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RANDOM CURVES ON SURFACES INDUCED FROM THE
LAPLACIAN DETERMINANT

BY ADRIEN KASSEL1 AND RICHARD KENYON2

ETH Zürich and Brown University

We define natural probability measures on finite multicurves (finite col-
lections of pairwise disjoint simple closed curves) on curved surfaces. These
measures arise as universal scaling limits of probability measures on cycle-
rooted spanning forests (CRSFs) on graphs embedded on a surface with a
Riemannian metric, in the limit as the mesh size tends to zero. These in turn
are defined from the Laplacian determinant and depend on the choice of a
unitary connection on the surface.

Wilson’s algorithm for generating spanning trees on a graph generalizes
to a cycle-popping algorithm for generating CRSFs for a general family of
weights on the cycles. We use this to sample the above measures. The sam-
pling algorithm, which relates these measures to the loop-erased random
walk, is also used to prove tightness of the sequence of measures, a key step
in the proof of their convergence.

We set the framework for the study of these probability measures and their
scaling limits and state some of their properties.

1. Introduction. Classical statistical mechanics deals with systems of large
numbers of particles interacting through local forces. These systems are naturally
defined on Euclidean spaces, so that the notions of scaling limit and scale invari-
ance make sense. In this work, we define a large family of statistical mechani-
cal systems on curved spaces: curved surfaces with possibly nontrivial topology,
where the curvature and topology play both a local and global role in the under-
lying probability measure. By scaling limit in such a context, we mean that as
the system size grows we shrink the discretization parameter so that the metric
properties of the underlying surface remain constant.

A fundamental property of our scaling limits is that they are universal: they are
independent of the details of the discrete approximating sequence. In other words,
they are natural, parameter-free systems on the curved surface itself, depending
only on its geometry and topology.

Received October 2014; revised October 2015.
1Supported in part by Fondation Sciences Mathématiques de Paris. Most of this work was com-

pleted while affiliated with ENS Paris.
2Supported by NSF Grant DMS-12-08191 and the Simons Foundation.
MSC2010 subject classifications. 82B20.
Key words and phrases. Laplacian, cycle-rooted spanning forests, loop-erased random walk, scal-

ing limit.

932

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/15-AOP1078
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


RANDOM CURVES ON SURFACES 933

FIG. 1. A CRSF on the 40 × 40 square grid; each connected component is in a different color and
the cycles are in bold.

Let us detail the systems we consider. A cycle-rooted spanning forest (CRSF)
on a graph G is a subgraph each of whose components contains a unique cycle,
or equivalently, contains as many vertices as edges; see Figure 1. A cycle-rooted
spanning tree (CRST) is a connected CRSF.

Natural probability measures on CRSFs arising from the determinant of the
graph Laplacian were introduced in [15]: the probability of a CRSF is propor-
tional to the product over its cycles of a certain function of the cycle, depending
on the holonomy of a discrete C

∗- or SL2(C)-connection. The interest of these
measures is that they can give to a cycle a weight which is a function of its shape.
Furthermore, these measures are determinantal viewed as point processes on the
set of edges.

We study here the scaling limits of these measures: their limits on a sequence
of finer and finer graphs approximating a surface with a fixed Riemannian metric.
By surface, we will mean here an oriented smooth surface with a Riemannian
metric. By approximation of a surface �, we will mean a sequence of graphs (Gn)

geodesically embedded on � and conformally approximating it in a sense defined
below (essentially, the simple random walk on Gn converges to Brownian motion
on �). We endow the space of multiloops on � with a natural topology and show
the weak convergence of the above probability measures on multiloops on Gn.

We may informally summarize our main statement as follows.
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THEOREM (see Theorem 20). For any Riemannian surface, there is a natural
probability measure on finite collections of disjoint simple closed curves drawn on
it (which are fractal, locally resembling the Schramm–Loewner evolution SLE2).
This measure is the universal scaling limit of natural discrete measures on CRSF
loops defined on graphs conformally approximating the surface. When the surface
has nontrivial topology and its metric is flat, these curves are noncontractible. In
the case of the flat Euclidean disk, the probability measure is degenerate but a
measure on single curves is obtained by a limiting procedure.

We study scaling limits in two different settings: a topological setting and a
geometrical setting.

In the topological setting, we consider only the conformal class of the metric
on �. Define a noncontractible CRSF to be a CRSF with no contractible cycles.
Let (Gn) be an approximating sequence and μn

nonc be the uniform measure on non-
contractible CRSFs of Gn. We show (Theorem 18) that the cycle process P

n
nonc

of the μn
nonc-random CRSF on Gn converges to a random loop process Pnonc on

�, independent of the approximating sequence Gn. The limit only depends on the
conformal class of �, in the following sense. Let z1, . . . , zk be distinct points of
�. For any isotopy class of sets of pairwise disjoint simple loops {γ1, . . . , γm}
of � \ {z1, . . . , zk}, the probability that a random noncontractible CRSF on Gn

has m cycles, and these are isotopic to the γi , has a probability converging as
n → ∞ to a limit independent of the approximating sequence Gn. This refines the
result of [16] who showed that (for the dimer model, which is closely related to
the CRSF model via Temperley’s bijection [17]) the distribution of the homotopy
classes of the cycles in π1(�) has a conformally invariant limit when � is a pla-
nar domain. A related (infinite) measure μ−2 on simple loops on � was recently
constructed in a very different manner by Benoist and Dubedat in [4]. The mea-
sure μ−2 restricted to noncontractible loops of the annulus (and normalized to be
a probability measure) is the same as our measure Pnonc conditioned to have one
loop. When extended to all surfaces in such a way that a “conformal restriction”
property is satisfied, the measure μ−2 was conjectured to exist by Kontsevitch and
Suhov. Further relations between our measures and μ−2 will be considered in a
forthcoming paper.

In the geometrical setting, we take into account the metric on �, and in particu-
lar its curvature. Let (Gn) be a sequence of finite graphs conformally approximat-
ing �. Associated to this data is a discrete connection on a complex line bundle
over Gn arising from the Levi-Civita connection on the tangent bundle on �. It is
defined up to gauge equivalence by the property that the holonomy around a loop
is eiθ where θ is the enclosed curvature. From this connection �n

LC, we construct
a natural probability measure μn

LC on CRSFs on Gn: each CRSF has a probability
proportional to the product over its cycles of 2 − 2 cos θ , where θ is the curvature
enclosed. The corresponding loop process Pn

LC is shown (Theorem 20) to converge
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to a probability measure PLC on multicurves on �, independent of the approximat-
ing sequence.

When the surface � is contractible, we define another measure μn

LC0 which is
in some sense more natural. This measure is a limit when ε → 0 of the CRSF
connection measures for the connection with curvature eiεθ , a limit which was in-
troduced in [15]. This yields a measure on cycle-rooted spanning trees (CRSTs,
i.e., CRSFs with one component) with weight proportional to θ2 where θ is the
enclosed curvature. We show (Theorem 20) that the loop measure P

n

LC0 converges
to a measure PLC0 on simple closed curves on �, again independent of the approx-
imating sequence.

We give a “cycle-popping” algorithm (Theorem 1) for rapid exact sampling
from the above measures (as well as more general measures), generalizing the
well-known cycle-popping algorithm of Wilson [23] for generating uniform span-
ning trees. One simply runs Wilson’s algorithm, and when a cycle is created, flip a
coin (with bias depending on the cycle weight) to decide whether to keep it or not.

We use this sampling algorithm to sample approximations of the above scaling
limits. In all three cases, the cycle-popping algorithm is an essential part of the
convergence argument: it is used to show tightness of the sequence of measures
(Section 4.4).

Another essential result shows that there are almost surely a finite number of
components in a random CRSF, and the scaling limits of the loops are nondegen-
erate, in the sense that they do not shrink to points in the limit. This is accomplished
by computing the universal limit of the probability of having no loops and by ex-
ploring in a Markovian way via the algorithm the surface with positive probability
of creating macroscopic loops at each step. This implies a super-exponential tail
for the number of loops which excludes the fact of having microscopic loops since
otherwise their number would be infinite by the weak large scale dependence of
the process.

We give samples from the measures μLC and μLC0 for the round sphere (Fig-
ure 2), a saddle surface (Figure 3, left) and a compact disk in the Poincaré plane
(Figure 3, right), and for the measure μnonc on a flat torus (Figure 4) and planar
domains (Figure 5). For μLC, these are conditional samples, conditioned on having
only loops with area (curvature) bounded by π/2; our sampling algorithm does not
work without this condition (see, however, [10] where it is shown how to sample
from any determinantal process with Hermitian kernel, of which μLC is one).

