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STRUCTURAL MARKOV GRAPH LAWS FOR BAYESIAN
MODEL UNCERTAINTY

BY SIMON BYRNE1 AND A. PHILIP DAWID

University College London and University of Cambridge

This paper considers the problem of defining distributions over graphi-
cal structures. We propose an extension of the hyper Markov properties of
Dawid and Lauritzen [Ann. Statist. 21 (1993) 1272–1317], which we term
structural Markov properties, for both undirected decomposable and directed
acyclic graphs, which requires that the structure of distinct components of
the graph be conditionally independent given the existence of a separating
component. This allows the analysis and comparison of multiple graphical
structures, while being able to take advantage of the common conditional in-
dependence constraints. Moreover, we show that these properties characterise
exponential families, which form conjugate priors under sampling from com-
patible Markov distributions.

1. Introduction. A graphical model consists of a graph and a probability dis-
tribution that satisfies a Markov property of the graph, being a set of conditional
independence constraints encoded by the graph. Such models arise naturally in
many statistical problems, such as contingency table analysis and covariance esti-
mation.

Dawid and Lauritzen (1993) consider distributions over these distributions,
which they term laws to emphasise the distinction from the underlying sampling
distribution. Laws arise primarily in two contexts: as sampling distributions of es-
timators and as prior and posterior distributions in Bayesian analyses. Specifically,
Dawid and Lauritzen (1993) focus on hyper Markov laws that exhibit conditional
independence properties analogous to those of the distributions of the model. By
exploiting such laws, it is possible to perform certain inferential tasks locally; for
instance, posterior laws can be calculated from subsets of the data pertaining to the
parameters of interest.

Although other types of graphical model exist, we restrict ourselves to undi-
rected decomposable graphs and directed acyclic graphs, which exhibit the special
property that their Markov distributions can be constructed in a recursive fashion
by taking Markov combinations of smaller components. In the case of undirected
decomposable graphs, for any decomposition (A,B) of the graph G, a Markov
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distribution is uniquely determined by the marginal distributions over A and B

[Dawid and Lauritzen (1993), Lemma 2.5]. By a recursion argument, this is equiv-
alent to specifying marginal distributions on cliques. A similar construction can be
derived for directed acyclic graphs: the distribution of each vertex conditional on
its parent set can be chosen arbitrarily, and the set of such distributions determines
the joint distribution. As we demonstrate in Section 5, this property can also be
characterised in terms of a partitioning based on ancestral sets.

It is this partitioning that makes the notion of hyper Markov laws possible.
In essence, these are laws for which the partitioned distributions exhibit condi-
tional independence properties analogous to those of the underlying distributions.
In the case of undirected decomposable graphs, a law £ for θ̃ over P(G), the set of
Markov distributions with respect to G, is (weak) hyper Markov if for any decom-
position (A,B),

θ̃A ⊥⊥ θ̃B |θ̃A∩B [£].(1.1)

Weak hyper Markov laws arise naturally as sampling distributions of maximum
likelihood estimators of graphical models [Dawid and Lauritzen (1993), Theo-
rem 4.22]. A more specific class of laws are those that satisfy the strong hyper
Markov property, where for any decomposition (A,B),

θ̃A|B ⊥⊥ θ̃B [£].(1.2)

When used as prior laws in a Bayesian analysis, strong hyper Markov laws allow
for local posterior updating, in that the posterior law of clique marginal distribu-
tions only depends on the data in the clique [Dawid and Lauritzen (1993), Corol-
lary 5.5].

However, hyper Markov laws only apply to individual graphs: if the structure of
the graph itself is unknown, then a full Bayesian analysis requires a prior distribu-
tion over graphical structures, which we term a graph law. Very little information
is available to guide the choice of such priors, with a typical choice being a simple
uniform or constrained Erdős–Rényi prior.

The aim of this paper is to extend the hyper Markov concept to the structure of
the graph itself. We study graph laws that exhibit similar conditional independence
structure, termed structural Markov properties. These properties exhibit analogous
local inference properties, and under minor assumptions, characterise exponential
families, which serve as conjugate families to families of compatible Markov dis-
tributions and hyper Markov laws.

The outline of the paper is as follows. In Section 2 we introduce the terms and
notation used in the paper, in particular the notion of a semi-graphoid to define
what we mean by structure. Section 3 develops the notion of a structural Markov
property and characterises such laws for undirected decomposable graphs. Sec-
tion 4 briefly develops a similar notion for directed graphs consistent with a fixed
ordering. In Section 5 we consider the notion of Markov equivalence of directed
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acyclic graphs, and extend the structural Markov property to these equivalence
classes. Finally, in Section 6 we discuss some properties, computational consider-
ations, and future directions.

2. Background. Much of the terminology in this paper is standard in the
graphical modelling literature. For this we refer the reader to texts such as
Lauritzen (1996) or Cowell et al. (2007). For clarity and consistency, the following
presents some specific terms and notation used in this paper.

2.1. Graphs. A graph G consists of a set of vertices V(G) and a set of edges
E(G) of pairs of vertices. In the case of undirected graphs, E(G) will be a set of
unordered pairs of vertices {u, v}; in the directed case it will be a set of ordered
pairs (u, v), denoting an arrow from u to v, of which v is termed the head. For any
subset A ⊆ V(G), GA will denote the induced subgraph with vertex set A. A graph
is complete if there exists an edge between every pair of vertices, and sparse if no
edges are present (the graph with empty vertex set is both complete and sparse).

We focus on two particular classes of graphs.

2.1.1. Undirected decomposable graphs. A path in an undirected graph G is
a sequence of vertices v0, v1, . . . , vk such that {vi, vi+1} ∈ E(G), in which case we
can say v0 is connected to vk . Sets A,B ⊆ V(G) are separated by S ⊆ V(G) if
every path starting at an element of A and ending at an element of B contains an
element of S.

A pair of sets (A,B) is a covering pair of G if A ∪ B = V(G). A covering pair
is a decomposition if GA∩B is complete and A and B are separated by A ∩ B in G.
A decomposition is proper if both A and B are strict subsets of V(G). For any set
of undirected graphs F, define F(A,B) to be the set of G ∈ F for which (A,B) is
a decomposition.

A graph is decomposable if it can be recursively decomposed into complete
subgraphs. An equivalent condition is that the graph is chordal, in that there exists
no set which induces a cycle graph of length 4 or greater. Throughout the paper
we will take V to be a fixed, finite set, and define U to be the set of undirected
decomposable graphs (UDGs) with vertex set V .

The maximal sets inducing complete subgraphs are termed cliques, the set of
which is denoted by cl(G). For any decomposable graph it is possible to construct a
junction tree of the cliques. The intersections of neighbouring cliques in a junction
tree are termed (clique) separators, the set of which is denoted by sep(G). The
multiplicity of a separator is the number of times it appears in the junction tree.
The cliques, separators, and their multiplicities are invariants of the graph.

An undirected graph G is collapsible onto A ⊆ V(G) if each connected com-
ponent C of GV \A has a boundary B = {u : {u, v} ∈ E(G), v ∈ C,u /∈ C} which
induces a complete subgraph. Note that if (A,B) is a decomposition of G, then G
is collapsible onto both A and B .
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2.1.2. Directed acyclic graphs. A directed graph G is acyclic if there exists a
compatible well-ordering ≺ on V(G), that is, such that u ≺ v for all (u, v) ∈ E(G).
For any such ≺, the predecessors of a vertex v is the set pr≺(v) = {u ∈ V(G) :u ≺
v). The set of directed acyclic graphs (DAGs) on V will be denoted by D, and the
subset for which ≺ is a compatible well-ordering is denoted by D≺.

A vertex u is a parent of v if (u, v) ∈ E(G). The set of parents of v is denoted
by paG(v). Conversely, u is a child of v. A set A ⊆ V(G) is ancestral in G if
v ∈ A ⇒ paG(v) ⊆ A. The minimal ancestral set containing B ⊆ V(G) is denoted
by anG(B).

The skeleton of a directed graph G is the undirected graph obtained by replacing
all the directed edges with undirected edges. The moral graph of G, denoted by
GM, is the skeleton of the graph obtained by adding (if necessary) an edge between
each pair of vertices having a common child.

2.2. Distributions and laws. Let X = (Xv)v∈V be a random vector on some
product space

∏
v∈V Xv , with distribution denoted by P or θ . A model is a family

of distributions � for X.
Following Dawid and Lauritzen (1993), a distribution over � will be termed a

law and denoted by £. A random distribution following such a law will be denoted
by θ̃ .

For any A ⊆ V , XA will denote the subvector (Xv)v∈V , with PA or θA denoting
its marginal distribution. The marginal law of θ̃A will be denoted by £A. Further-
more, for any pair A,B ⊆ V , we can denote by θA|B the collection of conditional
distributions of XA|XB under θ , and by £A|B the induced law of θ̃A|B under £. We
will use 	 to indicate the existence of a bijective function; for instance, we can
write (θA, θV |A) 	 θ for any A ⊆ V .

