(2−p)/2−ι

)
.

Combining the bounds in (9.64)–(9.68), together with (9.59)–(9.61), the result
in (9.62) and (9.63), we establish Lemma 5. We further note that when X is a Lévy
process, Rn

3 (u) and Rn
4 (u) are identically zero. �
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We proceed with the proof of Theorem 4. Using Taylor’s expansion and the
result in (9.57), Ẑn, defined in the statement of Lemma 5, is asymptotically equiv-
alent to

1

Cp,2u2
n

(− log
(
L̂n(p,un, β̂

f s)′) − Cp,2u
2
n

)
− 1

Cp,2v2
n

(− log
(
L̂n(p,vn, β̂

f s)′) − Cp,2v
2
n

)
.

Using again Taylor’s series expansion, the result in (9.57) and that u−2
n

√
�n → 0,

we have that the above is asymptotically equivalent to(
log

(− log
(
L̂n(p,un, β̂

f s)′)) − log
(
Cp,2u

2
n

))
−(

log
(− log

(
L̂n(p,vn, β̂

f s)′)) − log
(
Cp,2v

2
n

))
.

From here result (6.4) in Theorem 4, both in the general and Lévy case, follows
from Lemma 5.
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