The paper is organized as follows. In Section 2, we introduce the sampling al-
gorithm and prove its correctness. In Section 3, we introduce the probability mea-
sures on CRSFs on graphs on surfaces and show how they are exactly sampled by
the algorithm. In Section 4, we show that the probability measures on loops that
these induce converge to probability measures on the space of multiloops of the
surface (this section contains the proof of our main statement). Section 5 enumer-
ates some of the properties of the measures on loops considered in the paper. The
paper concludes with a list of open questions in Section 6.
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2. A general sampling algorithm. An oriented CRSF is a CRSF in which
each cycle has a chosen orientation. A measure on CRSFs induces a measure on
oriented CRSFs by giving each cycle an independent 1/2 − 1/2-chosen orienta-
tion, and a measure on oriented CRSFs induces one on CRSFs by forgetting the
orientation.

Let G = (V ,E) be a finite graph with vertex and edge sets V and E, respec-
tively, and c : E →R>0 a positive function on the edges which we call the conduc-
tance. Let α be a function which assigns to each oriented simple loop γ in G a pos-
itive weight α(γ ) ∈ [0,1]. We allow loops γ consisting of two edges (a backtrack:
an edge which is immediately traversed in the reverse direction). These functions
c,α define a probability measure μ = μc,α on oriented CRSFs, giving an oriented
CRSF 	 a probability proportional to

∏
e∈	 c(e)

∏
cycles γ⊂	 α(γ ). We describe an

algorithm to sample an oriented CRSF according to the measure μ.
We note that this sampling algorithm requires α ∈ [0,1]; it will not work without

modification for larger α. In the special case where α = 1 and c = 1, the algorithm
samples according to the uniform measure on oriented CRSFs.

Let us describe a cycle-popping procedure, named P [w,	], which takes as ar-
guments w a vertex and 	 an oriented subgraph of G not containing w, and outputs
another oriented subgraph of G containing 	 and w. The procedure is the follow-
ing: start at vertex w and perform a simple random walk (with each step propor-
tional to the conductances) until it first reaches a vertex v which either belongs to
	 or is the first self-intersection of its path.

• If v is in 	, then replace 	 by the union of 	 and the oriented path just traced
by the random walk.

• If v is the first self-intersection, let γ denote the oriented cycle thus obtained,
and sample a {0,1}-Bernoulli random variable with success probability α(γ ).
– If the outcome is 1, then replace 	 by the union of 	 and the oriented path

just traced by the random walk.
– If the outcome is 0, erase the cycle that was just closed and continue to per-

form the random walk from v until it reaches 	 or self-intersects, in which
case repeat the above instructions.

The algorithm, called A, is then the following: start with 	 empty and w an
arbitrary vertex, and perform P [w,	]. If the output 	′ is not a CRSF, take a new
vertex w′ /∈ 	′ and perform P [w′,	′], and so on until the output contains all ver-
tices of G. Note that the output of A is an oriented CRSF and that we forget the
information about the order of construction of the cycles.

THEOREM 1. If α(γ ) > 0 for some γ , then the algorithm A terminates and
its output is an oriented CRSF, sampled according to the measure μ.

REMARK 2. Note that if in the above definition of A one starts with 	 equal
to S, a distinguished set of vertices in G, then the algorithm samples an oriented
essential CRSF; see definition in Section 3.3 below.
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PROOF OF THEOREM 1. Following the proof of Wilson’s algorithm [23], we
construct an equivalent description, denoted A′, of the algorithm A.

Let us define A′ in the following way. Consider, over each vertex v ∈ V , an
infinite sequence X(v) of i.i.d. random variables X(v) = (X

(v)
1 ,X

(v)
2 , . . .), each dis-

tributed as a random neighbor of v according to the conductance measure, that is,
for each i ≥ 1 and each neighbor w of v, we have

P
(
X

(v)
i = w

) = c(vw)∑
v′∼v c(vv′)

.

We represent X(v) as an infinite stack of cards, with only X
(v)
1 being visible at the

top of the stack.
We draw an edge from each vertex v to the neighbor shown on the top of the

stack X(v); the oriented graph thus seen is an oriented CRSF (with possible loops
of length 2). This is our initial CRSF. We now describe a step by step random
popping algorithm of the cycles. Note that at each step, the graph that we see
remains an oriented CRSF. Here is the algorithm: For each cycle γ encountered in
the current CRSF, pop it with probability proportional to 1 − α(γ ); when a cycle
is popped off, the top card on the stacks for each of its vertices is discarded. When
a cycle is “kept,” its cards are fixed and can no longer be removed. The algorithm
stops once the cycles that remain have been all “kept” in a Bernoulli trial. It is easy
to see that the order in which the cycles are popped is not relevant.

Note that this algorithm terminates since there is at least one cycle γ with pos-
itive weight α(γ ), because eventually, with probability 1, all the cycles present at
one step will have been previously kept (the argument is the same as in Wilson’s
proof).

Since the cards of the stacks are distributed as the steps of a conductance-biased
random walk, we see that algorithm A′ has the same output in distribution as al-
gorithm A. In order to compute the output distribution of A, we will therefore use
algorithm A′.

Let us compute the probability that a given oriented CRSF 	 is obtained as
an output of algorithm A′. Let γ1, . . . , γk be the cycles of 	. The CRSF 	 is
obtained as an output if and only if there exists a finite sequence of oriented cycles
C1, . . . ,Cm such that these cycles are popped, and after removing them, the cards
that appear correspond to 	, and there are k successful trials for Bernoullis with
success probability α(γi).

By independence of the cards in the stacks, the last CRSF considered is inde-
pendent of the cycles that were popped. Therefore, for any oriented CRSF 	, we
have

P(	) = ∑
C={C1,...,Cm}

P(	|pop C)P(pop C)

= ∑
C

P(pop C, and 	 occurs underneath and is kept)
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= ∑
C

P(pop C)
∏
e∈	

P(e)

k∏
i=1

α(γi)

=
(∑

C
P(pop C)

) ∏
e∈	

P(e)

k∏
i=1

α(γi)

which we see is proportional to the weight of 	. �

To sample a nonoriented CRSF according to a measure which assigns a CRSF 	

a weight proportional to
∏

e∈	 c(e)
∏

γ⊂	 α(γ ), where the product is over nonori-
ented cycles γ , and α is a function invariant under orientation, it suffices to have
α ∈ [0,2], perform algorithm A for the measure μc,α/2, and forget the orientation
in the resulting oriented CRSF. In particular, we obtain the uniform measure on
nonoriented CRSFs with the choice c = α = 1.

There is a variant of the previous algorithm to sample an oriented CRSF ac-
cording to measure μc,α conditional on having a single loop: multiply all the loop
weights by a small constant ε. Then perform A; if ε is small there will typically
be a single loop (if not, start over).

Let N be the total number of vertices of the graph. The running time of the algo-
rithm is bounded by the time to obtain the first loop [which is bounded by O(N2) if
α ≥ O(1/N2)] plus the running time of Wilson’s algorithm, that is O(N(logN)2)

(Wilson’s algorithm has a running time bounded by the cover time [23] which is
linear up to a logarithmic correction [3]). The running time is at least linear. Ex-
treme cases correspond to extreme values of α: for α = 1 (uniform measure on
CRSFs), the running time is linear; for α close to zero (like in the conditional
measure described in the previous paragraph), the running time is large, at least
O(1/ supα).

3. Natural probability measures on CRSFs. The most natural probability
measure on CRSFs on a finite unweighted graph is the uniform measure. If the
edges are weighted with a real positive conductance function, then in this setting
it is natural to give a CRSF a probability proportional to the product of its edge
weights. We call this the background measure. There are, however, other natural
probability measures that can be constructed from connections on bundles and that
are meaningful for graphs embedded in surfaces.

3.1. Connections. Let G = (V ,E) be a finite graph. A vector bundle on G
is a copy Wv of some fixed complex vector space W associated to each vertex
v ∈ V . The total space of the bundle is the direct sum W = ⊕

v∈V Wv . A uni-
tary connection � on W is the data consisting of, for each oriented edge e = vv′,
a unitary complex linear map ϕvv′ : Wv → Wv′ such that ϕv′v = ϕ−1

vv′ . The map
ϕvv′ is referred to as the parallel transport from v to v′. We say that two connec-
tions �,�′ are gauge equivalent if there exist unitary ψv : Wv → Wv such that
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ψv′ϕvv′ = ϕ′
vv′ψv , that is, �′ is obtained from � by changing the basis of each

space Wv by a unitary transformation. In this paper, we deal uniquely with vec-
tor bundles with W = C (line bundles) or C2, and U(1)- or SU(2)-connections,
respectively.