2.3. Semi-graphoids. When discussing the “structure” of a graphical model,
many authors use this term to refer to the graph itself. In particular, when they
talk of “estimating the structure,” they mean inferring the presence or absence of
individual edges of the graph.

In this paper, we take the view that “structure” refers to a set of conditional inde-
pendence properties, and that a graph is merely a representation of this structure.
This distinction is an important one: it implies that graphs that encode the same
set of conditional independence statements must be treated as identical, leading to
the notion of Markov equivalence. A more subtle but even more important point
is that when investigating properties such as decompositions or ancestral sets, we
are, effectively, looking at properties of sets of conditional independencies.

To make this more concrete, we use the notion of a semi-graphoid, a special case
of a separoid [Dawid (2001a)], to describe the abstract properties of conditional
independence.

DEFINITION 2.1. Given a finite set V , a semi-graphoid is a set M of triples
of the form 〈A,B|C〉, where A,B,C ⊆ V , satisfying the properties:
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S0 for all A,B ⊆ V , 〈A,B|A〉 ∈ M ;
S1 if 〈A,B|C〉 ∈ M , then 〈B,A|C〉 ∈ M ;
S2 if 〈A,B|C〉 ∈ M and D ⊆ A, then 〈D,B|C〉 ∈ M ;
S3 if 〈A,B|C〉 ∈ M and D ⊆ A, then 〈A,B|C ∪ D〉 ∈ M ;
S4 if 〈A,B|C〉 ∈ M and 〈A,D|B ∪ C〉 ∈ M , then 〈A,B ∪ D|C〉 ∈ M .

These properties match the well-established properties of conditional indepen-
dence [Dawid (1979)].

We can define the semi-graphoid of a graph as the set of triples encoding its
global Markov property: the semi-graphoid of an undirected graph G is

M(G) = {〈A,B|C〉 : A and B are separated by C in G
}
,(2.1)

and the semi-graphoid of a directed acyclic graph G is the set

M(G) = {〈A,B|C〉 : A and B are separated by C in GM
an(A∪B∪C)

}
.(2.2)

We say that a joint distribution P for X = (Xv)v∈V is Markov with respect to a
semi-graphoid M if

〈A,B|C〉 ∈ M ⇒ XA ⊥⊥ XB |XC [P ].
That is, a distribution is Markov with respect to a graph if it is Markov with re-
spect to the semi-graphoid of the graph. We write P(G) or P(M) to be the set of
distributions that are Markov with respect to G or M .

Similarly, a law £ is weak hyper Markov with respect to the semi-graphoid if

〈A,B|C〉 ∈ M ⇒ θ̃A∪C ⊥⊥ θ̃B∪C |θ̃C [£].
However, the strong hyper Markov laws cannot be directly characterised in terms
of the semi graphoid.

Semi-graphoids have a natural projection operation: for any set U ⊆ V , we can
define the projection onto U of a semi-graphoid M on V to be

MU = {〈A,B|C〉 ∈ M :A,B,C ⊆ U
}
.

Under certain conditions, this can match the natural projection operation, the
induced subgraph, of the underlying graph. For undirected graphs, [M(G)]U =
M(GU) if and only if G is collapsible onto U [Asmussen and Edwards (1983),
Corollary 2.5]. For directed acyclic graphs, we have the weaker sufficient condi-
tion that if A is ancestral in G, then [M(G)]A = M(GA).

3. Undirected structural Markov property. We now extend the hyper
Markov framework to the case where the graph itself is regarded as a random
object G̃, taking values in the set of undirected decomposable graphs with vertex
set V ; equivalently, G̃ can be thought of as a random vector of length

(|V |
2

)
indi-

cating the presence or absence of individual edges. As the graph is a parameter of
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the model, we term its distribution a graph law, denoted by G(G̃). Our aim is to
identify and characterise hyper Markov-type properties for G̃.

Hyper Markov laws are motivated by the property that graph decompositions al-
low one to decompose Markov distributions into separate components. For a fixed
graph G ∈ U(A,B), then any Markov distribution θ ∈ P(G) is uniquely charac-
terised by its marginals θA and θB , taking values in P(GA) and P(GB), respec-
tively [Dawid and Lauritzen (1993), Lemma 2.5]. Moreover, these can be chosen
arbitrarily, subject only to the constraint (θA)A∩B = (θB)A∩B . Hyper Markov laws
are derived by imposing probabilistic conditional independence on this natural sep-
aration.

In a similar manner, graphs themselves can be characterised by their projections
onto each part of a decomposition.

PROPOSITION 3.1. Let H and J be decomposable graphs with vertex set A

and B , respectively, such that both HA∩B and JA∩B are complete. Then the graph
G with E(G) = E(H) ∪ E(J ) is the unique decomposable graph on A ∪ B such
that:

(i) GA = H,
(ii) GB = J , and

(iii) (A,B) is a decomposition of G.

PROOF. To satisfy (i) and (ii), the edge set must contain E(H) ∪ E(J ). It
cannot contain any additional edges {u, v}, as this would violate: (i), if {u, v} ⊆ A;
(ii), if {u, v} ⊆ B; or (iii), if u ∈ A \ B and v ∈ B \ A. �

In other words, a graph G ∈ U(A,B) is characterised by GA and GB , and GA

and GB can be chosen independently. Moreover, this also decomposes the semi-
graphoid, as G is collapsible onto both A and B .

We define the graph G resulting from Proposition 3.1 to be the graph product
of H and J , denoted by

G = H⊗J .

REMARK. Although we only use the graph product when GA∩B is complete,
the definition can be extended to the case where H and J are collapsible onto
A ∩ B .

For a graph law G(G̃) over U(A,B), a straightforward way to extend the hyper
Markov property in this case would be to require that

G̃A ⊥⊥ G̃B |G̃A∩B [G].(3.1)

Note that in this case the term G̃A∩B is redundant: if (A,B) is a decomposition
of G, then GA∩B must be complete, and so we are left with a statement of marginal
independence G̃A ⊥⊥ G̃B .
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FIG. 1. A representation of the structural Markov property for undirected graphs. Conditional on
(A,B) being a decomposition, the existence of the remaining edges in G̃A ( ) is independent of
those in G̃B ( ).

A more general question remains: how might this property be extended to a
graph law over all undirected graphs? A seemingly simple requirement is that (3.1)
should hold whenever a decomposition exists. This motivates the following defini-
tion.

DEFINITION 3.1 (Structural Markov property). A graph law G(G̃) over U is
structurally Markov if for any covering pair (A,B) where G(U(A,B)) > 0, then
G̃A is independent of G̃B , conditional on (A,B) being a decomposition of G̃. This
is written as

G̃A ⊥⊥ G̃B |{G̃ ∈ U(A,B)
} [G].(3.2)

In essence, the structural Markov property states that the structures of different
induced subgraphs are conditionally independent given that they are in separate
parts of a decomposition. See Figure 1 for a depiction.

The use of braces on the right-hand side of (3.2) is to emphasise that the con-
ditional independence is defined with respect to the event G̃ ∈ U(A,B), and not a
random variable as in the Markov and hyper Markov properties. In other words,
we do not assume G̃A ⊥⊥ G̃B |{G̃ /∈ U(A,B)}.

3.1. Products and projections. The graph product operation provides a very
useful characterisation of the structural Markov property.

PROPOSITION 3.2. A graph law G is structurally Markov if and only if for
every covering pair (A,B), and every G,G′ ∈ U(A,B),

π(G)π
(
G′) = π

(
GA ⊗ G′

B

)
π

(
G′

A ⊗ GB

)
,(3.3)

where π is the density of G with respect to the counting measure on U.



1654 S. BYRNE AND A. P. DAWID

PROOF. By Proposition 3.1, both GA ⊗ G′
B,G′

A ⊗ GB ∈ U(A,B), and so if
G(U(A,B)) = 0, the statement is trivial. Otherwise, the conditional density of a
structural Markov law is of the form

π
(
G|{G ∈ U(A,B)

}) = π
(
GA|U(A,B)

)
π

(
GB |U(A,B)

)
.

The result follows by substitution into (3.3). �

The structural Markov property has an inherent divisibility property that arises
on subgraphs induced by decompositions. First we require the following lemma.

LEMMA 3.3. Let (A,B) be a decomposition of a graph G, and (S, T ) a cov-
ering pair of A with A ∩ B ⊆ T . Then (S, T ) is a decomposition of GA if and only
if (S, T ∪ B) is a decomposition of G.

PROOF. Recall that W separates U and V in G if and only if 〈U,V |W 〉 ∈
M(G). Since (S, T ) is a covering pair of A, 〈S ∪ T ,B|S ∩ B〉 ∈ M(G), and
hence 〈S,B|T 〉 ∈ M(G). If (S, T ) is a decomposition of GA, then 〈S,T |S ∩ T 〉 ∈
M(GA), which implies that 〈S,B ∪ T |T ∩ S〉 ∈ M(G). Since G(S∪B)∩T = GT ∩S is
complete, (S ∪ B,T ) is a decomposition of G.

The converse result follows by the reverse argument. �

THEOREM 3.4. Let G(G̃) be a structurally Markov graph law. Then the con-
ditional law for G̃A|{G̃ ∈ U(A,B)} is also structurally Markov.

PROOF. Let (S, T ) be a covering pair of A: If we restrict G̃ ∈ U(A,B), then
G̃A∩B must be complete. As we are only interested in the case where (S, T ) is a
decomposition of G̃A, then A ∩ B must be a subset of either S or T : without loss
of generality, we may assume A ∩ B ⊆ T .

Since (S, T ∪ B) is a covering pair of V , by the structural Markov property,

G̃S ⊥⊥ G̃T ∪B |{G̃ ∈ U(S, T ∪ B)
}
.

If 1E is the indicator variable of an event E, we can write

G̃S ⊥⊥ (G̃T ,1G̃T ∪B∈U(T ,B))|
{
G̃ ∈ U(S, T ∪ B)

}
.

By the properties of conditional independence [Dawid (1979)], the term
1G̃T ∪B∈U(T ,B) may be moved to the right-hand side. Furthermore, we are only
interested in the case where it equals 1. Hence we can write

G̃S ⊥⊥ G̃T |{GT ∪B ∈ U(T ,B)
}
,
{
G̃ ∈ U(S, T ∪ B)

}
.

By Lemma 3.3, G̃T ∪B ∈ U(T ,B) if and only if G̃ ∈ U(S ∪ T ,B) = U(A,B). So

G̃S ⊥⊥ G̃T |{G̃ ∈ U(A,B)
}
,
{
G̃ ∈ U(S, T ∪ B)

}
.

Again, by Lemma 3.3, G̃ ∈ U(S, T ∪ B) if and only if G̃A ∈ U(S, T ), hence:

G̃S ⊥⊥ G̃T |{G̃ ∈ U(A,B)
}
,
{
G̃A ∈ U(S, T )

}
. �
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3.2. Structural meta Markov property. Dawid and Lauritzen (1993) define a
meta Markov model as a set of Markov distributions that exhibits conditional vari-
ation independence, denoted by the ternary relation (· ‡ ·|·), in place of the condi-
tional probabilistic independence of hyper Markov laws; see also Dawid (2001b).
Analogous structural properties can be defined for families of graphs.

DEFINITION 3.2 (Structural meta Markov property). Let F be a family of
undirected decomposable graphs on V . Then F is structurally meta Markov if for
every covering pair (A,B), the set {GA :G ∈ F(A,B),GB = J } is the same for all
J ∈ [F(A,B)]B]. That is,

GA ‡ GB |{G ∈ F(A,B)
}
.

In other words, this property requires that the set of pairs (GA,GB) of G ∈
F(A,B) be a product set. Clearly the set U of all decomposable graphs on V

is structurally meta Markov.
As with probabilistic independence, we can characterise it in terms of the graph

product operation.

THEOREM 3.5. A family of undirected decomposable graphs F is structurally
meta Markov if and only if GA ⊗ G′

B ∈ F for all G,G′ ∈ F(A,B).

PROOF. This follows directly from Proposition 3.1. �

Theorem 3.5 is particularly useful in that if a family of graphs is characterised by
a specific property, we can show that it is structurally meta Markov if this property
is preserved under the graph product operation.

EXAMPLE 3.1. The set of undirected decomposable graphs whose clique size
is bounded above by some n and whose separator size is bounded below by m is
structurally meta Markov. To see this, note that a clique of GA ⊗ G′

B must be a
clique of either GA or G′

B (and hence of either G or G′), and therefore the graph
product operation cannot increase the size of the largest clique. Similarly, it is
not possible for a graph product to decrease the size of the smallest separator: a
separator of GA ⊗ G′

B must either be a separator of G or G′, or be A ∩ B (this is a
consequence of Lemma 3.12).

In the case n = 2 and m = 0, this is the set of forests on V , and when n = 2 and
m = 1, this is the set of trees on V .

EXAMPLE 3.2. Consider two graphs GL,GU ∈ U such that E(GL) ⊆ E(GU).
Then the “sandwich” set between the two graphs,{

G ∈ U :E
(
GL) ⊆ E(G) ⊆ E

(
GU )}

,

is structurally meta Markov. This follows from the fact that an edge can only appear
in a graph product if it is in one of the elements of the product.
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As with hyper Markov laws, being a structural meta Markov family is a neces-
sary condition for the existence of a structural Markov law.

THEOREM 3.6. The support of a structurally Markov graph law is a struc-
turally meta Markov family.

PROOF. Let F be the support of the structurally Markov graph law G with
density π . By Proposition 3.2, if G,G′ ∈ F(A,B) and both π(G) and π(G′) are
nonzero, then π(GA ⊗G′

B) must also be nonzero, and hence in F(A,B). Therefore,
by Theorem 3.5, F is structurally meta Markov. �

3.3. Compatible distributions and laws. We now investigate how the struc-
tural Markov property interacts with the Markov and hyper Markov properties.
In order to do this, we need to define families of distributions and laws for every
graph.

DEFINITION 3.3. For F ⊆ U, let ϑ = {θ(G) :G ∈ F} be a family of probabil-
ity distributions for X. We write X ∼ ϑ |G̃ if, given G̃ = G, X ∼ θ(G). Then ϑ is
compatible if:

(i) for each G ∈ F, X is Markov with respect to G under θ(G), and

(ii) θ
(G)
A = θ

(G′)
A whenever G,G′ ∈ F are collapsible onto A and GA = G′

A.

Similar properties can be defined for laws.

DEFINITION 3.4. For F ⊆ U, let L= {£(G) :G ∈ F} be a family of laws for the
parameters θ̃ of a family of distributions on X. Again, we can write θ̃ ∼ L|G̃ if,
given G̃ = G, θ̃ ∼ £(G). Then L is hyper compatible if:

(i) for all G ∈ F, £(G) is weak hyper Markov with respect to G, and

(ii) £(G)
A = £(G′)

A whenever G,G′ ∈ F are collapsible onto A and GA = G′
A.

REMARK. Dawid and Lauritzen (1993), Section 6.2, originally used the term
compatible to refer to what we term the hyper compatible case: we introduce the
distinction so as to extend the terminology to the distributional (nonhyper) case.

As Markov distributions and hyper Markov laws are characterised by their
clique-marginal distributions [Dawid and Lauritzen (1993), Theorems 2.6 and 3.9],
it is sufficient for condition (ii) in Definitions 3.3 and 3.4 to hold when GA and G′

A

are complete. Moreover, if the complete graph G(V ) is contained in F, then the
compatible and hyper compatible families are characterised entirely by θ(G(V )) and
£(G(V )), respectively.
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EXAMPLE 3.3. The inverse Wishart law for the covariance selection model
θ(X) = N (0,�) assigns £(�) = I W (δ;�). This law is strong hyper Markov
with respect to the complete graph on V , and the hyper compatible family gener-
ated by £ are the hyper inverse Wishart laws £(G)(�) = H I W G(δ;�) [Dawid
and Lauritzen (1993), Example 7.3].

A law induces marginal distribution θ£ for X such that θ£(A) = E£[θ̃ (A)], re-
ferred to as the predictive distribution in Bayesian problems. Therefore a family
of laws will also induce a family of distributions. Although in general hyper com-
patibility will not imply compatibility, there is one important special case.

PROPOSITION 3.7. Let L be a family of laws such that each law £(G) ∈ L is
strong hyper Markov. Then the family of marginal distributions

{θ£ : £ ∈ L}
is hyper compatible.

PROOF. By Dawid and Lauritzen (1993), Proposition 5.6, the marginal distri-
bution of a strong hyper Markov law is Markov with respect to the same graph.
The result follows by noting that the marginal distribution on a complete subgraph
is a function of the marginal law. �

A graph law G(G̃) combined with a compatible set of distributions ϑ defines
a joint distribution (G, ϑ) for (G̃,X) under which X|G̃ = G ∼ θ(G). Likewise, G
combined with a set of hyper compatible laws L defines a joint law (G,L) for
(G̃, θ̃), and so a joint distribution on (G̃, θ̃ ,X).

The key conditional independence property of any such joint distribution or law
can be characterised as follows.

PROPOSITION 3.8. For any graph law G over F ⊆ U for G̃, and X ∼ ϑ for a
compatible family ϑ indexed by F,

XA ⊥⊥ G̃B |G̃A,
{
G̃ ∈ U(A,B)

} [G, ϑ].
Similarly, if θ̃ ∼ L for a hyper compatible family L indexed by F, then

θ̃A ⊥⊥ G̃B |G̃A,
{
G̃ ∈ U(A,B)

} [G,L].

PROOF. Let G,G′ ∈ U(A,B) such that GA = G′
A. As G and G′ are both col-

lapsible onto A, then θ
(G)
A = θ

(G′)
A in a compatible family, and £(G)

A = £(G′)
A in a

hyper compatible family. �
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When combined with the structural Markov property, we obtain some useful
results.