Let c : E →R>0 be a conductance function. We let �� be the associated Lapla-
cian acting on f ∈ W defined, for each vertex v, by

��(f )(v) = ∑
v′∼v

c
(
vv′)(f (v) − ϕv′vf

(
v′)),

where the sum is over all neighbors v′ of v.
When G is geodesically embedded in a surface � with a Riemannian metric

(i.e., embedded in such a way that edges are geodesic segments), there is a natural
connection � = �∇ on G arising from any unitary connection ∇ on a vector bundle
on �: we define for each vertex v the space Wv to be the fiber over v; the ∇-
parallel transports along edges e of G define the parallel transports ϕe, and thus the
connection �.

The product of parallel transports along a closed path is called the holonomy of
the connection along the path. For flat connections, it is also called the monodromy.

3.2. Laplacian determinant and measures.

THEOREM 3 ([8, 15]). For a graph with unitary connection � on a line bun-
dle, we have

det(��) = ∑
CRSFs

∏
edges

c(e)
∏

cycles

(2 − 2 cos θ),(1)

where eiθ is the holonomy of the connection around the cycle, for any choice of its
orientation.

Associated to � is a probability measure μ� on CRSFs, where the probability
of a CRSF is proportional to

∏
edges c(e)

∏
cycles(2 − 2 cos θ). This measure exists

as long as there is at least one cycle with θ �= 0 mod 2π .
See Theorem 15 below for a generalization to C

2-bundles with SU(2)-
connection, where the weight 2 − 2 cos θ is replaced by 2 − Trw, with w de-
noting the holonomy of the connection around the cycle. Note that for an element
w ∈ SU(2) we have 2 − Trw = 2 − 2 cos θ where e±iθ are the eigenvalues of
w. One can treat a line bundle connection with parallel transports ϕe = eiθe as
a special case of a SU(2)-connection with parallel transports which are diagonal
matrices (

eiθe 0
0 e−iθe

)
.

The measures on SU(2)-connections are used to analyze the measures of primary
interest μnonc,μLC and μLC0 we discuss below.
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3.3. Graphs with wired boundary. Let B ⊂ G be a subset of vertices which we
consider to be the wired boundary of G or simply boundary. An essential CRSF
on a graph with wired boundary is a subgraph, each of whose components is ei-
ther a unicycle not containing any boundary vertex, or a tree containing a single
boundary vertex. For a graph with connection and boundary, we define �� to be
the associated Laplacian acting on f ∈ W defined, for each vertex v ∈ G \ B , by

��(f )(v) = ∑
v′∼v

c
(
vv′)(f (v) − ϕv′vf

(
v′)),

where the sum is over all neighbors v′ ∈ G of v (including neighbors in B). In the
natural basis �� is a submatrix (indexed by G \ B) of the full Laplacian on G.
The analog of Theorem 3 above holds (see [15]) where the sum is over essential
CRSFs.

3.4. Flat connections. A connection is flat if it has trivial holonomy around
any contractible cycle. Suppose that G is geodesically embedded on a nonsimply
connected surface � with flat connection ∇ . Let � = �∇ be the associated con-
nection on G. The associated measure μ� gives zero weight to contractible cycles,
and thus is supported on noncontractible CRSFs.

Let μnonc be the background measure on noncontractible CRSFs on G (giving a
CRSF a probability proportional to the product of its edge weights, that is, ignoring
any connection). The measure μ� has density

∏
γ⊂	(2 − Tr(wγ )) with respect to

μnonc.
Although μnonc cannot itself be written as a connection measure μ� for some

flat connection �, we can use the μ� to study μnonc; see Lemma 16 below.

3.5. Graphs embedded on a curved surface.

3.5.1. The Levi-Civita measure. Suppose that G is geodesically embedded on
a Riemannian surface �. There is a natural complex line bundle on �, the tangent
bundle. Take ∇ to be the Levi-Civita connection on the tangent bundle associated
to a metric g on �. Define μLC to be the associated probability measure. It gives
a CRSF a probability proportional to∏

e

c(e)
∏
γ⊂	

(2 − 2 cos θγ ),

where, by the Gauss–Bonnet theorem, θγ is the Gaussian curvature enclosed by γ .
(If γ is not contractible it is the “net turning angle” of γ .)

3.5.2. The CRST measure. When � is contractible, there is another measure
μLC0 we can associate to this situation, introduced in [15]. It is supported on
CRSTs (one-component CRSFs) of G. Let � = {eiθe}e∈E be the parallel transports
on G defined from ∇ , and for real t let �t = {eitθe}e∈E ; these are well defined by



RANDOM CURVES ON SURFACES 941

contractibility of �. Let μLC0 be the limit as t → 0 of the measures μ�t . Since
loop weights are going to zero, there will be only one loop remaining in the limit
t → 0, so the limit is a CRST. In μLC0 , each CRST 	 has a weight proportional to
(the product of the edge weights times) θ2

γ , the square of the curvature enclosed by
the unique cycle γ of 	.

Let ZLC0 = ∑
CRSTs θ2

γ

∏
e c(e) be the partition function of μLC0 . By Theorem 3,

we have

ZLC0 = lim
t→0

t−2 det��t .

An explicit computation of this limit yields the following. Let κ = κ(G) be the
weighted sum of spanning trees of G.

LEMMA 4. We have ZLC0 = κ(G)〈�,(I − T )�〉, where 〈·, ·〉 is the usual
scalar product in the space of 1-forms, T is the transfer current (defined below),
and � is the one-form on edges giving the angle θ of the connection.

This lemma also appears as Lemma 2 in [14], page 14, but we include the proof
here for self-containedness.

The same statement (and proof) applies more generally to the t → 0 limit start-
ing from any U(1)-connection, not necessarily the Levi-Civita connection. How-
ever, we will not have use for these other measures here.

PROOF OF LEMMA 4. The map T is the orthogonal projection onto Im(d),
which is the orthocomplement of the space of Ker(d∗). By a (generalization to
varying conductances of a) result of Biggs ([5], Proposition 7.3) the projection
onto Ker(d∗) is given by

κ−1
∑

spanning trees t

wt (t)
∑
e/∈t

ceπC(e,t),

where wt(t) = ∏
e′∈t ce′ , C(e, t) is the cycle of t ∪ e and πC(e,t) is the projection

onto this cycle. Hence,

T = I − κ−1
∑

spanning trees t

wt (t)
∑
e/∈t

ceπC(e,t).

We then have

κ
〈
�,(I − T )�

〉 = κ

〈
�,κ−1

∑
t

wt (t)
∑
e/∈t

ceπC(e,t)�

〉

= ∑
t

wt (t)
∑
e/∈t

ce〈�,πC(e,t)�〉

= ∑
t

wt (t)
∑
e/∈t

ce

θ2
C

|C(e, t)|
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FIG. 2. A μLC0 -random CRSF on the sphere with its round metric; a μLC-random CRSF on the
sphere with two components (a rare event).

= ∑
CRSTs u

wt(u)θ2
C,

where we used 〈w,πvw〉 = 〈w,v〉2

〈v,v〉 in the second from last equality. �

3.6. Exact sampling. The measures μnonc, μLC0 , and μLC can be sampled us-
ing our generalization of Wilson’s algorithm as follows.

The measure μnonc is sampled by using a function α which assigns a loop weight
0 if it is contractible and 1 otherwise.

For μLC0 , we set α(γ ) = εθ2
γ for small ε. For small enough ε, there will typi-

cally be only one loop (if there is more than one, start over).
We can sample μLC only in the case where the absolute value of the curvature

θ enclosed by any curve does not exceed π/2. Indeed, in that case, we will always
have 2 − 2 cos θ ∈ [0,2] which is necessary to sample.

See Figures 2, 3, 4 which are obtained by using fine conformal approximations
to the underlying surfaces (only the cycles of the CRSFs are drawn). Figures 2,
right and 3, right, are samples conditional on enclosing curvature less than π/2.

In order to sample the unconditional measures, one can use a general algorithm
for determinantal processes with Hermitian kernels [10] which is slower.

Figure 5 shows a sample of μnonc on a multiply-connected planar domain.

4. Scaling limits for graphs on surfaces. The measures μnonc,μLC,μLC0

induce measures on sets of cycles on G, by forgetting the rest of the CRSF. We use
notation Pnonc,PLC,PLC0 , respectively, for these cycle measures.