THEOREM 3.9. If G̃ has a structurally Markov graph law G, and X has a
distribution from a compatible set ϑ , then

(XA, G̃A) ⊥⊥ (XB, G̃B)|XA∩B,
{
G̃ ∈ U(A,B)

} [G, ϑ].

PROOF. See Appendix B. �

COROLLARY 3.10. If G̃ has a structurally Markov graph law, and X has a
distribution from a compatible set ϑ , then the posterior graph law for G̃ is struc-
turally Markov.

PROOF. By Theorem 3.9 and the axioms of conditional independence, we eas-
ily obtain

G̃A ⊥⊥ G̃B |X,
{
G̃ ∈ U(A,B)

}
. �

We can also apply similar arguments at the hyper level.

THEOREM 3.11. If G̃ has a structurally Markov graph law G, and θ has a
law from a hyper compatible set L, then

(θ̃A, G̃A) ⊥⊥ (θ̃B, G̃B)|θ̃A∩B,
{
G̃ ∈ U(A,B)

} [G,L].
Furthermore, if each law £(G) ∈ L is strong hyper Markov with respect to G, then

(θ̃A, G̃A) ⊥⊥ (θ̃B|A, G̃B)|{G̃ ∈ U(A,B)
} [G,L].

PROOF. The proof for the first case is the same as in Theorem 3.9. The proof
for the strong case follows similar steps, except starting with the strong hyper
Markov property

θ̃A ⊥⊥ θ̃B|A|G̃,
{
G̃ ∈ U(A,B)

}
. �

Hyper compatible sets of strong hyper Markov laws have the additional advan-
tage that the posterior graph law will also be structurally Markov: this follows from
Theorem 3.9 and Dawid and Lauritzen (1993), Proposition 5.6, which states that
the marginal distribution of the data under a strong hyper Markov law is Markov.
Furthermore, the posterior family of graph laws {£(G)(·|X) :G ∈ U} will maintain
hyper compatibility.
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3.4. Clique vector. We show that the family of structural Markov laws forms
an exponential family of conjugate distributions for Bayesian updating under com-
patible sampling.

DEFINITION 3.5. Define the completeness vector of a graph to be the function
c :U → {0,1}2V

such that, for each A ⊆ V ,

cA(G) =
{

1, if GA is complete,
0, otherwise.

Furthermore, define the clique vector of a graph t :U → Z
2V

to be the Möbius
inverse of c by superset inclusion

tB(G) = ∑
A⊇B

(−1)|A\B|cA(G).(3.4)

In the language of Studený (2005b), c and t are both imsets.
The decomposition of c and t mirrors that of the graph.

LEMMA 3.12. If G ∈ U(A,B), then

c(G) = [
c(GA)

]0 + [
c(GB)

]0 − [
c(GA∩B)

]0 and(3.5)

t (G) = [
t (GA)

]0 + [
t (GB)

]0 − [
t (GA∩B)

]0
,(3.6)

where [·]0 denotes the expansion of a vector with zeroes to the required coordi-
nates.

PROOF. A subset U ⊆ V induces a complete subgraph of G ∈ U(A,B) if and
only if it induces a complete subgraph of GA or of GB (or of both). (3.5) follows
by the inclusion-exclusion principle. (3.6) may then be obtained by substitution
into (3.4). �

THEOREM 3.13. For any decomposable graph G ∈ U and A ⊆ V ,

tA(G) =
⎧⎨
⎩

1, if A ∈ cl(G),
−νG(A), if A ∈ sep(G), and
0, otherwise,

where cl(G) are the cliques of G, and sep(G) are the clique separators, and each
separator S has multiplicity νG(S).

PROOF. For any C ⊆ V , let G(C) be the graph on V whose edges are the
set of all pairs {u, v} ⊆ C (i.e., complete on C and sparse elsewhere). Then it is
straightforward to see that

tA
(
G(C)

C

) =
{

1, if A = C,
0, otherwise.
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Now let C1, . . . ,Ck be a perfect ordering of the cliques of G, and S2, . . . , Sk be
the corresponding separators. By Lemma 3.12, it follows that

t (G) =
k∑

i=1

t
(
G(Ci)

Ci

) −
k∑

i=2

t
(
G(Si)

Si

)
.

�

Objects similar to the clique vector have arisen in several contexts. Notably, it
appears to be equivalent to the index v of Lauritzen, Speed and Vijayan [(1984),
Definition 5], which is characterised in a combinatorial manner. It is also closely
related to the standard imset of Studený (2005b), which is equal to

t
(
G(V )) − t (G),

where G(V ) is the complete graph.
The algorithm of Wormald (1985) for the enumeration of decomposable graphs

is based on a generating function for the vector R|V | that he termed the “maximal
clique vector,” and is equivalent to

mcvk(G) = ∑
A⊆V : |A|=k

tA(G), k = 1, . . . , |V |.

PROPOSITION 3.14. For any G ∈ U, the vector t (G) has the following prop-
erties:

(i) ∑
A⊆V

tA(G) = 1,

(ii) for each v ∈ V ∑
A�v

tA(G) = 1,

(iii) ∑
A⊆V

|A|tA(G) = |V | and

(iv) ∑
A⊆V

( |A|
2

)
tA(G) = ∣∣E(G)

∣∣.
PROOF. By the Möbius inversion theorem [see, e.g., Lauritzen (1996),

Lemma A.2], c can also be expressed in terms of t ,

cA(G) = ∑
B⊇A

tB(G), A ⊆ V.

(i) and (ii) are cA(G) at A = ∅ and A = {v}, respectively, both of which induce
complete subgraphs. (iii) is obtained from (ii) by summation over v ∈ V , and (iv) is
obtained from (ii) by double counting each edge via summation over both elements
{u, v} ∈ E(G). �
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3.5. Clique exponential family.

DEFINITION 3.6. The clique exponential family is the exponential family of
graph laws over F ⊆ U, with t as a natural statistic (with respect to the uniform
measure on U). That is, laws in the family have densities of the form

πω(G) = 1

Z(ω)
exp

{
ω · t (G)

}
, G ∈ F,ω ∈ R

2V

,

where Z(ω) is the normalisation constant, which will generally be hard to com-
pute.

Equivalently, the distribution can be parameterised in terms of c,

πω(G) = 1

Z(ω)
exp

{( ∑
B⊆A

(−1)|A\B|ωA

)
A⊆V

· c(G)

}
,

but t is more useful due to the fact that it is sparse (by Theorem 3.13) and, as we
shall see, is the natural statistic for posterior updating.

Note that this distribution is over-parametrised. By Proposition 3.14(i) and (ii),
there are |V | + 1 linear constraints in the set of possible t (G), adding multiples
of α = (1)S⊆V , or βv = (1v∈S)S⊆V to ω will leave the resulting π unchanged. For
the purpose of identifiability, we could define a standardised vector ω∗ as

ω∗ = ω + ω∅α + ∑
v∈V

(ω{v} − ω∅)βv =
(
ωA + (|A| − 1

)
ω∅ − ∑

v∈A

ω{v}
)

A⊆V

such that πω = πω∗ , and ω∗{v} = ω∗
∅

= 0 for all v ∈ V .

THEOREM 3.15. Let G be a graph law whose support is U. Then G is struc-
turally Markov if and only if it is a member of the clique exponential family.

PROOF. See Appendix B. �

REMARK. It is possible to weaken the condition of full support; for example,
the same argument applies to any family F with the property that if G ∈ F and C

is a clique of G, then G(C) ∈ F.

A very similar family was proposed by Bornn and Caron (2011); however, their
family allows the use of different parameters for cliques and separators, which will
generally not be structurally Markov.

EXAMPLE 3.4 [Giudici and Green (1999); Brooks, Giudici and Roberts (2003),
Section 8]. The simplest example of such a distribution is the uniform distribu-
tion over U, which by Proposition 3.14(i), corresponds to ωA being constant for
all A.
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EXAMPLE 3.5 [Jones et al. (2005), Madigan and Raftery (1994)]. Another
common approach is to use a set of

(|V |
2

)
independent Bernoulli variables with

probability ψ to indicate edge inclusion (i.e., an Erdős–Rényi random graph), con-
ditional on G̃ being decomposable. The density of such a law is of the form

π(G) ∝ ψ |E(G)|(1 − ψ)(
p
2)−|E(G)| ∝

(
ψ

1 − ψ

)|E(G)|
.

By Proposition 3.14(iv), it follows that this distribution is a member of the expo-
nential family with parameter

ωA =
( |A|

2

)
log

(
ψ

1 − ψ

)
.

More generally, the family with parameter

ωA = ∑
e∈(A

2)

log
(

ψe

1 − ψe

)

would correspond to the extension where each edge e has its own probability ψe.

EXAMPLE 3.6. By adjusting parameters of the family, particular graphical
features can be emphasised. For example, a family of the form

ωA =
( |A|

2

)
ρ − κ max

(
0, |A| − 2

)
,

with κ > 0, will penalise clique sizes greater than 2, placing a higher probability
on forest structures.