In this section, we prove our main statement (convergence of these cycle mea-
sures) in the following way. We first review in 4.1 the conformal approximation
setup in which we consider the scaling limit. Then in 4.2, we define the probability
space in which convergence takes place, namely the metric space of loops up to
time-reparameterization. A main ingredient is obtained in 4.3 where we show that
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FIG. 3. A μLC-random CRSF on the saddle surface z = x2 − y2 (left), and the hyperbolic plane
(right).

the probability that there be no loop in the (wired) CRSF measure has a nontrivial
limit. This is instrumental in 4.4 to show that, in the limit, the number of loops re-
mains finite and that the loops are necessarily macroscopic. Combined with earlier
technical results on LERW by other authors, this implies tightness of the sequence
of measures. We then conclude by Prokhorov’s theorem, showing the convergence
of a determining class of “cylindrical” events defined in 4.5. This is done first in
4.6 in the case of the measure Pnonc using the representation theory of the surface’s

FIG. 4. A μnonc-random CRSF on the flat torus (obtained from the unit square by identifying
opposite sides).
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FIG. 5. A μnonc-random CRSF on a punctured disk conditioned on having a particular homotopy
type.

fundamental group, then extended to flat connections, and finally used to prove the
main result, Theorem 20 in 4.7. The last Section 4.8 presents some applications of
the main theorem.

4.1. Conformal approximation. Let (Gn) be a sequence of (edge-weighted)
graphs geodesically embedded in � with mesh size (longest edge length) going to
zero.

There are a number of equivalent definitions of the notion of conformal approx-
imation of � by the sequence (Gn). Perhaps the easiest is to say that conductance-
weighted random walk on Gn converges to the Brownian motion on �, up to repa-
rameterization. Another approach, more computationally useful, uses the transfer
impedance.

Let Rn(e, e′) be the transfer impedance of two oriented edges e = xy and e′ =
x′y′ in Gn. This is defined as the potential drop across e′ when one unit of current
enters at e− and leaves at e+ (the endpoints of e), when the graph is viewed as an
electrical network with conductance c. In terms of the Green function Gn one has

Rn(
e, e′) = Gn(

e+, e′+
) − Gn(

e+, e′−
) − Gn(

e−, e′+
) + Gn(

e−, e′−
)
.

A related quantity is T (e, e′) = c(e′)R(e, e′) the transfer current: the current
across e′ when one unit of current enters at e− and leaves at e+.

The function Rn(e, e′), as a function of either e or e′, is a discrete one-form on
Gn (function on oriented edges which changes sign under change of orientation).
We say that conformal approximation holds if the mesh size tends to zero as n →
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∞ and, when e1, e2 are not within o(1) of each other,

Rn(e1, e2) = (
De1De2g(z1, z2)

)
�(e1)�(e2) + o

(
�(e1)�(e2)

)
,(2)

where g is the continuous Green function, �(ei) is the edge length, and the notation
Dei

g represents the directional derivative in the direction of the edge ei applied to
the variable zi , that is,

De1g(z1, z2) = lim
δ→0

g(z1 + δu1, z2) − g(z1, z2)

δ
,

where u1 is the unit displacement in the direction of e1, and similarly for De2 for
the second variable z2.

If we sum the transfer impedance for e1 varying along a path γa,b from vertex
a to b, and e2 on γc,d from c to d , we find that∑

e1∈γa,b

∑
e2∈γc,d

Gn(
e−

1 , e−
2

) − Gn(
e−

1 , e+
2

) − Gn(
e+

1 , e−
2

) + Gn(
e+

1 , e+
2

)
(3)

= g(a, c) − g(b, c) − g(a, d) + g(b, d) + o(1).

This quantity represents the change in potential from c to d when one unit of cur-
rent enters at a and exits at b. As a function F(c) of c, this is the unique harmonic
function with appropriate logarithmic singularities at a and b, and which is zero
at d . In particular, the level curves of F are equipotentials and, taking equipoten-
tials near a and b (which are close to circles), one can thus compute the resistance
between a small circle around a and a small circle around b. In this way, using
convergence of the transfer impedance, one can show that the main notions of po-
tential theory including the Poisson kernel, Cauchy kernel, holomorphic functions,
etc. all behave well under conformal approximation.

As an example of a conformally approximating sequence, standard arguments
show that the square grid in C, scaled by ε, conformally approximates any planar
domain in C as ε → 0. Thus, for a simply connected domain in � we can pull
back a fine square grid in C under a conformal map from a domain in C to �.
More generally, the (almost-)equally-spaced real and imaginary curves of a holo-
morphic quadratic differential φ(z) dz2 on � give a graph structure on �, with
unit conductances, conformally approximating the surface. Other examples from
Poisson point processes are given in [9].

4.2. The probability space of simple multiloops. For a graph Gn, let Pn be one
of the measures on loops discussed above. We can see the probability measures Pn

for different ns as living on the same probability space � that we now describe.
A multiloop in � is a finite union of simple loops (ignoring parameterization)

with disjoint images, that is, an injective map from the union of k copies of the
unit circle T to �, for some k ≥ 1 (and modulo reparameterizations). The space of
single simple loops is a metric space: the distance is defined by

d(f, g) = inf
α

sup
t∈S1

∥∥f (t) − g
(
α(t)

)∥∥,
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where the infimum is over all reparameterizations α. In other words, two loops are
close if they can be parameterized so that their images are close for all parameter
values t . One can extend this distance to the case of multiloops by taking the
infimum over all permutations of loops, of the max of the pairwise distances (and
defining the distance between �k and �k′ for k �= k′ to be infinite). With this
distance � is a topological metric space. It is a disjoint union � = ⋃∞

k=1 �k where
�k consists of multiloops with k components.

This space is not complete: it is easy to construct Cauchy sequences that shrink
to a point or to nonsimple loops. However, it is separable: take all finite multiloops
lying on fine lattice approximations of the surface. This is a countable family of
loops which is dense in �.

The set of cycles of a CRSF on Gn defines an element of �.
A finite lamination on a surface is an isotopy class of a multiloop. For any points

x1, . . . , xm ∈ �, and small δ > 0, let Bi be a ball around xi of some radius less
than δ, and consider the finite laminations in � \ {B1 ∪ · · · ∪ Bm}. Any multiloop
γ which avoids the balls Bi defines a lamination [γ ]. For any of these laminations
L, we consider the event

EB1,...,Bm;L = {
γ ∈ �|[γ ] = L

}
.

We call these sets cylindrical events and consider the σ -field B on � generated
by these events.

LEMMA 5. B contains the Borel sets in �.

PROOF. We just prove this for one loop, that is, for �1. The proof is easily
extended to the general case.

Let c be a smooth simple closed curve in � and for some small ε > 0 let Uε(c)

be its ε-neighborhood. Consider the event E that the random curve γ maps into
Uε(c), winding once around the annulus with, say, the positive orientation. These
types of events generate the Borel sets.

Let x1, x2, . . . be a sequence of points dense in the boundary of Uε(c). Let Bi

be a ball around xi of radius δ/i. Let Eδ;n be the cylinder event that the curve
γ in � \ {B1 ∪ · · · ∪ Bm} separates the points {x1, . . . , xn} on the two boundary
components of Uε(c), that is, is consistent with γ winding once around Uε(c). The
event E is contained in the intersection over n of the Eδ;n. In fact, we have E =
∩nE0;n = ⋃

δ→0 ∩nEδ;n: any continuous simple loop which separates the points
lies in the interior of the annulus and winds once around. This can be seen as
follows. First of all, any curve in ∩nE0;n is contained in Uε(c): otherwise, we could
find some xj lying on the wrong side of the curve since the family (xn)n≥1 is dense
in the boundary which would yield a contradiction. Second, the curve cannot be
contractible since this would contradict the fact that it separates the points. Hence,
it winds once around the hole of the annulus. Its orientation is necessarily positive.

�
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LEMMA 6. The set of cylindrical events forms a determining class for B.

PROOF. This class is stable under finite intersection and generates the sigma-
field. �

4.3. The probability of no loops. Recall that on a graph with boundary, an
essential CRSF is a subgraph, each of whose components is either a unicycle not
containing any boundary vertex, or a tree containing a single boundary vertex. For
a graph with boundary and flat connection �, the probability that a μ�-random
essential CRSF has no loops tends to 1 as the holonomy tends to the identity, since
each noncontractible cycle has weight 2 − 2 cos θ which tends to zero.

For μLC, the following theorem describes a similar result. For a graph embedded
on a surface � with boundary, we define the boundary of the graph to be the set of
vertices adjacent to the boundary of �. Let {Gn}n=1,2,... be a sequence of graphs
conformally approximating �, where Gn has mesh size at most 1/n.

The intuition behind the following theorem is that one may express the quanti-
ties as functionals of the random walk loop soup and observe that the random walk
loop soup converges to the Brownian one; see, for example, [19].

THEOREM 7. For any compact surface with nonempty boundary and any
smooth unitary connection ∇ on a line bundle on �, the probability P

n(no loops)
converges to a universal limit p(�).

PROOF. Let �Id be the Laplacian on Gn for the trivial connection. We have

P
n(no loops) = det�Id

det��

.

Write �� = D(I −P�) where D is the diagonal “degree” (sum of weights) matrix.
Then

− logPn(no loops) = −Tr log(I − PId) + Tr log(I − P�)

=
∞∑

k=1

TrP k
Id

k
− TrP k

�

k
(4)

= ∑
loops�

P(�)(1 − cos θ�),

where the sum is over unrooted loops �, and where P(�) is the probability of � (for
the weighted random walk started at some vertex of �) and eiθ� is the holonomy of
the loop �.

We divide this sum into three parts: tiny loops (consisting of at most ε
√

n steps),
small loops (consisting of at most εn2 steps), and large loops (at least εn2 steps).
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For tiny loops of k steps, the area enclosed is at most O(k2/n2) by the isoperi-
metric inequality. Since θ� is at most a constant times the enclosed area, the con-
tribution for tiny loops is bounded by

ε
√

n∑
k=1

Tr(P k)

k
O

((
k2/n2)2)

.

Since P is substochastic, Tr(P k) = O(n2), and the total contribution is O(ε2).
For small loops of length k, we argue that they enclose signed area O(k/n2). We

use a small generalization of the following result of Wehn, [22]: a two-dimensional
simple random walk of length k, conditioned to return to the origin, encloses a
signed area (that is, the integral of x dy) of order O(N), that is, has standard de-
viation O(N). The argument is as follows. The signed area is obtained from an
integral

∫
x dy along the loop [where (x, y) are local orthogonal coordinates with

origin at the starting point]. Each step makes an essentially independent contri-
bution to the integral (the only dependence being the condition that the loop is
closed after k steps). By grouping several steps at a time, the mean contribution
for each group is zero, whereas the variance is of order k/n4, since x = O(

√
k/n)

and dy = O(1/n). Summing the variance over the k steps, one gets a total vari-
ance O(k2/n4). Using the fact that a random walk of length k returns to its starting
point with probability O(1/k), the contribution for small loops is

εn2∑
k=1

Tr(P k)

k
O

(
k2/n4) =

εn2∑
k=1

O

(
n2

k2

)
O

(
k2/n4) = O(ε).

By [19], the sum over large loops converges to the analogous continuous loop
measure. This is because long loops can be approximated with Brownian excur-
sions. Along such an excursion the parallel transport is approximated by the Brow-
nian parallel transport.3 This Brownian parallel transport is a universal quantity in
the sense of being independent of the underlying graph, only depending on the
underlying smooth connection. �

Suppose now ∇ is close to the identity: that is, for some small c > 0, the integral
of the absolute value of the curvature of ∇ is less than c, and the holonomies w of
∇ on a fixed cycle basis satisfy |w − 1| < c.

3The Brownian parallel transport is defined as a limit of the parallel transport along piecewise
geodesic approximations to the Brownian motion: for a Brownian path B(t)t∈[0,1], take, for example,
for N large the piecewise geodesic path connecting the points B(j/N) and B((j + 1)/N) for j ∈
{0,N − 1}. Itô showed in [11] that almost surely the parallel transports along the piecewise geodesic
path converge in the limit N → ∞ to a quantity independent of the approximating discrete path.
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COROLLARY 8. For ∇ close to the identity in the above sense, the probability
of no loops satisfies

P
n(no loops) = 1 + o(1),

where the error is independent of n.

PROOF. In the proof of the above theorem, with a total curvature bound c, the
term 1 − cos θ� is of order c2O(θ2

� ). Thus, the ratio of determinants, and hence the
probability of no loops, is 1 − O(c2). �

4.4. Asymptotic size of loops and tightness of the measures.

4.4.1. Macroscopic loops. For P
n
nonc, the loops necessarily are macroscopic

since they are noncontractible. In the curved case for the measures Pn
LC and P

n

LC0 ,
we show that there are, with positive probability, macroscopic loops.

THEOREM 9. With positive probability P
n
LC and P

n

LC0 contain a macroscopic
loop, that is, for sufficiently small ε > 0 the probability that there is a loop with
diameter ≥ ε does not tend to zero with n.

PROOF. We can suppose the surface is a disk: if not, take a point of nonzero
curvature on the surface and a disk around it, small enough so that the curvature
is roughly constant on the disk. Wiring the boundary of this disk, and making the
disk boundary part of the surface boundary (effectively cutting the surface apart
along the disk boundary) decreases the probability of finding a macroscopic loop
in this disk, since the loop-erased walk from any interior point will halt sooner. So
once we prove the theorem for a disk with nonzero curvature we are done.

We will prove the theorem for Pn

LC0 . Since we are assuming at this point that the
surface is a disk, this will also suffice for Pn

LC by the following argument. Choose
the disk small enough so that the probability of no loops is at least 1/2. Then
for each loop discovered by the algorithm, the conditional probability of having
no further loops is at least 1/2 (since each new loop discovered decreases the
probability of further loops). Thus, the number of loops is smaller than a geometric
random variable of rate 1/2, and the probability of 1 loop strictly dominates the
probability of more than one loop. The change of loop weight between P

n
LC and

P
n

LC0 tends to 1 with small curvature θ , so these are absolutely continuous with a
Radon–Nikodym derivative independent of n.

Now consider the case of Pn

LC0 . For this, consider first the n × n grid Hn scaled

by 1/n to the unit square [0,1]2. Let z1 �= z2 ∈ (0,1)2 and let f1, f2 be faces of the
grid close to z1, z2, respectively. In [13], it is shown that the probability P(f1, f2)

that f1, f2 are enclosed in the cycle of a uniform CRST of Hn is const/n2 +
o(1/n2). Let E be the event that f1, f2 are enclosed in the cycle. On this event,
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the area of the enclosing cycle is with high probability ≥ εn2 for some ε > 0 (see
below, where it is shown that the loops are absolutely continuous with SLE2). Then

P
n

LC0(E) =
∑

E Area2

∑
CRSTs Area2 ≥ ε2n4 ∑

E 1

Cn2 ∑
CRSTs 1

= ε2C′n2
P(f1, f2)(5)

for constants C,C′. Here, the denominator of the central inequality follows from
the result of [13] that the second moment of the area of a uniform CRST is of order
n2 times a constant. The right-hand side of (5) is bounded below by a positive
constant independently of n.

A similar argument holds for any sequence of graphs (Gn) conformally approx-
imating a curved disk �, and near a point where the curvature of the metric is
nonzero: In a small neighborhood U of such a point, the curvature is approximately
constant and the transfer impedance for ε� will thus agree to first order with that
in a similar small neighborhood of a point in Hn and far from the boundary of Hn.
Since P(f1, f2) is determined by the Green’s function on the dual graph [13], for
f1, f2 ∈ U we have a similar estimation of Pn

LC0(E) as in the case for Hn above.
�

4.4.2. Number of loops. We show here that the number of loops has super-
exponential decay for both P

n
nonc and P

n
LC.

LEMMA 10. For any sequence (Gn)n≥1 of graphs conformally approximating
a compact Riemannian surface �, possibly with boundary, we have the following.
For any 0 < ξ < 1, there exists N and K such that for all n ≥ N and for all k ≥ K ,
we have

P
n(there are at least k loops) ≤ ξk.

PROOF. Each loop created during the performance of the cycle-popping algo-
rithm either disconnects the surface or decreases the rank of the first homology. By
the Markov property (Section 5.1), the law of the conditional CRSF is obtained by
independently sampling in each of the connected components.

For Pn
LC, suppose that we have created k closed curves. Each of the complemen-

tary components is either planar or non-planar. Each new loop found has a positive
probability of being macroscopic, that is, either reduces the rank of the first ho-
mology or removes definite area from both resulting components, by Theorem 9.
Thus, for k sufficiently large, the curvature enclosed c on either side will be small,
hence with definite probability 1 − p = 1 − o(1) the two sides will contain no
further loops, by Corollary 8. By taking k large enough, and mesh size 1/n small
enough, the curvature enclosed c can be taken as small as needed such that p < ξ .

Thus, the probability of an extra loop eventually decays exponentially with rate
less than ξ .

A similar argument works for Pnonc. �
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As an example, the distribution of loops for Pnonc with free boundary condi-
tions was computed for an annulus using the standard square grid approximation
in [15]. For a cylinder of aspect ratio (height to circumference) τ , the probability
generating function of the number of loops is an elliptic function

E
free
τ

(
X# loops) = X

∞∏
j=1

X + 2 cosh (πj/τ) − 2

2 cosh (πj/τ) − 1
,

which can be checked to have a super-exponential tail. For wired boundary condi-
tions, and by planar duality (since the dual of an essential incompressible CRSF
is a CRSF with free boundary conditions) the distribution is E

wired
τ (X# loops) =

X−1
E

free
τ (X# loops), which naturally also has a super-exponential tail.