EXAMPLE 3.7 [Armstrong et al. (2009)]. For comparison, it is useful to con-
sider a nonstructurally Markov graph law. Define the distribution over the number
of edges to be uniform, and the conditional distribution over the set of graphs with
a fixed number of edges to be uniform. This has density of the form

π(G) = 1(p
2

) + 1

1

|{G′ ∈ U : |E(G′)| = |E(G)|}| .

Specifically for graphs on three vertices, we have that

π
( ) = 1

12 , π
( ) = 1

12 , π
( ) = 1

4 and π
( ) = 1

12 .

Therefore by Proposition 3.2 the law cannot be structurally Markov.
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3.6. Posterior updating. We saw in Corollary 3.10 that if the sampling distri-
butions are compatible, then posterior updating will preserve the structural Markov
property. In this section we show that this updating may be performed locally, with
the exponential clique family forming a conjugate prior for a family of compatible
models.

THEOREM 3.16. Let ϑ be a family of compatible distributions for X, where
each θ(G) has density π(G) with respect to some product measure. Then

π(G)(x) = ∏
A⊆V

pA(xA)[t (G)]A,

for all x such that π(G)(x) > 0, where pA is the marginal density of XA whenever
GA is complete, and p∅(x∅) = 1.

PROOF. For any decomposition (A,B) of G, then for any x such that
π(G)(x) > 0,

π(G)(x) = π
(G)
A (xA)π

(G)
B|A(xB\A|xA) = π

(G)
A (xA)π

(G)
B|A∩B(xB\A|xA∩B)

= π
(G)
A (xA)

π
(G)
B (xB)

π
(G)
A∩B(xA∩B)

.

The result follows by recursive decomposition over the clique tree. �

Therefore if the prior law for G̃ is a clique exponential with parameter ω, then
under sampling from a compatible family the resulting posterior law is of the same
family,

π(G|X = x) ∝ exp
{[

ω + (
logpA(xA)

)
A⊆V

] · t (G)
}
.

A key benefit of this conjugate formation is that we can describe the pos-
terior law with a parameter of dimension 2|V | (strictly speaking, we only need
2|V | − |V | − 1, due to the over-parametrisation). This is much smaller than for an
arbitrary law over the set of undirected decomposable graphs, which would require

a parameter of length approximately 2(|V |
2 ).

4. Ordered directed structural Markov property. We now investigate the
first of two different methods by which the structural Markov property might be
extended to directed acyclic graphical models (DAGs). In this section, we consider
a law for a random graph G̃ over the set D≺: the set of directed acyclic graphs that
respect a fixed well ordering ≺ on V .

The set D≺ is straightforward to characterise, as ≺ determines the directional-
ity of an edge between a pair of vertices. Therefore, as in the undirected case, a
random graph G̃ on D≺ can also be interpreted as a random vector of length

(|V |
2

)
.
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In order to develop a structural Markov graph law over D≺, recall that the strong
directed hyper Markov property can be expressed as

θ̃v|pr(v) ⊥⊥ θ̃pr(v),(4.1)

for all v ∈ V . This in turn implies mutual independence of the collection
(θ̃v|pr(v))v∈V . Each element θ̃v|pr(v) is constrained by G only through the parent
set paG(v), as we require that Xv ⊥⊥ Xpr(v)|XpaG(v). This motivates the following
definitions.

DEFINITION 4.1. The ordered remainder graph of G of v ∈ V with respect
to ≺, denoted by G≺

v|pr(v) is the graph on {v} ∪ pr(v), and edge set E(G{v}∪pr(v)) ∪
{(w,u) :w,u ∈ pr(v),w ≺ u}, that is, the subgraph G{v}∪pr(v) with the addition of
all possible edges between elements of pr(v) respecting ≺.

The ordered remainder graph directly corresponds to the parent set of the vertex,
or equivalently, the set of vertices with a common head,

G≺
v|pr(v) 	 paG(v) 	 {

(u,w) ∈ E(G) :w = v
}
.

The advantage of the remainder graph is that it allows the partitioning of the semi-
graphoid into its constituent components.

PROPOSITION 4.1. Let G be a directed acyclic graph compatible with the
ordering ≺. Then a distribution P is Markov with respect to G if and only if for
each v ∈ V , P{v}∪pr(v) is Markov with respect to G≺

v|pr(v).
Similarly, a law £ is weak/strong hyper Markov if and only if for each v ∈ V ,

£{v}∪pr(v) is weak/strong hyper Markov with respect to G≺
v|pr(v).

PROOF. These follow from the ordered directed Markov property. �

The motivation of the term “remainder” is that G≺
v|pr(v) encodes the remainder

of the semi-graphoid of G{v}∪pr(v) that is not determined by Gpr(v).

DEFINITION 4.2 (Ordered directed structural Markov property). The graph
law G(G̃) over D≺ is ordered directed structurally Markov with respect to the
ordering ≺ if for each v ∈ V ,

G̃≺
v|pr(v) ⊥⊥ G̃pr(v).

As G̃pr(v) 	 (G̃≺
u|pr(v))u∈pr(v), this implies that the set of all ordered remainder

graphs, or equivalently, the set of all parent sets, are mutually independent; see
Figure 2.

Admittedly this construction is not very complicated, but it does demonstrate
how structure can be “decomposed” in directed graphs, which will be used in the
next section.
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FIG. 2. A random directed acyclic graph G̃ on V = {1,2,3,4}, subject to the ordering <, and its
corresponding ordered remainder graphs. Under an ordered directed structural Markov graph law,
the ordered remainder graphs—or equivalently, the collections of like-coloured edges—are indepen-
dent.

5. Markov equivalence and the dagoid structural Markov property. The
approach in Section 4 cannot be applied directly to distributions over the D, the set
of all directed acyclic graphs on V . For instance, parent sets of individual vertices
cannot be independent: if u is a parent of v, then v is precluded from being a parent
of u.

A bigger problem is that there is no longer a one-to-one correspondence be-
tween a graph and its semi-graphoid. That is, two or more distinct DAGs may have

identical conditional independence properties, for example, , , and .

DEFINITION 5.1. Let G and G′ be directed acyclic graphs such that M(G) =
M(G′). Then G and G′ are termed Markov equivalent, and we write

G M∼ G′.

A dagoid is a Markov equivalence class of directed acyclic graphs. We define the
complete and sparse dagoids to be the Markov equivalence classes of complete
and sparse DAGs, respectively. We use DM to denote the set of dagoids on V .

There are various methods of characterising Markov equivalence, several of
which are mentioned in the Appendix.

So when specifying a law for directed acyclic graphs, we are left with the ques-
tion of whether or not we should treat Markov equivalent graphs as the same
model. In other words, whether the model is defined by the graph or the set of
conditional independence statements which it encodes. As noted earlier, we take
the latter view.

A further advantage of working with equivalence classes is that a smaller num-
ber of models needs be considered. Unfortunately this may not be as beneficial as
one may initially hope: Castelo and Kočka (2004) observed empirically that the ra-
tio of the number DAGs to the number of equivalence classes appears to converge
to approximately 3.7 as the number of vertices increases.
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5.1. Ancestral sets and remainder dagoids. Although ancestral sets are used
in the definition of the global directed Markov property, ancestral sets themselves
are not preserved under Markov equivalence. However, as noted in Section 2.3,
subgraphs induced by ancestral sets preserve the projection of the semi-graphoid.
A somewhat trivial consequence is the following.

PROPOSITION 5.1. Let G M∼ G′ and A ⊆ V be ancestral in both G and G′.
Then GA

M∼ G′
A.

This motivates the following definition.

DEFINITION 5.2. A set A ⊆ V is ancestral in a dagoid D if it is ancestral for
some graph G ∈ D. For any such A, define the subdagoid induced by A to be the
Markov equivalence class of GA, and denote it by DA.

For any A ⊆ V , let D(A) denote the set of dagoids on V in which A is an
ancestral set.

Note that the dagoid ancestral property is not as strong as the collapsibility
property in undirected graphs, in that there can exist nonancestral sets that also
preserve the semi-graphoid of the induced subgraph.

However, ancestral sets are still quite powerful, in that they can be used to de-
compose the semi-graphoid.

DEFINITION 5.3. Let G be a directed acyclic graph on V , of which A is an
ancestral set, and let H be a directed acyclic graph on A. Then the insertion of H
into G, written

H� G,

is the directed acyclic graph on V with edge set

E(H) ∪ [
E(G) \ A2]

.

In other words, the edges between elements of A are determined by H, and all
other edges are determined by G. This operation preserves Markov equivalence.

LEMMA 5.2. Let G and G′ be Markov equivalent graphs in which A is an
ancestral set, and H and H′ be Markov equivalent graphs on A. Then

H� G M∼ H′
� G′.

PROOF. We use the notation and results of Appendix A. Both graphs must
have the same skeleton. Let (a, b, c) be an immorality in H � G. Then if b ∈ A,
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FIG. 3. A = {1,2,3} is an ancestral set of the dagoid containing G, as it is ancestral in the graph
G′ obtained by reversing the covered edge (4,1). G′

V |A is obtained by replacing the edges between
elements of A with those of a complete graph on A.

then (a, b, c) must be an immorality of H, and hence also an immorality of H′,
and so also of H′

� G′.
Otherwise if b /∈ A, and at least one of a or c is not in A, then (a, b, c) must be

an immorality of G, and hence an immorality of G′ and H′
� G′.