4.4.3. Microscopic loops. The following theorem shows that loops of Pn
LC do

not shrink to points as n → ∞.

THEOREM 11. Any subsequential limit of Pn
LC as n → ∞ is supported on �,

that is, as α → 0

lim sup
n→∞

P
n
LC(there is a loop of area ≤ α) = o(1).(6)

PROOF. Let us argue by contradiction. If we suppose that (6) is false, it means
that there exists p > 0 and arbitrarily small values of δ > 0 such that for n large
enough, we have

P
n
LC

(
there is a loop with area ≤ δ2)

> p.

A small-area loop has a small diameter; conditioning on this loop in particular
does not change the transfer impedance operator far from that loop. In fact from
Lemma 12 below, the loops are absolutely continuous with respect to the loop-
erased walk; as such their probability of intersecting a small disk tends to zero
with the disk’s diameter, since the same is true for the loop-erased walk. Thus, the
conditioning has negligible effect.

So we can expect to find many loops: there is a 0 < q < p such that, dividing
� into regions of diameter

√
δ, the probability that there is a loop in each of these

�(1/δ) regions is on the order of q1/δ . Thus,

P
n
LC

(
there are 1/δ loops with area ≤ δ2)

> q1/δ.

However, by Lemma 10 above, there exists 0 < ξ < q such that for any k and n

large enough, we have

P
n
LC(there are ≥ k loops) ≤ ξk.

By taking k = 1/δ, we obtain that for arbitrarily small values of δ > 0, there is a
large enough n such that

0 < q1/δ < P
n
LC

(
there are 1/δ loops with area ≤ δ2) ≤ ξ1/δ.

This yields a contradiction since the right-hand side of the last equation tends to
zero faster than the left-hand side when δ → 0. �
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4.4.4. Resampling and tightness. We will show tightness of the sequence of
measures Pn

nonc,P
n

LC0 and P
n
LC. This will yield the existence of subsequential lim-

its.
We show in fact that the scaling limits of the macroscopic loops are absolutely

continuous with respect to SLE2. For this, we establish the link to the loop-erased
random walk (LERW).

LEMMA 12 (Link to LERW). Let η be a simple path from vertices η+ to η−.
The law of the cycle γ of a uniform CRST, conditional on the fact that it contains
η, is (η followed by) the LERW from η+ to η− with wired boundary conditions
along η.

For the measures PLC,PLC0 or Pnonc, conditional on all other components, the
law of γ is asymptotically that of (η followed by) the LERW from η+ to η− with
wired boundary conditions along η, biased by the cycle weight of γ .

PROOF. Let γ be a loop in a Pn

LC0 -, Pn
LC- or Pn

nonc-random CRST, and a, b ∈ γ

distinct points on it. Let γ [a, b] be the part of γ counterclockwise between a and
b, and γ [b, a] the complementary part. If we erase γ [a, b], we can define a new
loop γ ′ by taking a LERW from a to b in the domain defined by � ∪ γ [b, a],
with wired boundary conditions on γ [b, a], and conditioning on the LERW to
end at b. The union of this LERW and γ [b, a] is the simple closed curve γ ′. By
the sampling algorithm, this curve γ ′ is absolutely continuous with γ [a, b], with
Radon–Nikodym derivative given by the ratio of the cycle weights. If a and b are
close to each other, the LERW from a to b will with high probability not exit a
small ball around [a, b]. Hence, the cycle weight of γ ′ will be close to that of γ .

Wilson’s algorithm thus shows that this is a fair sample of P conditioned on
γ [b, a]. Thus, the LERW from a to b with the appropriate boundary conditions is
absolutely continuous with respect to γ [a, b], with a bound independent of mesh
size 1/n. �

This proves that in the scaling limit, for any converging subsequence, the loops
are locally absolutely continuous with respect to the scaling limit of LERW, which
was shown in [18] to be SLE2.

In particular the scaling limit, for any converging subsequence, is supported on
simple curves (recall that SLE2 curves are simple, and note that this is a local
property). This tightness property of LERW was proved in [1, 2, 18, 21].

THEOREM 13. The sequences (Pn
nonc)n≥0 and (Pn

LC)n≥0 are tight on �.

The above argument also shows that the sequence (Pn

LC0)n≥0 is tight, provided
we allow for the possibility that the curve shrinks to a point. We need to add to
�1 a copy of � whose points represent the constant maps of S1 to that point.
The metric naturally extends to this augmented space �∗

1, so that the limit of a
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sequence of curves shrinking to a point is the constant curve at that point. Let �∗
1

be this augmented space.

THEOREM 14. The sequence (Pn

LC0)n≥0 is tight on �∗
1.

4.5. Probabilities of cylindrical events.

4.5.1. Flat connections. Let � be a compact surface with b > 0 boundary
components. Let x1, . . . , xk ∈ �. Let M be the space of flat SU(2)-connections
modulo gauge transformations on � \ {x1, . . . , xk}. This space is compact. Such
a flat connection is determined uniquely by a homomorphism from π1(� \
{x1, . . . , xk}) into SU(2) modulo conjugation.

Provided b + k > 0, the fundamental group π1(� \ {x1, . . . , xk}) is a free group
Fm on m = 2g + k − 1 + b letters, where g is the genus and b the number of
boundary components of �. Thus, a flat connection is determined by m arbitrary
elements of SU(2), one for each generator of π1.

There is no canonical basis for π1(� \ {x1, . . . , xk}), and hence for M. For any
choice of a basis, we consider the measure on M obtained by the image of the
Haar measure on SU(2)m. It can be seen, using a theorem of Nielsen (see [20],
Chapter 1), that the measure is independent of that choice of basis. (This theorem
states that one can go from one basis to another in a free group by a sequence of
elementary moves. It is easy to check that these moves preserve the Haar measure.)
We let ν be this measure and call it the canonical Haar measure on M.

4.5.2. Trivalent graph. A useful device (see [7]) is to define a trivalent graph
H in � (unrelated to G) with a single boundary component of � or xi in each
face, so that H is a deformation retract of � \ {x1, . . . , xk}. We can think of � as
a ribbon graph structure on H .

Recall that a finite lamination L of � is an isotopy class of a finite number of
disjoint noncontractible simple closed curves. A lamination L retracts to a “mul-
ticurve with multiplicity” on H ; L is determined by, for each edge of H , a non-
negative integer giving the number of strands of a minimal representative of L

retracted onto that edge. These integers satisfy the conditions that at each vertex
of H the sum of the three integers is even and the three integers satisfy the tri-
angle inequality; see Figure 6. Moreover, any set of integers satisfying these two
conditions arises from a unique lamination.

We define a partial order on laminations: L ≤ L′ if the integers on edges of H

associated to L are all less than or equal to those of L′. We define the complexity
n(L) of L to be the sum of these integers.

An SU(2)-connection on H determines a flat connection on �. After gauge
transformation, one can take the SU(2)-connection to be the identity on all edges
of a spanning tree of H .
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FIG. 6. Strands of the lamination at a vertex of the trivalent graph; the integers i, j, k (here 5,4,3)
satisfy i + j + k = 0 mod 2 and the triangle inequality.

4.5.3. Integrals over the space of flat connections. Given a finite weighted
graph G embedded in �, and � ∈ M define

Z(�) = ∑
CRSFs

∏
edges

c(e)
∏

cycles γ

(
2 − Tr(ωγ )

)
,(7)

where ωγ is the holonomy of the connection � around the cycle γ . The function
Z is a real-valued function on M.

We denote

Z0 = ∑
nonc. CRSFs

∏
edges

c(e),

the partition function for all noncontractible CRSFs, without cycle weight. [This
is not the same as Z(Id), which is zero.]

For a flat connection �, we may rewrite (7) as

Z(�) = ∑
L

XLTL(�),

where the sum is over finite laminations L, where XL is the conductance-weighted
sum of CRSFs whose cycles are isotopic to L, and

TL(�) = ∏
γ∈L

(
2 − Tr(ωγ )

)

is a real-valued function on M.
Fock and Goncharov [7] proved that, seen as real-valued functions on M, the

functions SL = ∏
γ∈L Tr(ωγ ) are linearly independent and generate the vector

space of regular (polynomial) functions on M, when L runs through all finite
laminations. Hence, the functions TL = ∏

γ∈L(2 − Tr(ωγ )) are also linearly in-
dependent, generate the same vector space and, when the bases are ordered by
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increasing number of cycles, the change of basis matrix MS,T is an invertible infi-
nite triangular matrix.