Finally, if b /∈ A and a, c ∈ A, then {a, c} must not be an edge in the skeleton H,
nor an edge in the skeleton of H′. Hence it must also be an immorality of H′

�G′.
�

Consequently for a dagoid D with ancestral set A, we can define the ancestral
insertion of a dagoid K on A into D as

K�D = [H� G],
where G ∈ D is a directed acyclic graph with an ancestral set A, H ∈ K, and [·]
denotes the Markov equivalence class.

We use this approach to extend the notion of a remainder graph from the previ-
ous section without the use of a fixed well-ordering.

DEFINITION 5.4. Let A be an ancestral set of a directed acyclic graph G.
A directed acyclic graph GV |A is a remainder graph of G given A if

GV |A = C(A)
� G,

where C(A) is a complete dagoid on A.
By Lemma 5.2, the remainder graph must be unique up to Markov equivalence.

Hence for a dagoid D ∈ D(A), we can uniquely define the remainder dagoid of D
given A, denoted by DV |A; see Figure 3.

Analogous with the ordered case, the induced and remainder dagoids DA and
DV |A characterise the complete dagoid (via the ancestral insertion). Moreover, they
can be chosen independently.

THEOREM 5.3. For any A ⊆ V , we have

DA ‡ DV |A|{D ∈ D(A)
}
.
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PROOF. For any D,D′ ∈ D(A), we can construct D∗ = DA �D′
V |A. This will

have the required properties that D∗
A =DA and D∗

V |A = D′
V |A. �

5.2. Dagoid structural Markov property. This motivates the following con-
struction for the structural Markov property.

DEFINITION 5.5 (Dagoid structural Markov property). We say a graph law
G(D̃) is structurally Markov if for any A ⊆ V , we have

D̃V |A ⊥⊥ D̃A|{D̃ ∈D(A)
} [G].

As in the undirected case, we can characterise this property via the odds ratio of
the density.

PROPOSITION 5.4. A graph law is structurally Markov if and only if for any
D,D′ ∈ D(A), we have

π(D)π
(
D′) = π

(
DA �D′

V |A
)
π

(
D′

A �DV |A
)
.(5.1)

PROOF. As in Proposition 3.2, we may write the density

π
(
D|D(A)

) = π
(
DA|D(A)

)
π

(
DV |A|D(A)

)
. �

5.3. d-Clique vector. The equivalence class formulation of a dagoid is diffi-
cult to work with, both algebraically and computationally. Instead we propose a
characteristic vector similar to the clique vector of Section 3.4.

DEFINITION 5.6. The d-clique vector of a directed acyclic graph G is

t (G) = ∑
v∈V

[
δ
({v} ∪ paG(v)

) − δ
(
paG(v)

)] + δ(∅) ∈ Z
2V

,(5.2)

where δ(A) = (1S=A)S⊆V .

Again, we note the relationship to the imsets of Studený (2005b), specifically
the structural imset uG = δ(V ) − t (G) in Section A.4. For our purposes, the d-
clique vector is a more convenient object with which to work. This exhibits analo-
gous properties to those of the clique vector of Section 3.4.

PROPOSITION 5.5. The properties of Proposition 3.14 apply to all directed
graphs G ∈ D.

PROOF. (i) follows directly from the definition. (ii) is obtained by noting that
each term of (5.2) contributes 1 if the summand is v, and 0 otherwise. For (iii),
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each term of (5.2) contributes 1, and (iv) is due to each term of (5.2) counting the
number of edges whose head is v. �

In a similar manner to the undirected case, we can define the d-completeness
vector to be the Möbius transform of the d-clique vector,

cA(G) = ∑
B⊇A

tB(G),(5.3)

and say that a set A ⊆ B is d-complete if cA(G) = 1. This corresponds to the
definition of the characteristic imset of Hemmecke, Lindner and Studený (2012).

LEMMA 5.6 (Hemmecke, Lindner and Studený (2012), Theorem 1). Let ≺ be
a well-ordering of a directed acyclic graph G. For any nonempty set A ⊆ V , with
maximal element a under ≺,

cA(G) =
{

1, if A \ {a} ⊆ paG(a),
0, otherwise.

This provides the link to the completeness and clique vectors of undirected
graphs from Section 3.4.

COROLLARY 5.7. If G is a perfect directed acyclic graph, and Gs is its skele-
ton, then cG = cGs , and hence t (G) = t (Gs).

Most important, the d-clique vector is a unique representation of the dagoid.

THEOREM 5.8. Let G,G′ be directed acyclic graphs on V . Then G M∼ G′ if and
only if t (G) = t (G′).

PROOF. To show that the d-clique vector is preserved under Markov equiva-
lence, by Theorem A.3 it is sufficient to show that it is preserved under a covered
edge reversal. If (a, b) is a covered edge of G, then the contribution of these ver-
tices to the sum (5.2) is

t (G) = [
δ
({a} ∪ paG(a)

) − δ
(
paG(a)

)] + [
δ
({b} ∪ paG(b)

) − δ
(
paG(b)

)]
+ ∑

v �=a,b

[
δ
({b} ∪ paG(b)

) − δ
(
paG(b)

)] + δ(∅).

By definition, paG(a) ∪ {a} = paG(b), and so the corresponding terms will cancel.
If G∗ is obtained from G by reversing (a, b), note that

paG(a) = paG∗(b) and paG(b) ∪ {b} = paG∗(a) ∪ {a},
and the remaining terms will be unchanged. Hence t (G) = t (G∗).
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FIG. 4. The d-cliques ( ) and d-separators ( ) of different directed acyclic graphs. Note that
in the perfect DAG (a), the d-cliques and d-separators are the cliques and separators of the skeleton.
However, as in (b), d-separators may contain d-cliques.

To show that the d-completeness vector (and hence, also the d-clique vector) is
unique to the equivalence class, by Theorem A.1 we can show that it determines
the skeleton and immoralities. By Lemma 5.6, there is an edge between u and v in
G if and only if c{u,v}(G) = 1. Likewise, (u, v,w) is an immorality if and only if
c{u,v,w}(G) = 1 and c{u,w}(G) = 0. �

This cancellation of terms involving covered edges is very useful: as a conse-
quence, the d-clique vector will generally be quite sparse. In line with the clique
vector, we term a set A ⊆ V such that tA(D) = 1 a d-clique, and set A such that
tA(D) < 0 a d-separator: See examples in Figure 4.

THEOREM 5.9. Let A be an ancestral set of a dagoid D. Then

t (D) = [
t (DA)

]0 + t (DV |A) − δ(A),

where [·]0 denotes the expansion of the vector with zeroes to the required coordi-
nates.

PROOF. Let G ∈ D in which A is ancestral, and ≺ be a well-ordering of G in
which elements of A precede those of V \ A. Then

paG(v) =
{

paGA
(v), v ∈ A,

paGV |A(v), v /∈ A.

The result follows after noting that∑
v∈A

[
δ
(
paGV |A(v) ∪ {v}) − δ

(
paGV |A(v)

)] = δ(A).
�

We now arrive at the key result of this section: the dagoid structural Markov
property characterises an exponential family of graph laws.

THEOREM 5.10. Let G be a graph law whose support is DM. Then G is
structurally Markov if and only if it is a member of the exponential family with the
d-clique vector as natural sufficient statistic, that is, if G has density of the form

πω(D) ∝ exp
{
ω · t (D)

}
.(5.4)
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PROOF. See Appendix B. �

EXAMPLE 5.1. As in the undirected case, the simplest example of a struc-
turally Markov graph law is the uniform law over DM, on taking ωA = 0.

EXAMPLE 5.2. For any directed graph G ∈ D, let e(D) denote |E(G)|. By
Proposition 5.5, e(D) = ∑

A

(|A|
2

)
tA(D). So, for any ρ > 0, the graph law specified

by

π(D) ∝ ρe(D)

is structurally Markov, on taking ωA = (|A|
2

)
logρ.

However, we note that some simple laws are not structurally Markov.

EXAMPLE 5.3. Consider the law in which π(D) is proportional to |D|, in
other words, the uniform law on D projected onto DM. Then using [·] to denote
Markov equivalence class, we note the size of the following dagoids:[ ] = { }

,[ ] = {
,

}
,[ ] = { }

,[ ] = {
, , , , ,

}
.

As a consequence, this law does not satisfy the property π
([ ])

π
([ ]) =

π
([ ])

π
([ ])

required by Proposition 5.4.

We note that similar exponential families were proposed by Mukherjee and
Speed (2008). However, they treat Markov equivalent graphs as distinct, and al-
low them to have different probabilities.

5.4. Compatible distributions and laws. As with the undirected case, a graph
law is only part of the story. For each dagoid D, we also require a method to specify
a Markov sampling distribution and a law over such sampling distributions.