Choose an ordering of the TL consistent with the partial order on laminations
defined above. Let P = {PL(�)} be the Gram–Schmidt orthonormalization of the
T = {TL(�)} with respect to this ordering and with respect to the inner product
〈f,g〉 = ∫

M fg dν. Let A = (AL,L′) be the infinite lower-triangular matrix such
that P = AT .

Recall the linear operator �� on the total space C
2|V | of the C

2-bundle on G.

THEOREM 15 ([15]). We have

Z(�) = √
det(��).

One can extract the coefficients of any desired lamination L as follows.

LEMMA 16. For any cylindrical event EL, we have

μnonc(EL) = ∑
L′≥L

AL′,L

∫
M

Z(�)

Z0
PL′(�)dν.

This sum is finite for any finite graph.

PROOF OF LEMMA 16. The probability of EL is XL/Z0. Write

Z(�) = ∑
L

XLTL = XtT(�) = XtA−1P(�).

Since P is orthonormal, we have
∫
M PtPdν = Id. Hence,

∫
M

ZPtAdν =
∫
M

XtA−1P(�)Pt (�)Adν

= XtA−1
(∫

M
P(�)Pt (�)dν

)
A = Xt .

Hence,

X =
∫
M

ZAtPdν.

Each entry XL is the integral

XL = ∑
L′≥L

AL′,L

∫
M

Z(�)PL′(�)dν.

Dividing by Z0 we obtain the result. �
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4.6. Convergence in the flat case. We first consider � to be a flat connection.
Associated to this is a measure μn

� on noncontractible CRSFs. Since μn
� has a

density (independent of the graph) with respect to μn
nonc, it suffices to show that

this latter converges.
The main tool is the following convergence result. Let x1, . . . , xk be points of �

and Bj a small ball around xj . Let � be a flat connection on � \ {B1 ∪ · · · ∪ Bk}.
THEOREM 17. There exists a function H ∈ L2(M2) depending only on the

conformal type of the surface �′ = � \ {B1 ∪ · · · ∪ Bk} such that for any �′ not
gauge-equivalent to the identity, we have

Z(�)

Z(�′)
→ H

(
�,�′).

There exists a bounded function F on M depending only on the conformal type of
the surface �′ = � \ {B1 ∪ · · · ∪ Bk} such that

Z(�)

Z0
→ F(�).

PROOF. The first statement is proved in the same way as Theorem 7.
For the second statement, let Z0 = ∑

L XL be the total number of CRSFs. By
the first statement, Z0

Z�
converges for any � �= 1. Now consider its inverse.

We write
Z�

Z0
= ∑

L

XL

Z0
TL.(8)

First, TL ≤ eO(n(L)) because 2 − Tr(ω) is uniformly bounded by a constant over
M. Second, by Lemma 10, XK ≤ e−cn(K)Z0 for arbitrarily small c > 0. Since
there are at most n(K)M laminations L with complexity n(L) = n(K), where M

is the number of edges of H , the sum (8) is bounded by a convergent series. �

THEOREM 18. Let � be a compact nonsimply connected Riemann surface.
There is a conformally invariant measure Pnonc on (�,B) supported on noncon-
tractible multicurves, such that for any sequence (Gn)n≥1 of graphs conformally
approximating �, the measures P

n
nonc on noncontractible CRSFs of Gn converge

to Pnonc.

The main result of [16] shows that the homotopy classes on � of the noncon-
tractible loops have a conformally invariant limit distribution.

PROOF OF THEOREM 18. Take points z1, . . . , zk in �, take δ > 0 small, and
for each i let Bi be the ball of small radius δ around zi . Let Gn

B = Gn \ {B1 ∪ · · · ∪
Bk} and P

n
B the associated measure on multiloops of noncontractible CRSFs on Gn

whose loops stay in Gn
B .
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Consider L a finite lamination in � \ {B1 ∪ · · · ∪ Bk}, which has no periph-
eral curves (no curves isotopic to one of the boundary curves ∂Bi). It can also
be thought of as a lamination of Gn

B . Let EL be the event that a CRSF of Gn
B has

lamination L.
Up to errors uniform in n and tending to zero with δ,

P
n(EL|no peripheral curves) = P

n
B(EL|no peripheral curves).

[Here, the term on the left is equal to P
n(EL) because the connection is flat.] This

follows from the sampling algorithm since removing one or more very small disks
does not change the distribution of the LERW away from those disks.

We need to show that limn→∞ P
n
B(EL) exists and depends only on the confor-

mal type of the domain � \ {B1 ∪ · · · ∪ Bk}.
By Lemma 16, the probability P

n
B(EL) is given by a sum over L′ ≥ L of

integrals over M of Z(�)/Z0 times a function PL′(�) independent of n. By
Corollary 17, the integrand Z(�)/Z0 converges and is bounded independently
of n. Thus, by bounded convergence, for each L′ the integral 〈Z(�)

Z0
,PL′ 〉 =∫

M
Z(�)
Z0

PL′ dν converges.
We need to show that the sum (weighted by the coefficient AL,L′ ) over L′ con-

verges. We have

〈
Z(�),PL′

〉 =
〈∑

K

XKTK,PL′
〉
=

〈 ∑
K≥L′

XKTK,PL′
〉

(9)

since 〈TK,PL′ 〉 = 0 unless K ≥ L′. We also have |〈TK,PL′ 〉| ≤ 4|K| = eO(n(K)) by
the Cauchy–Schwarz inequality and because |K| = �(n(K)).

Furthermore, by the Gram–Schmidt process, we see that AL,L′ is growing at
most exponentially in n(L′). That is, there exists ξ > 0 such that for any L′, we
have |AL,L′ | ≤ ξn(L).

Using the above bounds, the sum (9) is bounded by e−c′n(L)Z0 for some arbitrar-
ily small c′ > 0 and summing over L′ and weighting by AL,L′ gives a convergent
sum.

We now use a classical convergence argument [6]. We showed that the proba-
bilities of any cylindrical event converge. The cylindrical events form a family of
sets which is stable under finite intersection. Since it generates the σ -field B, it is
a determining class, that is, if two probability measures on (�,B) coincide on all
cylindrical events, then they are equal.

Since we furthermore have tightness by Theorem 13, the sequence of probability
measures Pn admits subsequential limits by Prokhorov’s theorem. More precisely,
for any subsequence, there exists a sub-subsequence which converges. Since its
value on the cylindrical events is known, there is only one possible limit. Let us
call it Pnonc. Now, since � is a metric space, this implies that the sequence P

n
nonc

converges weakly to Pnonc. �
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As a corollary, we obtain the convergence of the measures μn
� for any flat con-

nection �.

COROLLARY 19. For any flat unitary connection �, there exists a probability
measure P� on (�,B) such that

P
n
� → P�

in the sense of weak convergence.

PROOF. It suffices to show the convergence of this sequence of measures
on finite intersections of balls in � of small radius because this is a determin-
ing class for B. For any curve γ , there is a small radius r > 0 such that its
tubular r-neighborhood retracts onto γ . Any curve in this r-neighborhood and
winding once around is isotopic to γ . On any such neighborhood the density∏

γ⊂L(2 − ωγ − ω−1
γ ) is constant, hence the convergence follows by Theorem 18.

�

4.7. Convergence in the curved case (proof of main statement). The measures
μLC,μLC0 converge in the following sense.

THEOREM 20. There exist probability measures PLC,PLC0 on (�,B) and
(�∗

1,B) respectively such that for any sequence (Gn)n≥1 of graphs, geodesically
embedded on � and conformally approximating �, the sequences of probability
measures Pn

LC and P
n

LC0 converge weakly toward respectively PLC and PLC0 .

PROOF. Let us approximate � by a polygonal surface �ε , that is, with a sur-
face which is flat except for conical singularities. A standard way to do this is to
take a fine triangulation of the surface (with triangles of diameter at most ε and
whose angles are bounded from below), and replace each triangle with the Eu-
clidean triangle with the same edge lengths. As ε → 0 the conformal structure on
�ε converges to that of �. [Indeed, there is a homeomorphism ψε from �ε to �

which is (1 + o(1))-bi-Lipschitz and, therefore, (1 + o(1))-quasiconformal.]
Any graph embedded on � or �ε can be embedded on �ε or � using ψ−1

ε or
ψε; furthermore a graph conformally close to �ε will have image on � confor-
mally close to �, and vice versa.

Let z1, . . . , zk be the vertices of �ε . The Levi-Civita connection on �ε is a
flat connection on �ε \ {z1, . . . , zk} and approximates the Levi-Civita connection
on �, in the sense that for small ε the curvature enclosed by any loop (chosen
independently of the triangulation) is close for both connections. Restricting to
Gn, this shows that Pn

LC,ε is close to P
n
LC [since cylinder events have measures

which are within o(1) of each other].
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By Corollary 19, if we fix �ε and take Gn embedded on �ε and conformally
approximating it as n → ∞, the measures P

n
LC,ε converge as n → ∞ to a limit

PLC,ε . Similarly, for Pn

LC0,ε
.

For any ε > 0, the probabilities of the cylindrical events (away from the singu-
larities) are determined by the function F of Lemma 17. These are expressed as
integrals of Green’s function on paths avoiding the singularities. The addition of a
singularity modifies the Green’s function, and hence the probability, by a negligi-
ble amount.

By a diagonal argument, we can take n → ∞ and then ε → 0 and conclude that
P

n
LC and P

n

LC0 converge weakly as n → ∞. �

From experimental simulations, the probability of getting two or more loops in
μLC on the round sphere is on the order of one percent. Hence, measures μLC and
μLC0 are close for the total variation distance.

The measure PLC0 is a limit of PLC when the metric is scaled by a factor t → 0.
Hence, it is not obvious that Theorem 11 implies that PLC0 also is supported on
macroscopic loops. However, we conjecture it to be true.

CONJECTURE 21. PLC0 is supported on �1 that is

PLC0(the area of the loop is zero) = 0.

4.8. A comment and two applications. The convergence result of probability
measures μc,α on CRSFs is actually more general and can be adapted for a wide
range of functions α on the cycles, not necessarily coming from connections. This
is due to the fact that the crucial convergence argument is made for the uniform
measure on noncontractible CRSFs (Theorem 18). We now state two applications
of the previous theorems.

As an application of Theorem 20, we obtain a result on higher moments of
the area of a uniform CRST, also mentioned in the paper [13]. Let A denote the
combinatorial area (number of faces) of the cycle of a cycle-rooted spanning tree
of Gn. Let θ = A/n2 be the Euclidean area of the cycle. We denote by E

n
unif the

expectation with respect to the uniform measure on CRSTs on Gn.

COROLLARY 22. For k ≥ 2, there exists ak(D) > 0 such that

E
n
unif

(
Ak) = ak(D)n2k−2(

1 + o(1)
)
.

PROOF. Let k ≥ 2. We have

E
n
unif

(
Ak) = E

n

LC0

(
Ak−2)

E
n
unif

(
A2)

= n2k−4
E

n

LC0

(
θk−2)

E
n
unif

(
A2)

= n2k−2C(D)|D|ELC0
(
θk−2)(

1 + o(1)
)
,
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FIG. 7. A uniform noncontractible CRST on an annulus in the square grid.

where the last equality follows from Theorem 6 of [13] [here C(D) is a constant
proportional to the torsional rigidity of the domain] and the weak convergence of
P

n

LC0 to PLC0 . Since θ is bounded and for PLC0 is with positive probability nonzero

by Theorem 9, the limit ELC0(θk−2) is a positive real. The corollary is proved by
taking ak(D) = C(D)|D|ELC0(θk−2). �

As an application of Theorem 18, let us state the following corollary.

COROLLARY 23. Consider a uniform spanning forest on an annulus-graph
wired on its boundary. Then the simple closed curve separating the two connected
components has a conformally invariant limit which is given by the measure Pnonc
conditional on having only one component.

PROOF. This follows from the fact that the dual of a wired essential forest on
the annulus is a uniform noncontractible CRST on the annulus with free boundary
conditions. The measure is thus given by μn

nonc conditional on having one loop.
The convergence follows from Theorem 18. �

Figure 7 shows a sample of this interface between the two tree components of a
wired uniform spanning forest on the annulus.
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5. Properties of the measures. In this section, we mention a few properties
of the measures on CRSFs on surfaces we have been considering.

5.1. Markov property. CRSFs on surfaces with general cycle weights satisfy
the following spatial Markov property. Consider a graph G embedded in a compact
oriented surface �, possibly with boundary. Let α : �1 → R>0 be any positive
weight function on the cycles of G.

Let � be the random CRSF on G. Let {γ } = {γ1, . . . , γk} be a family of its
cycles. These cycles separate � in a number of connected components �1, . . . ,�r .
For i = 1, . . . , r , denote by Gi the intersection of G and the closure of �i (i.e., �i

along with its boundary) and by ∂Gi the boundary cycles.

PROPOSITION 24. Conditional on {γ } ⊂ �, the random CRSF � is equal in
distribution to

{γ }
r⊔

i=1

�i .

PROOF. A CRSF 	 on G which contains {γ } is the union {γ }⊔r
i=1 	i of {γ }

with essential CRSFs 	i on each one of the connected component �i of � \ {γ }.
The proposition then follows directly from the cycle popping algorithm. �

5.2. Restriction property. Let D1 ⊂ D be two planar Jordan domains. Let G
be a finite graph approximation of D. Let � be a connection on a line bundle over
G. We denote det�D(�) the line bundle Laplacian on G with connection �. For
any subset S of the set of vertices of G, we denote by det�D

S (�) the line bundle
Laplacian with Dirichlet boundary conditions on S; see [15].

The measure on multicurves that stay in D1 is absolutely continuous with re-
spect to the measure on D. The Radon–Nikodym derivative is given by a cross-
ratio of determinants of the Laplacian with different boundary conditions.

LEMMA 25. For any finite set of simple nonintersecting curves {γ } ⊂ D1, we
have

μ
D1
� ({γ })

μD
�({γ }) =

(
det�D1(�)

det�D1{γ }(�)

)/(
det�D(�)

det�D{γ }(�)

)
.

PROOF. The proof follows by direct computation using the Forman–Kenyon
matrix tree theorem. �

5.3. Stochastic domination. Recall from Section 2 the notation μc,α for mea-
sures that assign a CRSF 	 a probability proportional to

∏
e∈	 c(e)

∏
γ⊂	 α(γ ),

where each α(γ ) ∈ [0,1].
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LEMMA 26. Let S1 ⊂ S2 be two subgraphs of G. Let P1 and P2 be essential
CRSF measures μc,α with Dirichlet boundary conditions on S1 and S2, respec-
tively. For any curve γ ∈ G \ S2, we have

P1(γ ) ≥ P2(γ ).

PROOF. This follows from the cycle-popping algorithm, as follows. We cou-
ple the cycle-popping algorithms for G1 and G2, starting with identical stacks of
cards at each vertex. When a cycle is found for G1 which is also a cycle for G2,
keep them both or discard them both according to the coin toss, increasing S1, S2
appropriately. If a cycle is found for G1 which is not a cycle of G2 (i.e., defines a
LERW connected to the current S2, keep that LERW in G2 (and, in addition, every
part of the cycle which connects to the current boundary S2) and toss a coin to
determine whether or not to keep the cycle in G1. For either outcome of the coin
toss it is still true that S2, the current union of boundaries of G2, contains S1, the
current union of boundaries of G1. Continue until cycle γ is found for G1; at that
point it will be kept in G2 if and only if it does not intersect the current S2. �

Note that in the case the measures come from a line bundle connection �, this
implies

det�S1∪γ (�)

det�S1(�)
≥ det�S2∪γ (�)

det�S2(�)
,

which is a nontrivial potential theoretic consideration (which can be translated in
terms of Dirichlet-to-Neumann map).

6. Questions.

1. Can the measures Pnonc, PLC0 , and PLC be defined directly instead of via
limits of CRSF measures? For example, via a stochastic differential equation, like a
variant of SLE2 defined on Riemann surfaces subject to some potential depending
on the metric?

2. On the round sphere for the measure μLC0 , can one use the connection Lapla-
cian to say more about the shape of the cycle, as is done in [13] in the flat case?

3. What is the function x �→ PLC0 (x is enclosed by the loop) for the unit disk?
4. What can be said about the Gaussian Free Field associated to the line bundle

Laplacian? Are our loop models related to this GFF? In particular, for a choice of
an infinite curvature, we expect to obtain loops at all scales.

5. What is the right framework for the study of PLC? What is the distribution
of the number of loops?

6. Is there a probabilistic interpretation for the coefficients of the triangular
matrix A defined in Section 4.5.3?

7. What is the scaling limit of CRSFs in higher dimension?
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8. What can be said about the scaling limit of measures μα on CRSFs for
weight functions α not coming from a connection?

9. Can our loop measures be used to study the scaling limit of waves of
avalanches in the sandpile model in the scaling limit? See [12] for a definition
of waves in this model.
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