DEFINITION 5.7. Distributions θ and θ ′, Markov with respect to directed
acyclic graphs G and G′ respectively, are termed graph compatible if, for every
vertex v such that paG(v) = paG′(v), there exist versions of the conditional proba-
bility distributions for Xv|Xpa(v) such that

θ(Xv|Xpa(v)) = θ ′(Xv|Xpa(v)).
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Distributions θ and θ ′, Markov with respect to dagoids D and D′, respectively, are
termed (dagoid) compatible if they are graph compatible for every pair of graphs
G ∈ D,G′ ∈ D′.

Likewise, laws £(θ̃) and £′(θ̃), hyper Markov with respect to G and G′, re-
spectively, are termed graph hyper compatible if for every vertex v such that
paG(v) = paG′(v), there exist versions of the conditional laws for θ̃v|pa(v)|θ̃pa(v)

such that

£(θ̃v|pa(v)|θ̃pa(v)) = £′(θ̃v|pa(v)|θ̃pa(v)).

By Dawid (2001a), Section 8.2, the weak hyper Markov property may be charac-
terised in terms of M(G), and so the weak hyper Markov property can be defined
with respect to a dagoid. Laws £(θ̃) and £′(θ̃), that are hyper Markov with re-
spect to D and D′, respectively, are (dagoid) hyper compatible if they are graph
compatible for every pair of graphs G ∈ D,G′ ∈ D′.

As in the undirected case, we can define a family of compatible distributions
ϑ = {θ(G) :G ∈ U} and a family of hyper compatible laws L= {£(G) :G ∈ U} if they
are pairwise compatible or hyper compatible with respect to the relevant graphs.

PROPOSITION 5.11. Suppose G(D̃) is a graph law over DM and ϑ is a family
of compatible distributions. Then

XA ⊥⊥ D̃V |A|D̃A,
{
D̃ ∈ D(A)

} [ϑ,G](5.5)

and

XV \A ⊥⊥ D̃A|XA, D̃V |A,
{
D̃ ∈ D(A)

} [ϑ,G].(5.6)

Likewise, if G(D̃) is a graph law over DM and L is a hyper compatible family of
laws, then

θ̃A ⊥⊥ D̃V |A|D̃A,
{
D̃ ∈ D(A)

} [L,G]
and

θ̃V \A|A ⊥⊥ D̃A|θ̃A, D̃V |A,
{
D̃ ∈ D(A)

} [L,G].

PROOF. This is much the same as Proposition 3.8: for (5.5), the distribution
of XA is determined by the parent sets of the vertices in A in some G ∈ D in
which A is ancestral. Likewise, in (5.6), the conditional distribution for XV \A|XA

is determined by the parent sets of vertices in V \ A. The same argument applies
at the hyper level. �

Note that in the definition of compatibility and hyper compatibility we specif-
ically refer to versions of conditional probabilities and laws, as in some cases the
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conditional distributions/laws will not be uniquely defined, due to conditioning on
null sets.

As the weak hyper Markov property is defined on the separoid, the weak di-
rected hyper Markov property is well-defined for any dagoid. However, the strong
form requires further conditions.

DEFINITION 5.8. A law £(θ̃) over P(D) is strong hyper Markov with respect
to D if it is strong directed hyper Markov with respect to every G ∈ D.

If G ∈ D is perfect, then the strong dagoid hyper Markov property is equiv-
alent to the undirected strong hyper Markov property on the skeleton of G; see
Dawid and Lauritzen [(1993), Proposition 3.15]. The notion of hyper compatibil-
ity is equivalent to the “parameter modularity” property of Heckerman, Geiger
and Chickering (1995). Likewise, the strong hyper Markov property is equivalent
to their “parameter independence.”

EXAMPLE 5.4. For each vertex v of a directed acyclic graph G, we define the
law for the conditional parameter £(θ̃v|paG(v)) to be the same as that of the inverse
Wishart I W (ν;�). That is, using the notation of Dawid (1981), we have

θv|paG(v) = N (�v|paG(v),�v|paG(v)),

where

£(�̃v|paG(v)) = I W
(
ν + ∣∣paG(v)

∣∣;�v|paG(v)

)
,

£(�̃v|paG(v)|�̃v|paG(v)) = �{v},paG(v)�
−1
paG(v) + N{v}×paG(v)

(
�̃v|paG(v),�

−1
paG(v)

)
.

By the properties of the inverse Wishart law, it follows that the law is preserved
under covered edge reversals. Therefore by Theorem A.3, it is well defined for a
dagoid, and so may be termed the dagoid hyper inverse Wishart law. Note that
this property is not satisfied by the more general inverse type-II Wishart family of
Letac and Massam (2007).

THEOREM 5.12. If L is a family of strong hyper Markov hyper compatible
laws, then the family of marginal data distributions is compatible.

PROOF. The hyper compatibility and the strong hyper Markov property imply
that, for any two dagoids D,D′ and any G ∈ D,G′ ∈ D′, if paG(v) = paG′(v) for
some v ∈ V , then

£(D)(θ̃v|pa) = £(D′)(θ̃v|pa).

Therefore, the family of marginal data distributions ϑ̄ = {θ̄ (D) :D ∈ DM} will have

θ̄ (D)(Xv|XpaG ) = E
(D)
£ [θ̃v|paG ] = θ̄ (D′)(Xv|XpaG ) = E

(D′)
£ [θ̃v|paG ]. �

This is particularly useful because, as in the undirected case, the structural
Markov property will be preserved in the posterior under compatible sampling.
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THEOREM 5.13. Suppose G(D̃) is a structurally Markov graph law over DM

and ϑ is a family of compatible distributions. Then the posterior graph law for D̃
is structurally Markov.

PROOF. By the structural Markov property and (5.5), we have

(XA, D̃A) ⊥⊥ D̃V |A|{D̃ ∈ D(A)
}
,

and hence

D̃A ⊥⊥ D̃V |A|XA,
{
D̃ ∈ D(A)

}
.

Combining this with (5.6), we get

D̃A ⊥⊥ (D̃V |A,XV \A)|XA,
{
D̃ ∈D(A)

}
,

and hence

D̃A ⊥⊥ D̃V |A|X,
{
D̃ ∈ D(A)

}
. �

5.5. Posterior updating. If it is possible to avoid the problem of conditioning
on null sets, then as in the undirected case, a compatible family can be charac-
terised by a distribution on the complete dagoid.

THEOREM 5.14. If the distribution on the complete dagoid has positive den-
sity p with respect to some product measure, then the compatible distribution for
any dagoid D has density

π(D)(x) = ∏
A⊆V

p(xA)[t (D)]A.(5.7)

PROOF. Let G be an arbitrary graph in D. Then by compatibility,

p(D)(x) = ∏
v∈V

p(xv|xpa(v)) =
∏p

i=1 p(x{vi}∪pa(vi ))∏p
i=2 p(xpa(vi ))

= ∏
A⊆V

[
p(xA)

]t (D)A.
�

As a consequence, if the graph law has a d-clique exponential family of the
form (5.4), and the sampling distributions are compatible with density of the
form (5.7), then the posterior graph law will have density

π(D|X) ∝ exp
{[

ω + (
logpA(XA)

)
A⊆V

] · t (D)
}
.

That is, the d-clique exponential family is a conjugate prior under sampling from
a compatible family.
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6. Discussion. We have demonstrated how conditional independence can be
used to characterise families of distributions over undirected graphs, ordered di-
rected graphs, and equivalence classes of directed graphs.

One point to emphasise is that all three structural Markov properties are distinct,
in that no one property can be derived as a special case of another; for example,
the undirected structural Markov property does not arise from the dagoid structural
Markov property restricted to equivalence classes of perfect DAGs.

6.1. Open questions. One significant open question is how the full support
requirements of Theorems 3.15 and 5.10 might be weakened. Obviously these the-
orems would not hold for all subsets of graphs/dagoids, though we conjecture that
they will hold for any structurally meta Markov subsets. A related problem is char-
acterising structurally meta Markov subsets of graphs.

6.2. Computation. One problem which we have not broached is the numeri-
cal calculation of such graph laws. Except for the ordered directed case, where the
computations can be done in parallel, for even small numbers of vertices it can
quickly become infeasible to enumerate all graphs, and hence some sort of numer-
ical approximation will usually be required. Markov chain Monte Carlo (MCMC)
methods are commonly utilised for this purpose.

For undirected decomposable graphs, Giudici and Green (1999) proposed a
method in which each iteration proposes adding or removing a single edge. They
consider the problem of sampling from the posterior of a uniform prior with a com-
patible family sampling distributions, though this procedure can be applied to any
structural Markov graph law. This requires computing the Metropolis–Hastings
acceptance ratio,

min
(

π(G′)
π(G)

,1
)

=
{

min
(
exp

{
ω · [

t
(
G′) − t (G)

]}
,1

)
, G,G′ ∈ U,

0, otherwise.

The results of Frydenberg and Lauritzen [(1989), Lemma 3] and Giudici and Green
[(1999), Theorem 2] characterise such so-called neighbouring graphs, and also im-
ply that for any two such graphs G,G′, the vector t (G′) − t (G) has only 4 nonzero
elements. Consequently, for any structurally Markov graph law over U, the pa-
rameter ω need only be evaluated on 4 such places: this is particularly beneficial
for posterior graph laws where each element of ω requires the evaluation of the
marginal density of the model.

Unfortunately, such algorithms often exhibit poor mixing properties [Kijima
et al. (2008)], resulting in unreliable estimates. Green and Thomas (2013) develop
an extension for making proposals which add or remove multiple edges, resulting
in faster mixing: this algorithm is also able to take advantage of local computations
in computing the acceptance ratio.

For dagoids, the problem is considerably more difficult. Chickering (2003),
Auvray and Wehenkel (2002) and Studený (2005a) have developed methods for
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characterising the neighbouring dagoids (i.e., dagoids obtained by adding or re-
moving an edge to a graph in the current dagoid). He, Jia and Yu (2013) recently
developed an MCMC scheme based on this approach: as in the undirected case,
the acceptance ratio will also depend on a sparse vector, and so can be computed
efficiently.

More generally, the problem of finding the most probable graph under a struc-
tural Markov law, which for posterior laws is known as maximum a posteri-
ori (MAP) estimation, is an example of a strong decomposable search criterion
[Studený (2005b), Section 8.2.3]. As suggested by Hemmecke, Lindner and Stu-
dený (2012), linear and integer programming techniques based on the (d-)clique
or (d-)completeness vectors may provide elegant solutions to this problem.

6.3. Extensions. A further open question is how structural Markov properties
might be defined for other classes of graphical models, such as nondecompos-
able undirected graphs, ancestral graphs, and marginal independence (bidirected)
graphs. The identification of such properties would rely on establishing construc-
tions for partitioning the structure, analogous to decompositions and ancestral
graphs.

APPENDIX A: CHARACTERISING MARKOV EQUIVALENCE OF
DIRECTED ACYCLIC GRAPHS

Numerous techniques have been developed for determining whether two graphs
are Markov equivalent.

A.1. Skeleton and immoralities. The skeleton of a DAG is the undirected
graph obtained by substituting the directed edges for undirected ones. A triplet
(a, b, c) of vertices is an immorality of a DAG G if the induced graph G{a,b,c} is of
the form a → b ← c.

THEOREM A.1 [Frydenberg (1990), Theorem 5.6; Verma and Pearl (1990),
Theorem 1]. Directed acyclic graphs G and G′ are Markov equivalent if and
only if they have the same skeleton and the same immoralities.

A.2. Essential graphs. An edge of a DAG G is essential if it has the same
direction in all Markov equivalent DAGs. The essential graph of G is the graph in
which all nonessential edges are replaced by undirected edges.

Although not explored further in this work, the essential graph is a type of
chain graph, a class of graphs that may have both directed and undirected edges.
For further details on chain graphs, in particular their Markov properties and how
they relate to undirected and directed acyclic graphs, see Frydenberg (1990) and
Andersson, Madigan and Perlman (1997b).
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THEOREM A.2 [Andersson, Madigan and Perlman (1997a), Proposition 4.3].
Directed acyclic graphs G and G′ are Markov equivalent if and only if they have
the same essential graph.

Unfortunately, there is no simple criterion for determining whether or not an
edge of a given DAG is essential, although Andersson, Madigan and Perlman
(1997a) developed an iterative algorithm. This limits their usefulness.

A.3. Covered edge reversals. A convenient characterisation of Markov
equivalence can be given in terms of edge reversals. An edge a → b of a DAG
G is covered if pa(b) = pa(a) ∪ {a}.

THEOREM A.3 [Chickering (1995), Theorem 2]. Directed acyclic graphs G
and G′ are Markov equivalent if and only if there exists a sequence of DAGs

G = G0,G1, . . . ,Gk−1,Gk = G′

such that each (Gi−1,Gi) differ only by the reversal of one covered edge.

This result is particularly useful for identifying properties that are preserved
under Markov equivalence, as it is only necessary to show that the property is
preserved under a covered edge reversal.

A.4. Standard imset. Imsets for undirected decomposable graphs were
briefly mentioned in Section 3.4. This formalism can be extended to directed
acyclic graphs. The standard imset of a directed acyclic graph G is [Studený
(2005b), page 135]

uG = δ(V ) − δ(∅) + ∑
v∈V

[
δ
(
paG(v)

) − δ
(
paG(v) ∪ {v})],

where δ(A) = (1S=A)S⊆V .

THEOREM A.4 [Studený (2005b), Corollary 7.1]. Directed acyclic graphs G
and G′ are Markov equivalent if and only if uG = uG′ .

Studený and Vomlel (2009) give details of the relationship between the imset
and the essential graph of a DAG, and how one may be obtained from the other.

APPENDIX B: PROOFS

PROOF OF THEOREM 3.9. The Markov property states that under [G, ϑ],
XA ⊥⊥ XB |XA∩B, G̃,

{
G̃ ∈ U(A,B)

}
.(B.1)
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Since if G̃ ∈ U(A,B), then G̃ 	 (G̃A, G̃B), we can rewrite (B.1) as

XA ⊥⊥ XB |XA∩B, G̃A, G̃B,
{
G̃ ∈ U(A,B)

}
.(B.2)

As a consequence of Proposition 3.8,

XA ⊥⊥ G̃B |XA∩B, G̃A,
{
G̃ ∈ U(A,B)

}
,(B.3)

and combined with (B.2),

XA ⊥⊥ (XB, G̃B)|XA∩B, G̃A,
{
G̃ ∈ U(A,B)

}
.(B.4)

Furthermore, by the structural Markov property and Proposition 3.8,

G̃A ⊥⊥ (XB, G̃B)|{G̃ ∈ U(A,B)
}
,(B.5)

and we can further condition on XA∩B . The result follows from this and (B.4). �

PROOF OF THEOREM 3.15. For any C ⊆ V , define G(C) as in the proof of
Theorem 3.13, and let G have density π .

Suppose that G is structurally Markov. For any G ∈ U, let C1, . . . ,Ck be a per-
fect ordering of the cliques, and let S2, . . . , Sk be the corresponding separators, and
Hi = C1 ∪ · · · ∪ Ci . Furthermore, recursively define the graphs

G∗(j) =
⎧⎨
⎩
G(C1), if j = 1,

G∗(j−1)
Hj−1

⊗ G(Cj )

(V \Hj−1)∪Sj
, if j = 2, . . . , k.

By Proposition 3.2, for each j = 2, . . . , k,

π
(
G∗(j))π(

G(Sj )) = π
(
G∗(j−1))π(

G(Cj )).
Note that G∗(k) = G. Then, by induction,

π(G) =
∏k

j=1 π(G(Cj ))∏k
j=2 π(G(Sj ))

∝ exp
{
ω · t (G)

}

by Theorem 3.13, where ωC = logπ(G(C)).
To show the converse let (ω)A = (ωS)S⊆A. By Lemma 3.12,

π
(
GA|GB,

{
G ∈ U(A,B)

})
∝ exp

{
(ω)A · t (GA) + (ω)B · t (GB) − (ω)A∩B · t (GA∩B)

}
∝ exp

{
(ω)A · t (GA) − (ω)A∩B · t (GA∩B)

}
∝ π

(
GA|{G ∈ U(A,B)

})
. �

PROOF OF THEOREM 5.10. If the law is in the exponential family (5.4), then,
by Theorem 5.9,

π
(
D|D(A)

) ∝ exp
{
ω · [

t (DA) + t (DV |A)
] − ωA

} ∝ p
(
DA|D(A)

)
p

(
DV |A|D(A)

)
,
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and hence the law must be structurally Markov.
For the converse, define D(A) to be the dagoid in which the induced dagoid on

A ⊆ V is complete, but otherwise sparse (in other words, the remainder dagoid,
D(∅)

V |A, of the sparse dagoid D(∅) corresponding to complete independence).
Select some G ∈ D, and let v1, . . . , vd be a well -ordering of V . Recursively

define the dagoids

D∗(i) =
{
D({v1}), if i = 1,

D∗(i−1)
pr(vi )

�D({vi}∪pa(vi ))

vi |pr(vi )
, otherwise.

By Proposition 5.4, for i = 2, . . . , d ,

π
(
D∗(i−1))π(

D({vi}∪pa(vi ))
) = π

(
D∗(i))π(

D({vi}∪pa(vi ))

pr(vi )
�D∗(i−1)

vi |pr(vi )

)
.

However,

D({vi}∪pa(vi ))

pr(vi )
�D∗(i−1)

vi |pr(vi )
=D(pa(vi )).

Therefore, since D∗(d) = D,

π(D) =
[

d∏
i=1

π
(
D({vi}∪pa(vi ))

)]/[
d∏

i=2

π
(
D(pa(vi ))

)]
,

which is of the form in (5.4) with

ωA = logπ
(
D(A)). �
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